15 research outputs found

    A probabilistic atlas of the cerebellar white matter

    Get PDF
    Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure–function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3 T, 1.25 mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure–function correlations in patients with cerebellar disorder

    Characterization of cerebro-cerebellar structural connections using high-quality diffusion MRI data

    Get PDF

    Bilateral effects of unilateral cerebellar lesions as detected by voxel based morphometry and diffusion imaging

    Get PDF
    Over the last decades, the importance of cerebellar processing for cortical functions has been acknowledged and consensus was reached on the strict functional and structural cortico-cerebellar interrelations. From an anatomical point of view strictly contralateral interconnections link the cerebellum to the cerebral cortex mainly through the middle and superior cerebellar peduncle. Diffusion MRI (dMRI) based tractography has already been applied to address cortico-cerebellar-cortical loops in healthy subjects and to detect diffusivity alteration patterns in patients with neurodegenerative pathologies of the cerebellum. In the present study we used dMRI-based tractography to determine the degree and pattern of pathological changes of cerebellar white matter microstructure in patients with focal cerebellar lesions. Diffusion imaging and high-resolution volumes were obtained in patients with left cerebellar lesions and in normal controls. Middle cerebellar peduncles and superior cerebellar peduncles were reconstructed by multi fiber diffusion tractography. From each tract, measures of microscopic damage were assessed, and despite the presence of unilateral lesions, bilateral diffusivity differences in white matter tracts were found comparing patients with normal controls. Consistently, bilateral alterations were also evidenced in specific brain regions linked to the cerebellum and involved in higher-level functions. This could be in line with the evidence that in the presence of unilateral cerebellar lesions, different cognitive functions can be affected and they are not strictly linked to the side of the cerebellar lesion

    Mapping of long-term cognitive and motor deficits in pediatric cerebellar brain tumor survivors into a cerebellar white matter atlas

    Get PDF
    Purpose: Diaschisis of cerebrocerebellar loops contributes to cognitive and motor deficits in pediatric cerebellar brain tumor survivors. We used a cerebellar white matter atlas and hypothesized that lesion symptom mapping may reveal the critical lesions of cerebellar tracts. Methods: We examined 31 long-term survivors of pediatric posterior fossa tumors (13 pilocytic astrocytoma, 18 medulloblastoma). Patients underwent neuronal imaging, examination for ataxia, fine motor and cognitive function, planning abilities, and executive function. Individual consolidated cerebellar lesions were drawn manually onto patients' individual MRI and normalized into Montreal Neurologic Institute (MNI) space for further analysis with voxel-based lesion symptom mapping. Results: Lesion symptom mapping linked deficits of motor function to the superior cerebellar peduncle (SCP), deep cerebellar nuclei (interposed nucleus (IN), fastigial nucleus (FN), ventromedial dentate nucleus (DN)), and inferior vermis (VIIIa, VIIIb, IX, X). Statistical maps of deficits of intelligence and executive function mapped with minor variations to the same cerebellar structures. Conclusion: We identified lesions to the SCP next to deep cerebellar nuclei as critical for limiting both motor and cognitive function in pediatric cerebellar tumor survivors. Future strategies safeguarding motor and cognitive function will have to identify patients preoperatively at risk for damage to these critical structures and adapt multimodal therapeutic options accordingly

    Structural and functional changes of the cerebellum in temporal lobe epilepsy

    Get PDF
    AimsThis study aimed to comprehensively explore the cerebellar structural and functional changes in temporal lobe epilepsy (TLE) and its association with clinical information.MethodsThe SUIT toolbox was utilized to perform cerebellar volume and diffusion analysis. In addition, we extracted the average diffusion values of cerebellar peduncle tracts to investigate microstructure alterations. Seed-based whole-brain analysis was used to investigate cerebellar–cerebral functional connectivity (FC). Subgroup analyses were performed to identify the cerebellar participation in TLE with/without hippocampal sclerosis (HS)/focal-to-bilateral tonic–clonic seizure (FBTCS) and TLE with different lateralization.ResultsTLE showed widespread gray matter atrophy in bilateral crusII, VIIb, VIIIb, left crusI, and left VIIIa. Both voxel and tract analysis observed diffusion abnormalities in cerebellar afferent peduncles. Reduced FC between the right crus II and the left parahippocampal cortex was found in TLE. Additionally, TLE showed increased FCs between left lobules VI–VIII and cortical nodes of the dorsal attention and visual networks. Across all patients, decreased FC was associated with poorer cognitive function, while increased FCs appeared to reflect compensatory effects. The cerebellar structural changes were mainly observed in HS and FBTCS subgroups and were regardless of seizure lateralization, while cerebellar–cerebral FC alterations were similar in all subgroups.ConclusionTLE exhibited microstructural changes in the cerebellum, mainly related to HS and FBTCS. In addition, altered cerebellar–cerebral functional connectivity is associated with common cognitive alterations in TLE

    Diagnostic efficacy of the magnetic resonance T1w/T2w ratio for the middle cerebellar peduncle in multiple system atrophy and spinocerebellar ataxia: a preliminary study

    Get PDF
    BACKGROUND: The standardized T1-weighted/T2-weighted (sT1w/T2w) ratio for the middle cerebellar peduncle (MCP) has been reported to be sensitive for detecting degenerative changes in the cerebellar subtype of multiple system atrophy (MSA-C), even in the early stages. We aimed to investigate the diagnostic value of the MCP sT1w/T2w ratio for differentiating between MSA-C and spinocerebellar ataxia (SCA). METHODS: We included 32 MSA-C, 8 SCA type 3 (SCA3), 16 SCA type 6 (SCA6) patients, and 17 controls, and the MCP sT1w/T2w ratio was analyzed using a region-of-interest approach. The diagnostic performance of the MCP sT1w/T2w ratio in discriminating among MSA-C, SCA3, and SCA6 was assessed and compared with diagnosis based on visual interpretation of MCP hyperintensities and the "hot cross bun" (HCB) sign. RESULTS: MCP sT1w/T2w ratio values were markedly lower in patients with MSA-C than in those with SCA3, those with SCA6, and controls (p < 0.001). The MCP sT1w/T2w ratio showed high diagnostic accuracy for distinguishing MSA-C from SCA3 (area under curve = 0.934), SCA6 (area under curve = 0.965), and controls (area under curve = 0.980). The diagnostic accuracy of the MCP sT1w/T2w ratio for differentiating MSA-C from SCA3 or SCA6 (90.0% for MSA-C vs. SCA3, and 91.7% for MSA-C vs. SCA6) was comparable to or superior than that of visual interpretation of MCP hyperintensities (80.0-87.5% in MSA-C vs. SCA3 and 87.6-97.9% in MSA-C vs. SCA6) or the HCB sign (72.5-80.0% in MSA-C vs. SCA3 and 77.1-93.8% in MSA-C vs. SCA6). CONCLUSIONS: The MCP sT1w/T2w ratio might be a sensitive imaging-based marker for detecting MSA-C-related changes and differentiating MSA-C from SCA3 or SCA6

    Advanced MRI techniques in the study of cerebellar cortex

    Get PDF
    The cerebellum (from the Latin "little brain") is the dorsal portion of the metencephalon and is located in the posterior cranial fossa. Although representing only 10% of the total brain volume, it contains more than 50% of the total number of neurons of the central nervous system (CNS). Its organization resembles the one found in the telencephalon, with the presence of a superficial mantle of gray matter (GM) known as the cerebellar cortex, covering the cerebellar white matter (WM) in which three pairs of deep cerebellar GM nuclei are embedded. The number of studies dedicated to the study of the cerebellum and its function has significantly increased during the last years. Nevertheless, although many theories on the cerebellar function have been proposed, to date we still are not able to answer the question about the exact function of this structure. Indeed, the classical theories focused on the role of the cerebellum in fine-tuning for muscle control has been widely reconsidered during the last years, with new hypotheses that have been advanced. These include its role as sensory acquisition device, extending beyond a pure role in motor control and learning, as well as a pivotal role in cognition, with a recognized cerebellar participation in a variety of cognitive functions, ranging from mood control to language, memory, attention and spatial data management. A huge contribution to our understanding of how the cerebellum participates in all these different aspects of motor and non-motor behavior comes from the application of advanced imaging techniques. In particular, Magnetic Resonance Imaging (MRI) can provide a non-invasive evaluation of anatomical integrity, as well as information about functional connections with other brain regions. This thesis is organized as follows: - In Chapter 1 is presented a general introduction to the cerebellar anatomy and functions, with particular reference to the anatomical organization of cerebellar cortex and its connections with the telencephalon - Chapter 2 will contain a general overview about some of the major advanced MRI methods that can be applied to investigate the anatomical integrity and functional status of the cerebellar cortex - In Chapter 3 will be presented a new method to evaluate the anatomy and integrity of cerebellar cortex using ultra-high field MRI scanners - Chapters 4, 5 and 6 will contain data obtained from the application of some of the previously described advanced imaging techniques to the study of cerebellar cortex in neurodegenerative and neuroinflammatory disorders affecting the CNS

    MICROSTRUCTURE AND CONNECTIVITY OF THE CEREBELLUM WITH ADVANCED DIFFUSION MRI IN HEALTH AND PATHOLOGY

    Get PDF
    The cerebellum contains most of the central nervous system neurons and it is classically known to be a key region for sensorimotor coordination and learning. However, its role in higher cognitive functions has been increasingly recognised, thus raising the interest of neuroscience and neuroimaging communities. Despite this, knowledge of cerebellar structure and function is still incomplete and the interpretation of experimental results is often problematic. For these and also technical reasons the cerebellum is still frequently disregarded in magnetic resonance imaging (MRI) studies. Therefore, the principal aim of this work was to use MRI to investigate cerebellar microstructure and macrostructural connectivity in health and pathology, focusing also on technical aspects of image acquisition. The starting point of each project described in the present thesis were techniques, models and pipelines currently accepted in clinical practice. The meeting of inadequacies or problems of such techniques raised questions that pushed research to a more fundamental level. This thesis has three main contributions. The first part presents a clinical study of cerebellar involvement in processing speed deficits in multiple sclerosis, where combined tractography and network science highlighted the importance of the cerebellum in patients\u2019 cognitive performance. Then a deeper investigation conducted on high-quality diffusion MRI data with advanced diffusion signal models showed that subregions of the cerebellar cortex are characterised by different microstructural features: this represents one of the very first attempts to use diffusion MRI to face the widespread idea of cerebellar cortex uniformity, which has been recently challenged by findings from other research fields, thus providing new perspectives for the study of cerebellar information processing in health and pathology. Finally, the emerging technical problems that hamper the study of small structures within the cerebellum were tackled by developing dedicated acquisition protocols that exploit reduced field-of-view techniques for 3T and 7T MRI scanners

    Indirect Structural Connectivity As a Biomarker for Stroke Motor Recovery

    Get PDF
    In this dissertation project, we demonstrated that diffusion magnetic resonance imaging and measures of indirect structural brain connectivity are sensitive to changes in fiber integrity and connectivity to remote regions in the brain after stroke. Our results revealed new insights into the effects local lesions have on global connectivity—in particular, the cerebellum—and how these changes in connectivity and integrity relate to motor impairment. We tested this methodology on two stroke groups—subacute and chronic—and were able to show that indirect connectivity is sensitive to differences in connectivity during stroke recovery. Our work can inform clinical methods for rehabilitating motor function in stroke individuals. By introducing methodology that extends local damage to remotely connected motor related areas, we can measure Wallerian degeneration in addition to providing the framework to predict improvements in motor impairment score based on structural connectivity at the subacute stage.We used diffusion magnetic resonance imaging (dMRI), probabilistic tractography, and novel graph theory metrics to quantify structural connectivity and integrity after stroke. In the first aim, we improved on a measure of indirect structural connectivity in order to detect remote gray matter regions with reduced connectivity after stroke. In a region-level analysis, we found that indirect connectivity was more sensitive to remote changes in connectivity after stroke than measures of direct connectivity, in particular in cortical, subcortical, and cerebellar gray matter regions that play a central role in sensorimotor function. Adding this information to the integrity of the corticospinal tract (CST) improved our ability to predict motor impairment. In the second aim, we investigated the relationship between white matter integrity, connectivity, and motor impairment by developing a unified measure of white matter structure that extends local changes in white matter integrity along remotely connected fiber tracks. Our measure uniquely identified damaged fiber tracks outside the CST, correlated with motor impairment in the CST better than the FA, and also was able to relate white matter structure in the superior cerebellar peduncle to motor impairment. Our final aim used a novel connectome similarity metric and the measure of indirect structural connectivity in order to identify cross-sectional differences in white matter structure between subacute and chronic stroke. We found more reductions in indirect connectivity in the chronic stroke cerebellar fibers than the subacute group, Additionally, the indirect connectivity of the superior cerebellar peduncle at the subacute stage correlated with the improvement in motor impairment score for the paired participants. In conclusion, indirect connectivity is an important measure of global brain damage and motor impairment after stroke, and can be a useful metric to relate to brain function and stroke recovery
    corecore