925 research outputs found

    Tension-only ideal dissipative bracing for the seismic retrofit of precast industrial buildings

    Get PDF
    3siopenNew precast frame industrial structures are seismically designed according to reliable modern criteria. However, most of the existing built stock hosting many workers and both regular and strategic industrial activities was designed and detailed neglecting the earthquake load or according to outdated seismic design criteria and regulations. Its seismic retrofit is a main challenge for the Engineering Community and a critical objective for institutional and private bodies. Among the envisaged solutions, the introduction of dissipative braces appears to be promising, although mostly inapplicable for these buildings, due to the brace lengths required by their typical large dimensions and the related proportioning against buckling. In this paper, an innovative seismic retrofitting technique based on monolateral dissipative bracing is investigated. The device proposed in this paper, yet in phase of preliminary design and testing, dissipates energy through friction in tension only while freely deforming in compression, which makes the issue related to compressive buckling irrelevant. A numerical analysis is carried out to investigate the efficiency of the proposed device in seismic retrofitting of precast industrial frame buildings with the aim to explore its feasibility and to better orient the definition of the slip threshold load range and the future development of the physical device. The simplified Capacity Spectrum Method (CSM) is employed for the global framing of the structural behaviour of the highly nonlinear retrofitted structures under seismic actions. A numerical tool is set to automatically apply the CSM based on the definition of few main parameters governing the seismic response of precast frame structures. The efficacy of the CSM is critically analysed through the comparison with the results of a set of nonlinear dynamic analyses. A smart simplified design process aimed at framing the most efficient threshold slip/yield load of the device given an existing structural configuration is presented with the application of the CSM through the identification of the most efficient performance indicator related to either displacement, shear force, equivalent dissipation of energy or a combination of them.openDal Lago B.; Naveed M.; Lamperti Tornaghi M.Dal Lago, B.; Naveed, M.; Lamperti Tornaghi, M

    The Case of the New Tagus River Leziria Bridge

    Get PDF
    A brief description of the New Tagus River Leziria Bridge composed by 1695 m North Viaduct, by 970 m Main Bridge and by South Viaduct with a length of 9200 m is presented. The observed thickness of the foundation alluvia material varies between 35m and 55m with a maximum value of 62m. Hundred eighteen boreholes were performed with a depth between 21m and 71m and eight boreholes were performed from a maritime platform. Standard penetration tests (SPT) were carried out in all boreholes 1.5 m apart. In addition CPTu tests, seismic cone tests, crosshole and downhole tests were performed. In three boreholes continuous undisturbed sampling with a triple sampler Geogor S was performed. Related with static laboratory tests namely identification tests, triaxial tests, direct shear tests and oedometer tests were performed. In addition for the dynamic characterization reasonant columns tests and torsional cyclic tests were performed. One of the most important considerations for the designers is the risk of earthquakes since Lisbon was wiped out by an 8.5 Ritcher magnitude earthquake in 1755. The seismic studies related to the design spectra were performed. The liquefaction potential evaluation was performed only by field tests taking into account the disturbance that occurs during sampling of sandy materials. In this analysis attention was drawn for SPT and CPT tests as seismic tests have only been used when soil contains gravel particles. The shear stress values were computed from a total stresses model, that gave results on the conservative side using the code “SHAKE 2000”. For the North and South Viaducts 1.5 m diameter piles were used and for the Main Bridge 2.2 m diameter piles were used. For the construction of the piles metallic casings were driven by a vibrofonceur or a hydraulic hammer and the piles length varies between 20 m to 56 m. Static pile load tests (both vertical and horizontal tests) were carried out on trial piles. In addition pile dynamic tests were performed. The construction aspects related with piles and bridge construction are addressed. To assess the integrity of the piles reception tests by sonic diagraphies (crosshole tests) were performed. Some problems that have occurred during piles construction in the Main Bridge, due to the gravel and cobbles dimensions, are described. The bridge was monitored with the purposes of: (i) Validation of design criteria and calibration of mental model; (ii) Analysis of bridge behavior during his life; and (iii) Corrective measures for the rehabilitation of the structure

    Evolution, Monitoring and Predicting Models of Rockburst: Precursor Information for Rock Failure

    Get PDF
    Load/unload response ratio predicting of rockburst; Three-dimensional reconstruction of fissured rock; Nonlinear dynamics evolution pattern of rock cracks; Bayesian model for predicting rockburs

    Advances in Geotechnical Earthquake Engineering

    Get PDF
    This book sheds lights on recent advances in Geotechnical Earthquake Engineering with special emphasis on soil liquefaction, soil-structure interaction, seismic safety of dams and underground monuments, mitigation strategies against landslide and fire whirlwind resulting from earthquakes and vibration of a layered rotating plant and Bryan's effect. The book contains sixteen chapters covering several interesting research topics written by researchers and experts from several countries. The research reported in this book is useful to graduate students and researchers working in the fields of structural and earthquake engineering. The book will also be of considerable help to civil engineers working on construction and repair of engineering structures, such as buildings, roads, dams and monuments

    Measuring residual strength of liquefied soil with the ring shear device

    Get PDF
    Natural and constructed slopes may contain zones of loose granular soils capable of liquefaction. Liquefied soils behave like heavy fluids and consequent rapid flowslides can produce great damage. The residual strength (Sur) of the liquefied soil can be estimated by back-calculation from field case histories; however, very little confirmation laboratory testing has been conducted thus far. A reliable laboratory measurement technique is needed to independently verify Sur values used for mitigation design. A ring shear device (RSD) designed and built at the University of New Hampshire (UNH) allows for residual strength testing under controlled strain rates and infinite total strain. The Sur of a fine sand, Ottawa F-75, was analyzed using the RSD. These results were verified by comparison to residual strength values obtained by geotechnical centrifuge testing. This study indicates that the UNH RSD can be a reliable tool for estimating the residual strength of liquefied soil

    From plastic hinge to shell models: Recommendations for RC wall models

    Get PDF
    The severe damage and collapse of many reinforced concrete (RC) wall buildings in the recent earthquakes of Chile (2010) and New Zealand (2011) have shown that RC walls did not perform as well as expected based on the design calculations required by the modern codes of both countries. In this context, it seems appropriate to intensify research efforts in more accurate simulations of damage indicators, in particular local engineering demand parameters such as material strains, which are central to the application of performance-based earthquake engineering. Potential modelling improvements will necessarily build on a thorough assessment of the limitations of current state-of-the-practice simulation approaches. This work aims to compare the response variability given by a spectrum of numerical tools commonly used by researchers and specialized practitioners, namely: plastic hinge analyses, distributed plasticity models, and detailed finite element simulations. It is shown that a multi-level assessment—wherein both the global and local levels are jointly investigated from the response analysis outcomes—is fundamental to define the dependability of the results. The latter is controlled by the attainment of material strain limits and the occurrence of numerical problems. Finally, the influence of shear deformations is analysed according to the same methodological framework

    Performance Based Seismic Assessment of Masonry Infilled Steel Frame Structures

    Get PDF
    Steel framed structures constitute a considerable proportion of residential and commercial structures in earthquake prone regions. In such structures, typically, masonry infills are implemented as walls and partitions. However, in common practice, the influence of the infill panels on the performance and resistance of the building is mostly ignored, not just at the design stage, but also during assessment. Despite the possible strength enhancement that infill panels can bring to the structure for modest earthquakes, they may put the building at high risk of heavy damage if their impact is overlooked, and the interaction not properly designed, as seen in the 2003 Bam earthquake and many other destructive seismic events. Following the performance-based seismic assessment methodology, the dissertation focuses on evaluating the seismic performance of existing masonry infilled steel frames. The seismic response of several building typologies, designed according to common practice, is assessed through nonlinear dynamic methods. Detailed three-dimensional numerical models of selected index buildings are developed, capable of simulating the impact of masonry infill walls along other critical elements such as the beam-column connections, according to available empirical and experimental data. In order to measure the seismic vulnerability, along with possible losses and life cycle costs, analytical fragility functions are derived for the structures, while considering the hazard characteristics of the location under study. The derived fragility functions will help enrich the limited library of existing function dedicated to both bare and infilled steel structures. The outcome is of great importance for insurance valuation, as well as managing disasters and performing strengthening if necessary

    The Evolution of Geotechnical Earthquake Engineering Practice in North America: 1954-1994

    Get PDF
    This paper traces the evolution of geotechnical earthquake engineering practice in North America from 1954 to 1994. The development of the state-of-the-art has been shaped strongly by four areas of practice: assessment of seismic hazard, estimation of liquefaction potential, seismic response analysis of earth structures and seismic safety evaluation and remediation of existing dams with potentially liquefiable zones. Evolution of practice in each of these areas will be traced and the current state-of-the-art evaluated. Present capabilities in practice will be illustrated by examples from the areas of seismic response of dams, liquefaction potential and seismic safety evaluation and remediation of potentially liquefiable embankment dams
    • …
    corecore