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Abstract 

Around the world, a large percentage of buildings in regions of high seismicity are older, non-

ductile reinforced concrete. To assess the risk posed by these buildings, fragility functions are 

required to define the likelihood that these buildings will sustain damage and collapse under 

earthquake loading. This paper presents the initial phase of a research effort to develop fragility 

functions for non-ductile concrete frames using numerical simulation; the research presented in 

this paper focuses on development of the numerical model and application of the model to 

develop fragility functions for a prototype non-ductile concrete frame. To enable numerical 

simulation of concrete frame buildings, response models for beam-column joints and columns 

are developed to provide (1) appropriate simulation of component response and, thereby, reliable 

assessment of risk and (2) computational efficiency and robustness. These new models are 

developed using existing experimental data, build on response models proposed by others, and 

employ component and material models available in the OpenSees analysis platform 

(http://opensees.berkeley.edu). A new beam-column joint model combines a new expression for 

joint strength and newly developed cyclic response parameters; a new column response model 

includes a new shear-strength model and newly developed cyclic response parameters. 

Numerical models of a prototype non-ductile concrete frame are developed that include 

simulation of one or more of the following characteristics: (1) rigid beam-column joint, (2) 

nonlinear joint shear response, (3) nonlinear joint shear and bond-slip response, and (4) column 

shear failure. Dynamic analyses are performed using these frame models and a suite of ground 

motions; analysis results are used to develop fragility curves. Fragility curves quantify the 

vulnerability of the frame and provide understanding of the impact of different component 

failure mechanisms on frame vulnerability.  

 

Keywords: non-ductile reinforced concrete frames; failure modes; column shear model; beam-

column joint model; fragility analysis. 
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1. Introduction 

Historical seismic events (Northridge 1994, Kobe 1995, Kocaeli 1999) have demonstrated that 

older reinforced concrete (RC) buildings designed only for gravity loads may exhibit severe 

damage and collapse under moderate to severe earthquake demands [1-3]. For these structures, 

inadequate detailing typically includes insufficient transverse reinforcement in columns, column 

lap splices in potential plastic-hinge regions, lack of joint transverse reinforcement, and 

inadequate anchorage of beam longitudinal reinforcement in joints. Inadequate detailing of 

beam-column joints and columns is particularly critical as it can result in premature loss of 

lateral and axial load-carrying capacity for individual components and thereby lead to premature 

collapse of the building. Building inventories across the country include a large number of these 

older concrete buildings that are vulnerable to collapse under earthquake loading. Fragility 

functions defining the likelihood of reaching stipulated damage states (building performance 

levels) as a function of earthquake intensity represent a simple, fast tool for preliminary 

assessment of the risk posed by these buildings. Fragility functions can be generated using 

numerical models of buildings with a range of configurations and design details; however, 

reliable assessment of seismic risk requires appropriate simulation of component failure 

mechanisms.  

To date, relatively few studies have addressed the development of fragility functions for 

older concrete buildings using models that simulate the range of response mechanisms expected 



2 

 

to control the earthquake behavior of these structures. Celik and Ellingwood [4] and Jeon et al. [5] 

developed fragility curves for non-ductile RC frames in low and moderate seismic zones for 

which joint failure was assumed to control frame response. Frames were designed only for 

gravity loads in accordance with ACI 318-89 [6], and numerical models simulated the nonlinear 

flexural response of beams and columns as well as non-ductile shear failure of beam-column 

joints. Liel [7] and Baradaran Shoraka [8] developed fragility curves for collapse for older RC 

frames in high seismic zones. Frames were designed using the equivalent lateral load procedure 

in accordance with the 1967 Uniform Building Code [9]. Numerical models simulated beam-

column joint and column shear failure, beam and column flexural failure, and loss of column 

axial load carrying capacity. Both Liel [7] and Baradaran Shoraka [8] concluded that frame 

collapse resulted from columns losing lateral and, ultimately, axial load carrying capacity due to 

shear failure and that joint shear failure typically did not occur. While the models employed in 

the studies [7,8] defined column shear strength on the basis of column design parameters, generic 

joint response models were employed. Thus, potential for joint-controlled system response was 

not accurately assessed in these studies.  

In addition to employing different frame designs and numerical models, the above studies 

also employed different probabilistic assessment tools to generate fragilities. Celik and 

Ellingwood [4] and Jeon et al. [5] develop fragility curves for multiple performance levels 

(immediate occupancy, life safety, and collapse prevention) using the cloud method in which 

unscaled ground motions representative of the seismic hazard region of interest are used for 

dynamic analyses. Liel [7] and Baradaran Shoraka [8] developed fragility curves for system 

collapse using a scaling approach, in which dynamic analyses are performed using a suite of 

ground motions scaled to increasing intensity levels and the collapse intensity is defined as that 
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which results in more than 50% of the motions resulting in excessive story drifts and global 

dynamic instability of the structure. Baker and Cornell [10] notes that the scaling approach may 

result in unrealistically large ground motions that are not representative of the earthquake hazard 

in a region while the cloud method has the advantage of being compatible with a closed form 

solution. The cloud method is also more effective for investigating the influence of component 

response on the probability of observing multiple damage states. 

The primary goals of the research presented here are to (1) propose models for non-

ductile RC joints and columns that simulate the primary earthquake response characteristics of 

these components and can be easily implemented in OpenSees [11] using existing element and 

material models and (2) use these models to assess the earthquake vulnerability of existing RC 

buildings and the impact of component response on this vulnerability. Component models such 

as beam-column joint and column shear are developed and validated using existing experimental 

results and are employed to simulate the earthquake response of an idealized 2D concrete frame 

with design details typical of older (pre-1967) construction. Five models of the frame are 

considered; these models include simulation of (1) rigid joint response and flexure-controlled 

column response, (2) joint shear stress-strain response, (3) joint shear response and anchorage 

failure for beam reinforcement embedded in the joint, (4) column shear, and (5) joint and column 

shear response. Earthquake performance as predicted using the five models is compared and 

corresponding failure probabilities across various limit states are computed to examine the 

relative vulnerability of frames. The results of this study provide a basis for further work to 

develop fragility functions for older buildings and after-shock fragilities for concrete frame 

buildings [12].  
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2. Non-ductile joint and column shear response mechanisms 

Due to the lack of ductile detailing in older RC building frames, frame response may be 

controlled by (i) flexural yielding of beams or columns, (ii) shear failure of beams or columns, or 

(iii) joint failure due to shear or anchorage. There is consensus within the earthquake engineering 

community that flexural yielding and premature flexural failure resulting from inadequate 

confinement of concrete can be simulated using the basic fiber-type beam-column elements and 

material models available in OpenSees [11]. For most frame configurations, beam shear demands 

are low and thus shear failure is unlikely to occur. Thus, remaining failure modes are joint 

response and column shear response. Consensus does not exist within the community as to the 

best models for use in simulating these response mechanisms.  

Joints in older frames typically exhibit three failure modes: (1) joint shear failure prior to 

beam or column yielding, which typically results in rapid loss of strength and stiffness with 

increasing deformation demand, (2) joint shear failure after beam yielding, which typically 

results in more gradual strength loss and moderately ductile behavior, and (3) anchorage failure 

(i.e. pullout) of beam bottom reinforcement prior to beam yielding, resulting from a short 

embedment length for beam reinforcement anchored within the joint. Columns in older frames 

may exhibit limited ductility due to flexural or shear failure; for either of these failure modes, 

failure initially results in loss of lateral load carrying capacity and ultimately leads to loss of 

axial load carrying capacity. Typically column shear failure is categorized as occurring (1) prior 

to significant flexural yield and resulting either from sudden propagation of one or more critical 

diagonal cracks (tension) or from crushing or diagonal splitting of concrete (compression) or (2) 

following significant flexural yielding and resulting from deterioration of shear capacity in the 

flexural-hinge region of the column.  
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Previous research has resulted in numerical models that simulate joint and column 

response as controlled by the failure modes described above. However, for application in the 

current study, component models are needed that meet the following requirements: (1) 

simulation of the cyclic response of components with inadequate detailing typical of older 

construction, this includes including simulation of the onset of failure at low demands, limited 

ductility, and relatively rapid strength loss, (2) is validated using a large experimental dataset, (3) 

can be implemented in OpenSees using existing element formulations and material models, and 

(4) provides the numerical efficiency and robustness required for generation of fragility functions 

[13].  

 

3. Proposed non-ductile beam-column joint model 

This section addresses the modeling of interior joints exhibiting joint shear failure and exterior 

joints exhibiting joint shear or anchorage failure, including (i) a general explanation of the 

response envelope, (ii) determination of joint strength, and (iii) calibration of other envelope and 

cyclic response parameters. A new beam-column joint model was developed; this model consists 

of a new joint moment-rotation relationship for use with a rotational hinge element. The model is 

developed using an extensive existing experimental dataset, builds on response models proposed 

by others, and employs existing OpenSees component and material models. Joint shear strength 

is a function of joint configuration (external T-joint versus internal cruciform as well as joints 

with and without transverse beams), material properties, geometry, and design characteristics. 

Additional key parameters defining the response envelope and behavior under cyclic loading are 

determined to provide a least-squares best-fit to load-drift data for joint subassemblages tested in 

the laboratory. Joint moment-rotation response is determined from the experimental joint shear 
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stress-strain relationship. Simulated and measured response histories are compared to verify the 

model. 

 

3.1 Analytical model of non-conforming beam-column joints 

Fig. 1 shows the numerical model of a beam-column joint assemblage used in laboratory tests; 

this was used for development and validation of the beam-column joint model. Columns were 

modeled using elastic beam-column elements away from the beam-column joint region and the 

OpenSees displacement-based nonlinear beam-column element with five integration points in the 

plastic hinge region(s); beams were modeled using the OpenSees beamWithHinges element. For 

both members, the plastic hinge length (Lp) was taken equal to half the section depth [14]. For 

the fiber sections, confined and unconfined concrete were modeled using the OpenSees 

Concrete02 material model, which includes simulation of concrete tensile strength. The 

confinement of concrete due to transverse reinforcement was determined using the model of 

Mander et al. [15]. Longitudinal reinforcement was modeled using the OpenSees Hysteretic 

material model, with an assumed hardening ratio of 0.01. For specimens with slabs, the slab was 

modeled as the unconfined concrete material model and its effective width was calculated 

following the recommendation of ACI 318-11 [16]. The stiffness of elastic sections in columns 

and beams was calculated based on the elastic modulus of concrete and the cross-section.  

 

Fig. 1. Analytical model of beam-column joint subassemblage. 

 

The response envelope for the new joint model is shown in Fig. 2; this envelope 

incorporates aspects of the Anderson et al. [17] and Kim and LaFave [18] models. The initial two 
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segments of the envelope are taken from Anderson et al. [17], with the exception that while 

Anderson et al. [17] defines joint strength (τmax) on the basis of beam flexural strength and joint 

geometry, here an expression for joint shear strength is developed. Similar to the work of Kim 

and LaFave [18], this expression for maximum joint shear strength is developed using an 

experimental dataset and joint shear strength is defined as a function of multiple beam and joint 

design parameters. In the model by Anderson et al. [17], the remainder of the response envelope 

is defined by the load history. Here, to enable the use of existing OpenSees Pinching4 material 

model, joint shear strain corresponding to maximum joint shear stress (γ3) and post-peak stiffness 

(kdeg) in Fig. 2 are defined to provide a best fit to the experimental data. A residual strength equal 

to 20% of the maximum joint shear strength is assumed by extrapolating the third and fourth 

points of the envelope curve. 

 

Fig. 2. Envelope of joint shear stress-strain relationship. 

 

The joint region is modeled using a two-node, zero-length rotational joint spring and four 

rigid offsets [19], as shown in Fig. 1. Joint response is simulated using a material model that 

defines joint moment versus rotation. As provided in Celik and Ellingwood [20], the joint 

rotational moment-rotation relationship is determined from the joint shear stress-strain 

relationship using equilibrium and compatibility: 
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where Mj = joint rotational moment, τj = joint shear stress; hc = depth of the column; Aj = joint 

area (hc·bj); bj = effective width of the joint panel calculated from ACI 352R-02 [21]; Lb = total 

length of the left and right beams; Lc = total length of the top and bottom columns; j = internal 
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moment arm factor (assumed to be 0.875); db = effective depth of the beam; η = 2 and 1 for the 

top floor joints and others, respectively; θj = joint rotation; and γj = joint shear strain. 

  

3.2 Joint shear strength models for non-ductile joints exhibiting shear and anchorage failure 

3.2.1 Shear strength model for joints exhibiting shear failure 

The response envelope shown in Fig. 2 is defined by the maximum joint shear strength (τmax). 

Kim and LaFave [18] employs a stepwise removal process in combination with the Bayesian 

updating method to find a reduced set of variables that define joint shear strength. This purely 

empirical approach can capture the enhancement of joint shear strength resulting from 3D effects 

that is not easily incorporated in mechanics-based models. However, non-conforming joints were 

not the focus of the Kim and LaFave effort, and the dataset used by Kim and LaFave [18] 

includes a limited number of non-conforming joints. Due to this limitation, the current study 

developed a new joint strength model for non-ductile joints using a forward step-wise multiple 

linear regression (MLR) method and an extensive experimental dataset. The dataset comprised 

168 interior (cruciform) and 93 exterior (T-shaped) beam-column joint subassemblages with and 

without out-of-plane beams. Table 1 provides statistics (minimum, maximum, mean, and 

coefficient of variation (COV)) for the dataset for critical design parameters. All specimens in 

the dataset have joint transverse reinforcement spaced at half the column depth or greater; thus, 

all specimens are “non-conforming” joints as defined by ASCE 41-06 [22]. The specimens in the 

dataset exhibited joint failure either prior to or following beam or column yielding in flexure. 

Additional information about the dataset is provided in Jeon [12] and Jeon et al. [13]. 

 

Table 1 Summary of complete experimental dataset. 
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Using the candidate predictor variables employed by Kim and LaFave [18], a forward 

stepwise MLR approach was employed, in a log-transformed space, to search for significant 

predictor variables. Using this approach, predictor variables are sequentially added to the model 

and their significance is evaluated using analysis of variance testing until no significant terms are 

left. The result was a new joint strength model for non-conforming joints: 

 ( ) ( ) ( ) ( ) 941.025.1495.0774.0

max 586.0 cfJPBITB-=t       (2) 

where τmax = maximum joint shear stress in MPa; BI = beam reinforcement index, which is 

defined as the product of the beam longitudinal reinforcement ratio and the beam longitudinal 

reinforcement yield stress divided by the beam concrete compressive strength (averaging 

quantities for top and bottom reinforcement); JP = parameter for describing in-plane geometry (1 

for interior and 0.75 for exterior joints); TB = joint confinement factor (1.0 for subassemblages 

with 0 or 1 transverse beam and 1.2 for subassemblages with 2 transverse beams), and fc = joint 

concrete compressive strength in MPa. 

Fig. 3 shows joint shear strength computed using Eq. (2) compared with experimental 

joint shear strengths. The coefficient of determination for the model is 0.858; the mean and COV 

of the ratio of computed-to-experimental joint shear strength are 1.011 and 0.148, respectively. 

Thus, the proposed joint shear strength model for non-conforming joints provides a relatively 

high level of accuracy and precision. Additional information about the model development and 

evaluation process is presented in Jeon [12].  

 

Fig. 3. Comparison of computed and experimental joint shear strength. 
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3.2.2 Shear strength model for joints exhibiting anchorage failure 

This section describes the calculation of joint shear strength (τmax as defined in Fig. 2) for 

exterior joints in which beam longitudinal reinforcement terminates in the joint with a short 

embedment length. To simulate this failure mechanism, the joint strength model developed by 

Hassan [23] was used. The Hassan model was derived using an empirically-based bond strength 

model, a load transfer model for the joint that assumes anchorage failure prior to beam rebar 

yielding, and Eq. (1). Hassan [23] defines only joint strength and does not define joint load-

deformation response. Here, a moment-rotation response model was developed and implemented 

using the OpenSees Pinching4 material; the development process was similar to that used for 

interior joints. 

 The equivalent shear strength model associated with short embedment of beam bottom 

longitudinal reinforcement in joints can be expressed using equilibrium of the subassemblage: 
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where 

  
bondbspbs lnT tpf=           (4) 

and Ts is the maximum tension force developed in the poorly anchored beam bottom 

reinforcement, lb is the beam length measured from the face of column to the end of beam, nb is 

the number of beam bottom longitudinal rebars, lsp is the embedment length within a joint, ϕb is 

the diameter of the beam bottom longitudinal rebars, τbond is the maximum average bond strength 

developed by Hassan [23]:  
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where P = column axial load; Ψs = reinforcement factor (Ψs = 1 for ϕb ≥ 19 mm and Ψs = 1.25 for 

ϕb < 19 mm); Ω = transverse beam confinement factor (Ω = 1, 1.12, 1.20 for exterior joints 

without and with one and two transverse beam(s), respectively); c = minimum of bottom and side 

concrete cover; Ag is the column area. Hassan [23] demonstrates that the model is well-correlated 

with 21 exterior joints in that the mean and COV of the predicted-to-experimental shear strength 

ratio are 1.099 and 0.161, respectively. 

ACI Com. 352 [21] defines joint shear demand on the basis of the tension and 

compression forces that can be developed by beam longitudinal reinforcement framing into the 

joint. For the exterior joint considered here, joint shear demand is limited by the tension force (Ts) 

that can be developed in beam bottom reinforcement. While Eq. (3) is derived using the ACI 

Com. 352 recommendation for defining joint shear demand, τmax defined in Eq. (3) may be 

considered to represent maximum joint shear capacity of the exterior joint subassemblage as 

limited by Ts. When the beam bottom reinforcement is in tension (anchorage failure), the joint 

shear strength was computed by Eq. (3), while when beam bottom reinforcement was in 

compression, strength was determined by Eq. (2). 

 

3.3 Response envelope and cyclic response parameters 

Beam-column joint response was simulated using the OpenSees Pinching4 material model. This 

model includes a multi-linear response envelope as shown in Fig. 2 and a tri-linear unload-reload 

path as shown in Fig. 1. The above sections address definition of critical points on the response 

envelope; this section addresses empirical calibration of the remainder of the response envelope 

(γ3, and kdeg as shown in Fig. 1) and cyclic response parameters. For this purpose, a subset of the 

specimens in Table 1 was used for this calibration effort. This reduced dataset comprised 23 

exterior and 35 interior joints exhibiting joint shear failure and five exterior joint specimens 
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exhibiting anchorage failure. For each test included in the calibration effort it was necessary to 

digitize the experimental load-displacement history, create an OpenSees model of the test 

specimen, and perform a parameter study to determine the model parameters providing a best-fit 

to the data. Thus, a reduced dataset was used for the calibration because, for many tests, high-

quality digitized load-displacement histories could not be generated or data required for creation 

of the OpenSees model were not provided. For each specimen, response envelope and cyclic 

response parameters were determined to provide a least-squares best-fit to the experimental load-

displacement history. Average values of these parameters are listed in Table 2. Note that 

although the Pinching4 material model includes simulation of deterioration of strength and 

stiffness as a function of deformation demand and energy dissipation, calibration results (α*2 = 

α*4 = 0) indicate that a deformation-based model was adequate for response simulation. Here, 

α*’s are the parameters required in fitting the damage rule to experimental data. 

 

Table 2 Recommended modeling parameters of Pinching4 material. 

 

3.4 Bar-slip associated with column and beam longitudinal rebars 

Zero-length bar-slip fiber-section elements are located at the ends of the column to simulate 

flexibility associated with bar-slip out of the joint [24-26]. As shown in Fig. 1, to account for the 

additional rotation due to the effect of bar-slip at the end of members, a fiber-type model of the 

column section is created in which fiber response is defined by stress-displacement relationships. 

In this case, the section model defines moment versus rotation and axial load versus axial 

elongation responses. To capture this behavior, the current study employed the relation between 

reinforcing steel strain and slip presented by Sezen [27]:  



13 

 

  
e

cyy

y
u

f
slip

8

fe
=           (6) 

  
y

y

slip

slip
SF

e
=            (7) 

where slipy = bar slip at yield (mm), εy = longitudinal reinforcement yield strain, fy = longitudinal 

reinforcement yield stress (MPa), ϕc = diameter of column longitudinal reinforcement (mm), ue = 

mean elastic bond stress (MPa) (=0.9√fc), fc = concrete compressive strength (MPa), and SFslip = 

bond-slip scale factor. By multiplying the strains of steel and concrete by SFslip, original concrete 

and steel stress-strain models are transformed to concrete and steel stress-slip (displacement) 

models, which are employed in the zero-length fiber section element [26]. The bar-slip at the end 

of beams was modeled in the same manner as used in the columns.  

Experimental studies suggest that bond deterioration and failure for continuous beam 

reinforcement anchored within the joint result in rotation at the end of beams [23,28]. Leon [29], 

however, states that the large amount of slip measured in laboratory tests can be largely 

associated with the lack of horizontal restraint, i.e., the ends of beams are restrained only 

vertically. In a continuous frame, such slip would not likely occur unless all the joints at a 

particular story experienced significant bond deterioration simultaneously. Thus, indeterminate 

frames could be expected to result in significantly reduced slip. Similarly, Hoffman et al. [30] 

concluded that for indeterminate frames, bar slip at the beam-joint interface is typically small 

and difficult to detect visually during testing. Hoffman et al. [30] accounted for the impact of bar 

slip and anchorage failure by using a reduced beam moment strength equal to the nominal yield 

strength multiplied by the ratio of the provided to required embedment length for the beam 

longitudinal reinforcement. This assumption was used in Celik and Ellingwood [20], who 

developed fragility curves for non-ductile frames. Thus, for modeling RC frames (Section 5.1), 



14 

 

rotation at the beam-joint interface due to slip of beam reinforcement within the joint is not 

explicitly modeled for joints with sufficient anchorage length or for joints with short embedment 

lengths although the additional rotation due to the bar-slip of the beam reinforcement was 

modeled in the model validation.  

 

3.5 Model application 

The proposed joint response model, with parameters defined as recommended in Table 2, was 

used in the subassemblage model shown in Fig. 1 to simulate the response of test specimens not 

used in developing the joint response model. Fig. 4 shows the comparison of experimental and 

simulated results for four specimens; two specimens are interior joints exhibiting joint shear 

failure with and without beam yielding; one specimen is an exterior joint exhibiting joint shear 

failure without beam yielding; and one specimen is an exterior joint that exhibit joint shear 

failure when loaded in one direction and anchorage failure when loaded in the other direction. 

For each category of beam-column joint (interior, exterior, and exterior with anchorage failure), 

strength, energy dissipation, and the pinched nature of the response history are well simulated by 

the model, though the model provides a simplified representation of the cyclic response history. 

Moreover, Fig. 5 shows an example for the worst prediction. The strength is poorly simulated, 

but the model simulates well the pinched nature of the response history while providing a 

simplified representation of the cyclic response history. 

 

Fig. 4. Experimental and model responses: for interior joints (a) PEER14 [31] and (b) J-OH [32], 

for exterior joint (c) Unit 6 [33], and for exterior joint with anchorage failure (d) Unit 1 [33]. 
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Fig. 5. Experimental and model responses for the worst prediction (T1 [34]). 

 

4. Column response model 

For columns, flexural yielding and premature flexural failure associated with poor transverse 

reinforcement details can be simulated using basic fiber-type beam-column elements. However, 

these elements cannot accurately capture a rapid loss of lateral strength and axial load carrying 

capacity of columns resulting from shear failure [26,27,35], and thus models must be developed 

to simulate this non-ductile response of columns. 

  

4.1 Column flexure and shear response model  

Fig. 6(a) shows the OpenSees element configuration used for simulation of column response. 

Flexural response was simulated using fiber-type displacement-based beam-column elements 

located at the ends of the column and an elastic beam-column element away from the ends of the 

column where inelastic action is not expected; bar-slip response at the end of column was 

modeled introducing fiber-type zero-length section element; and details of the model are as 

described in Section 3.1. Shear response was simulated using a zero-length shear spring located 

at one end of the column.  

 

Fig. 6. Modeling shear-dominated column: (a) finite element model and (b) shear, flexure, and 

total response envelopes. 

 

A new shear load versus deformation model was developed using the existing OpenSees 

limit-state material model and shear limit curve developed by Elwood [35]. As shown in Fig. 
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6(b), the shear limit curve is activated and shear failure is initiated once the column shear 

demand exceeds the column shear capacity. These models require definition of shear strength 

(Vn), unloading shear stiffness (K
t
deg), and residual shear strength (Vres). Here, to improve the 

accuracy of shear strength prediction, the shear strength model original employed by Elwood [35] 

was replaced with the ASCE 41-06 shear strength model [22,27]: 
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where k = strength degradation coefficient that depends on displacement ductility demand (μΔ) (k 

= 1.0 for μΔ ≤ 2, k = 0.7 for μΔ ≥ 6, and linear interpolation is used for 2 < μΔ < 6); μΔ is defined 

as the ratio of the ultimate displacement to yield displacement. The yield displacement can be 

determined using the secant stiffness method while the ultimate displacement is defined as the 

displacement at 20% loss of maximum shear force [27]. The current study adopts k = 1.0 because 

the proposed model is a strength-based model; λ = 0.75 and 1.0 for light and normal weight 

aggregate concrete, respectively; P = axial compressive load for previous converged solution 

state; M/Vd = largest ratio of moment to shear times effective depth (2 ≤ M/Vd ≤ 4); d = effective 

depth; Ag = gross cross-sectional area; Av = area of transverse reinforcement; fyv = yield stress of 

transverse reinforcement; and s = spacing of transverse reinforcement.  

Elwood [35] recommends that the unloading stiffness of the shear spring (Kdeg) be 

defined by the unloading stiffness of the total column shear load versus drift response (K
t
deg) and 

the portion of the unloading flexural response that can be attributed to flexural response (Kunload): 

  
degdeg
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KKK uload

t
+=           (9) 
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For the new model, the approach employed by Elwood [35] for defining the unloading stiffness 

of the column (K
t
deg) was replaced by the shear-friction based model proposed by Baradaran 

Shoraka [8]:  

  L
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where dc = depth of the column core from the centerline to centerline of transverse reinforcement 

and L = column length. Unloading stiffness attributed to flexural response (Kunload) was assumed 

equal to the initial flexural stiffness per Elwood [35]. Residual shear strength (Vres) was assumed 

equal to 20% of the initial shear strength (Vn) to alleviate the convergence issue such as 

numerical instability in dynamic analyses. 

 

4.2 Validation of proposed column shear model 

The proposed column shear failure response model is validated by comparing analytical and 

experimental results for a dataset comprising 30 columns; columns exhibited flexure-shear and 

shear failure with M/Vd ranging from two to four to satisfy the condition of Eq. (8). Few 

experimental data exist characterizing the response of columns subjected to varying axial load 

and exhibiting shear failure; thus, all columns in the dataset were tested under constant axial load. 

Table 3 identifies test specimens included in the dataset and summarizes the range of design 

parameters for the dataset. Most data were obtained from the database assembled by Ghannoum 

and Sivaramakrishnan [51]. Fig. 7 shows observed and simulated response histories for four 

specimens; two specimens exhibiting flexure-shear failure at the high (μΔ > 2) and low (μΔ ≤ 2) 

flexural ductility demands and two specimens exhibiting shear failure prior to flexural yielding. 

These data show that the model can provide acceptably accurate simulation of shear capacity, 

drift capacity, deterioration in shear strength resulting from increasing drift demand and cyclic 



18 

 

response, and energy dissipation. Moreover, Fig. 8 shows an illustration for the worst prediction 

of the proposed model. The model underestimated the column shear capacity and associated drift 

demand; however, it captured well the pinched hysteretic response. 

 As shown in Fig. 8, the proposed strength-based model is a limitation for the estimation 

of deformation at shear failure. In this regard, it is not as accurate as the model of LeBorgne and 

Ghannoum (rotation-based limit state model) [26]. However, the proposed model is more 

computationally efficient and numerically robust than the LeBorgne and Ghannoum model and 

yields acceptable estimate of responses for the dataset of 30 specimens overall. 

Cyclic response parameters for use with the OpenSees limit-state material were 

determined to provide a least-squares best-fit to the experimental load-drift response. For each 

column test, the pinching factor for deformation during unload (px), pinching factor for force 

during unloading (py), and parameter for the degraded unloading stiffness based on ductility (β) 

were computed to provide a best-fit to the data for that particular test. The factor px has a mean 

value of 0.40 and COV of 0.25 while the factor py has a mean value 0.30 and COV of 0.40. The 

factor β was not used in the simulations. Thus, the average values (px = 0.40, py = 0.35, β = 0.0) 

are recommended for use in predictive analyses and were used to predict frame response for 

generation of fragility function. 

 

Table 3 Summary of column experimental dataset†. 

 

Fig. 7. Experimental and model responses: for flexure-shear failure (a) Specimen 1 [27] and (b) 

U2 [40], and for shear failure (c) Specimen 4 [46] and (d) CR96L-S0 [50]. 
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Fig. 8. Experimental and model responses for the worst prediction (2CLH18 [38]). 

 

5. Fragility analysis  

To facilitate assessment of the seismic vulnerability of non-ductile RC frames, fragility functions 

defining the probability of meeting or exceeding a specific limit state given an earthquake 

intensity level were developed using numerical simulation and the component models described 

above. Using the cloud method, fragility functions were developed for the given reference frame 

as follows: 1) choose component response mechanisms to be considered in the analysis, 2) use 

Latin hypercube sampling (LHS) [52] to generate N statistical samples of the frame with each 

sample representing a random combination of material (concrete and steel strength) and system 

(damping ratio) parameters, 3) select a suite of N ground motions applicable to the region of 

interest, which account for different characteristics such as far-field versus near-fault, magnitude, 

distance, and soil site, 4) perform nonlinear dynamic analyses for N randomly assigned frame-

ground motion pairs (from Step 2 and Step 3), 5) for each analysis, record engineering demand 

parameters (EDPs) of interest (here, maximum story and roof drift) as well as ground motion 

intensity measures (IMs) of interest (spectral acceleration at fundamental period, Sa-T1), and 6) 

develop a probabilistic seismic demand model (PSDM) and fragility curves for four limit states. 

 

5.1 Description and analytical model of selected RC frame 

The four-story, three-bay non-ductile RC frame designed by Liel [7], as shown in Fig. 9, was 

selected as a case study to implement the proposed procedure. Liel [7] designed this frame in 

accordance with the minimum requirements of the 1967 Uniform Building Code and for the 

highest seismic zone in California [9]. Fig. 9 provides beam, column and joint design data, and. a 
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slab thickness of 200 mm was assumed; beams and slabs were as T-shaped beams using modeled 

and the effective width of the slab was calculated from the provisions of ACI 318-11 [16]. The 

floor dead load and mass were determined based on the load combination 1.05DD + 0.25DL 

(dead load, DD = 8.4 kPa and live load, DL = 2.4 kPa) per Ellingwood et al. [53]. As designed, 

the frame could be expected to exhibit one or more of the following response mechanisms under 

earthquake loading: (1) joint shear failure as joint shear demand computed per ACI 352R-02 [21] 

exceeds joint shear capacity for the joints, (2) anchorage failure for beam bottom longitudinal 

reinforcement anchored in the joints with 150 mm (6 in) anchorage lengths per the minimum 

requirement of ACI 318-63 [54], (3) column shear failure as shear demands associated with 

development of column flexural strength exceed capacity computed assuming concrete does not 

contribute to shear strength per ACI 318-11 Section 21.5.4.2 [16] (concrete contribution of shear 

strength is taken as zero for columns subjected to (a) more than 50% of shear demand and (b) 

axial load less than 0.05fcAg), and (4) beam yielding in flexure as shear demands in beams do not 

exceed capacity assuming zero concrete contribution to strength. However, to investigate the 

impact of component response mechanisms on building performance and vulnerability, five 

models of the frame were created using OpenSees and the component models discussed above. 

These five models, as shown in Fig. 10 and Table 4, included simulation of beam and column 

flexural response as described in the beam-column joint subassemblage modeling effort and 

included simulation of (1) beam-column joints using essentially rigid frame elements within the 

joint region (Model 1), (2) joint shear failure (Model 2), (3) joint failure as controlled by either 

shear strength or beam rebar anchorage strength (Model 3), (4) column shear failure (Model 4), 

and (5) joint failure as controlled by shear as well as column shear failure (Model 5).  
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Fig. 9. Design information of 4-story non-ductile space frame [7]. 

 

Fig. 10. Analytical frame models: (a) rigid joint response (Model 1), (b) joint shear response 

without anchorage failure (Model 2), (c) joint shear response with anchorage failure (Model 3), 

(d) column shear response (Model 4), and (e) joint and column shear response (Model 5). 

 

Table 4 Component modeling for frame models.  

 

For Model 4 and Model 5, the potential of column shear failure is identified through the 

comparison of column shear demand and capacity. As mentioned before, according to ACI 318-

11 [16], the concrete contribution of shear capacity can be ignored if the two conditions such as 

less than 0.05fcAg and more than 50% of shear demand are satisfied. For the subject frame, the 

axial load ratio (P/fcAg) on the exterior and interior columns ranges from 0.033 to 0.137 and from 

0.074 to 0.292, respectively. Therefore, the former was not satisfied for most columns, and thus 

the concrete contribution might be included. However, if columns would be expected to 

experience moderate to severe deformation demands, no concrete contribution might be 

acceptable. The above two conditions drew different conclusions for the addition of concrete 

contribution to shear strength. Thus, the current study used both the ACI318-11 equation (no 

concrete contribution to shear strength) and ASCE 41-06 equation (Eq. (8)) (concrete does 

contribute to shear strength within the column hinge region) for the calculation of shear capacity. 

Although columns have the potential for exhibiting shear failure when column shear strength is 

defined per ACI 318-11 (no concrete contribution), when column shear strength is defined per 

Eq. (8) (concrete contribution) column shear demands do not exceed shear capacity. Thus, to 
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investigate the impact of column shear failure on frame fragilities using Model 4 and Model 5, 

columns were redesigned to be shear-critical. Specifically, column transverse reinforcement 

spacing was increased by 340 mm for the first-story exterior and second-story interior columns 

and by 500 mm for the first-story interior columns.  

 

 

5.2 Probabilistic analytical frame models and ground motion suite 

Aleatoric uncertainty (inherently random in nature) in concrete compressive strength (fc), steel 

yield strength (fy), and damping ratio (ζ) is incorporated in the analyses using the LHS technique. 

This technique provides a more efficient sampling scheme to cover the probability space of the 

random variables when compared with pure random sampling using naïve Monte Carlo 

simulation [4]. Table 5 shows the modeling parameters and their associated probability 

distributions provided by Healy et al. [55] and Liel [7]. The material parameters fc and fy, 

sampled using the LHS technique, were used to compute joint shear strength, anchorage (bond) 

strength, and column shear strength for the frame. 

 

Table 5 Modeling uncertainties.  

 

Assembling a suite of ground motions that represents the seismic hazard is crucial to 

developing fragility curves applicable to RC frames spread over a wide geographic area. The 

suite of ground motions must contain a wide range of IMs expected in the interest area based on 

seismic hazard analysis. To accomplish this purpose, this study selects a suite of ground motions 

developed by Baker et al. [56] that can be utilized to analyze a variety of structures potentially 

located in active seismic regions such as California.  
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5.3 Simulated response 

The influence of component response, as characterized by the five models described previously, 

on overall behavior of the frame was investigated by comparing the simulation results, for 

individual ground motion records, generated using the different frame models. Fig. 11 shows the 

comparison of response histories for a first-story interior column for three of the models 

described above: a) joint shear failure is simulated (Model 2), b) columns are redesigned and 

column shear failure is simulated (Model 4), and c) joint shear and column shear failure are 

simulated (Model 5). The data in Fig. 11 suggest that, for the design and redesign considered, 

beam-column joint failure occurred prior to column shear failure and limited column shear 

demand such that column shear failure was avoided. This is supported by the larger column shear 

shown in Fig. 11b and the essentially identical response histories shown in Figs. 11a and 11c. 

Comparison of the data in Figs. 11a and 11b also shows a 120% increase in maximum story drift 

when joint shear failure occurs instead of column shear failure. Fig. 12 shows the comparison of 

response histories for the following models: a) joint shear failure simulated (Model 2) and b) 

joint shear and anchorage failure simulated (Model 3). These data show that simulation of 

anchorage failure for beam reinforcement terminating in the joint results is a slight reduction in 

strength and thus column shear force demand (approximately 8%) and an increase in story drift 

(20%). 

 

Fig. 11. Comparison of column shear-story drift responses for first-story interior column: (a) 

joint shear response (Model 2), (b) column shear response (Model 4), and (c) joint and column 

shear response (Model 5). 
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 Fig. 12. Comparison of column shear-story drift response for first story exterior column: (a) 

joint shear response (Model 2) and (b) joint shear/anchorage response (Model 3). 

 

 To examine the distribution of damage for different response mechanisms, Fig. 13 shows 

the comparison of maximum story drift distribution along each story level for different frame 

models. Column flexure (Fig. 13a) and shear (Fig. 13d) response model have relatively higher 

maximum story drift at the first and second stories due to the accelerated damage accumulation 

at these story columns. The column shear response model (Model 4) has lower first-story drift 

and higher second-story drift compared to the column flexure response model (Model 1). This is 

due to the fact that the first and second story columns exhibited shear failure and experienced 

more distributed damage over these columns. In contrast, for joint response models (Model 2 and 

Model 3) shown in Figs. 13b and 13c, structural damage is distributed over all frame stories: 

smaller first story drift demand and larger third and fourth story drift demand than the column 

flexure and column shear response models (Model 1 and Model 4). Furthermore, as shown in 

Figs. 13a and 13c, the combined joint and column shear response model (Model 5) provides the 

same results as the joint shear response model (Model 2) because joint shear response controlled 

overall system response.  

 

Fig. 13. Maximum story drift distribution: (a) rigid joint response (Model 1), (b) joint shear 

response (Model 2), (c) joint shear/anchorage response (Model 3), (d) column shear response 

(Model 4), and (e) joint and column shear response (Model 5). 
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5.4 Probabilistic seismic demand models 

Nonlinear dynamic analyses for 160 randomly selected pairs of frame models and ground 

motions were performed to determine EDPs and associated IMs. These quantities are required to 

generate the PSDM, which relates the median EDP on the structure to the IM, suggested by 

Cornell et al. [57]: 

  
b

D IMaS ×=            (11) 

where SD is the median value of the demand as a function of an IM, parameters a and b can be 

computed by a linear regression analysis of ln(SD) on ln(IM) obtained from simulations. In this 

study, maximum story drift ratio (θmax) and spectral acceleration at the fundamental period (Sa-T1) 

are chosen as SD and IM, respectively. Here, the average value of Sa-T1 for different frame models 

was used to compare the demands and fragility curves for these models because the fundamental 

periods do not vary significantly for the models (9% of maximum difference); a mean value of 

1.07 sec and COV of 0.02 for Model 1 and Model 4 and a mean of 1.17 sec and COV of 0.02 for 

Model 2, Model 3, and Model 5. Additionally, the mean value of Sa-T1 ranges from 0.305g to 

0.330g for the different frame models, and the average Sa-T1 is 0.315g for all frame models. 

 Comparison of the PSDMs for the five frame models, as shown in Fig. 14, indicates that 

the component response model does not significantly affect the seismic demand considered in 

this study (θmax). For example, given a Sa-T1 of 1.1g, the maximum story drift ranges from 4.3% 

to 5.2% for the frame models. Column flexure and column shear response models (Model 1 and 

Model 4), shown in Figs. 14a and 14d, result in slightly larger seismic demands. Detailed 

evaluation of analysis results suggests that this is due to development of a soft-story collapse 

mechanism and thus concentration of story drift demands. In contrast, when the potential for 

joint but not column shear failure is included in the model (Model 2), structural damage is 
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distributed over all frame stories (Fig. 13 and Fig. 15), resulting in higher maximum roof drift 

demand, as shown in Fig. 16. This observation is consistent with the work of Celik and 

Ellingwood [20]. Comparison of data in Figs. 14b and 14c indicates that the development of a 

joint anchorage failure mechanism (Model 3) could be expected to result in slightly larger story 

drift demands than development of a pure joint shear response model (Model 2). Finally, similar 

demands are predicted if only joint shear failure (Model 2) is simulated (Fig. 14b) or if joint and 

column shear failure (Model 5) are simulated (Fig. 14e). This supports the anecdotal observation 

of frame response discussed above (Section 5.3) that joint failure controls over column shear 

failure. Thus, the concurrent joint and column shear response model (Model 5) in Fig. 14e is 

approximately the same as that for the joint shear response model (Model 2) in Fig. 14b.  

 

Fig. 14. PSDMs with different analytical frame models: (a) rigid joint response (Model 1), (b) 

joint shear response (Model 2), (c) joint shear response and anchorage failure (Model 3), (d) 

column shear response (Model 4), and (e) joint and column shear response (Model 5). 

 

Fig. 15. PSDMs for maximum story drift demand along each story level: (a) rigid joint response 

(Model 1), (b) joint shear response (Model 2), and (c) column shear response (Model 4). 

 

Fig. 16. PSDMs for maximum roof drift demand: (a) rigid joint response (Model 1) and (b) joint 

shear response (Model 2). 

 

Fig. 15 shows the damage distribution at each story level for Model 1, Model 2, and 

Model 4 through their respective PSDM. Analyzing the regression coefficients demonstrated that 
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Model 2 (joint shear response) exhibited distributed damage over the first to third story level 

(larger values of regression coefficients a and b in Eq. (11)) while Model 1 and Model 4 (without 

joint flexibility) experienced more concentrated damage on the first and second stories.  

 

5.5 Fragility curves 

Outputs obtained from the linear regression analysis in a log-transformed space (PSDM) and 

empirically-based limit-state models may be used to develop closed-form expressions for 

fragility functions, assuming limit-state models also follow a lognormal distribution: 
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where D and C are seismic demand and structural capacity, respectively; SD and βD|IM are the 

median value and dispersion of the demand as a function of Sa-T1, respectively; SC and βC are the 

median value and dispersion of the structural limit state, respectively; βM is the modeling 

uncertainty (assumed to be 0.2 per Celik and Ellingwood [4]); and Φ[·] is the cumulative normal 

distribution function. For this study, limit-state models define the demand at the onset of various 

structural damage states. Median values (SC) of four damage states are presented in Table 6. On 

the basis of the damage description for four limit states presented in HAZUS-MH [58], the 

median value for each limit state was assumed using previous studies [4,58,59]. The dispersion 

(βC) of all limit states is assumed to be 0.3 per Wen et al. [60].  

 

Table 6 Capacity limit state model for maximum story drift (%). 
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Fig. 17 shows the comparison of the resulting fragility curves at the extensive and 

complete damage states for four of the five frame models. Fragilities for the model in which joint 

and column shear failure (Model 5) are simulated are not presented as results are essentially 

identical to those of the model in which only joint shear failure is simulated (Model 2). 

Differences in the fragility curves are most easily evaluated by comparing the median intensity 

measure (defined as an intensity measure at a 50% probability of reaching a specific limit state). 

Fig. 18 shows the comparison of these median intensity measures of Sa-T1 at the four limit states 

for the four frame models. For the models in which column or joint shear failure is simulated 

(Models 2-5), the impact of the component response model on median intensity at onset of a 

limit state is less than 10% except for the complete limit state (15% difference between Model 2 

and Model 4). The most vulnerable structure is that in which columns exhibit shear failure 

(Model 4) while the least vulnerable structure is that in which beams and columns exhibit only 

flexural yielding and joints are assumed rigid (Model 1). Moreover, although Model 1 has higher 

seismic demands (maximum story drift) than Model 1, as shown in Figs. 13-15, Model 1 is the 

least vulnerable. This is due to the definition of the limit state models presented in Table 6, 

namely that flexure-controlled members have more sufficient seismic resistance than shear-

controlled members.  

 Accounting for non-ductile response mechanisms such as joint failure or column failure 

(Models 2-5) increases frame vulnerability over that predicted for the pure flexural response 

model (Model 1). Thus, these mechanisms should be included in the frame models to provide 

reliable simulation of seismic risk. Additionally, the resulting fragilities for the non-ductile 

response models are insensitive to the response mechanisms at lower (slight and moderate) 

damage levels as well as not particularly sensitive to the mechanism at higher (extensive and 
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complete) damage levels (less than 10% difference except for one case). Thus, it is reasonable to 

choose to use only the fragility of one non-ductile response model, likely the most conservative, 

for the assessment of building inventories. However, these results are not definitive, and thus all 

response mechanisms should be considered to develop fragilities for the reliable vulnerability 

assessment of different buildings. 

 

Fig. 17. Comparison of fragility curves with different frame models: (a) extensive and (b) 

complete damage state. 

  

Fig. 18. Median intensity measures of fragility curves with different frame models. 

  

5.6 Impact of aleatoric uncertainty on frame vulnerability 

To examine the effect of aleatoric uncertainties such as fc, fy, and ζ on the seismic vulnerability of 

the RC frame, the joint shear response model (Model 2) and column shear response model 

(Model 4) were employed with the mean value of three parameters (fc = 27.6 MPa, fy = 462 MPa, 

and ζ = 0.05) and fragility curves were developed using the approach presented above. Figs. 19a 

and 19b show the comparison of fragility curves for Model 2 and Model 4, respectively, for all 

limit states with and without aleatoric uncertainties. For both models, accounting for aleatoric 

uncertainties has little impact on the fragility curves; consideration of aleatoric uncertainty 

results in a variation in the median values of Sa-T1 less than 2%. Thus, the data indicate that it is 

not necessary to consider aleatoric uncertainty in assessment of earthquake damage and/or loss 

for RC frames. This observation is consistent with the results of other studies [20,61].  
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Fig. 19. Comparison of fragility curves with and without aleatoric uncertainty: (a) joint shear 

response model (Model 2) and (b) column shear response model (Model 4).  

 

6. Summary and Conclusions  

This paper aims at using numerical simulation to develop fragility curves for non-ductile RC 

frames. Numerical models are developed that provide appropriate and numerically efficient and 

robust simulation of the primary response modes of non-conforming RC joints and columns. 

These models employ existing OpenSees materials and element formulations and are developed 

using large experimental databases. The joint response model employs a new joint shear strength 

model that was calibrated using stepwise multiple regression analysis and an extensive 

experimental dataset; new cyclic response parameters were determined to provide a least-squares 

best-fit to the experimental data. This model simulates joint shear failure prior to and following 

flexural yielding of framing members (beams or columns) as well as premature anchorage failure. 

A column shear response model is developed by combining an existing column shear strength 

model with an existing material model; the model can simulate flexure-shear or shear failure. 

Cyclic response parameters are determined to provide a least-squares best-fit method to 

experimental data. Although the response models provide poor predictions for a few specimens, 

the simulated responses for most specimens are good. As a result, these response models can 

provide reliable earthquake risk assessment by reducing modeling uncertainties.  

To investigate the impact of component response models on frame vulnerability, a non-

ductile RC frame is selected as a case study. Numerical models of this frame are developed, 

which account for simulation of one or more response characteristics: (1) rigid joint, (2) inelastic 

joint shear response, (3) nonlinear joint shear response and anchorage failure, (4) column shear 

failure. For these frame models, nonlinear dynamic analyses are performed using a suite of 
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ground motions representative of the seismic hazard of California. The fragility results reveals 

that (1) for the shear response models, median intensity measures and median story drifts were 

not significantly affected by the component response models (results for different models vary 

by less than 15%), (2) the most vulnerable frame is that in which joint shear failure is assumed 

not to occur and only column shear failure is simulated (Model 4) whereas the least vulnerable 

frame has the rigid joint model (Model 1), (3) the models without joint flexibility (Model 1 and 

Model 4) caused larger seismic demands, likely due to the development of a soft-story collapse 

mechanism while for the models with joint flexibility (Models 2, 3, and 5), seismic demands 

were distributed over all stories, (4) simulation of joint anchorage failure (Model 3) resulted in a 

slight increase in seismic demand compared with the model in which only joint shear failure 

(Model 2) was simulated, and (5) the combined joint and column shear response model (Model 5) 

results in approximately the same seismic demands as the joint shear response model (Model 2). 

However, this observation is valid only for RC buildings, especially where the softening of one 

component alleviates demands on other critical components. Thus, simulation of both joint and 

column shear failure is recommended for fragility assessment of non-ductile RC frames, because, 

in general, either response mechanism may control frame response. Finally, accounting for 

aleatoric uncertainties has little impact on frame fragility curves, and thus a deterministic frame 

model is sufficient for earthquake damage assessment for older RC frames in California.  
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Nomenclature 

Aj: joint area (mm
2
).  

Ag: gross sectional area of column (mm
2
). 

Av: area of transverse reinforcement (mm
2
).  

BI: beam reinforcement index. 

C: structural capacity.  

COV: coefficient of variation. 

D: seismic demand. 

DD: dead load. 

DL: live load. 

JP: parameter for describing in-plane geometry. 

Kdeg: unloading stiffness of the shear spring (N/mm). 

K
t
deg: unloading shear stiffness (N/mm). 

Kunload: Unloading stiffness attributed to flexural response (N/mm). 

L: column length (mm). 

Lb: total length of the left and right beams (mm).  

Lc: total length of the top and bottom columns (mm). 

Lp: plastic hinge length of members (mm). 

M/Vd: largest ratio of moment to shear times effective depth.  

Mj: joint rotational moment (N-mm). 

P: column axial load (N). 

Sa-T1: spectral acceleration at the fundamental period (g). 

SC: median value of the structural limit state. 

SFslip: bond-slip scale factor. 

SD: median value of the demand as a function of an intensity measure. 

TB: joint confinement factor  

Ts: maximum tension force developed in the poorly anchored beam bottom reinforcement (N). 

Vn: column shear strength (N). 

Vres: residual shear strength (N). 

fc: concrete compressive strength (MPa). 

bj: effective width of the joint panel calculated from ACI 352R-02 (mm). 

c: minimum of bottom and side concrete cover (mm). 

d: column effective depth (mm).  

dc: depth of the column core from centerline to the centerline of transverse reinforcement (mm). 
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db: effective depth of the beam (mm). 

fy: yield stress of longitudinal reinforcement (MPa).  

fyv: yield stress of transverse reinforcement (MPa). 

hc: column depth (mm). 

j: internal moment arm factor.  

k: strength degradation coefficient  

kdeg: post-peak stiffness in joint shear stress-strain curve (MPa/rad). 

lb: beam length measured from the face of column to the end of beam (mm). 

lsp: embedment length within a joint (mm). 

nb: number of beam bottom longitudinal rebars. 

px: pinching factor for deformation during unload.  

py: pinching factor for force during unloading. 

s: spacing of transverse reinforcement (mm). 

slipy: bar slip at yield (mm). 

ue: mean elastic bond stress (MPa).  

Φ[·]: cumulative normal distribution function. 

Ψs: reinforcement factor. 

Ω: transverse beam confinement factor. 

α*: parameters for us in fitting the damage rule to experimental data.  

β: parameter for the degraded unloading stiffness based on ductility. 

βC: dispersion of the structural limit state.  

βD|IM: dispersion of the demand as a function of an intensity measure. 

βM: modeling uncertainty.  

γ3: shear strain corresponding to maximum joint shear stress (rad). 

γj: joint shear strain (rad). 

εy: longitudinal reinforcement yield strain.  

ζ: damping ratio. 

η: 2 and 1 for the top floor joints and others. 

θj: joint rotation (rad). 

θmax: maximum story drift ratio (%). 

μΔ: displacement ductility demand.  

τbond: maximum average bond stress (MPa) 

τj: joint shear stress (MPa). 

τmax: maximum joint shear stress (MPa). 
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ϕb: diameter of beam bottom rebars (mm) 

ϕc: diameter of column longitudinal rebars (mm). 
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Table 1 Summary of complete experimental dataset. 

Joint 

type 

Statistics fc (MPa) τexp/√fc 

(√MPa) 

τdesign/√fc 

(√MPa) 

μ 

(√MPa) 

ρj ρb ρc 

Exterior Minimum 8.3 0.35 0.25 1.41 0.000 0.003 0.005 

 Maximum 100.80 1.54 3.20 7.74 0.013 0.041 0.055 

 Mean 33.00 0.84 1.20 3.47 0.001 0.013 0.025 

 COV 0.37 0.29 0.43 0.37 1.977 0.482 0.421 

Interior Minimum 11.57 0.47 0.72 1.00 0.000 0.006 0.009 

 Maximum 74.20 2.12 6.45 5.38 0.003 0.039 0.068 

 Mean 30.03 1.28 2.18 3.10 0.000 0.015 0.027 

 COV 0.37 0.28 0.54 0.34 4.024 0.461 0.478 

 

 

 

Table 2 Recommended modeling parameters of Pinching4 material. 

Joint 

type 
Failure 

Envelope Cyclic response parameters†  

 τmax  γ3 kdeg
 
(MPa/rad) rDisp rForce uForce αK1 αD1 αF1 

Exterior Shear Eq. (2) 0.015 
-75 

0.20 0.20 0.0 
0.95 0.35 0.05 

 Anchorage Eq. (3) 0.010 

Interior Shear Eq. (2) 0.020 -80 1.00 0.30 0.15 

† Note that [αK3, αK5] = [0.10, 0.95], [αD3, αD5] = [0.15, 0.95], [αF3, αF5] = [0.32, 0.25] and zero for others. 
 

 

 

Table 3 Summary of column experimental dataset†. 

 fc 

(MPa) 

fy 

(MPa) 

fyv 

(MPa) 

ρl ρv a/d s/d P/(fcAg) vexp/√fc 

(√MPa) 

Minimum 13.1 331 327 0.010 0.001 2.22 0.23 0.00 2.69 

Maximum 45.0 547 526 0.040 0.008 4.04 1.16 0.61 10.41 

Mean 27.6 419 398 0.025 0.002 3.15 0.67 0.18 5.34 

COV 0.28 0.15 0.12 0.30 0.72 0.18 0.40 0.70 0.32 

† The specimens considered are SC3 [36], 372 and 373 [37], 2CLH18, 2SLH18, 2CMH18, 3CMD12, and 

3SMD12 [38], A4 and C1 [39], U1 and U2 [40], BR-S1 [41], Specimen 1 and Specimen 4 [27], 114 and 

115 [42], CUW [43], 205 and 234 [44], 40.033E and 25.033E [45], Specimen 3 and Specimen 4 [46], 

No1 and No3 [47], No6 and No7 [48], S1 [49], and CR96L-S0[50].  

§ Note that ρl and ρv are longitudinal and transverse reinforcement ratio, respectively and vexp = Vn,exp/bd. 

  



 

Table 4 Component modeling for frame models.  

Model no. Description Column Beam Joint 

Model 1  rigid joint flexure + bar-slip flexure rigid 

Model 2  joint shear flexure + bar-slip flexure shear 

Model 3  joint shear/anchorage flexure + bar-slip flexure shear + anchorage 

Model 4  column shear flexure + bar-slip + shear flexure rigid 

Model 5  joint and column shear flexure + bar-slip + shear flexure shear 

 

 

 

Table 5 Modeling uncertainties.  

Random variables Mean [7] COV Distribution [55] 

fc (MPa) 27.6  0.176 [55] Normal 

fy (MPa)  462 0.080 [55] Lognormal 

ζ 0.05 0.600 [7] Lognormal 

 

 

 

Table 6 Capacity limit state model for maximum story drift (%). 

Frame model Slight Moderate Extensive Complete 

SC βC SC βC SC βC SC βC 

Rigid joint response 0.5 0.3 1.0 0.3 3.5 0.3 6.0 0.3 

Column shear response 0.5 0.3 1.0 0.3 2.0 0.3 4.5 0.3 

Joint shear/anchorage response 0.5 0.3 0.9 0.3 2.0 0.3 4.5 0.3 
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Fig. 1. Analytical model of beam-column joint subassemblage. 

 

 

Fig. 2. Envelope of joint shear stress-strain relationship. 

 

 

Fig. 3. Comparison of computed and experimental joint shear strength. 



   

   

Fig. 4. Experimental and model responses for the best prediction: for interior joints (a) PEER14 

[31] and (b) J-OH [32], for exterior joint (c) Unit 6 [33], and for exterior joint with anchorage 

failure (d) Unit 1 [33]. 

 

 

 

   

Fig. 5. Experimental and model responses for the worst prediction (T1 [34]). 
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Fig. 6. Modeling shear-dominated column: (a) finite element model and (b) shear, flexure, and 

total response envelopes. 
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Fig. 7. Experimental and model responses: for flexure-shear failure (a) Specimen 1 [27] and (b) 

U2 [40], and for shear failure (c) Specimen 4 [46] and (d) CR96L-S0 [50]. 

 

 

 

 

Fig. 8. Experimental and model responses for the worst prediction (2CLH18 [38]). 
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Fig. 9. Design information of 4-story non-ductile space frame [7]. 

 

  

Fig. 10. Analytical frame models: (a) rigid joint response (Model 1), (b) joint shear response 

without anchorage failure (Model 2), (c) joint shear response with anchorage failure (Model 3), 

(d) column shear response (Model 4), and (e) joint and column shear response (Model 5). 
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Fig. 11. Comparison of column shear-story drift responses for first-story interior column: (a) 

joint shear response (Model 2), (b) column shear response (Model 4), and (c) joint and column 

shear response (Model 5). 

 

 

 

 

      

Fig. 12. Comparison of column shear-story drift response for first story exterior column: (a) joint 

shear response (Model 2) and (b) joint shear/anchorage response (Model 3). 
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Fig. 13. Maximum story drift distribution: (a) rigid joint response (Model 1), (b) joint shear 

response (Model 2), (c) joint shear/anchorage response (Model 3), (d) column shear response 

(Model 4), and (e) joint and column shear response (Model 5). 
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Fig. 14. PSDMs with different analytical frame models: (a) rigid joint response (Model 1), (b) 

joint shear response (Model 2), (c) joint shear response and anchorage failure (Model 3), (d) 

column shear response (Model 4), and (e) joint and column shear response (Model 5). 
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Fig. 15. PSDMs for maximum story drift demand along each story level: (a) rigid joint response 

(Model 1), (b) joint shear response (Model 2), and (c) column shear response (Model 4). 



 

Fig. 16. PSDMs for maximum roof drift demand: (a) rigid joint response (Model 1) and (b) joint 

shear response (Model 2). 

 

 

 

Fig. 17. Comparison of fragility curves with different frame models: (a) extensive and (b) 

complete damage state. 
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Fig. 18. Median intensity measures of fragility curves with different frame models. 

 

 

  

Fig. 19. Comparison of fragility curves with and without aleatoric uncertainty: (a) joint shear 

response model (Model 2) and (b) column shear response model (Model 4).  
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