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ABSTRACT 

SOIL-STRUCTURE MODELING AND DESIGN CONSIDERATIONS FOR OFFSHORE 

WIND TURBINE MONOPILE FOUNDATIONS 

SEPTEMBER 2015 

WYSTAN CARSWELL, B.S. LAFAYETTE COLLEGE 

M.S.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Sanjay R. Arwade and Don J. DeGroot 

Offshore wind turbine (OWT) support structures account for 20-25% of the capital cost for 

offshore wind installations, making it essential to optimize the design of the tower, 

substructure, and foundation to the extent possible. This dissertation focuses on monopile 

foundations, as the vast majority (approximately 75%) of currently installed OWTs are 

supported by monopile structures. The objective of this dissertation is to provide information 

on the behavior of monopile support structures to better substantiate design and planning 

decisions and to provide a basis for reducing the structural material costs. In pursuit of these 

objectives, research is presented on the topics of hysteretic soil-structure damping (referred 

to as foundation damping), cyclic degradation of soil properties, and the impact of marine 

growth on OWT monopile support structures. 

OWTs are lightly damped structures that must withstand highly uncertain offshore wind and 

wave loads. In addition to stochastic load amplitudes, the dynamic behavior of OWTs must 

be designed with consideration of stochastic load frequency from waves and mechanical 

load frequencies associated with the spinning rotor during power production. The close 

proximity of the OWT natural frequency to excitation frequencies combined with light 



vi  

damping necessitates a thorough analysis of various sources of damping within the OWT 

system; of these sources of damping, least is known about the contributions of damping 

from soil-structure interaction (foundation damping), though researchers have back-

calculated foundation damping from “rotor-stop” tests after estimating aerodynamic, 

hydrodynamic, and structural damping with numerical models. Because design guidelines do 

not currently recommend methods for determining foundation damping, it is typically 

neglected. The significance of foundation damping on monopile-supported OWTs subjected 

to extreme storm loading was investigated using a linear elastic two-dimensional finite 

element model. A simplified foundation model based on the soil-pile mudline stiffness 

matrix was used to represent the monopile, and hysteretic energy loss in the foundation was 

converted into a viscous, rotational dashpot at the mudline to represent foundation damping. 

The percent critical damping contributed to the OWT structural system by foundation 

damping was quantified using the logarithmic decrement method on a finite element free 

vibration time history, and stochastic time history analysis of extreme storm conditions 

indicated that mudline OWT foundation damping can significantly decrease the maximum 

and standard deviation of mudline moment. 

Further investigation of foundation damping on cyclic load demand for monopile-supported 

OWTs was performed considering the design situations of power production, emergency 

shutdown, and parked conditions. The NREL 5MW Reference Turbine was modeled using 

the aero-hydro-elastic software FAST and included linear mudline stiffness and damping 

matrices to take into account soil-structure interaction. Foundation damping was modeled 

using viscous rotational mudline dashpots which were calculated as a function of hysteretic 

energy loss, cyclic mudline rotation amplitude, and OWT natural frequency.  

Lateral monopile capacity can be significantly affected by cyclic loading, causing failure at 

cyclic load amplitudes lower than the failure load under monotonic loading. For monopiles 
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in clay, undrained clay behavior under short-term cyclic soil-pile loading (e.g. extreme 

storm conditions) typically includes plastic soil deformation resulting from reductions in soil 

modulus and undrained shear strength which occur as a function of pore pressure build-up. 

These impacts affect the assessment of the ultimate and serviceability limit states of OWTs 

via natural frequency degradation and accumulated permanent rotation at the mudline, 

respectively. Novel combinations of existing p-y curve design methods were used to 

compare the impact of short-term cyclic loading on monopiles in soft, medium, and stiff 

clay.   

Marine growth increases mass and surface roughness for offshore structures, which can 

reduce natural frequency and increase hydrodynamic loads, and can also interfere with 

corrosion protection and fatigue inspections. Design standards and guidelines do not have a 

unified long-term approach for marine growth on OWTs, though taking into account added 

mass and increased drag is recommended. Some standards recommend inspection and 

cleaning of marine growth, but this would negate the artificial reef benefits which have been 

touted as a potential boon to the local marine habitat. The effects of marine growth on 

monopile-supported OWTs in terms of natural frequency and hydrodynamic loading are 

examined, and preliminary recommendations are given from the engineering perspective on 

the role of marine growth in OWT support structure design. 
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CHAPTER 1 

1 INTRODUCTION AND MOTIVATION 

Fossil fuels (e.g. oil, coal, natural gas) form over the course of thousands of years and are 

consumed at a rate that vastly exceeds the rate which they can be created. While it is somewhat 

controversial as to when the production of these fossil fuels will peak and decline, it is generally 

accepted that this peak event will indeed occur – and in all likelihood within this century. With 

this new chapter of energy production looming in the future, the importance of researching, 

improving, and implementing renewable sources of energy becomes more critical. Innovations in 

biofuels, solar, and wind energy have increased efficiency and power production, but as of yet no 

renewables are truly competitive in energy markets without policy support.  

Offshore wind energy has a promising but challenging future contingent on the advancement of 

research and state-of-the-art design. This dissertation focuses on furthering the progress of 

research in the areas of offshore wind turbine structural and geotechnical modeling and design – 

approximately 20 to 25% of the capital cost of an offshore wind project can be attributed to the 

support structure and foundation [1], and consequently at least 20% of the economics of offshore 

wind power lies in the hands of civil engineers for improvement.  

This work is motivated by the need for more renewable energy generation in the U.S. A 

discussion of U.S. energy demands and electricity generation is presented in Section 1.1; 

subsequently, an overview of the issues surrounding offshore wind turbine support structures is 

given in Section 1.2; last, the specific objectives and format of this dissertation are detailed in 

Section 1.3. 

1.1 Energy Demand and Electricity Generation in the United States 

Fossil fuels provide more than 80% of the United States’ energy use, with the majority  of current 

energy demands met by petroleum and other liquid fuels (e.g. crude oil, petroleum liquids, and 
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liquids derived from nonpetroleum sources) and less than 10% by renewable energy sources 

(Figure 1.1, [2]).  

  

Figure 1.1. Primary energy use by fuel in the United States in quadrillion BTU [2] 

 

Figure 1.2 Electricity generation by fuel, 2011, 2025, and 2040 in billion kilowatthours [2] 
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Figure 1.3 Energy-related carbon dioxide emissions by sector and fuel, 2005 and 2040 [2] 

Coal is the largest source of electricity ([2], Figure 1.2) and is abundantly available in the U.S; 

however, burning coal emits carbon dioxide, which is a greenhouse gas associated with global 

climate change. In 2005, coal accounted for 36% of total U.S. emissions of carbon dioxide 

(second only to petroleum, at 44%) with a projected reduction in emissions of only 2% by 2040 

[2]. The dominance of coal in electricity generation (Figure 1.3) and the high percentage of U.S. 

emissions attributed to coal provides a compelling argument to focus research and political efforts 

on zero-emission energy generation. 

Hydropower is the dominant source of renewable energy for the U.S., followed by wind power 

(Figure 1.4, [2]). Wind energy has benefited from significant policy support in the form of 

renewable energy tax credits and renewable energy portfolio standards; without this support, 

much of the wind energy which is currently installed would not be economically viable.  
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Figure 1.4. U.S. Renewable Electricity Generation in billion kW Per Year [2] 

Even so, the U.S. wind energy is exclusively from onshore turbines; there are currently no 

commercial offshore wind turbines installed in U.S. waters. Offshore winds are stronger and more 

consistent than onshore winds and are consequently more conducive to electricity production; 

however, barriers to offshore installment in the U.S. have included high costs, technical 

challenges with installation, grid-interconnection, uncertain permitting processes, and resistance 

from local communities [1,3–6]. A development scenario in 2008 proposed that wind energy 

could supply 20% of U.S. electric energy generation by the year 2030, with offshore wind energy 

contributing 18% of the total wind energy [7]. This contribution (54 GW of the total 305 GW of 

wind proposed [7]) represents only a portion of the potential offshore wind energy available off 

the coast of the U.S.: It has been estimated that there is over 4000 GW of offshore wind 

considering the Atlantic, Great Lakes, and Gulf of Mexico (Figure 1.5), with over 1000 GW in 

water depths suitable for monopile foundations [3].  
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Figure 1.5. U.S. offshore wind potential by region and depth for annual average wind speed sites higher than 7.0 

m/s [3] 

1.2 Offshore Wind Turbine Support Structures 

Offshore wind turbine (OWT) support structures present a unique design problem, as they are 

subjected to stochastic loading from wind, waves, and mechanical vibrations from spinning 

turbine blades and are situated in variable soil conditions. OWT support structure designs are 

consequently model and site-dependent and sometimes require unique designs even within the 

scope of a single offshore wind farm. As may be expected, this type of specific attention per 

OWT increases support structure foundation cost, not to mention the added costs associated with 

offshore installation and limited access for maintenance during the design life of the OWT.  

Nearly 75% of OWT installations are supported by monopile foundations [1], primarily due to the 

fact that they are the least expensive for shallow water depths (less than approximately 30 m) – 

monopiles are axisymmetric (which is useful in an omnidirectional loading environment) and 

relatively simple to model. The commonly analyzed OWT is the NREL 5MW Reference Turbine 
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(“NREL 5MW”) [8] supported by a 6 m diameter monopile. The NREL 5MW is an artificial 

wind turbine model designed as a compilation of several realistic large-scale offshore wind 

turbines – because the design information is open source, the NREL 5MW provides a common 

ground for researchers to compare results. Lack of site-specific data or limited access to 

proprietary design information is a major hurdle for offshore wind research, and an issue that will 

be addressed in more depth in the conclusions of this dissertation. 

While structural and geotechnical design for OWTs is similar to offshore oil & gas (O&G), there 

are several key differences – (1) wind loading plays a much more significant role for OWTs than 

for offshore platforms due to wind exposure at higher elevations (particularly during operational 

conditions) and the large moment arm posed by the tower; (2) the diameter of monopile-

supported OWTs is much larger than the foundations used for O&G installations, and 

consequently design methods based on behavior of smaller diameter, flexible piles (e.g. the p-y 

method for lateral soil-pile interaction) no longer yield accurate results; (3) the majority of 

foundation loads for O&G platforms are vertical due to coupled action of lattice-type jacket 

structures under moment loading, whereas monopile-supported OWTs are non-redundant and 

must withstand large lateral loads and moments; (4) O&G platforms are unique designs which 

must include life safety precautions, whereas OWTs are installed in the context of several (if not 

dozens) of similar structures in an array; and (5) OWT project economics necessitate tighter 

margins on support structure design, leading to more frugal usage of structural material and 

consequently larger fundamental periods for OWTs than O&G platforms. As a result of these 

differences, only some of the robust body of research which serves O&G is applicable for the 

design of OWT support structures. 

The non-redundancy and lateral load capacity required by monopile-supported OWTs cause soil-

structure interaction to play a major role in OWT support structure design and behavior. Even 

under best in situ testing and soil sampling practice, there is uncertainty in the characterization of 
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offshore soil properties. Soil sampling is a challenging and costly pursuit (especially if performed 

at each proposed OWT location), and therefore the amount of soil information at a given site is 

often extremely limited. The longer embedment depths of monopiles (often in the range of 20-40 

m) provide some design independence from soil property variation with depth, i.e., shallower 

foundations such as gravity base systems and suction caissons are much more reliant on the soil 

properties near the surface. It should be noted however that the hammering of monopiles into the 

seabed during installation is a major environmental concern, not to mention the impacts of 

decommissioning monopile-supported OWTs on the marine habitat due to artificial reefs which 

may form during operation. 

1.3 Dissertation Objectives and Format 

This dissertation is subdivided into four primary chapters which stand alone as papers, and 

consequently the term “paper” and “chapter” are interchangeable within this document. The first 

paper-chapter has been published in a peer-reviewed journal [9], the second has been submitted 

and is currently under review, and the third and fourth in preparation for submission.  

It is important to note that OWT structural and geotechnical design is often decoupled (meaning 

that the OWT structure and foundation are designed separately), and it is unclear how much 

communication there is between the structural and geotechnical design communities during the 

design process despite the critical contribution of both the foundation to structural behavior and 

structural dynamics to foundation design. This dissertation fuses structural and geotechnical 

design by combining programs and models which fit an individual purpose (e.g., cyclic pile 

foundation behavior, or the structural dynamics of an OWT under operational conditions) via 

lumped parameter (i.e., reduced-order) modeling in order to best capture the fully-integrated 

behavior of a monopile-supported OWT. 
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The objective of this dissertation is first and foremost to reduce structural material costs by 

introducing a methodology for taking into account foundation damping in OWT design; secondly, 

this dissertation seeks to better substantiate design and planning decisions by improving 

understanding of monopile support structure behavior; thirdly, this dissertation provides 

methodology and narrative for the importance of coupling structural and geotechnical design of 

OWT support structures. In pursuit of these objectives, the following topics are addressed in the 

following paper-chapters: 

Foundation damping. OWTs are lightly damped structures whose natural frequencies are in 

close proximity to mechanical and wave load frequencies. Of all the sources of OWT damping 

(structural, hydrodynamic, aerodynamic, foundation, and sometimes tuned mass dampers), the 

least is known about foundation damping (i.e., the damping associated with soil-structure 

hysteresis) and no methodology is currently recommended in design guidelines for calculating the 

contributions of foundation damping to the OWT support structure. Chapter 2 proposes a 

methodology for calculating viscous mudline dashpot coefficients as a function of hysteretic 

energy loss, cyclic rotation amplitude, and natural frequency. This methodology allows designers 

to forego complicated hysteretic analysis by instead including a linear rotational dashpot at the 

mudline. Including foundation damping into the analysis of monopile-supported OWTs reduces 

ultimate limit state design loads, thereby providing an opportunity to reduce structural material 

costs. 

Influence of foundation damping on design. Because foundation damping is not typically 

included in OWT design and analysis, the influence of foundation damping on cyclic demand is 

more broadly assessed in Chapter 3 for the design situations of power production, emergency 

shutdown, and parked conditions. By quantifying the impact of foundation damping in the 

analysis of these different design situations, the overall importance of incorporating foundation 

damping in the design of OWT monopile support structure design is better defined. 
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Cyclic degradation of soil properties. Cyclic loading is of particular concern for foundations in 

clay, where foundation failure can occur at cyclic amplitudes lower than the monotonic 

foundation capacity. The serviceability limit state for monopile foundations requires the designer 

to ensure that the monopile does not exceed a certain rotation limit (typically on the order of 

0.25°) as a result of a cyclic loading during the design life of the OWT. The most commonly used 

lateral pile-soil resistance model is the p-y method, wherein lateral soil-pile resistance p is 

represented by a series of nonlinear elastic springs along the length of the pile whose deflection is 

denoted as y. Despite the stringent requirements of the serviceability limit state and the 

prevalence of the p-y method, design guidelines do not recommend the use of the p-y method to 

assess the serviceability limit state because of the impact of initial slope assumptions for the p-y 

curves [10]. Assumedly, a conservative design ensures that the peak amplitude of rotation does 

not exceed the serviceability limit state; Chapter 3 proposes a novel, elastic-perfectly-plastic 

hybrid p-y method for taking into account the degradation of soil resistance as a function of load 

cycle and amplitude for clays, as well as a method for estimating permanent mudline rotation. 

This model is then used to assess the serviceability limit state for extreme storm conditions, as 

well as the impact of soil property degradation on the natural frequency of the OWT. 

Marine growth. Marine growth adds mass and thickness to the OWT structure which can lead to 

decreases in natural frequency, increased surface roughness and effective diameter, and larger 

hydrodynamic loads. Moreover, marine growth can interfere with corrosion protection systems 

and fatigue inspections. Some design guidelines recommend an inspection and cleaning schedule 

for marine growth [10,11], but cleaning off marine growth would negate the potential 

environmental benefits from artificial reef effect. Chapter 5 discusses marine growth on OWTs 

from an engineering perspective by quantifying the reduction in natural frequency which may be 

associated with added mass and the increases in hydrodynamic loading as a function of increased 

effective diameter and drag. Defining the impact of marine growth from an engineering 
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perspective facilitates decision-making with regard to the allowable environmental impact posed 

by monopile-supported OWTs in marine habitats (i.e., whether the benefits of artificial growth 

outweigh the higher risks of invasive species colonization). 

The conclusions and recommendations section (Chapter 6) reprises the results of the studies in the 

paper-chapters and discusses opportunities for future work in the field of monopile-supported 

OWTs. 
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CHAPTER 2 

2 FOUNDATION DAMPING AND THE DYNAMICS OF 

OFFSHORE WIND TURBINE MONOPILES 
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Abstract 

The contribution of foundation damping to offshore wind turbines (OWTs) is not well known, 

though researchers have back-calculated foundation damping from “rotor-stop” tests after 

estimating aerodynamic, hydrodynamic, and structural damping with numerical models. Because 

design guidelines do not currently recommend methods for determining foundation damping, it is 

typically neglected. This paper investigates the significance of foundation damping on monopile-

supported OWTs subjected to extreme storm loading using a linear elastic two-dimensional finite 

element model. The effect of foundation damping primarily on the first natural frequency of the 

OWT was considered as OWT behavior is dominated by the first mode under storm loading. A 

simplified foundation model based on the soil-pile mudline stiffness matrix was used to represent 

the monopile, hydrodynamic effects were modeled via added hydrodynamic mass, and 1.00% 

Rayleigh structural damping was assumed. Hysteretic energy loss in the foundation was 

converted into a viscous, rotational dashpot at the mudline to represent foundation damping. 

Using the logarithmic decrement method on a finite element free vibration time history, 0.17% of 

critical damping was attributed to foundation damping. Stochastic time history analysis of 

extreme storm conditions indicated that mudline OWT foundation damping decreases the 

maximum and standard deviation of mudline moment by 8-9%. 
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Nomenclature 

A Amplitude 

c Rotational damping constant 

Cm Inertia coefficient 

CD Drag coefficient 

D Damping factor 

Eh Hysteretic energy loss 

f Frequency 

G Shear modulus 

Hx Horizontal mudline shear 

k Mudline spring stiffness 

k’ Decoupled spring stiffness 

kmud Mudline stiffness matrix 

Leq Rigid decoupling length 

M Mudline moment 

n Number of amplitudes 

su Undrained shear strength 

u Mudline displacement 

utop Tower top displacement 

x Horizontal translation degree of freedom 

 Rayleigh mass coefficient 

 Rayleigh stiffness coefficient 

δ Log decrement 

 Loss factor 

 Rotational degree of freedom 

𝜃 Mudline Rotation 

μ Mean 

ν Poisson’s ratio 

σ Standard Deviation 

ξ Critical damping ratio 

ωn Frequency (rad/s) 

∆ Perturbation 

IEC International Electrotechnical Commission 

MSL Mean sea level 

NGI Norwegian Geotechnical Institute 

NREL National Renewable Energy Laboratory 

OWT Offshore wind turbine 

LPM Lumped parameter model 
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2.1 Introduction 

Economics are a major impediment for utility-scale offshore wind installations. Offshore wind 

farms require large capital investments and can have approximately two to three times the 

operation and management costs as compared to onshore wind [1]; however, due to higher, more 

consistent wind speeds, offshore wind farms can offer more renewable energy than their onshore 

counterparts and it is expected that monopile foundations will continue to have a large market 

share despite some increase in deployment of larger turbines at greater water depths [2]. For 

monopiles in deeper water, the dynamic effect of wave loads becomes a design driver for OWT 

support structures, leading to an increased sensitivity to soil stiffness and damping [2]. Higher 

damping in the support structure can lead to lower design load estimates, which in turn can 

correspond to reduced amounts of material required to resist loading. Because support structures 

contribute approximately 20-25% of the capital cost for OWTs [1, 3], it is imperative therefore to 

identify and assess sources of damping in the effort to improve the economics of offshore wind 

energy. 

Sources of damping for OWTs include aerodynamic, hydrodynamic, structural, and soil damping. 

In addition, for some turbines, tuned mass dampers are also installed in the nacelle. Aerodynamic 

damping occurs when the OWT blades respond to increases and decreases in aerodynamic force 

due to the relative wind speed from tower top motion [4, 5]. During power production, 

aerodynamic damping is a dominant source of damping in the fore-aft direction; however, 

aerodynamic damping is far less significant in the fore-aft direction for parked and feathered 

rotors or in the side-to-side direction for design situations including wind-wave misalignment [5–

7]. During design situations such as these, other sources of damping play a much larger role in the 

dynamics of the structure. According to an engineering note issued by Germanischer Lloyd [8], 

soil damping is the contributor to OWT damping that is most uncertain. The International 
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Electrotechnical Commission states that “Compared with the other components of the total 

damping discussed, the characterization and modelling of soil damping is the most complex 

parameter and has a high damping contribution. Soil damping is a diffuse subject and the 

contribution to energy dissipation here from is not intuitive in all forms [9].” Det Norske Veritas 

[10] requires that realistic assumptions with regard to stiffness and damping be made in the 

consideration of OWT soil-structure interaction but does not recommend a method to estimate 

soil damping.  

Soil damping comes in two main forms: radiation damping (geometric dissipation of waves from 

spreading) or hysteretic material (also known as intrinsic) damping. Geometric dissipation is 

negligible for frequencies less than 1 Hz [6, 8, 11], and the majority of wind and wave load have 

frequencies below 1 Hz (e.g. [12, 13]). While the first and second fore-aft and side-to-side natural 

frequencies of the National Renewable Energy Laboratory 5MW Reference Turbine (NREL 

5MW) [15] used in this paper are from 0.3 Hz and 3 Hz, the NREL 5MW under extreme storm 

loading is dominated by first mode behavior. Because this first mode is at approximately 0.3 Hz, 

this paper neglects geometric dissipation and focuses solely on hysteretic material damping from 

soil. This type of soil damping should be more specifically labeled OWT monopile foundation 

damping (or generally referred to in this paper as “OWT foundation damping”) due to the specific 

formulation and mechanism of hysteretic material soil damping within the OWT soil-structure 

foundation system.  

Some researchers [3, 6, 11, 14] have examined the signals from instrumented OWTs during 

emergency shutdown (sometimes referred to as a “rotor-stop test”), ambient excitation, and 

overspeed stops [7] to estimate OWT natural frequency and damping. Subsequently, OWT 

foundation damping values from 0.25-1.5% have been estimated from the residual damping after 

aerodynamic, hydrodynamic, structural, and nacelle tuned mass damping have been accounted for 

in numerical modeling. Previous analytical methods have estimated OWT foundation damping 
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using Rayleigh damping as a function of soil strain [6] or from a hysteresis loop created by 

loading and unloading p-y curves [11].  

A two-dimensional finite element model of NREL 5MW is used in this paper, taking into account 

added hydrodynamic mass for the substructure, Rayleigh structural damping, and foundation 

damping. Hydrodynamic and aerodynamic damping are not included in the scope of this paper, as 

the focus is specifically on the contributions of foundation damping. Because total damping for 

the OWT is typically estimated as a linear combination of independently modeled damping 

sources (e.g. [6, 7, 14]), neglecting aerodynamic and hydrodynamic damping is assumed to not 

influence estimations of foundation damping. Any added mass due to the mobilization of the soil 

during pile motion is also neglected. 

The primary objective of this study is to determine the influence of OWT foundation damping on 

dynamic response. Section 2.2 describes the methodology, Section 2.3 describes how the 

foundation stiffness and damping were established, and Section 2.4 describes the combined 

model of the OWT structure and foundation. In Section 2.5, the percent of critical damping for 

the NREL 5MW OWT model which can be attributed to foundation damping is quantified via 

logarithmic decrement method of a free vibration time history and compared to the experimental 

and numerical results available in literature. Subsequently, in Section 6 stochastic time history 

analysis corresponding to an extreme sea state and extreme wind conditions is used to determine 

the significance of OWT foundation damping. 

2.2 Methodology 

The methodology introduced in this paper uses four types of models: a structural model of the 

OWT superstructure (the part of the OWT that extends above the mudline); a lumped parameter 

model (LPM) that approximates the soil-pile system with a rigid bar supported by springs at its 

tip below the mudline and a mudline damper; an aero-hydro-elastic model constructed in the 
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software package FAST; a continuum finite element model of the soil-pile system.  Each of these 

models provides a different degree of fidelity with respect to different aspects of OWT loading 

and response and coupling these models in the manner described here allows the determination of 

wind and wave loads, soil-pile interaction, and structural dynamics in a way that is not possible 

within any one of the models or attendant software packages.  

The flow chart in Figure 2.1 demonstrates the methodology used for determining the linear 

properties of the lumped parameter model (LPM) which was used to idealize distributed stiffness 

and damping from the OWT monopile as concentrated stiffness and damping, specifically, a 

coupled rotational and translational spring and a rotational dashpot. Because soil-pile stiffness 

and damping are load level-dependent, it was important to ensure that the load level for which the 

linearized LPM properties were determined was comparable to the load level which the monopile 

would experience during time history analysis. Several different programs were used in this study 

and are described in further detail later; the purpose of this section is to demonstrate the interplay 

of the programs and how they were used to model the OWT support structure. 

The primary model of the OWT structure and foundation used for free vibration and stochastic 

time history analyses was created in the finite element modeling package ADINA [16]. The 

linearized LPM values, which define the stiffness and damping magnitudes at the mudline of the 

ADINA model, were iteratively determined as a function of ADINA mudline pile loads using an 

in-house finite element program created by the Norwegian Geotechnical Institute (NGI) called 

INFIDEL (INFInite Domain ELement), which models pile-soil interaction without the OWT 

superstructure [17, 18]. In summary, it was necessary to iterate the linearization process until the 

input quasi-static loads for determining LPM properties in INFIDEL agreed with the output 

mudline cyclic load amplitude (horizontal mudline force Hx and mudline moment M) from the 

time history analysis in ADINA within 5%.  Iteration was required because changes in mudline 

stiffness conditions for the OWT caused changes in the mudline design loads, which supports the 
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conclusions of other researchers regarding the influence of foundation modeling on mudline loads 

[19, 20]. 

 

Figure 2.1 Flow chart illustrating the iterative methodology for modeling an OWT and foundation including a 

LPM representing the stiffness and damping of the foundation.  

This methodology (Figure 2.1) remains consistent for both the free vibration and stochastic time 

history analyses, with the exception of load type: for the stochastic time history analyses, the load 

histories due to wind and wave were generated using NREL’s aeroelastic wind turbine simulation 

program FAST [21] and applied to the ADINA model, whereas free vibration was induced by a 

tower top displacement directly in ADINA.  

The stochastic load time histories generated by FAST were based on a similar structural model as 

the ADINA model but with a perfectly fixed boundary at the mudline (i.e., no rotation or 

displacement or damping due to the foundation) and a rigid tower structure. In this way, the loads 

applied to the ADINA model consist only of external forces and moments induced by wind and 
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waves on the structure. For design purposes, a second iteration would be required where the 

mudline stiffness and damping conditions are updated in FAST and new loads would be 

generated until the loads from FAST, ADINA and INFIDEL converge; however, iteration of the 

load input was neglected in this study. 

2.3 Foundation Stiffness and Damping Procedures 

First we give a basic background for different relevant damping formulations. Then the INFIDEL 

software is described followed by the procedures for defining springs and dashpots representing 

the foundation stiffness and damping. 

2.3.1 Damping Formulations 

As background for the following parts of the paper this section gives a description of three 

different damping formulations, (1) hysteretic loss, which is used in the foundation (INFIDEL) 

model, (2) viscous damping, which is used in the LPM representation of foundation damping in 

the structural model (ADINA) model and (3) Rayleigh viscous damping which is used in the 

structural (ADINA and FAST) models. 

Damping mechanisms for mechanical systems may exhibit different mathematical formulations.  

According to the dynamic correspondence principle we may interpret the loss factor as the 

imaginary part of a complex modulus, as here exemplified for the shear modulus G’ i.e. 

)1(' iGG   
(1) 

Here, G is the secant shear modulus of the soil. Formally, the loss factor is proportional to the 

ratio of the energy dissipation per cycle, divided by the maximum potential energy, , in the 

same cycle. In the case of hysteretic damping, the loss factor  may be related to a hysteretic 

damping factor D or quality factor Q through the expression 
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A sketch showing the interpretation of the energy loss and potential energy in a stress-strain loop 

is depicted in the right panel of Figure 2.2. The energy loss  is interpreted as the area inside the 

load displacement loop, whereas the potential energy  is the area under the triangle.  

For a linear single degree of freedom system with a viscous damper (Figure 2.2) subject to a 

harmonic load, the loss factor relates to the viscous damping constant c at a given angular 

frequency =2f (where f is the frequency) for a spring-dashpot system according to: 

G

c
   

(3) 

Next, we denote the undamped natural frequency n, the critical viscous damping constant ccr and 

the fraction of critical viscous damping  as: 
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It can be shown that the loss factor equals twice the degree of critical damping at the natural 

frequency, i.e. 
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In modeling dynamic systems, damping coefficients are often idealized as constants. Hence, 

using a frequency independent viscous damping constant c implies a loss factor that increases 

linearly with frequency. As will be discussed later, the damping parameters ( or c) generally 

also depend on the load. Furthermore, the concept of Rayleigh damping is frequently encountered 

in dynamic structural analysis, and represents yet another damping formulation where the 
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damping varies with frequency. For the structural damping in this paper, the fraction of structural 

critical damping is   
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where ωn is the i
th
 natural frequency in rad/s, α is a mass-proportional damping coefficient and β 

is a stiffness-proportional coefficient [22]. All of the different damping formulations above 

(hysteretic loss, viscous damping, or Rayleigh damping) are present in one or more of the 

different models which enter the flow chart in Figure 2.1.  

As the soil is assumed to have a hysteretic behavior, below we compute a hysteric foundation-

energy loss  with the INFIDEL model. This hysteric foundation energy loss is converted to a 

viscous damping constant in the LPM at the mudline of the ADINA structural model. 

Furthermore, the structural damping in both the ADINA and FAST structural models is 

formulated using Rayleigh damping. Therefore, it is important to retain the frequency dependency 

between the different damping formulations while linking them, particularly if the load spectrum 

we consider has a large bandwidth. 
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(A)      (B) 

Figure 2.2 (A) Sketch of a single degree of freedom spring-dashpot system subject to periodic loading (both force 

and stress); (B) Sketch showing the interpretation of potential energy and energy loss in a hysteretic loop.  

2.3.2 Foundation Response Software 

The INFIDEL software is used to compute foundation stiffness and damping which define the 

LPM at the mudline of the ADINA model. INFIDEL handles axisymmetric 3-dimensional quasi-

static soil-structure interaction problems with infinite extent and non-linear materials. Circular or 

elliptic structures are described by Fourier series expansion in the tangential direction. The cyclic 

loads on the foundation are applied incrementally to compute cyclic displacement and rotation 

amplitudes of the foundation.  

The monopile is modeled as linear elastic, whereas the material model used for the soil is 

modeled with an isotropic non-linear elastic constitutive model appropriate for undrained 

materials such as clay.  The input parameters for the soil model are the secant shear modulus at 

small strains, G0, undrained shear strength, , and Poisson's ratio, . The shape of the soil stress 

strain curve is modelled with the following equation 
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Where  is the tangential shear modulus and  the cyclic shear stress. The three fitting 

constants, - , control the shape of the stress strain curve and are determined from a so-called 

modulus reduction curve giving the ratio of the secant shear modulus to the small strain shear 

modulus for different cyclic shear strain amplitudes as shown in Figure 2.3(A). For computation 

of foundation damping the hysteretic material damping factor, D, as a function of shear strain is 

also needed as shown in Figure 2.3(B). The shapes of the modulus reduction and damping curves 

are dependent on the plasticity index, and to a lesser degree on the confining pressure and over 

consolidation ratio (OCR). Further description of modulus reduction and damping curves and 

how they are determined in laboratory tests are given in e.g. [23]. 
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Figure 2.3. Examples of (A) the Modulus Reduction curve and (B) the Damping Curve for a representative 

offshore soil. 

For each load amplitude and corresponding shear strain level in the soil, the hysteretic energy 

density corresponding to one load cycle (area of hysteresis loop) is computed in each element as 

DEE ph 4  
(8) 

and summed over the entire soil volume to compute a corresponding global foundation damping 

factor,  
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where Eh, is the total hysteretic energy for all elements, Ep is the total elastic strain energy for all 

elements. 

2.3.3 Foundation Spring Stiffness 

Because time history analysis can be computationally demanding, it was desirous to use a 

reduced-order lumped parameter model (LPM) to represent the OWT monopile foundation 

stiffness and damping. In an aeroelastic program such as FAST, it is typical to model foundation 

stiffness as a linear 6×6 stiffness matrix at the mudline; however, it is not often possible to define 

a stiffness matrix at a point in a finite element program such as ADINA. For this paper, out-of-

plane (i.e. side-to-side), vertical, and torsional motions of the OWT were not considered, reducing 

the mudline stiffness matrix to a 2×2 mudline stiffness matrix 
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in which the subscript x refers to horizontal in-plane translation degree of freedom and the  

refers to the in-plane rotational degree of freedom. In order to simplify the model by decoupling 

the stiffness matrix, the off-diagonal coupled stiffness coefficients (kx and kx) were 

kinematically condensed into decoupled horizontal translation (kxx’) and rotation (k’) springs 

located at the end of a rigid bar of length Leq (Figure 2.5). The LPM properties kxx’, k’, and Leq 

were determined using NGI’s in-house finite element program INFIDEL. 

For a linear elastic stiffness matrix the rigid bar length is 
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For a nonlinear foundation behavior, the length Leq can be found with help of two INFIDEL 

analyses using the same horizontal load but slightly different moments.  For a small difference in 

moment the difference in translation at the mudline will be due to a rotation around a point at 

distance, Leq, below the mudline. Using the perturbation in the moment, ∆M, Leq is determined by 
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Subsequently, the decoupled spring stiffnesses kxx’ and k’ can then be calculated as 
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2.3.4 Foundation Viscous Dashpot 

Because the LPM condenses soil-pile interaction, a viscous rotational dashpot was introduced at 

the mudline to represent concentrated hysteretic damping from cyclic pile-soil interaction. 

Research has shown that pile head rotation controls mudline serviceability limit states for OWT 

monopiles [24] and moment typically dominates mudline loading for OWT monopiles, thus the 

authors believe that a rotational dashpot may more appropriately represent foundation damping 

than a traditional horizontal translation dashpot. While using both a rotational and translational 

dashpot is possible, it is not clear that one could decompose the hysteretic energy dissipation in 

the INFIDEL analysis into parts corresponding to translation and rotation degrees of freedom. 

Therefore, since a unique solution would not be possible for the parameters of the translational 

and rotational dashpots, computation of those parameters would depend on some ad hoc 

assumption regarding the partitioning of damping to the rotation and translation degrees of 
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freedom.  Consequently, all foundation damping here has been assigned to the rotational degree 

of freedom. 

The computed hysteretic energy loss (Eh) dissipated from a single load cycle in INFIDEL can be 

converted into a viscous rotation damper. For a harmonic rotation at the mudline to have the same 

energy loss in the dashpot in one cycle as hysteretic energy loss in the foundation, the dashpot 

viscous damping constant is computed as 

f

E
c h

22

02 
   

(15) 

Where  is the rotation amplitude in radians, and  is the loading frequency, which can be 

estimated from the Fourier spectrum of the loads. The resulting foundation dashpot coefficient is 

therefore dependent on 1) the load level (since hysteretic energy, , varies with load level), 2) 

the cyclic rotation amplitude and 3) the vibration frequency. A few iterations between the 

structural dynamic analysis and foundation analysis may be needed to determine an appropriate 

dashpot value for a specific load level, rotation amplitude and loading frequency; Figure 2.1 

outlines the iterative methodology. 

Because the mudline load conditions during free vibration differ from the stochastic time history 

analysis presented below, different LPMs were developed to more appropriately match the 

mudline conditions for each type of analysis. 

2.4 Combined OWT and Foundation Model 

The NREL 5MW Reference Turbine (Table 2.1) is used in this paper to quantify the significance 

of foundation damping for monopile-supported OWTs. A two-dimensional finite element model 

of the NREL 5MW was created in ADINA, supported by a LPM representing a 34 m-monopile in 
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clay for a site with an assumed mean sea level (MSL) of 20 m and a hub height of 90 m (Figure 

2.5).  

The finite element model of the NREL 5MW was defined by elastic Euler-Bernoulli beam 

elements with linear elastic material properties. The modulus of elasticity for the tower and 

substructure was assumed to be 210 GPa with a density of 8,500 kg/m
3 

to account for the 

additional mass of paint, flanges, bolts, etc. [15]. The OWT model used a lumped mass matrix, 

with a concentrated mass of 350,000 kg assigned to the top of the finite element model to take 

into account the mass of the blades and rotor-nacelle assembly. The blades themselves were not 

modeled because it was assumed that aside from the mass added to the tower top, parked and 

feathered blades have minimal impact on the natural frequency and damping of the OWT. 

Table 2.1 Offshore Wind Turbine Model Properties 

Property NREL 5MW 

Rating 5 MW 

Hub Height 90 m 

Rotor Diameter 126 m 

Tower Base, Tower Top Diameter 6.0 m, 3.9 m 

Nacelle & Rotor Mass 350,000 kg 

Tower Mass 347,000 kg 

Mean Sea Level 20 m 

Substructure Diameter, Wall Thickness 6.0 m, 0.11 m 

Pile Diameter, Wall Thickness 6.0 m, 0.09 m 

Pile Embedment Depth 34 m 

The wall thickness for the OWT was increased from the values found in [15] in order to increase 

the stiffness of the support structure to maintain a natural frequency of approximately 0.3 Hz. 

Maintaining this natural frequency ensured that the dynamic loading from the FAST model 

(which was fully fixed at the mudline) was consistent with the dynamic behavior exhibited by the 

ADINA model (with flexible mudline due to the LPM). A comparison of the ADINA and FAST 

tower modes and frequencies was performed in order to ensure a consistent dynamic model. The 
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resulting height distribution of the moment of inertia of the OWT is compared with original 

NREL model in Figure 2.4. 

 

Figure 2.4 Moment of inertia over support structure height for original vs. modified NREL 5MW reference 

turbine 

Added hydrodynamic mass was incorporated in the OWT substructure to represent hydrodynamic 

interaction effects using the simplified method for cylindrical towers proposed by [25]. Added 

hydrodynamic mass was calculated for each substructure element, divided by cross-sectional 

area, and included in the unique definition of material density per substructure element. 

 

 Figure 2.5  Offshore Wind Turbine Models 
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Structural Rayleigh damping of 1.00% was assumed for the NREL 5MW, which is consistent 

with the definition of the structure in [15]. Structural damping was applied to the tower and 

substructure of the ADINA finite element model using Rayleigh damping.  

Assuming that source of damping can be modeled separately and superimposed (per [6–8, 14]), 

hydrodynamic and aerodynamic damping were neglected to more precisely focus on the 

significance of OWT foundation damping. 

2.4.1 Soil and Foundation Properties 

The soil profile considered in this paper was divided into three layers (soft clay, stiff clay, and 

hard clay) to account for changes in soil parameters with depth (Figure 2.6). Input parameters 

were based on a specific North Sea offshore site as shown in Figure 2.6. Based on the established 

soil profile and a loading frequency of 0.3 Hz, curves for shear modulus reduction and damping 

versus shear strain were established based on equations given in [23] assuming a density of 2000 

kg/m
3
, overconsolidation ratio of 10, and plasticity index of 20 for all layers. In principal, 

different modulus reduction and damping curves should be used for each layer since modulus 

reduction depends on confining stress and depth below the mudline.  Since the effect of 

confinement on the modulus and confinement curves is small compared the changes in the shear 

modulus and shear strength themselves, the same modulus and damping reduction curves have 

been used for all three layers (Figure 2.3). The resulting stress strain curves for the three layers 

are shown in Figure 2.7. 

When computing the foundation stiffness and damping with INFIDEL, the monopile was 

assumed to be in full contact with the soil, i.e. effects of gapping due to non-linear compression 

of the soil on the side of the pile and/or erosion have not been considered. Since gapping would 

result in a nonlinear and potentially asymmetric foundation stiffness, it could not be modelled 

using the current approach; however, the mudline displacements identified in this study 
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(approximately 0.01m) are unlikely to produce a gapping effect.  Furthermore the mudline loads 

(i.e. the horizontal force, H and moment, M) are assumed to be in phase and were increased 

proportionally. Figure 2.8 gives an example of INFIDEL results showing the distribution of the 

ratio between cyclic shear stress and shear strength. The soil in the vicinity of the upper part of 

the monopile is the most strained and provides the largest contribution to the overall foundation 

damping. 

 

Figure 2.6 Representative North Sea offshore soil profile used for estimating contributions of foundation 

damping via INFIDEL  
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Figure 2.7. Shear stress versus shear strain for the three different soil layers. 

 

 
Figure 2.8 Distribution of shear stress mobilization , i.e. ratio between maximum shear stress and shear 

strength. 
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2.5 Free Vibration Analysis 

A free vibration analysis was conducted on the NREL 5MW finite element model in ADINA to 

quantify the contribution of foundation damping to global damping. The free vibration analysis 

was performed by gradually displacing the tower top by 0.1 m, holding the displacement for 10 

seconds to reduce any possibility of transient vibrations, and then releasing the applied 

displacement to allow the OWT to vibrate freely, see Figure 2.9. The 0.1m displacement was 

selected to fall in the middle of the range of tower top displacements found to occur during the 

stochastic time history analysis.  Imposing a larger displacement would result in smaller 

foundation stiffness and larger foundation damping. 

 

Figure 2.9 Free Vibration Analysis Time History 

Global damping was then quantified from the free vibration time history using the logarithmic 

decrement method, where the logarithmic decrement  

 
(16) 
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in which A1 and An are two successive amplitudes n periods apart. A log fit of successive 

amplitudes was fit to the response to estimate δ. The global damping ratio ξ can then calculated 

as a function of δ by 

 
(17) 

which here estimates the global damping associated with the first structural mode of the OWT. 

Rayleigh structural damping was applied to the OWT superstructure and not the LPM, because 

the concentrated rotational dashpot was considered to account for all foundation related damping. 

Because Rayleigh damping is a function of natural frequency which is in turn a function of the 

finite element stiffness matrix, neglecting to apply Rayleigh damping to the LPM resulted in an 

inaccurate calculation of ξstruc according to Eq. (6). In order to achieve ξstruc = 1.00%, the Rayleigh 

damping mass coefficient  was held constant while stiffness coefficient β was increased such 

that the damping obtained from the logarithmic decrement of free vibration was equal to 1.00%, 

with the mudline dashpot c = 0 and ωn1 = 2πf per Table 2.3 (as load frequency is equal to 

natural frequency in the case of free vibration). While this method of Rayleigh damping is only 

applicable to the first mode of vibration, it is assumed that first mode behavior is dominant for the 

NREL 5MW turbine. 

It is arguable what the appropriate mudline load level is best for assessing linear stiffness and 

damping for the LPM under free vibration time history analysis (e.g. the maximum, average, or 

root-mean-square mudline load amplitudes could be used to assess LPM properties). While the 

maximum mudline load would lead to the lowest mudline stiffness due to non-linear soil-pile 

resistance, it would also theoretically lead to a higher levels of strain in the soil and consequently 

the highest amount of damping [23]. To demonstrate the importance of mudline loading on LPM 

properties, a free vibration case was considered by displacing the OWT tower top by 0.1 m. LPM 
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properties were calculated based on the static mudline loads induced by tower top displacement, 

utop. 

Iteration was required to achieve agreement between the mudline loads specified in the INFIDEL 

cyclic foundation analysis and the output static displacement load from ADINA as described the 

methodology section and Figure 2.1. A comparison of the INFIDEL input and ADINA output 

demonstrates good agreement in load amplitudes and response (see Table 2.2).  

Table 2.2 Comparison of the Peak Mudline Conditions Used in INFIDEL Cyclic Soil-Pile Analysis and ADINA 

Free Vibration Time History Analysis for 0.1m Tower Top Displacement 

Parameter INFIDEL Analysis Free Vibration in ADINA 

Shear, Hx 158 kN 156 kN 

Moment, M -16.0 MNm -15.9 MNm 

Displacement, u 1.19 × 10
-3

 m 1.28 × 10
-3

 m 

Rotation, 𝜃 -1.52 × 10
-4

 rad -1.62 × 10
-4

 rad 

Load Frequency, f - 0.307 Hz 

Hysteretic Energy Loss, Eh 0.130 kJ - 

Foundation Damping Factor, D 0.79% - 

Structural Damping Ratio, ξstruc - 1.00% 

Foundation Damping Ratio, ξfdn - 0.17% 

The results in Table 2.2 were used as input to Eqs. 11-14 in order to obtain the LPM properties in 

Table 2.3.  

Table 2.3 Lumped Parameter Foundation Model Properties for ADINA Free Vibration Analysis for 0.1m Tower 

Top Displacement 

Lumped Parameter 

Model Property 
utop = 0.1 m 

Leq 7.60 m 

kxx’ 3.89 × 10
9 
N/m 

k’ 1.14 × 10
11 

Nm/rad 

c 9.34 × 10
8 
Nm-s/rad 

An example of the 0.1 m free vibration time history from ADINA for the NREL 5MW finite 

element model is shown in Figure 2.10.  
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Figure 2.10 Free Vibration of the NREL 5MW Reference Turbine, with and without Foundation Damping 

It can be visually concluded from Figure 2.10 that the inclusion of mudline foundation damping 

effects tower top vibration, with the damped mudline vibration amplitude decreasing slightly 

faster than the case considering only structural damping. From the logarithmic decrement method, 

the damping ratio from the utop = 0.1 case was ξtot = 1.17% – subtracting the 1.00% Rayleigh 

structural damping (ξstruc), this means that 0.17% of damping can be attributed to foundation 

damping (ξfdn). The LPM calculations and resulting ξstruc are sensitive to input load level; if the 

free vibration analysis is repeated for a tower top displacement of utop = 0.16 m for instance, ξstruc 

increases to 0.28%. 

Table 2.4 compares the results of the free vibration study and of other foundation damping studies 

for OWTs. The results of the current analysis yield a relatively low amount of foundation 

damping compared to the damping found by other researchers, but are similar to the experimental 

results estimated by Shirzadeh et al. (2011) [7], Damgaard et al. (2012) [14] and to the minimum 

of the range defined by Tarp-Johansen et al. (2009) [6]. The majority of the researchers provide 

free vibration response of the OWT in terms of acceleration; however, in the case of [3], the loads 

at the bottom of the tower would indicate rough agreement with the mudline loads analyzed in 

this paper.
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Table 2.4 Summary of Monopile-Supported Offshore Wind Turbine Damping Results from Literature 

 
Tarp-

Johansen  

et al. (2009) 

Versteijlen 

et al. (2011) 

Damgaard 

et al. (2012) 

Damgaard 

et al. (2013) 

Shirzadeh et 

al. (2013) 

Carswell  

et al.  

(2014) 

Method Experimental 
Experimenta

l 

Experimenta

l 

Experimenta

l 
Experimental Numerical 

Analysis 3D FEM 
Modified  

p-y 

Hysteretic  

p-y 

Hysteretic  

p-y 

HAWC2, 

Rayleigh 

3D and 2D 

FEM 

Turbine 

3.5 MW 

(Scaled 

NREL 5MW) 

Siemens 

3.6MW 
- 

Vestas 

V90-3MW 

Vestas 

V90-3MW 

(Scaled 

NREL 5MW) 

NREL 5MW 

Soil 

Profile 

Generalized 

sandy or 

clayey North 

Sea 

- 

Top layer 

loose sand, 

very stiff to 

very hard 

clay 

Medium 

dense sand 

and soft clay 

Dense sand 

with layer of 

stiff clay 

Soft, stiff, and 

hard clay 

ξfdn 0.56%-0.80% 1.5% 0.58% 0.8-1.3% 0.25% 0.17%-0.28% 

ξstruc 0.19% 1.5% 0.19% - 0.6% 1.00% 

Sum: 0.75-0.99% 3.0% 0.77% 0.8-1.3% 0.85% 1.17%-1.28% 

Several different methods were used to estimate foundation damping, so it is unsurprising that a 

variation in results was observed. Damgaard et al. (2012) and (2013) [8, 11] used a hysteretic p-y 

method, wherein a hysteretic loop was defined using a traditional p-y spring-supported pile per 

[10], whereas Versteijlen et al. (2011) [3] used modified p-y curves adjusted for rigid-behavior 

monopiles with damping proportional to spring stiffness. Minimal description of the soil 

modeling was given in Shirzadeh et al. (2013) [7], only that a form of Rayleigh damping was 

used to apply damping as part of the input for the aeroelastic code HAWC2. Most similarly to the 

process used in this paper, Tarp-Johansen et al. (2009) [6] estimated foundation damping from a 

three dimensional solid finite element model of the soil and OWT support structure, assuming 

generalized linear elastic soil material properties. Soil damping was taken into account as a form 

of Rayleigh damping, assuming a loss factor of 10%.  
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Germanischer Lloyd [8] experimentally determined a foundation damping value of 0.53%, 

theoretically calculated foundation damping of 0.88%, but also lists estimations from 0.6%-1% 

depending on soil behavior assumptions. It can be concluded therefore that a certain amount of 

variation in OWT foundation damping should be expected, and that these results are sensitive to 

modeling assumptions.  

2.6 Stochastic Time History Analysis 

2.6.1 Load Input 

The finite element model of the NREL 5MW Reference Turbine was subjected to six different 1-

hr stochastic load histories corresponding to extreme wave and wind loading to determine the 

effects of OWT foundation damping on the OWT response.  

NREL’s aeroelastic code FAST [21] was used to generate stochastic time history loads due to 

wind and waves. FAST models wind turbines as a system of rigid and flexible bodies and 

computes wind turbine response to stochastic loading using lumped parameter and modal analysis 

[26]. The OWT loads were calculated per IEC design load case 6.1a [9] using the environmental 

site conditions shown in Table 2.5.  

Table 2.5 Environmental Site Conditions 

50-year Conditions Value 

Water Depth 20 m 

10-min Average Hub Height Wind Speed 34 m/s 

Significant Wave Height 8.5 m 

Peak Spectral Wave Period 10.3 s 

IEC dictates that for design load case 6.1a, six 1-hr simulations for different combinations of 

extreme wind speed and extreme sea state must be performed considering misalignment and 

multi-directionality. This study considers six 1-hr load time histories with co- and uni-directional 

wind and waves, which is conservative from a design perspective; however, it is assumed that co- 
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and uni-directional loading will best demonstrate the effects of OWT foundation damping in a 

two-dimensional, parked wind turbine context. 

Wind loading was applied to the NREL 5MW finite element model in ADINA via tower top force 

and moment histories generated in FAST, and wind loads on the tower were neglected (Figure 

2.11). Tower wind loads are not directly calculated by FAST (version 7, available during the 

conduct of this study), and were thus excluded from all of the modeling included here to preserve 

consistency with FAST. If tower wind loads were included in the analysis mudline moment and 

shear would increase, the stiffness of the foundation would decrease and the amount of 

foundation damping would increase. Wind speed is assumed to increase with height according to 

a power law, causing a net negative moment (according to a right-hand rule sign convention, per 

Figure 2.11) around the nacelle due to wind on the parked and feathered rotors due to their 

configuration with a single blade pointed upward.  

Wave kinematics were generated in FAST at seven nodes along the OWT structure. Wave forces 

per unit length were calculated from the wave kinematics using Morison’s equation for a cylinder 

multiplied by a tributary length to approximate the wave shear profile (Figure 2.11). A fluid 

density of 1027 kg/m
3
 was assumed for seawater and Cm and CD were taken to be 1.75 and 1.26 

respectively for a substructure with intermediate surface roughness. 
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Figure 2.11 Example Time Step of Wave Force Loading on ADINA NREL 5MW Finite Element Model 

Because the viscous mudline dashpot c was derived for a single degree of freedom system 

subjected to harmonic loading and because the actual loading of an OWT is stochastic, it was 

necessary to establish a harmonic load amplitude that was in some sense representative of the 

load amplitudes experienced during the stochastic loading. The load amplitude level selected was 

three standard deviations (3σ, Figure 2.12) from the mean of the stochastic loading history. This 

load amplitude appeared to best represent the amplitude of the stochastic loading – the 3σ limit is 

only exceeded by the most severe load cycles – and had little variation across the six 1-hr 

stochastic time histories. Due to the iteration required, only one of the 1-hr stochastic time history 

was used for determining LPM properties for the six simulations (Figure 2.12). 
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Figure 2.12 Time History of Mudline Moment Indicating Three Standard Deviation Amplitude 

Several iterations were required to obtain mudline load and rotation amplitudes which agreed 

with those used in cyclic foundation analysis. Table 2.6 compares the load and response 

amplitudes of the single stochastic time history to those from the cyclic foundation analysis. The 

resulting LPM properties are given in Table 2.7. 

Table 2.6 INFIDEL Foundation Analysis and ADINA Stochastic Time History Analysis Results 

Mudline Condition 
INFIDEL Foundation 

Analysis 

Damped Mudline Stochastic 

Time History (3) 

Shear, Hx 2610 kN 2606 kN 

Moment, M -41.2 MNm -40.5 MNm 

Displacement, u 6.45 × 10
-3

 m 6.73 × 10
-3

 m 

Rotation, 𝜃 -6.23 × 10
-4

 rad -6.55 × 10
-4

 rad 

Dominant Load Frequency, f - 0.302 Hz 

Hysteretic Energy Loss, Eh 7.61 kJ - 

Foundation Damping Factor, D 2.88% - 

Structural Damping Ratio, ξstruc - 1.00% 

Foundation Damping Ratio, ξfdn - 0.72% 
 

Table 2.7 Lumped Parameter Foundation Model Properties for Stochastic Time History Analysis 

Lumped Parameter Model 

Property 
Value 

Leq 9.12 m 

kxx’ 3.38 × 10
9 
N/m 

k’ 1.04 × 10
11 

Nm/rad 

c 3.29 × 10
9 
Nm/s 
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Logarithmic decrement of the OWT model supported by the LPM properties in Table 2.7 yielded 

ξfdn of 0.72%, which is significantly larger than the results from the 0.1 m free vibration analysis 

(0.17%). The higher damping is due primarily to the increase in Eh associated with the higher 

load levels (-41.2 MNm for the 3 stochastic results vs. -16.0 MNm for the 0.1 m free vibration 

analysis). 

2.6.2 Stochastic Time History Results 

Six different 1-hr stochastic load histories were analyzed for the NREL 5MW for two cases: (1) 

Rayleigh structural damping alone (“No Foundation Damping”) and (2) Rayleigh structural 

damping in addition to mudline OWT foundation damping (“Foundation Damping”) for a total of 

12 stochastic time histories. The reduction in mudline moment amplitude attributed to foundation 

damping can be seen in the example time history shown in Figure 2.13. 

 

Figure 2.13 Example Mudline Moment Time History Results 

A summary of the maximum and standard deviation of mudline load and displacement 

amplitudes as well as maximum tower top amplitude utop from each time history can be seen in 

Table 2.8. 

While mudline moment and shear were highly correlated (the average correlation coefficient was 

approximately 0.8), mudline moment was more significantly reduced by foundation damping than 



42  

mudline shear (Table 9). A decrease in wind or wave force is magnified by the length of the 

moment arm to the mudline; consequently, a small decrease in OWT support structure forces 

results in a non-proportional decrease at the mudline. Notably, both maximum mudline moments 

as well as the 3estimation of cyclic moment amplitude decreased by an average of 7-9% due to 

foundation damping; additionally, it can be noted from Table 2.8 that the standard deviation of 

mudline moment decreased by nearly 10% with the inclusion of foundation damping. 

Table 2.8 Maximum and Standard Deviation of Mudline Reactions 

  Time History Statistics  

Case Reaction 1 2 3 4 5 6 Average % change 

No 

Foundation 

Damping 

Hx (kN) 4229 3963 4388 3881 4025 4110 4099 - 

 (kN) 864 880 861 850 894 896 874 - 

M (MNm) -70.5 -60.5 -74.0 -60.4 -71.5 -77.2 -69.0 - 

 (MNm) 13.5 13.2 12.9 13.5 13.9 14.1 13.5 - 

u (10
-3 

m) 11.9 9.9 12.5 10.1 11 12.4 11.3 - 

 (10
-3 

m) 2.24 2.25 2.21 2.23 2.33 2.34 2.27 - 

θ (10
-4

 rad) -11.6 -9.71 -12.2 -9.87 -10.9 -12.2 -11.1 - 

 (10
-4

 rad) 2.18 2.18 2.14 2.17 2.26 2.27 2.20 - 

utop (m) 0.322 0.272 0.261 0.321 0.309 0.322 0.301 - 

 (m) 6.49 6.15 5.97 6.50 6.60 6.72 6.41 - 

Foundation 

Damping 

Hx (kN) 4232 3863 4213 3769 3962 4009 4008 -2.2 

 (kN) 864 880 861 850 894 896 874 0 

M (MNm) -65.5 -56.5 -70.8 -55.6 -61.7 -70.0 -63.3 -8.2 

 (MNm) 12.1 12.1 12.0 12.2 12.8 12.8 12.3 -8.8 

u (10
-3 

m) 11.4 9.52 11.9 9.23 10.9 11.8 10.8 -4.4 

 (10
-3 

m) 2.15 2.18 2.15 2.14 2.25 2.27 2.19 -3.5 

θ (10
-4

 rad) -11.0 -9.13 -11.7 -8.97 -10.6 -11.5 -10.5 -5.4 

 (10
-4

 rad) 2.08 2.10 2.07 2.07 2.17 2.20 2.11 -4.1 

utop (m) 0.258 0.249 0.257 0.291 0.274 0.287 0.269 -10 

 (10
-2

 m) 5.48 5.34 5.32 5.51 5.73 5.78 5.53 -14 

Mudline displacement and rotation amplitudes decreased similarly with foundation damping, with 

an average reduction of 3-4% in the 3estimation of cyclic amplitude and 5-6% in the average 

maximum from the six time histories. 
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Table 2.9 Summary of Average and Maximum Reduction in Mudline Response from Foundation Damping, 

Considering Time History Maxima and Three Standard Deviation Estimation of Cyclic Amplitude 

 Cyclic Amplitude, 3 Maximum Response 

Mudline 

Response 

Average 

Reduction 

Maximum 

Reduction 

Average 

Reduction 

Maximum 

Reduction 

H x (kN) 0.48% 0.52% 2.2% 4.0% 

M  (MNm) 8.9% 10% 7.2% 9.3% 

u (10
-3 

m) 3.4% 4.0% 4.5% 8.6% 

θ (10
-4

 rad) 3.9% 4.7% 5.5% 9.1% 

A rainflow count of mudline moment from all six stochastic analyses was performed to further 

quantify the effect of foundation damping on load cycle amplitudes (Figure 2.14). The rainflow 

counts indicate reductions (note that the vertical axis is a log scale) in cycle counts across the 

range of cycle amplitudes.  This indicates that foundation damping may serve to reduce fatigue 

damage.  This effect requires substantial further study, however, since the 50-year storm 

conditions investigated here do not occur frequently and do not contribute significantly to lifetime 

fatigue damage.  Fatigue damage estimates, therefore, would require simulation of response over 

a range of operational and non-operation wind speeds amounting to at least many tens of sets of 

simulations. Such work is the subject of ongoing research on the part of the authors.  

For loading frequencies closer to the natural frequency, the juxtaposition of load frequency and 

natural frequency content would produce a more pronounced reduction in higher amplitude 

cycles. Figure 2.15 depicts the relationship between the Kaimal and JONSWAP power density 

spectra for wind and waves (respectively) and the ratio of dynamic amplification factors for the 

cases with (Rd,tot) and without foundation damping (Rd,struc) included, where 

   2222 /2/1

1

nn

dR

 

  
(8) 

in which ω is the loading frequency and ωn is the natural frequency in rad/s. A free vibration 

analysis of the NREL 5MW supported by the LPM defined by Table 2.7 yielded ξfdn = 0.72%, 

which broadly agreed with the results presented earlier given the amplitudes of utop, u, and 𝜃. 
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Despite the difference in damping ratio for the two cases considered (1.72% and 1.00% for the 

cases with and without foundation damping, respectively), the ratio of dynamic amplification 

factors considering a 0.1 Hz wave load frequency is effectively 1. Given Figure 2.15a, it is 

apparent that the tails of the wind and wave spectra coincide with the dynamically amplified 

region, and that increased frequency content from higher wave frequency (i.e., lower peak 

spectral period) would have a significant effect on mudline loading. An examination of Fast 

Fourier Transforms (Figure 2.15b) of the mudline moment for the stochastic time histories with 

and without foundation damping demonstrated a 40% reduction in the magnitude of the spectral 

response at the first natural frequency (for which the foundation was calculated). Similarly, 

estimation of OWT natural frequency in a design context is inherently uncertain and dependent 

on available data and modeling techniques; in turn, the sensitivity of the load amplification is 

reliant on the accurate estimation of both OWT natural frequency and load frequency spectra. 

 

Figure 2.14 Average Rainflow Count Results of Mudline Moment from Six Stochastic Time History Simulations 
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(a)                                                                       (b) 

Figure 2.15 (a) Ratio of Dynamic Amplification Factors for Cases With and Without Foundation Damping 

Compared to Load Spectra and (b) spectral response with and without foundation damping. 

2.7 Conclusion 

The proximity of wind and wave load frequencies to offshore wind turbine (OWT) natural 

frequency necessitates a thorough examination of different sources of damping – aerodynamic, 

hydrodynamic, structural, and soil damping – in order to reduce design loads and improve 

offshore wind energy economics. Of all the sources of damping, soil damping has been the least 

studied and presents the largest discrepancy between measured and theoretical results [8]. 

Because the effect of soil damping on OWT dynamics is innately a function of soil-pile 

interaction, a more appropriate term for this dynamic quantity is “foundation damping.” In an 

effort to better quantify foundation damping, this paper presents a method for converting 

hysteretic energy loss into a viscous, rotational mudline dashpot to represent OWT foundation 

damping for a lumped parameter model (LPM). 

A two-dimensional finite element model of the NREL 5MW Reference Turbine [15] was 

examined in free vibration and stochastic time history in order to ascertain the significance of 

OWT foundation damping. Using logarithmic decrement, mudline OWT foundation damping was 

estimated to contribute 0.17% of critical damping to total OWT damping. While these results are 
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at the lower end of the range of results from other researchers [6, 7, 11, 14], they are broadly in 

agreement with previous estimates of foundation damping, taking into account differences in soil 

type, monopile foundation, wind turbine, and mudline load conditions.  

The mudline response from six 1-hr stochastic time histories was used to assess the significance 

of OWT foundation damping during extreme loading due to wind and waves. Three standard 

deviations (3σ) were used as a measure of cyclic amplitude for mudline response (i.e., shear, 

moment, displacement, and rotation) and to determine the properties of the LPM. Logarithmic 

decrement of the 3σ LPM (Table 2.7) yielded 0.72% critical damping from the monopile 

foundation, which was significantly larger than the free vibration results primarily due to the 

increase in hysteretic energy. Including OWT foundation damping reduced maximum mudline 

moment by 9%, but had a much less significant effect on mudline shear (approximately 2% 

reduction). Foundation damping caused an average reduction of approximately 3-5% in both the 

maximum and 3σ amplitudes of mudline displacement and rotation. The results shown here 

emphasize the importance of modeling assumptions in foundation damping estimation, with 

particular attention to the mudline loads used in this paper to determine the properties of the 

LPM.  

Significant reductions in high amplitude cycle counts were observed considering the average 

rainflow count of mudline moment from the six stochastic time histories. These results are 

contingent upon the estimation of OWT natural frequency and environmental load conditions, 

and the effects of foundation damping are expected to be more pronounced in conditions with 

peak wave frequencies closer to the natural frequency.  

Further research is required to determine the impact of foundation damping on OWTs during 

other design conditions (operation or emergency shutdown, e.g.) as well as the significance of 

foundation damping in a fatigue limit state.  
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Further investigation is necessary to understand the influence of the many aspects of soil behavior 

on the foundation stiffness and damping, e.g. dilative materials, such as dense sand, partially 

drained materials, scour and gapping that can cause loss of contact between foundation and soil, 

and combined static and cyclic loading. 
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CHAPTER 3 

3 INFLUENCE OF FOUNDATION DAMPING ON OFFSHORE 

WIND TURBINE MONOPILE CYCLIC LOAD DEMANDS 

Authors 

W Carswell, SR Arwade, DJ DeGroot 

Abstract 

Offshore wind turbines (OWTs) are lightly damped structures that must withstand highly 

uncertain offshore wind and wave loads. In addition to stochastic load amplitudes, the dynamic 

behavior of OWTs must be designed with consideration of stochastic load frequency from waves 

and mechanical load frequencies associated with the spinning rotor during power production. The 

close proximity of the OWT natural frequency to excitation frequencies combined with light 

damping necessitates a thorough analysis of various sources of damping within the OWT system; 

of these sources of damping, least is known about the contributions of damping from soil-

structure interaction (foundation damping). This paper analyzes the influence of foundation 

damping on cyclic load demand for monopile-supported OWTs considering the design situations 

of power production, emergency shutdown, and parked conditions. The NREL 5MW Reference 

Turbine was modeled using the aero-hydro-elastic software FAST considering the environmental 

conditions off the U.S. Atlantic coast near Delaware and included linear mudline stiffness and 

damping matrices to take into account soil-structure interaction. Foundation damping was 

modeled using viscous rotational mudline dashpots which were calculated as a function of 

hysteretic energy loss, cyclic mudline rotation amplitude, and OWT natural frequency. 

Comparing the results from time history analysis including and excluding foundation damping, 

the results indicated that foundation damping can reduce cyclic load demand during parked 
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conditions by as much as 30%. Average reductions in cyclic demand during emergency shutdown 

ranged from 2-8%, but only by 2-3% average reduction for power production situations. 

Nomenclature 

DE  Delaware  

DLC  Design load case 

DNV  Det Norske Vertitas 

ESS  Extreme Sea State 

ETM  Extreme Turbulence Model 

EWH  Extreme Wave Height 

EWM  Extreme Wind Model 

EWS  Extreme Wind Shear 

IEC  International Electrotechnical Commission 

NGI  Norwegian Geotechnical Institute 

NOAA  National Ocean and Atmospheric Administration 

NREL  National Renewable Energy Laboratory 

NSS  Normal Sea State 

NTM  Normal Turbulence Model 

OWT  Offshore wind turbine 

RWH  Reduced Wave Height 

RWM  Reduced Wind Model 

SSS  Severe Sea State 

SWH  Severe Wave Height 

TI  Turbulence intensity 

ULS  Ultimate limit state 

cmud  Mudline damping matrix 

c  Mudline rotational dashpot 

f  Natural frequency 

g  Acceleration due to gravity 

kmud  Mudline stiffness matrix 

kxx, kyy  Horizontal translational stiffness 

kx  Coupled stiffness term 

k  Rotational stiffness 

su  Undrained shear strength 

u  Cyclic amplitude of mudline displacement 

vin, vrated, vout Cut-in, rated, cut-out wind speed 

x  Horizontal degree of freedom in fore-aft direction 

y   Horizontal degree of freedom in side-to-side direction 

z  Vertical degree of freedom 

E  Modulus of elasticity 

Eh  Hysteretic energy loss 

E[∙ ]  Expected value 

G0  Shear modulus at small strains 

H  Wave height 

Hs  Significant wave height 

HN-yr  N-year wave height 

Hx  Cyclic amplitude of horizontal mudline force 
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M  Cyclic amplitude of mudline moment 

Tp  Peak spectral period 

U10,hub  10-minute hub height wind speed 

Uhub  Hub height wind speed

  Rotational degree of freedom

  Cyclic amplitude of mudline rotation 

  Poisson’s ratio 

  Density

  Standard deviation

  Wave height reduction factor 

3.1 Introduction 

Nearly one-quarter of the capital cost of offshore wind farms can be attributed to the foundation 

and support structure of offshore wind turbines (OWTs) [1]. OWT support structures are lightly 

damped and must withstand highly uncertain offshore wind and wave loads with stochastic load 

frequency and amplitude in addition to stochastic mechanical loads associated with the spinning 

rotor during power production. OWTs are typically designed in a so-called “soft-stiff” frequency 

design regime, wherein the first natural frequency is designed to lie between the 1P and 3P blade 

rotation frequency bands. Because a stiffer structure implies higher costs (due to increased 

structural material requirements), it is desirable for the first natural frequency to be near, but 

safely above the 1P frequency band (DNV suggests a clearance of ±10% of blade rotation 

frequency bands [2]). The close proximity to excitation frequencies combined with the low 

amount of damping present in the support structure necessitates a thorough analysis of various 

sources of damping within the OWT system (structural, hydrodynamic, aerodynamic, soil-

foundation interaction, and sometimes tuned mass damper). Increased damping reduces structural 

demand, which consequently reduces structural material requirements and therefore reduces 

material costs.  

Damping arising from soil-foundation interaction (referred to as foundation damping here) is 

typically neglected in OWT design, as there is no recommended method to determine foundation 

damping in design guidelines [2,3]. Foundation is the least understood of all these sources of 
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damping, and there is no consensus on its importance in an OWT design context with respect to 

the other sources of damping [3–6]. Previous work [3] indicated that for a monopile-supported 

OWT subjected to extreme storm loads, cyclic mudline demand (i.e., cyclic design loads for the 

pile foundation) can be reduced by as much as 10% when foundation damping is included in the 

analysis. 

The purpose of this paper is to determine the impact of including foundation damping in OWT 

design and analysis for power production, emergency stop, and parked storm conditions, and in 

doing so assess the importance of including foundation damping in OWT design and analysis. 

Because nearly 75% of currently installed OWTs are supported by monopile foundations [1], this 

paper focuses exclusively on monopile foundation damping. Studies have shown that radiation 

damping is negligible for frequencies below 1 Hz [4,5,7], thus this paper only considers the 

contribution of hysteretic material damping from pile-soil interaction. The NREL 5MW 

Reference Turbine (“NREL 5MW”) [8] was analyzed using the open-source aeroelastic 

simulation program FAST [9], considering the IEC 61400-3 design load cases (DLCs) [10] to 

dictate wind, wave, and turbine conditions. Soil-structure interaction was modeled in FAST via 

mudline stiffness and damping matrices which were calculated using the results from the soil-pile 

software INFIDEL (INFIinite Domain of Elements) [11,12] developed by the Norwegian 

Geotechnical Institute (NGI). The NREL 5MW was analyzed considering the layered clay site 

described by [3] and the environmental site conditions from the National Ocean and Atmospheric 

Administration (NOAA) buoy sited off the coast of Delaware in the U.S. Atlantic Ocean.  

Section 3.2 illustrates the analysis process used to determine the influence of foundation damping 

on cyclic mudline demand, with further discussion of how mudline stiffness and damping 

matrices were calculated, the DLCs selected for analysis, and how each design situation (power 

production, emergency shutdown, and parked) was modeled in FAST (Figure 3.1). Section 3.3 

describes the OWT model in which was used to determine monopile loads and the calculation of 
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the mudline stiffness matrix (kmud). The paper concludes with a presentation of the results in 

Section 3.4 and conclusions and recommendations in Section 3.5. 

3.2 Methodology 

Several different methods are used in the analysis process of this paper (Figure 3.1) to define the 

impact of foundation damping on cyclic mudline demand. Each DLC was analyzed using the 

aeroelastic offshore wind turbine simulation code FAST [9] (further described in Section 3.3.1) 

assuming a perfectly fixed connection of the substructure to the mudline to estimate cyclic 

mudline load amplitudes (i.e. cyclic demand) for horizontal mudline force Hx and moment M. 

Section 3.2.1 describes how each of the DLCs was modeled in FAST. These values were then 

used to find the cyclic mudline displacement ux, rotation , and hysteretic energy loss Eh 

associated with the load level (Hx, M) acting on the soil-pile system using INFIDEL for a clay 

soil profile (described in Section 3.3.2). The mudline stiffness matrix kmud was then determined 

using Hx, M, ux, and , further described in Section 3.2.2. Given kmud, new tower mode shapes 

and frequencies were calculated using the NREL-distributed program BModes [13], leading to 

new sixth-order polynomial coefficients to define tower mode shape in the tower property input 

file for FAST. The first fore-aft tower frequency was assumed to dominate for all time histories 

and was used in conjunction with the mudline rotation  and hysteretic energy loss Eh to 

compute a viscous mudline dashpot, c (Section 3.2.2). Two versions of the OWT model were 

analyzed for each DLC, one version including the mudline dashpot c (“DAMPED” in Figure 

3.1) and one without (“UNDAMPED”), to determine the amplitude of cyclic mudline loads, 

displacements, and rotations. The impact of foundation damping was assessed by measuring the 

reduction in cyclic demand resulting from the undamped and damped models. 

Because the analysis process (Figure 3.1) required to define the impact of foundation damping on 

cyclic OWT monopile design loads is relatively time-consuming, the DLCs were grouped 
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according to similar hysteretic energy loss Eh and kmud. One set of FAST executables with 

representative kmud (with and without mudline foundation damping) was compiled for each of 

these groups (Table 3.6). The mudline stiffness matrix in the FAST executable used for each 

group did not differ by more than 10% from the originally calculated kmud for the cyclic load 

amplitude per DLC and design condition (e.g. yaw misalignment angle or wind speed). In the 

event that input and output mudline cyclic load amplitude (Hx, M) differed by more than 20% 

from the fixed-base FAST analysis to the flexible-base FAST analysis, a second mudline stiffness 

matrix kmud was calculated and the flexible-base FAST analysis was repeated. 
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a function of Hx, M 

INFIDEL 

Calculate mudline stiffness matrix (kmud)  

Recompile FAST with UserPtfmLd subroutine  

UNDAMPED with kmud defined 

DAMPED with kmud and c defined 

Determine UNDAMPED and DAMPED 

mudline cyclic load, displacement, and 

rotation amplitudes (Hx, M u, ) 

Recompiled FAST 

(UNDAMPED and DAMPED) 

Fortran Compiler 

Process Program 

Compute updated tower mode shapes and 

frequencies as a function of kmud 

BModes 

Calculate rotational dashpot (c) as a function 

of Eh and first tower fore-aft frequency 
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Figure 3.1 Flowchart of foundation damping analysis process 
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3.2.1 Offshore Wind Turbine Design Load Cases 

The design load cases (DLCs) described in the OWT design standard IEC 61400-3 [10] issued by 

the International Electrotechnical Commission (IEC) are accepted by the OWT design 

community and form the basis for the vast majority of OWT designs [2,14]. These DLCs are 

subdivided into design situations including power production, power production plus occurrence 

of fault, start up, normal shutdown, emergency shutdown, parked (standing still or idling), parked 

and fault conditions, and transport, assembly, maintenance and repair. These DLCs are meant to 

inform the design of all aspects of the OWT, and consequently not all are influential in the design 

of the support structure and foundation. 

In order to more broadly assess the significance of foundation damping in a design load context, 

DLCs were selected from the design situations of power production, emergency shutdown, and 

parked (extreme storm loading) which the authors believe broadly encompass the ultimate limit 

state (ULS) loads which may control structural and foundation design for monopile-supported 

OWTs (Table 3.1).  

Fatigue limit states were considered outside the scope of this paper, as the primary objective is to 

define the impact of foundation damping on cyclic mudline design loads for the foundation rather 

than to examine the fatigue life of the structure. Wind-wave misalignment (as studied by [5]) was 

considered to be more significant in the assessment of OWT fatigue life and consequently wind 

and waves were assumed to act co-directionally in one direction for all DLCs. 
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Table 3.1 IEC offshore wind turbine design load cases analyzed 

Design 

Situation 

Load 

Case 
Wind Speed Wave Height 

Yaw 

Misalignment 
Limit State 

1)  

Power 

production 

1.1 

NTM 

vin < U10,hub < vout 

TI = 11% 

NSS  

Hs = E[Hs|U10,hub] 
0˚ ULS 

1.3 

ETM 

vin < U10,hub < vout 

TI = 16% 

NSS  

Hs = E[Hs|U10,hub] 
0˚ ULS 

1.5 
EWS 

vin < U10,hub < vout 

NSS  

E[Hs|U10,hub] 
0˚ ULS 

1.6a 

NTM 

vin < U10,hub < vout 

TI = 11% 

SSS 

Hs = Hs,50-yr|U10,hub 
0˚ ULS 

1.6b 

NTM 

vin < U10,hub < vout 

TI = 11% 

SWH 

H = H50-yr 
0˚ ULS 

5) 

Emergency 

Shut Down 

5.1 

NTM 

vrated, vout ± 2m/s 

TI = 11% 

NSS  

E[Hs|U10,hub] 
0˚ ULS 

6)  

Parked 

Conditions 

6.1a 

EWM  

Uhub = U10,50-yr 

TI = 11% 

ESS  

Hs = Hs,50-yr 
± 8˚ ULS 

6.1c 
RWM  

Uhub = 1.1U10,50-yr 

EWH  

H = H50-yr 
± 15˚ ULS 

6.2a 

EWM  

Uhub = U10,50-yr 

TI = 11% 

ESS  

Hs = Hs,50-yr 
± 180˚ ULS Abnormal 

6.2b 
EWM 

Uhub = 1.4U10,50-yr 

RWH 

H = ψH50-yr 
± 180˚ ULS Abnormal 

KEY: NTM = Normal Turbulence Model; ETM = Extreme Turbulence Model; Extreme Wind Shear; 

RWM = Reduced Wind Model; EWM = Extreme Wind Model; NSS = Normal Sea State; SSS = Severe 

Sea State; SWH = Severe Wave Height; ESS = Extreme Sea State; EWH = Extreme Wave Height; RWH 

= Reduced Wave Height; TI = Turbulence Intensity; ULS = Ultimate Limit State; vin = cut-in wind speed; 

vout = cut-out wind speed; U10,hub = hub height wind speed (10-min average); vrated = rated wind speed; 

Uhub = hub height wind speed; U10,50-yr = 50-year hub height wind speed (10-min average); Hs = 

significant wave height; Hs,50-yr = 50-year significant wave height; H = wave height; ψ = wave height 

reduction factor. 

The details of how these DLCs were implemented in FAST are described below, as well as 

reasoning for the omission of any ULS or ULS Abnormal DLC within the selected design 

situations. The output of the FAST analyses considered in this paper are horizontal mudline force, 

moment, displacement, and rotation. 
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3.2.1.1 Power Production 

Power production DLCs are relevant for wind speeds within the cut-in and cut-out wind speeds (3 

m/s and 25 m/s for the NREL 5MW, respectively [8]). In controlling load cases for cyclic 

mudline load amplitudes, only the rated and cut-out wind speed cases were examined in this 

paper. The only ULS case omitted from the power production DLCs was DLC 1.4, as it was 

believed that the extreme direction change was primarily a test of the OWT controls and not of 

the integrity of the support structure.  

Power production DLCs were run in FAST using the simple pitch control and variable speed 

control provided in the user-defined subroutines. A Thevenin generator model was assumed. 

The wave heights for the power production DLCs are conditional upon wind speed and were 

defined per Section 3.3.1. With the exception of DLC 1.5, all power production DLCs use the 

Normal Turbulence Model (NTM) and thus the average cyclic load amplitude per design 

condition (i.e. wind speed bin) was taken from six 10-min time history simulations. It should be 

noted that due to computational expense, only the rated and cut-out wind speed bins were 

considered. 

The Extreme Wind Shear (EWS) in DLC 1.5 was used with a steady (non-turbulent) wind input 

file in FAST, considering only vertical wind shear. Horizontal wind shear is not defined in FAST 

steady wind input files and was thus neglected here. Because the steady wind input file is only 

capable of modeling linear or power law wind shear, the power law wind shear exponent defined 

for EWS was taken as the average estimated power law exponent over the rotor disk for each 

second of the 12 second transient EWS event [2]. 

The first 60 seconds of every time history was discarded in order to avoid noise from analysis 

start-up (i.e., the effects of wind and waves interacting with a static OWT at the beginning of the 

analysis). 
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3.2.1.2 Emergency Shutdown 

Emergency shutdown occurs when a safety supervisor system within the OWT shuts down the 

operation of the turbine to prevent damage; a robust consideration of emergency shutdown effects 

for OWTs can be found in [15]. For the purposes of this paper, a simplified version of the 

emergency shutdown procedure described in [15] was modeled as follows: 

 The generator was turned off at t = 200 s into the time history simulation. 

 Pitch control was overridden at t = 200 s and the blades were set to feather (90˚ blade 

pitch for the NREL 5MW) at the rated limit of 8˚/sec [8]. 

 The simple HSS brake was then applied 0.6 s after the blade pitch reached 90˚, which is 

the time it takes the NREL 5MW brake to fully engage after deployment [8]. 

The emergency shutdown case used the same wind field and wave trains as DLC 1.1. Similar to 

the power production DLCs, the first 60 seconds of the emergency shutdown time histories was 

ignored in analysis. 

3.2.1.3 Parked Conditions 

The parked DLCs were all modeled considering parked (i.e, nonrotating) blades which were 

feathered to 90˚, with the exception of the ULS Abnormal cases which used a blade pitch of 0˚ 

due to loss of electrical network connection (and assumedly therefore loss of pitch control). 

The first 30 seconds of the parked DLC time histories was discarded in analysis. 

3.2.2 Mudline Stiffness and Damping 

The mudline stiffness matrix kmud is analyzed two-dimensionally here, assuming that the soil-pile 

system is radially symmetric (i.e., axisymmetric about the z-axis, such that the horizontal 

translational stiffness in the x-direction is the same as the y-direction).  

Horizontal mudline force Hx and moment M and the associated mudline displacement u and 

rotation  were required to calculate kmud. These mudline loads (Hx, M) were determined for each 
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DLC to be representative of the cyclic load amplitude, as cyclic soil behavior for clays is more 

influenced by cyclic amplitude rather than maximum response [16]. For regular wave train and 

steady wind DLCs, estimating cyclic load amplitude was straightforward (due to the periodic 

nature of the time history output, half of the difference between maximum and minimum 

response); for stochastic time histories (with irregular wave trains or turbulent wind fields), these 

loads were estimated as three times the standard deviation of the response (3) similar to 

previous work on foundation damping [3]. The definition of the cyclic amplitude influences the 

calculations of stiffness and damping – higher cyclic amplitudes lead to higher damping but lower 

stiffness. 
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Figure 3.2 Example (A) regular wave train/steady wind and (B) stochastic time histories of mudline moment 

The emergency shutdown design situation required a somewhat different approach due to the 

nonstationary nature of the response. In this case, the cyclic amplitude of concern was taken to be 

the difference between the mean pre-shutdown response and the absolute minimum response 

(Figure 3.3). 
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Figure 3.3 Example emergency shutdown time history of mudline moment during rated wind speeds 

The mudline loads (H, M) were then used as input to INFIDEL to obtain u and . In order to 

compute the linear stiffness elements (kxx, kx, k) comprising kmud, two runs of INFIDEL were 

required: 

1) Using cyclic mudline load amplitudes H and M (denoted Hx,1 and M,1 in Eq. (1)) to 

obtain cyclic mudline displacement and rotation amplitudes u and  (denoted u1 and 1 in 

Eq. (1)), and 

2) Using just the horizontal mudline shear amplitude H (Hx,2 in Eq. (1)) but setting M = 0 to 

obtain a second set of displacement and rotation amplitudes (u2 and 2). 

The displacement and rotation results were then used in conjunction with the input loads to 

determine kmud, calculated per [17] using  
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where kxx is the horizontal translational stiffness, k is the rotational stiffness, kx is the cross-term 

of kmud, and assuming that kmud is symmetric. 
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Foundation damping was determined using the same method described in [3], which converts 

hysteretic energy loss Eh (calculated by INFIDEL as a function of mudline loading) into a viscous 

rotation dashpot value c by 

f

E
c h

222 
   

(2) 

 

where  is the mudline rotation amplitude in rad, f is the loading frequency in Hz, taken here to be 

the first (fore-aft) natural frequency of the NREL 5MW. 

3.3 Offshore Wind Turbine Models 

The NREL 5MW Reference Turbine (NREL 5MW) was analyzed assuming the substructure, 

foundation, and soil (clay) properties shown in Figure 3.4 and Table 3.2. The process used in this 

paper is similar to prior studies of foundation damping [3] but considers different environmental 

site parameters. Because soil profile data (e.g. undrained shear strength su, Poisson’s ratio , and 

shear modulus at small strains G0) were unavailable for the Delaware data buoy location, the soil 

profile from [3] was used in this analysis because it represents a specific North Sea offshore site 

and because it facilitated comparison with the damping studies performed in literature which are 

primarily in clayey soils [3,5–7,18,19]. 
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Figure 3.4 NREL 5MW Reference Turbine Site 

Table 3.2 Structural properties of the NREL 5MW Reference Turbine, substructure, and foundation assuming 

linearly tapering properties 

Location on Support Structure  Diameter, Thickness 

Tower top 3.87 m, 0.019 m 

Tower base (MSL) 6 m, 0.027 m 

Substructure 6 m, 0.10 m 

Monopile 6 m, 0.09 m 

 

3.3.1 Environmental Load Models 

This paper used the aero-hydro-elastic simulation code FAST [9] (version 7) to estimate OWT 

monopile foundation design loads. FAST uses Blade Element Momentum (BEM) theory to 

calculate wind loads on OWT blades and includes the effects of the spinning rotor on overall 

support structure dynamics. Time history simulation is carried out using modal superposition to 

determine dynamic behavior, and the support structure modes are informed by the first and 
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second fore-aft and side-to-side mode shapes. These mode shapes were determined using the 

NREL-distributed software BModes [13] and are defined by sixth-order polynomial coefficients 

in the FAST tower property file.  

Depending on the requirements of the DLC, wind can be defined as either steady or turbulent and 

waves as regular or irregular. Turbulent wind conditions were modeled in FAST using the Kaimal 

spectrum. Linear wave theory was used to generate wave conditions using the JONSWAP 

spectrum and Wheeler stretching. The effects of breaking waves were neglected. 

The environmental site conditions which inform this study are taken from the NOAA data buoy 

44009 [20] sited off the coast of Delaware (DE). The DE buoy data used for this paper include 

the 1-hr average wind speed at 5 m above sea level and 1-hr average significant wave height Hs 

from 1986-2014. Wind speed at hub height was calculated using the power law for vertical wind 

shear, with an exponent of 0.14 per [2]. Wind speeds and significant wave heights at particular 

return periods (Table 3.3) used for the DLCs in the parked design situation were calculated using 

a Generalized Extreme Value (GEV) distribution fit to the maximum annual wind speed and 

wave height from 1986-2014. This approach is conservative, as the maximum wind speed and 

maximum wave height are not necessarily simultaneous. The 5-year significant wave height Hs,5-yr 

was also determined here, as the Reduced Wave Height model used in DLC 6.2b requires a 

reduction in the 50-year wave height Hs,50-yr by the factor , which is a ratio of Hs,5-yr/Hs,50-yr. 

Table 3.3 Wave height and wind speed at particular mean return periods for the Delaware data buoy site used 

for parked design situation  

Site Condition Value 

5-year Significant Wave Height, Hs,5-yr 7.08 m 

50-year Significant Wave Height, Hs,50-yr 8.12 m 

50-year Wind Speed at Hub Height (1-hr average), U1hr,50-yr 36.9 m/s 

Peak spectral period Tp was calculated similarly to [21], where 
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g

H
T s

p 1.1105.1  
(3) 

where Hs is the significant wave height and g is the acceleration due to gravity. 

The DLCs in the power production design situation model sea states using significant wave 

height conditional on 10-min average hub height wind speed (Hs|U10,hub). Wind speeds from the 

DE data buoy were separated into 2 m/s bins ranging from 3 m/s (cut-in wind speed) to 25 m/s 

(cut-out wind speed), and the expected and 50-yr (98
th
 percentile) significant wave heights were 

calculated as a function of a Weibull probability density function [2] fit to the wave data 

associated with the wind data within each bin. The mean and 50-yr wave heights conditional on 

wind speed (Table 3.4) were used to model Normal Sea State (NSS) and Severe Sea State (SSS), 

respectively. The DE buoy data is taken from 1-hr averages; however, it was assumed for the 

purposes of this study that the relationship between 1-hr wind speed and wave height was similar 

to 10-minute hub height wind speed (U10,hub) and wave height. 

Table 3.4 Significant wave height values conditional on wind speed 

Mean Wind 

Speed, U10,hub 

(m/s) 

Expected Value Conditional on U10,hub 50-yr Value Conditional on U10,hub 

Significant Wave 

Height, Hs  

(m) 

Peak Spectral 

Period, Tp  

(sec) 

Significant Wave 

Height, Hs  

(m) 

Peak Spectral 

Period, Tp  

(sec) 

4 0.87 3.48 1.83 5.03 

6 0.89 3.51 1.85 5.06 

8 0.95 3.63 1.96 5.21 

10 1.08 3.87 2.13 5.43 

12 1.27 4.19 2.44 5.81 

14 1.51 4.57 2.78 6.21 

16 1.78 4.96 3.19 6.65 

18 2.07 5.35 3.63 7.09 

20 2.36 5.71 4.11 7.54 

22 2.78 6.21 4.91 8.25 

24 3.22 6.67 5.69 8.88 
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The rated wind speed for the NREL 5MW is 11.4 m/s and cut-out is 25 m/s; for power production 

DLCs, the mean (turbulent) wind speed cases 12 m/s and 24 m/s (ranging from 11-13 m/s and 23-

25 m/s) were used for rated and cut-out conditions. 

3.3.2 Soil-Pile Models 

The NGI-developed INFIDEL software used to compute foundation stiffness and damping is 

primarily intended for analyzing offshore piles and caissons [3,11,12]. INFIDEL defines an 

axisymmetric three-dimensional soil-pile space with infinite extents. A nonlinear elastic 

constitutive model to capture cyclic clay behavior based on stress-strain curves and soil damping 

curves as a function of modulus defined by the user. Linear elastic pile behavior was assumed. 

The hysteretic energy loss Eh calculated by INFIDEL corresponds to the area of one load-strain 

cycle (hysteresis loop) summed over all the soil elements. The input shear modulus at small 

strains G0, undrained shear strength su, and Poisson’s ratio  used for the OWT site in this paper 

can be found in Figure 3.4. The Poisson’s ratio for the pile was assumed to be 0.3. For further 

details on the soil-pile model and methodology of INFIDEL, please refer to [3]. 

The output cyclic mudline displacement and rotation amplitudes from INFIDEL were used to 

determine a mudline stiffness matrix kmud (a process which is described in more detail in Section 

3.2.2). The elements of kmud are then used as input to the user defined subroutine UserPtfmLd in 

FAST, which calculates “platform” loads (in this case, loads at the mudline). For this paper, 

perfect fixity was assumed in the vertical z-direction as well as in torsion (rotation about the z-

axis, Figure 3.5).  
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Figure 3.5 Degrees of freedom in FAST user subroutine 

Soil behavior is assumed to be radially symmetric (i.e. kxx = kyy) and that the coupled stiffness 

terms were assumed to be equal (kx = kx). Due to the sign conventions inherent in FAST, the 

stiffness matrix defined in UserPtfmLd is defined as 
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and the mudline damping matrix as 
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cmud , 

(5) 

 

where c is a rotational dashpot calculated as a function of hysteretic energy loss, mudline 

rotation amplitude, and load frequency (see Section 3.2.2 for further details). It is unclear whether 
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the hysteretic energy loss from INFIDEL could be decomposed into damping contributions from 

different degrees of freedom (i.e., into translational and rotational contributions), and doing so 

would require an assumption for how to distribute damping between rotational and translational 

dashpots; consequently, all hysteretic energy loss was attributed to a rotational dashpot. 

3.4 Results 

The cyclic mudline load amplitudes (Hx, MTable 3.5) were used as input to INFIDEL, which 

produced cyclic mudline displacements, rotations, and hysteretic energy loss (u, , and Eh, 

respectively) which were then used to determine the mudline stiffness matrix kmud variables kxx, 

kx, and k.  

The DLCs were grouped based on kmud and Eh, and representative kmud matrices were selected to 

represent each group (Table 3.6). It was not preferable to define different kmud for a different yaw 

angle or wind speed bin within a DLC, so a representative kmud was selected such that the DLC 

could be analyzed using one kmud and therefore also one corresponding compiled version of 

FAST. The rotational mudline dashpot value cwas calculated using the first fore-aft natural 

frequency of the NREL 5MW, taking into account mudline flexibility defined by kmud.  

Only DLCs 6.1 and 6.2a (Table 3.5) required iteration during analysis – that is to say, a second 

compiled version of FAST was required using the kmud cyclic amplitude results – all other DLCs 

met the criteria of less than 20% difference between input and output cyclic mudline loads (Hx, 

M). 

 

 



70  

Table 3.5 Cyclic mudline load amplitudes and displacements used to define mudline stiffness matrix and 

rotational dashpot coefficients. Mudline response for unshaded cells represent the values obtained from a fixed-

base analysis in FAST; the values for shaded cells were obtained from a subsequent flexible-mudline analysis in 

FAST. 

DLC Condition 
Hx 

(MN) 
M 

(MNm) 

u 

(mm) 


(10
-3

 rads) 

Eh 

(kJ) 

kxx 










m

GN
 

kx 










rad

GN
 

k










rad

GNm

 

1.1 
vrated 0.556 39.1 3.44 0.407 1.74 2.58 20.4 269 

vout 1.18 38.2 4.15 0.453 2.73 2.56 20.8 276 

1.3 
vrated 0.607 44.0 3.92 0.462 2.36 2.60 20.8 272 

vout 1.18 47.9 5.05 0.556 4.24 2.61 21.5 282 

1.5 
vrated 0.463 13.7 1.33 0.152 0.17 2.45 18.5 253 

vout 1.15 27.4 3.18 0.339 1.47 2.50 20.1 269 

1.6a 
vrated 0.914 41.9 4.14 0.468 2.70 2.58 20.9 275 

vout 1.98 48.9 6.29 0.645 7.03 2.59 22.2 292 

1.6b 
vrated 1.32 46.1 5.07 0.549 4.29 2.59 21.5 282 

vout 2.83 59.2 8.72 0.853 14.2 2.61 23.4 309 

5.1 
vrated 1.75 205 25.9 2.60 104 3.32 32.4 400 

vout 1.72 137 16.2 1.69 45.1 3.02 28.0 350 

6.1a 
Yaw = 0˚ 2.87 95.99 11.7 1.19 32.0 2.78 25.8 333 

Yaw = 8˚ 2.91 95.58 11.6 1.18 32.1 2.78 25.8 334 

6.1c 
Yaw = 0˚ 1.79 35.0 4.67 0.475 3.66 2.52 21.1 281 

Yaw = 15˚ 1.80 36.7 4.84 0.493 3.95 2.53 21.2 282 

6.2a 

Yaw = 0˚ 2.87 86.1 10.9 1.09 26.6 2.73 25.2 327 

Yaw = 60˚ 2.82 102 12.2 1.24 34.8 2.80 26.1 336 

Yaw = 90˚ 2.95 123 14.1 1.45 50.4 2.89 27.5 352 

6.2b 

Yaw = 0˚ 3.25 57.3 9.23 0.879 16.2 2.59 23.5 312 

Yaw = 90˚ 3.26 67.1 10.4 0.999 20.5 2.63 24.1 318 

Yaw = 

180˚ 
3.27 60.6 9.67 0.922 17.8 2.61 23.8 315 

Table 3.6 Representative mudline stiffness matrices for design load case groups 

kxx 










m

GN
 

kx 










rad

GN
 

k










rad

GNm
 

Freq. 

(Hz) 
c










rad

GNs
 

Design Load Cases 

2.58 20.4 269 0.234 2.28 1.1, 1.5, 6.1c 

2.59 22.2 292 0.233 3.67 1.6a, 1.6b 

3.32 32.4 400 0.228 3.41 5.1 (vrated) 

3.02 28.0 350 0.230 3.49 5.1 (vout) 

2.80 26.1 336 0.231 4.02 6.1a, 6.2a 

2.59 23.5 312 0.232 4.59 6.2b 
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Using the representative mudline stiffness matrices from Table 3.6, aero-hydro-elastic analyses 

were performed in FAST including foundation damping (“damped”, Table 3.7) and considering 

no foundation damping (“undamped”). Cyclic amplitudes for mudline loads, displacements, and 

rotations decreased for all DLCs when mudline foundation damping was included in the analysis. 

Table 3.7 Mudline cyclic load amplitude comparison between the damped and undamped analyses in FAST. 

Damped analyses included mudline foundation damping in the form of a viscous rotational dashpot. 

Load 

Case 
Condition 

UNDAMPED DAMPED 

Hx 

(MN) 
M 

(MNm) 

ux 

(mm) 


(10

-3 

rads) 

Hx 

(MN) 
M 

(MNm) 

ux 

(mm) 


(10

-3 

rads) 

1.1 
vrated 0.590 41.5 3.49 0.419 0.566 41.1 3.44 0.413 

vout 1.27 43.5 4.27 0.484 1.24 42.7 4.18 0.474 

1.3 
vrated 0.664 46.4 4.49 0.499 0.609 45.7 4.38 0.489 

vout 1.35 52.9 5.71 0.614 1.25 51.2 5.45 0.588 

1.5 
vrated 0.469 17.1 1.62 0.185 0.460 16.6 1.57 0.180 

vout 1.21 34.2 3.63 0.402 1.21 34.0 3.60 0.399 

1.6a 
vrated 0.980 45.9 4.76 0.518 0.959 45.4 4.69 0.511 

vout 2.08 55.9 6.81 0.707 2.05 54.9 6.68 0.694 

1.6b 
vrated 1.41 51.7 5.75 0.613 1.40 51.4 5.70 0.608 

vout 2.92 65.0 8.56 0.872 2.90 64.4 8.48 0.864 

5.1 
vrated 2.09 223 28.8 2.89 1.98 220 28.4 2.85 

vout 1.86 145 17.0 1.77 1.67 140 16.0 1.68 

6.1a 
Yaw = 0˚ 2.88 97.8 12.9 1.29 2.83 81.0 11.3 1.12 

Yaw = 8˚ 2.89 99.0 13.2 2.30 2.83 82.7 11.5 1.13 

6.1c 
Yaw = 0˚ 1.83 38.0 5.70 0.551 1.80 36.9 5.56 0.537 

Yaw = 15˚ 1.83 36.8 5.57 0.537 1.80 36.2 5.49 0.529 

6.2a 

Yaw = 0˚ 2.87 86.8 11.9 1.18 2.86 84.7 11.7 1.15 

Yaw = 60˚ 2.82 101 12.1 1.23 2.76 81.5 11.3 1.11 

Yaw = 90˚ 2.97 128 15.9 1.61 2.84 90.2 11.4 1.13 

6.2b 

Yaw = 0˚ 3.29 61.2 9.59 0.918 3.29 60.5 9.54 0.912 

Yaw = 90˚ 3.31 69.5 10.2 0.988 3.30 63.1 9.72 0.934 

Yaw = 180˚ 3.35 64.1 9.88 0.949 3.32 63.0 9.75 0.935 

Broadly speaking, mudline moment amplitudes (M,) was reduced more than mudline horizontal 

force amplitudes (Hx) with the inclusion of foundation damping, which is similar to the results 

found by [3]. This result is somewhat interesting, given that foundation damping was 
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implemented in the form of a rotational dashpot rather than a traditional translational dashpot; 

however, given the large moment posed by wind thrust and wave loads on the OWT support 

structure, small reduction in horizontal force can be translated into larger reductions in moment. 
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Figure 3.6 Example time histories of undamped (blue) vs. damped (red) (A) DLC 1.1 mudline moment response 

at cut-out wind speed (B) DLC 1.1 mudline rotation response at cut-out wind speed (C) DLC 6.2a at Yaw = 90˚ 

mudline moment response and (D) DLC 6.2a at Yaw 90 mudline rotation response 
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Figure 3.7 Example time history of undamped vs. damped response for emergency shutdown DLC 5.1 at cut-out 

wind speed 

Power production cases were not as significantly affected by foundation damping as emergency 

shutdown and the parked cases were (Table 3.8, Figure 3.6). With the exception of approximately 

8% reduction in Hx and 2-5% reduction in ux and q for DLC 1.3, the majority of the reductions in 

Hx and M for power production cases ranged from approximately 1-4% and for ux and  the 

reductions were approximately 1-2%. 
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Table 3.8 Percent reduction in mudline response with the inclusion of foundation damping 

Design 

Situation 
Load Case Condition Hx M ux 

1) 

Power 

Production 

1.1 
vrated 4.1% 1.1% 1.5% 1.3% 

vout 2.7% 1.8% 2.2% 2.0% 

1.3 
vrated 8.2% 1.6% 2.4% 2.1% 

vout 7.3% 3.3% 4.5% 4.2% 

1.5 
vrated 1.7% 2.8% 2.8% 2.7% 

vout 0.4% 0.8% 0.7% 0.8% 

1.6a 
vrated 2.2% 1.1% 1.5% 1.4% 

vout 1.4% 1.8% 1.8% 1.8% 

1.6b 
vrated 1.0% 0.6% 0.8% 0.8% 

vout 0.6% 0.9% 0.9% 0.9% 

Average 3.0% 1.6% 1.9% 1.8% 

5) 

Emergency 

Shutdown 

5.1 
vrated 5.3% 1.1% 1.5% 1.4% 

vout 10.4% 3.4% 5.6% 5.2% 

Average 7.8% 2.2% 3.5% 3.3% 

6) Parked 

Conditions 

6.1a 
Yaw = 0˚ 1.9% 17% 12% 13% 

Yaw = 8˚ 2.0% 17% 12% 13% 

6.1c 
Yaw = 0˚ 1.9% 2.8% 2.6% 2.6% 

Yaw = 15˚ 2.0% 1.5% 1.4% 1.4% 

6.2a 

Yaw = 0˚ 0.8% 2.3% 1.9% 2.0% 

Yaw = 60˚ 2.1% 19% 6.6% 9.2% 

Yaw = 90˚ 4.4% 30% 28% 30% 

6.2b 

Yaw = 0˚ 0.1% 1.1% 0.5% 0.6% 

Yaw = 90˚ 0.5% 9.2% 4.6% 5.5% 

Yaw = 180˚ 0.8% 1.6% 1.3% 1.4% 

Average 1.6% 10% 7.1% 7.9% 

Interestingly, the emergency shutdown cases (DLC 5.1) had highest reduction Hx (5-10%) and not 

M.(only 1-3%). Also of note, despite the significant reduction in mudline load amplitude, the 

reduction in ux and  were modest (1-6%). 

The parked DLCs showed the greatest reduction in mudline response with the inclusion of 

foundation damping. This is in line with the literature, which suggests that in comparison to 

aerodynamic damping during power production situations, foundation damping is much less 

significant [6,22]. It should also be noted that the reductions in response are much greater for the 

turbulent wind, irregular wave cases (DLCs 6.1a and 6.2a) than the steady wind, regular wave 
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cases (DLCs 6.1c and 6.2b). The largest reduction for the steady wind/regular wave cases was in 

M for the 90˚ yaw case of DLC 6.2b; however, for the turbulent wind/irregular wave cases, the 

largest reduction in M was nearly 30%. 

DLC 6.1a was also considered in the foundation damping study performed in [3], but with lower 

reductions in M(approximately 9% compared to the 17% found here). The water depth, 

associated loads, and differences in structural design strongly influenced the results as the wind 

speeds and wave conditions were relatively similar (34 m/s wind with Hs = 8.5 m and Tp = 10.3 s 

in [3] vs. 36.9 m/s wind with Hs = 8.12 m and Tp = 10.6 s). The water depth analyzed in [3] was 

20 m, whereas this paper analyzed the NREL 5MW in a water depth of 30.5 m; additionally, the 

dominant frequency considered in [3] was 0.302 Hz, and this paper considered a frequency of 

approximately 0.23 Hz.  

The percent critical damping for each of the representative kmud rotational dashpots was computed 

using a free vibration analysis in FAST. Within the free vibration analysis, a static initial tower 

top displacement was imposed at hub height in the fore-aft direction and then the support 

structure was permitted to vibrate freely in conditions with no wind or waves, considering parked 

and feathered blades. The logarithmic decrement method [3] was then used on the resulting time 

history using a best-fit of a series of amplitudes (Figure 3.8). Two free vibration analyses were 

carried out for each representative case – first including structural damping in the tower property 

input file (1.0%) and then excluding it (structural damping = 0%).  
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Figure 3.8 Free vibration of tower top to determine percent critical damping associated with mudline rotational 

dashpot 

Foundation damping was calculated by taking the difference between these two cases (Table 3.9), 

assuming that damping for OWTs can be modeled independently and combined linearly, and that 

aerodynamic and hydrodynamic damping can be neglected in this case [3,5,6,19]. 

Table 3.9 Percent critical damping for all representative mudline stiffness and damping cases 

Representative Case 

Percent Critical 

Foundation 

Damping 

Percent Critical 

Structural 

Damping 

Percent Critical 

Total Damping 

(Foundation + 

Structural) 

DLC 1.1 vrated 0.28% 0.28% 0.56% 

DLC 1.6a vout 0.49% 0.30% 0.79% 

DLC 5.1 vrated 0.65% 0.31% 0.96% 

DLC 5.1 vout 0.58% 0.30% 0.88% 

DLC 6.2a Yaw = 60° 0.64% 0.31% 0.95% 

DLC 6.2b Yaw = 0° 0.65% 0.32% 0.97% 

The foundation damping calculated here (ranging from 0.28% to 0.65%) is within the range found 

in the literature [3,5–7,19,18]. Most notably, the amount of foundation damping calculated for 

emergency shutdown cases is very similar to the foundation damping which was estimated by 

[19], considering a site with soil profile dominated by very stiff to very hard clay. 

The variation in structural damping in Table 3.9 can likely be attributed to the manner in which 

structural damping is accounted for in FAST, which is effectively Rayleigh damping with the 
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mass-proportional coefficient set to zero [23]. Consequently, while 1.0% damping was defined in 

the tower property input file for the first and second fore-aft and side-to-side modes for all DLCs 

(defining the structural damping for the support structure between mudline and hub height), the 

net resulting damping attributed to the structure was approximately 0.3%. 

3.5 Conclusions 

This paper analyzed the influence of foundation damping on the behavior of a monopile-

supported offshore wind turbine (OWT) considering the design situations of power production, 

emergency shutdown, and parked conditions. These design situations were modeled in FAST [9] 

according to the design standard IEC 61400-3 [10], considering the NREL 5MW Reference 

Turbine [8] and the environmental conditions in the U.S. Atlantic waters off the coast of 

Delaware. Because soil profile data was unavailable at the data buoy site, a clay soil profile from 

an offshore site in the North Sea [3] was used in order to better compare the results from this 

paper to those in literature [3,5–7,18,19]. 

Foundation damping was modeled using viscous rotational dashpots at the mudline. The dashpot 

coefficient was calculated as a function of hysteretic energy loss from the soil-pile system and 

mudline rotation amplitude using the NGI-developed program INFIDEL [11,12] and the first 

fore-aft natural frequency of the NREL 5MW. The rotational dashpots were used in conjunction 

with a mudline stiffness matrix to model soil-structure interaction for the OWT modeled in 

FAST. 

Foundation damping played a more significant role in the emergency shutdown and parked 

design conditions than power production. For power production cases, the average reduction in 

cyclic demand (amplitude of mudline loads) due to the inclusion of foundation damping was 

approximately 3% for horizontal mudline force and 1.6% for mudline moment. Comparatively, 

the cyclic moment demand was reduced by 10% on average for the parked conditions and by as 
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much as 30% in some cases. The emergency shutdown cases experienced a larger reduction in 

horizontal force demand (5-10%) than mudline moment (1-3%).  

The results of the free vibration study to calculate percent critical damping ranged from 

approximately 0.3-0.7% and were in good agreement with those found in literature [3,5–7,18,19], 

particularly with the experimental data from emergency shutdown of an OWT in clay soil from 

[19].  

It may be concluded from this paper that the role of foundation damping in parked conditions is 

significant, and may also be important for emergency shutdown. While the reduction in cyclic 

demand calculated in this paper is inherently associated with the soil and structural properties 

specific to this site, past work [3] used an identical soil profile with different environmental and 

structural properties (deeper water depth and less stiffness in structure) but yielded similar values 

of percent critical damping and higher reductions in cyclic demand for DLC 6.1a. The influence 

of soil profile on foundation damping should be investigated in future work, particularly with 

regard to soil type – the majority of existing work on foundation damping has focused on clayey 

soils, with limited information  regarding how much damping may be contributed by a monopile 

in sand and how it may be compared to the amount of damping from clays [3]. Additionally, 

sensitivity studies should be performed to determine how cyclic mudline loads used to calculate 

mudline stiffness and damping affect the results presented here. It should also be noted that the 

assumption that the first natural frequency is dominant may not be accurate for all power 

production cases, and that the dominant frequency for each case (e.g. peak wave frequency) may 

show greater impact of foundation damping under power production design situations.  
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Abstract 

Offshore wind turbine (OWTs) monopile foundations are subjected to cyclic loading from wind, 

waves, and operational loads from rotating blades. Lateral monopile capacity can be significantly 

affected by cyclic loading, causing failure at cyclic load amplitudes lower than the failure load 

under monotonic loading. For monopiles in clay, undrained clay behavior under short-term cyclic 

soil-pile loading (e.g. extreme storm conditions) typically includes plastic soil deformation 

resulting from reductions in soil modulus and undrained shear strength which occur as a function 

of pore pressure build-up. These impacts affect the assessment of the ultimate and serviceability 

limit states of OWTs via natural frequency degradation and accumulated permanent rotation at 

the mudline, respectively. This paper introduced novel combinations of existing p-y curve design 

methods and compared the impact of short-term cyclic loading on monopiles in soft, medium, and 

stiff clay.  The results of this paper indicate that short-term cyclic loading from extreme storm 

conditions are unlikely to significantly affect natural frequency and permanent accumulated 

rotation for OWT monopiles in stiff clays, but monopiles in soft clay may experience significant 

degradation. Further consideration is required for medium clays, as load magnitude played a 

strong role in both natural frequency and permanent rotation estimation. 
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Nomenclature 

DE  Delaware 

MA  Massachusetts 

NREL  National Renewable Energy Laboratory 

OWT  Offshore wind turbine 

SLS  Serviceability limit state 

ULS  Ultimate limit state 

b  Pile diameter 

g  Acceleration due to gravity 

p  Soil resistance 

pu  Ultimate soil resistance 

su  Undrained shear strength 

t  Wall thickness 

x  Depth below mudline 

y  Soil spring displacement 

yc  Soil spring displacement at 50% of ultimate soil resistance 

E  Young’s modulus 

H  Horizontal mudline force 

Hs  Significant wave height 

J  Empirical factor 

K0  Initial spring stiffness 

K1  Initial spring stiffness for piecewise linear p-y curve 

Ksec  Secant spring stiffness 

M  Mudline moment 

N  Number of cycles 

Tp  Peak spectral period 

U1-hr,hub  One hour average wind speed at hub height 

c  Strain at 50% of undrained compression tests of undisturbed soil samples 

'  Submerged unit weight 

  Degradation factor

  Density of steel 

  Standard deviation

  Empirical coefficient

4.1 Introduction 

Offshore wind turbines (OWTs) are subjected to cyclic environmental loading from wind and 

waves and cyclic operational loads from rotating blades. Most OWTs are supported by monopile 

foundations, which account for approximately 75% of currently installed OWT foundation 

systems [1]. Due to the lack of redundancy in the design of a monopile and the nature of OWT 
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loading, lateral soil capacity is one of the primary limit states for the foundation.  Lateral 

monopile capacity can be significantly affected by cyclic loading, causing failure at a cyclic load 

amplitude lower than the failure load under monotonic loading [2]. 

In terms of soil behavior, cyclic loading can be categorized into long-term or short-term loading: 

during long-term cyclic loading, the pore pressure generated by cyclic loading dissipates and 

drained soil behavior may be assumed; conversely, short-term cyclic loading leads to 

undissipated pore pressures which decrease effective stress and consequently reduce soil stiffness 

and undrained shear strength [3–5]. This issue is particularly of importance for clays, as the time 

for pore pressure to dissipate is typically much longer than for sands. Undrained clay behavior 

under short-term cyclic soil-pile loading typically includes plastic deformation of the soil (and 

subsequent gap formation at the pile head [4–7]), which comes from the reduction in soil modulus 

and undrained shear strength as a function of pore pressure build-up. This paper is focused on 

short-term cyclic loading of clays, a situation which arises for OWTs during storm conditions.  

The impacts of short-term cyclic loading for monopiles in clay affect the assessment of both the 

ultimate limit state (ULS) and serviceability limit state (SLS) of OWTs. In the context of 

geotechnical design, the ULS of an OWT monopile is dictated by lateral soil-pile resistance, 

which is affected by cyclic loading. Reduction in soil-pile stiffness decreases the natural 

frequency of the entire OWT structure, causing the OWT natural frequency to shift towards the 

wave frequency spectra and to the frequency of a single OWT blade rotation (or 1P frequency). 

Under these circumstances, loads can be dynamically amplified and the simultaneous reduction of 

foundation capacity from cyclic loading and the amplification of loading can exceed the ULS of 

the soil. In terms of SLS, OWT monopiles are often designed to not exceed 0.5° of tilt or rotation 

at the mudline (or other similar value as dictated by the turbine manufacturer). The 0.5° threshold 

considered here consists of 0.25° of construction tolerance and 0.25° of permanent accumulated 

rotation [8]. This permanent accumulated rotation arises from inelastic soil behavior which is 
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typically induced by cyclic wind and wave loads during the design life of the OWT [8]. In short, 

short-term cyclic loading of OWTs during storm conditions can induce two important and 

interactive effects: natural frequency degradation of the entire system and accumulated permanent 

rotation at the mudline. This paper considers both effects individually using novel combinations 

of existing design methods, since at present there is no consensus on a coherent design method 

for estimating either effect. 

Laterally loaded OWT monopiles are usually designed and analyzed using the p-y curve method 

[8], which represents soil-pile interaction as a series of nonlinear springs along the length of the 

pile. Because the experimental work to derive these curves was originally performed on small-

diameter piles, many researchers have examined the discrepancy between predicted pile response 

from the p-y method for large-diameter OWT monopiles and that which is predicted via finite 

element models or experimental modeling, e.g. [9–12]; however, the perceived complexity and 

computational expense of finite element models has prevented their widespread use, despite the 

increased accuracy of their constitutive models [5]. A detailed experimental investigation is 

required to assess the true behavior of large diameter monopiles in clay subjected to cyclic lateral 

loading; however, in the absence of such a study, existing cyclic p-y curve models are used in this 

paper as a best estimate. 

This paper uses existing cyclic p-y methods to examine two effects: natural frequency 

degradation and permanent accumulated mudline rotation for monopile-supported OWTs in clay. 

Regarding natural frequency degradation, a novel, hybrid approach is proposed using the static 

Matlock [13] p-y curves determined by monotonic loading in conjunction with the ultimate soil 

resistance (pu) cyclic degradation model proposed by Rajashree & Sundaravadivelu [14] as 

described in Section 2. Section 3 describes how rainflow counts of stochastic load time histories 

are used in conjunction with the established p-y methods to estimate the cumulative effect of 

cyclic degradation from a one-hour storm. An alternative, more generalized approach to cyclic 
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degradation is introduced in Section 4, wherein the stiffness of p-y springs within an embedment 

reduction zone is assumed to be negligible representing the effect of soil disturbance around the 

pile. The two hybrid methods for estimating natural frequency degradation (Section 5.2) and 

permanent mudline rotation (Section 5.3) are summarized schematically in Figure 4.1. The 

magnitude of permanent mudline rotations is predicted based on the unload-reload modulus 

proposed by [13] for cyclically loaded piles. In this paper, the soil-pile behavior is assumed to be 

elastic for p-y springs with loading less than 0.5pu (half the ultimate resistance of the p-y spring). 
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Figure 4.1 Cyclic pile-soil analysis flowchart  

In Section 5, the effects of these two hybrid approaches are assessed for a range of conditions by 

examining the frequency degradation and permanent accumulated rotation of the National 

Renewable Energy Laboratory (NREL) 5MW Reference Turbine [15] supported by a monopile 

installed in homogeneous deposits of soft, medium, and stiff clay. The turbine and monopile are 

modeled in FAST [16] for extreme storm conditions representative of two different U.S. Atlantic 

offshore sites (off the coasts of Massachusetts and Delaware). For both sites, storm conditions are 

assessed for multiple return periods ranging from 50 to 500 years. While the extreme storm 
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loading presented here may not represent SLS loading in a traditional sense, the assessment of the 

SLS for monopiles should be performed for loads which may cause permanent deformation of the 

soil [8].  The embedment reduction method and the accumulated cyclic degradation method are 

compared for both natural frequency degradation and permanent accumulated rotation, and the 

results of this paper show that only the largest load cycles during extreme storms have significant 

impact on the natural frequency degradation or accumulated permanent rotation.  

4.2 Existing Cyclic Models for Soil Stiffness and Strength  

This section discusses existing models for analyzing monopile foundations in clay subjected to 

cyclic lateral loading. In most design situations, soil-pile interaction is considered through p-y 

curves which define the nonlinear relationship between lateral soil resistance p and displacement 

y along the length of the pile. Det Norske Veritas [8] recommends the p-y curves  proposed by 

Matlock [13] for lateral soil-pile resistance, though several other p-y models for clay exist (e.g. 

[6,17]). The American Petroleum Institute (API) [18] recommends the p-y curves developed by 

Reese et al. [17] for stiff clays; however, research performed by [6] indicated that the clay 

imbibed water during testing and therefore manifested more degradation than other cases. For this 

reason, this paper uses the Matlock p-y curve formulation for monopiles in clay [8]. Further 

comparison of clay p-y curves and behavior under cyclic degradation can be found in [19].  

The Matlock p-y curves are currently recommended by design guidelines (e.g. DNV [8]) for the 

analysis of laterally loaded OWT monopile foundations in clay, despite the fact that the curves 

were developed for slender piles and OWT monopiles exhibit stiff pile behavior [9]. The p-y 

curves are recommended primarily for assessing the lateral response of the pile using a quasi-

static load associated with the ULS. Although Matlock has introduced a cyclic version of the p-y 

curve [13], it is neither cycle nor amplitude dependent [8], and provides only a lower bound on 

the soil-pile lateral stiffness. To overcome this shortcoming in this paper, a quasi-static p-y 

degradation model by Rajashree & Sundaravadivelu [14] is used in conjunction with 
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static/monotonic Matlock p-y curves to explicitly account for the effects of both load amplitude 

and number of cycles on soil-pile behavior. This hybrid cyclic p-y model is used for all 

calculations presented in this paper.  

The estimation of permanent accumulated rotations at the mudline requires an additional model to 

define the elastic-plastic characteristics of the p-y curves. The p-y curves developed by Matlock 

[13] were based on monotonic lateral load tests of slender, small diameter (12.75 in = 0.32 m) 

piles in soft, saturated clay. In this paper, static p-y curve behavior is assumed to be perfectly 

plastic after the lateral resistance p reaches the ultimate resistance pu with the full p-y curve 

defined by 
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where 
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in which su is the undrained shear strength, ’ is the submerged unit weight, b is the pile diameter, 

J is an empirical factor ranging from 0.25 to 0.5 (for stiff to soft clays, respectively), and x is the 

depth below mudline. The depth at which 9sub controls pu is referred to as the transition point, xr. 

Spring displacement is normalized by 

by cc 5.2  
(3) 

where εc is the strain occurring at one-half the maximum stress in laboratory undrained 

compression tests of undisturbed soil samples. 
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Because clay p-y curves have infinite initial stiffness, a finite estimate of initial stiffness is needed 

here to estimate initial and degraded natural frequencies of the OWT system. Two finite initial 

stiffness estimates are given in [8]; the first (denoted as K0 here) is defined as  

25.00

c

u

b

p
K


  

(4) 

where ξ is an empirical coefficient equal to 10 for normally consolidated clay and 30 for 

overconsolidated clay. If piecewise linear segments are used to represent the nonlinear p-y curves 

however, the recommended endpoint of the first linearized segment is p/pu = 0.23 and 0.1yc [8], 

thereby making an alternative estimation of the initial stiffness defined as 

c

u

y

p
K

1.0

23.0
1  . 

(5) 

Permanent accumulated rotation after loading is assessed by assuming that soil springs unload 

elastically following the nonlinear loading path of the p-y curve for soil resistance p < 0.5pu and 

spring displacements y < yc and linearly for p > 0.5pu and y > yc; for inelastic soil springs in which 

p > 0.5pu, the unload/reload modulus of the springs is assumed to behave as proposed in [13]. It 

should be noted that large mudline pile loads generally cause springs near the soil surface to load 

beyond the elastic range, with increases in mudline loading causing progressively more soil 

springs along the length of the pile to enter the inelastic range. 

Both of initial stiffness estimates are shown in Figure 4.2, assuming ξ = 30, along with a 

schematic representation of the unload/reload modulus assumption from [13]. 
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Figure 4.2 Static Matlock [13] p-y Curve with Cyclic Unload/Reload Modulus Assumption and Estimations of 

Initial Stiffness from [8]. 

The Rajashree & Sundaravadivelu [14] p-y degradation model is used in conjunction with the 

static Matlock [13] p-y curves to define soil-pile resistance as a function of load amplitude (via 

soil spring displacement) and number of cycles. The p-y degradation model degrades the initial 

(first cycle) ultimate soil resistance pu to a degraded ultimate soil resistance puN after a number of 

cycles N by 

uNuN pp )1(   
(6) 

with degradation factor N defined as 

1)log(
2.0

1  N
b

y
N . 

(7) 

in which y1 is the displacement predicted by the static p-y curve and b is the pile diameter. The 

degradation method is therefore a function of the number of cycles and spring displacement (and 

consequently also mudline load amplitude and corresponding pile-soil deformation shape), but is 

independent of load frequency. Figure 4.3 demonstrates the degradation of a p-y curve with 10 

and 100 cycles of loading assuming an initial static displacement of 0.01b and 0.05b. For a 6 m 

diameter pile, a spring displacement of 0.05b corresponds to 0.3 m, which is relatively significant 
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in the context of OWT monopile displacements given the mudline displacement design limitation 

of 0.2 m used by [20]. A spring displacement of 0.01b corresponds to 0.06 m of spring 

displacement and as shown in Figure 4.3, approximately 5% degradation of the ultimate soil 

resistance (p/pu ≈ 0.95). 

 

Figure 4.3 P-y Curve Degradation by Rajashree & Sundaravadivelu [14] 

This form of p-y curve degradation compared favorably to one-way cyclic experimental testing of 

a small diameter pile (25.4 mm) in soft clay using the ultimate soil resistance relationship 

proposed by Matlock and for cyclic load magnitudes up to approximately 70% of the static lateral 

pile capacity [14]. It is assumed here that the same caveats associated with the p-y curves also 

apply to the hybrid Matlock-Rajashree & Sundaravadivelu degradation model proposed here. 

4.3 Cumulative Cyclic Degradation Model 

Because the p-y method is recommended for ULS conditions, cyclic loading effects are typically 

taken into account using a quasi-static cyclic load amplitude and applied to a soil-pile system 

supported by p-y curves modified to represent the lower bound resistance of a pile which has 

reached equilibrium under cycling [8,18]. Using this method assumes an infinite number of 
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cycles at constant load amplitude, which neglects the potential cumulative effects of varying load 

amplitudes from a storm time history.  

In contrast, the cyclic accumulation method developed at the Norwegian Geotechnical Institute 

[2,21] considers cumulative cyclic degradation for application to piles supported by p-y curves, 

wherein cyclic load histories (e.g. from extreme storm loading) are idealized using load parcels 

consisting of numbers of load cycles at different load amplitudes. These load parcels are then 

applied in order of increasing load amplitude using a cyclic accumulation/degradation method 

between each step to account for the equivalent degradation from the number of load cycles N 

associated with that load amplitude. 

In the case of the NGI method, the cyclic accumulation method is applied in a three-dimensional 

finite element model with the degradation of soil properties evaluated at each node using a 

custom constitutive model informed by cyclic strain contour diagrams. While this consideration 

of cyclic accumulation is likely a more accurate assessment of pore pressure accumulation and 

consequent cyclic degradation, the computational expense and complexity of the model are 

limiting factors. 

A simplified cyclic degradation method is proposed in this paper based on a hybrid of 

static/monotonic p-y curves [13] and p-y curve degradation [14]. The process is as follows: 

 Idealize storm load history into i load parcels consisting of horizontal mudline force, 

mudline moment, and associated number of cycles (Hi, Mi, Ni) using rainflow counting 

(Section 4.5.1). 

 Find the static p-y spring displacement associated with first load parcel (H1, M1). 

 Determine the ultimate soil resistance pu,N1 for each spring according to the p-y 

degradation model (Eqs. 6-7) using N1 and the displacement associated with (H1, M1). 

 Load the degraded p-y pile-spring model with (H1, M1) and unload the degraded p-y pile-

spring model using the unloading rules described in Figure 1. 
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 Find the p-y spring displacement for the next load parcel (Hi+1, Mi+1) using the current 

pile-spring model. 

 Further degrade the ultimate soil resistance by pu,Ni+1 = (1-λNi+1) pu,N1 for each spring 

using Ni+1 and the displacement associated with (Hi+1, Mi+1). 

 Load the degraded p-y pile-spring model with (Hi+1, Mi+1) and unload the degraded p-y 

pile-spring model. 

 Repeat process for remainder of load parcels. 

An example of this process is demonstrated in Figure 4.4 using a single p-y spring and three load 

parcels consisting of a lateral force only (no moment): (1) represents the static/monotonic initial 

p-y curve which informs the degradation of the first load parcel; (2) illustrates the load-unload 

cycle for the first load parcel, which in this instance remains elastic; the p-y curve associated with 

the first load parcel informs the degradation for the second load parcel;  (3) denotes the peak of 

the second load parcel which exceeds the elastic limit and unloads linearly; (4) demonstrates the 

final permanent displacement after the third and final load parcel. It should also be noted that 

because degradation occurs between the second and third load parcels, the linear reloading of the 

third load parcel at (3) is at a different slope than the unloading branch of the second load parcel. 

 

Figure 4.4 Single spring depiction of cumulative load effect from rainflow count degradation. Dashed lines 

represent degrading p-y curves and solid lines represent the load-unload path of the single p-y spring. 
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4.4  Degradation via Embedment Depth Reduction 

The p-y degradation model presented by Rajashree & Sundaravadivelu [14] primarily degrades 

the strength of the soil rather than the stiffness. This section outlines an alternative method which 

explicitly reduces the embedment depth of the monopile to reflect the effects of the degradation 

of soil stiffness due to short-term cyclic loading. This method is motivated by observations of a 

zone of soil disturbance around the circumference of the pile in the natural frequency 

experimentation performed in [22], demonstrating inelastic soil behavior post-cycling with a 

significant amount of permanent monopile rotation. The disturbance of the soil around the 

perimeter of the pile may be indicative of gapping, which occurs when soil in the passive zone 

behind the pile is loaded beyond the linear range and residual soil displacements remain post-

loading. Upon reloading, the pile travels freely through the gap before re-contacting soil. This 

gapping behavior has been approached in a p-y context using gap elements [23], but generally 

speaking it is a difficult behavior to characterize; moreover, in a linearized p-y model (required 

for determining the natural frequency of the OWT via eigenvalue analysis), it is not clear how 

these gap elements would contribute to soil-pile stiffness. 

While the cumulative cyclic degradation model described in the previous section takes soil 

disturbance into account implicitly, cyclic degradation could also be modeled more simply and 

explicitly in terms of embedment reduction (Figure 4.5). This method assumes that there is no 

stiffness contribution from the p-y soil springs within a user-defined embedment reduction zone; 

in this paper, the results from embedment reduction of 0.5b and 1b are presented to demonstrate a 

range of possible behavior. 
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Figure 4.5 Pile embedment reduction method 

OWT natural frequency was calculated as a function of load level using p-y secant stiffness 

(Figure 4.6) and including embedment reduction as follows: 

 Mudline loads (H,M) were applied to the top of a p-y pile-spring model, assuming pile 

springs in the embedment reduction zone contribute zero lateral stiffness. 

 From the resulting displacement y for each spring along the length of the pile, the soil 

resistance p for each spring was determined from Eq. 1. 

 The secant stiffness Ksec was then calculated as p/y. 

 The natural frequency of the system was calculated via eigenvalue analysis. 
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Figure 4.6 Determination of Secant Stiffness for Natural Frequency Degradation 

4.5 Application to the NREL 5MW Reference Turbine 

The effects of short-term cyclic loading are examined in this section for the NREL 5MW 

Reference Turbine supported by a 6 m diameter monopile embedded in clay (Figure 4.7). The 

NREL open-source wind turbine simulation program FAST [16] was used to calculate structural 

loads caused by one hour stochastic wind and wave time histories representative of the extreme 

storm for two locations off the U.S Atlantic coast. Two different approaches (Figure 4.1) are 

compared here for assessing OWT natural frequency and permanent accumulated pile rotation: 

(1) The average maximum horizontal mudline force (H) and mudline moment (M) from the 

stochastic time histories is used with a p-y curve pile-spring system including embedment 

reduction. 

(2) Rainflow counts of the time histories were used to idealize the stochastic time histories 

into load parcels of (H, M, N) and were used in conjunction with the cumulative cyclic 

degradation method proposed in Section 3.  

The pile design in this paper consists of a 6 m diameter pile with wall thickness of 0.09 m 

embedded 34 m into homogeneous clay with submerged unit weight of 9.2 kN/m
3
. Three 

different undrained shear strengths are considered (35 kPa, 50 kPa, and 100 kPa) to examine the 

degradation and inelastic behavior of soft, medium, and stiff clays, as shear strength is the most 
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influential property in p-y curve formulation. In a true design context, the embedment depth of 

the piles would likely vary from site to site in order to approach fixity at the base of the pile (i.e., 

zero pile kick) and adequate force-displacement behavior over the range of expected loads; 

however, the focus of this paper is to examine the behavior which could occur as a function of 

soil properties and not to focus strictly on the behavior of the pile itself. 

NREL 5MW Reference Turbine

Schematic

Clay

34 m

20 m

90 m

62 m

6 m, t = 0.09 m

E = 210 GPa

 = 8500 kg/m³

RNA mass = 350,000 kg

' = 9.2 kN/m³

J  = 0.25

  = 0.005

s  = 30, 50, or 100 kPa
c

u

 

Figure 4.7 NREL 5MW Reference Turbine 

4.5.1 Environmental Condition and Load Effect Models 

The 1-hr average wind speed at hub height (U1-hr,hub) and significant wave height (Hs) from two 

sites were considered in this study: a Massachusetts (MA) site between Martha’s Vineyard and 

Block Island [24] and the National Data Buoy Center (NDBC) buoy 44009 off the coast of 

Delaware (DE) [25]. Because water depths for the MA and DE sites were 15 m and 30 m 
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respectively, Hs values were scaled linearly for the NREL 5MW Reference Turbine model’s 20 m 

water depth.  

The site conditions (Table 2.5) represent storm conditions for mean return periods between 50 

and 500 years. In the case of the MA site, the 50- and 500-year conditions are taken from [24], 

using two methods to estimate  the 50-year conditions: 1) using data only from tropical storms 

and 2) from approximately 20 years of measured data. The site conditions for the DE site are 

calculated by the authors using independent extreme value distributions fit to 30 years of annual 

maxima of wind and wave measurements from the National Data Buoy Center [25].  

The peak spectral period Tp was calculated as a function of Hs for extreme sea states [8] using 

gHT sp /1.11
 

(8) 

where g is the acceleration due to gravity, similar to the approach taken in [19,26]. The minimum 

estimate of Tp is conservative, as smaller values of Tp shift the wave frequency spectra closer to 

the natural frequency of the NREL 5MW Reference Turbine (thereby increasing dynamic loads) 

and also because smaller Tp contributes to steeper waves and consequently greater particle 

velocity and acceleration. 

Mudline loads for the NREL 5MW Reference Turbine were generated using NREL’s aeroelastic 

code FAST [16] for the environmental site conditions in Table 4.1. Six 1-hr time histories per 

environmental site condition were simulated with a perfectly fixed mudline condition, 0° yaw, co-

directional wind and waves, and parked and feathered blades, similar to design load case 6.1a 

[8,28]. The average of the maximum horizontal mudline force and mudline moment from the six 

1-hr time histories is denoted as Hmax,avg and Mmax,avg. Turbulent winds were generated according 

to the Kaimal spectrum assuming a turbulence intensity of 0.11. Wind loads on the OWT blades 

were calculated using Blade Element Momentum (BEM) theory assuming a power law for 
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vertical wind shear with an exponent of 0.14. Linear irregular wave kinematics were generated 

using the JONSWAP spectrum and converted into wave loads using Morison’s equation with Cm 

and Cd equal to 1.75 and 1.26, respectively. 

Table 4.1 Environmental site conditions and load summary for NREL 5MW Reference Turbine in 20 m water 

depth 

Site MA DE 

Mean Return Period 50 years 50 years 500 years 50 years 500 years 

Wind-Wave Estimation 

Method 

Tropical 

Storm 
Measured Measured Measured Measured 

U1-hr,hub (m/s) 47.6 38.1 42.2 32.8 37.4 

Hs (m) 11.3 8.3 9.9 5.4 5.7 

Tp (s) 11.9 10.2 11.1 8.2 8.5 

Hmax,avg (MN) 6.32 3.64 4.26 2.48 2.51 

𝛔H,avg (MN) 1.12 0.861 1.00 0.618 0.633 

Mmax,avg (MNm) 119 66.2 80.8 45.5 47.7 

𝛔M,avg (MNm) 16.6 13.4 14.4 10.6 10.5 

Avg. Correlation 

Coefficient (H,M) 
0.860 0.834 0.872 0.806 0.817 

It should be noted that the wave heights and periods shown in Table 4.1 may lead to breaking 

waves, but the effects of these waves are neglected in this paper. Figure 4.8A shows an example 

of the time histories of H and M from one 1-hr realization of the 50-year (storm) condition at the 

MA site. In Figure 4.8B, the assumption of H and M concurrence is further justified by the similar 

trends in the rainflow counts for all six 1-hr realizations of the time histories from the storm-

based 50-year conditions at the MA site. 
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Figure 4.8 Example (A) One realization of a 1-hr storm load time history and (B) rainflow cycle counts of 

horizontal mudline force and moment from six random 1-hr storm load histories for 50-year (storm) MA site 

For degradation analysis it was necessary to idealize the storm time histories into load parcels of 

(H, M, N). Because rainflow counts for H and M are calculated separately and H and M are not 

perfectly correlated, there is no precise way of linking N to a simultaneous pair of (H, M); 

consequently, a synthetic rainflow count of H was created deterministically as a function of M 

using the relationship between H and M for the FAST time histories from each load scenario. For 

the storm-based 50-year MA time histories, the average slope relating H to M is 1/0.0582 with a 

correlation coefficent of 0.860; after determining the rainflow count for M, a synthetic rainflow 

count for H was created by using the number of cycles N from the moment count and by scaling 

M by a factor of 0.0582 (Figure 4.9). While the synthetic rainflow count overpredicts the number 

of cycles at lower amplitudes, the higher amplitude cycles influence degradation results much 

more strongly than the lower amplitude cycles. Additionally, the magnitude of M influences 

results more strongly than H.  

The average rainflow counts of the six realizations for each load scenario (Table 4.2) indicate that 

the storm-based 50-year MA load scenario will lead to greater degradation of the ultimate soil 

resistance pu and therefore to greater degradation of the OWT natural frequency and larger 

permanent accumulated rotation. 
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Figure 4.9 Example (A) Relationship between horizontal mudline force and mudline moment and (B) 

comparison of synthetic rainflow cycle count from mudline moment and horizontal mudline force from one 

realization of a 1-hr storm load history for 50-year (storm) MA site 

Table 4.2 Average Rainflow Counts and Slope for the MA and DE Load Scenarios 

Mudline 

Moment 

Amplitude 

(MNm) 

MA DE 

50 years  50 years 500 years 50 years 500 years 

Tropical 

Storm 
Measured Measured Measured Measured 

0 4519 3761 4394 3454 4033 

10 357 359 344 431 435 

20 215 247 211 238 236 

30 111 93 100 52 45 

40 46 26 29 4.9 4.7 

50 16 4.3 8.4 0.2 0.3 

60 5.4 1.6 2.3 0 0 

70 1.6 0 0.6 0 0 

80 1.3 0 0.1 0 0 

90 0.3 0 0 0 0 

100 0.4 0 0 0 0 

M/H slope (m) 1/0.0582 1/0.0536 1/0.0605 1/0.0470 1/0.0491 

4.5.2 Natural Frequency Degradation 

While calculating the natural frequency of the tower and RNA of an OWT is relatively 

straightforward, including soil-structure interaction in the calculation requires several modeling 

assumptions due to the nonlinearity of soil-structure behavior and the requirement of linear 
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springs in a natural frequency eigenvalue analysis. As mentioned in Section 2.1, two different 

estimates of initial stiffness can be used for clays (identified previously as K0 and K1); considering 

homogeneous deposits of clay with su = 35 kPa, 50 kPa, and 100 kPa, Table 4.3 illustrates the 

slight (< 5%) variation in the estimation of the first natural frequency f1 for the NREL 5MW as a 

function of initial stiffness, and approximately 7% difference in f1 between the su = 35 kPa and su 

= 100 kPa clays. 

Table 4.3 Estimations of the Initial First Natural Frequency (f1) for the NREL 5MW Reference Turbine 

su  f1(K0) f1(K1) 

35 kPa 0.234 Hz 0.245 Hz 

50 kPa 0.241 Hz 0.250 Hz 

100 kPa 0.251 Hz 0.257 Hz 

The natural frequencies in Table 4.3 are only applicable for very small loads; for larger loads, the 

natural frequency of the OWT is determined by the secant stiffness of the p-y springs (using the 

method described in Section 4.2). Using the average maximum loads from the six load scenarios 

in Table 4.1 and limiting the maximum stiffness of the springs to K0, Table 4.4 compares the 

difference in large strain natural frequency estimation to initial natural frequency for cases 

including no embedment depth reduction, one pile diameter b of embedment reduction, and 

cumulative cyclic degradation. For the cumulative cyclic degradation case, the secant p-y stiffness 

Ksec was defined using the peak spring displacement from the final storm load parcel.  

Table 4.4 shows that the dominant load scenario for all analyses is the 50-year MA storm case. 

The higher magnitude of the MA loads had a more significant effect on natural frequency than the 

lower magnitude DE loads. It is also interesting to note that the cumulative cyclic degradation 

method estimates higher natural frequencies (less reduction as compared to small strain estimates) 

when compared to the quasi-static p-y method using average maximum loads. This is likely due 

to the fact that the average maximum loads are significantly larger than the maximum load cycles 
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from rainflow counting, but in this case using a quasi-static p-y method with average maximum 

loads is more conservative than the cumulative effect of a storm time history. 

Table 4.4 Percent difference in first natural frequency from initial stiffness estimation (K0) for the average 

maximum mudline loads and average percent difference for the cumulative load effect from rainflow counts. 

Negligible changes in natural frequency are denoted as “-”. 

Undrained Shear 

Strength 

(su) 

MA DE 

50 years 

Tropical Storm 

50 years 

Measured 

500 years 

Measured 

50 years 

Measured 

500 years 

Measured 

No 

Embedment 

Reduction 

35 kPa -28% -7.1% -13% -1.5% -1.7% 

50 kPa -14% -2.5% -4.4% -0.2% -0.3% 

100 kPa -2.6% -0.2% -0.7% - - 

0.5b 

Embedment 

Reduction 

35 kPa -35% -12% -18% -3.2% -3.6% 

50 kPa -20% -4.5% -7.8% -1.0% -1.2% 

100 kPa -4.4% -0.8% -1.6% - - 

1b 

Embedment 

Reduction 

35 kPa -45% -19% -26% -6.7% -7.4% 

50 kPa -28% -8.6% -14% -2.7% -3.0% 

100 kPa -8.0% -2.0% -3.1% -0.4% -0.5% 

Cumulative 

Load 

Effect 

35 kPa -24% -6.0% -12% -0.8% -1.1% 

50 kPa -9.3% -2.0% -4.0% -0.2% -0.3% 

100 kPa -1.5% < 0.1% -0.5% < 0.1% < 0.1% 

4.5.3 Estimation of Permanent Accumulated Mudline Rotation 

As previously proposed, permanent inelastic soil deformation is assumed to occur when p-y 

springs are mobilized beyond p/pu = 0.5; p-y springs for which p/pu < 0.5 are assumed to behave 

elastically. In order to broadly measure the severity of the storm loading conditions above, the 

quasi-static average maximum mudline loads Hmax,avg and Mmax,avg from the most severe storm 

case (storm-based 50-year MA) were used to determine the degree of mobilization (i.e., the ratio 

of demand p vs. ultimate resistance pu) for p-y spring-supported monopiles embedded in 

homogeneous clay deposits of su = 100 kPa, 50 kPa, and 35 kPa (Figure 4.10). The soil springs 

are assumed to be symmetric, thus Figure 4.10 demonstrates the degree of p-y mobilization in 

terms of the absolute value of p.  
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Figure 4.10 Degree of p-y mobilization for undrained shear strengths of 100, 50, and 25 kPa 

considering average maximum loads from six random 1-hr storm load histories for 50-year (Tropical 

Storm) MA site 

For the monopile in stiff clay (su = 100 kPa), even the most severe loading conditions from Table 

2.5 do not push the soil beyond the elastic range. For the pile in medium (50 kPa) clay, the soil at 

approximately the top third of the pile exceeds the elastic range, and for the soft (35 kPa) clay the 

majority of the soil behaves inelastically. The influence of inelastic soil behavior is further 

demonstrated by the load-unload paths of the pile head for these three cases in Figure 4.11, where 

no permanent accumulated rotation can be seen for the 100 kPa case, a very small amount of 

permanent accumulated rotation for the 50 kPa case, and an exceedance of the 0.25° permanent 

mudline rotation SLS for the 35 kPa case. 
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(A)                                                                                          (B) 

Figure 4.11 (A) Force-displacement and (B) Moment-rotation load-unload path for undrained shear 

strengths of 100, 50, and 25 kPa considering average maximum loads from six random 1-hr storm load 

histories for 50-year (Tropical Storm) MA site 

As in the prior section, the permanent accumulated rotation from the average maximum load 

cases was compared with the cumulative cyclic degradation method (Table 4.5). Permanent 

rotations less than 0.01˚ were considered to be negligible (denoted as “-” in Table 4.5). The 

results from the embedment reduction cases of 0.5b and 1b show significantly more permanent 

rotation than the cumulative cyclic degradation method for the 50-year MA (tropical storm) case; 

considering a monopile in su = 35 kPa clay, the removal of p-y springs prior to applying the 50-

year MA tropical storm loads exceeded the capacity of the pile for both 0.5b and 1b amounts of 

embedment reduction. It should also be noted however that the average maximum mudline loads 

used in the embedment reduction cases exceeds the magnitude of the highest cycles obtained 

from rainflow counting; as such, the results in Table 4.5 are also representative of the effect of 

load magnitude on the estimation of permanent accumulated rotation. 
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Table 4.5 Permanent accumulated rotation for the average maximum mudline loads and average percent 

difference for the cumulative load effect from rainflow counts. Rotations denoted as “-” are negligible. 

Undrained Shear 

Strength 

(su) 

MA DE 

50 years 

Tropical Storm 

50 years 

Measured 

500 years 

Measured 

50 years 

Measured 

500 years 

Measured 

No 

Embedment 

Reduction 

35 kPa 0.39˚ - - - - 

50 kPa 0.03˚ - - - - 

100 kPa - - - - - 

0.5b 

Embedment 

Reduction 

35 kPa failure - 0.05˚ - - 

50 kPa 0.20˚ - - - - 

100 kPa - - - - - 

1b 

Embedment 

Reduction 

35 kPa failure 0.01˚ 0.15˚ - - 

50 kPa 0.58˚ - - - - 

100 kPa - - - - - 

Cumulative 

Load 

Effect 

35 kPa 0.15˚ - 0.01˚ - - 

50 kPa 0.01˚ - - - - 

100 kPa - - - - - 

Figure 4.12 compares the cumulative cyclic degradation force-displacement paths considering 

monopiles in clays with su = 35 kPa, 50 kPa, and 100 kPa. The monopile in 100 kPa clay does not 

sustain any significant cyclic degradation, which is expected given the results of the natural 

frequency study. For the monopile in 50 kPa clay, only the largest amplitude cycles induce 

inelastic soil behavior. Both cyclic degradation and highly inelastic behavior are present for the 

monopile in 35 kPa clay, with cyclic degradation clearly demonstrated between the ultimate and 

penultimate load parcels. 

 

Figure 4.12 Example force-displacement load-unload path of pile head for cumulative load effect from 

1-hr storm load history for 50-year (storm) MA site 
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4.6 Conclusions 

Monopiles are the predominant foundation type for offshore wind turbines (OWTs) and are 

typically designed using the p-y method to model lateral soil behavior. The p-y method is 

relatively simple and easy to implement, making it a convenient alternative to finite element 

models; however, an important drawback when applied to OWT monopiles is that p-y models 

assume flexible pile behavior and have limited ability to model cyclic effects and permanent 

accumulated rotation after loading. This paper presents two options for how cyclic degradation 

may be taken into account (via cumulative cyclic p-y degradation and quasi-static p-y methods 

with embedment reduction) and how to estimate permanent accumulated mudline rotation for 

OWT monopiles in clay. The assumptions inherent in the p-y curve formulation necessitate 

experimental validation of the degradation and permanent accumulated rotation methods 

presented here for large diameter monopiles. It should be noted that this paper assumed the same 

embedment depth for the monopile supporting the NREL 5MW Reference Turbine (NREL 

5MW) [15] in soft, medium, and stiff clays, and a full examination of appropriate embedment 

depth (such as the one performed by [20], e.g.) may change the results presented here. 

One hour time histories of extreme storm loading (with turbulent winds and irregular waves) were 

assessed in FAST [16] for two sites off the coast of Massachusetts (MA) and Delaware (DE), 

considering mean return periods from 50 to 500 years. For each load scenario, six different 

random time histories were generated, and rainflow counts of the mudline moment M were 

assessed. For the cumulative cyclic degradation analysis, it was necessary to parcel mudline 

loading into a simultaneous pair of horizontal mudline force H and M associated with a certain 

number of cycles; consequently, a synthetic rainflow count of H was produced from the rainflow 

count of M using a site-specific coefficient determined from the relationship between H and M 

from the FAST time histories. 



107  

The natural frequency of the NREL 5MW was examined for monopiles in homogeneous clay 

deposits with undrained shear strength su = 35 kPa, 50 kPa, and 100 kPa (representing soft, 

medium, and stiff clays respectively) to demonstrate a range of clay behavior subjected to 

extreme loading. Because the p-y curve formulation by [13] has infinite initial stiffness, the 

estimates of initial natural frequency from DNV [8] were compared.  Using the average 

maximum load from each load scenario, the natural frequency calculated from the secant stiffness 

of the p-y springs was also examined. Using the quasi-static average maximum load to estimate 

natural frequency was more conservative than using the cumulative cyclic degradation method.  

The serviceability limit state (SLS) imposed on OWT monopiles requires the designer to assess 

the accumulated permanent pile rotation after storm loading to ensure that the mudline rotation 

does not exceed a threshold magnitude (typically on the order of 0.25°). Design guidelines do not 

recommend a specific method for determining this permanent residual rotation [8], and 

consequently some designers conservatively choose to design piles which do not exceed the SLS 

at peak loading. This paper uses the cyclic unload-reload modulus proposed in [13], assuming 

that p-y springs behave elastically if loaded at or below half of the ultimate resistance pu at spring 

depth. Using the average maximum load from the storm-based 50-year MA loads, the monopile 

in 100 kPa clay remained fully elastic (all springs were loaded < 0.5pu), partially inelastic for the 

50 kPa clay, and almost fully plastic for the 35 kPa clay (nearly all springs loaded > 0.5pu).  

The conclusions of this paper indicate that extreme storm loading on OWT monopiles in stiff 

clays is unlikely to affect the natural frequency and permanent accumulated rotation; further 

consideration is required for OWT monopiles in medium clays, as storm load estimation and the 

number of storms experienced by the monopile during the design lifetime may affect future 

performance. Under the same design conditions, the monopile in soft clay is insufficient with 

respect to both natural frequency degradation and permanent rotation. The results of this paper 

also indicate that load magnitude plays a strong role in both natural frequency and permanent 
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rotation estimation, so using average maximum loads from storm time histories was more 

conservative than using a cumulative cyclic degradation model. It is recommended that further 

work on this topic be performed using calibrated p-y curves which more accurately represent 

lateral OWT monopile behavior, and to validate the cumulative cyclic degradation method 

experimentally or by using more robust modeling methods (e.g. the finite element methods 

developed by NGI [21]). 
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CHAPTER 5 

5 MARINE GROWTH EFFECTS ON OFFSHORE WIND TURBINE 

SUPPORT STRUCTURES 

Authors 

W Carswell, Arwade SR, DeGroot DJ  

Abstract 

The support structure and foundation of offshore wind turbines (OWTs) can comprise nearly one 

quarter of the capital cost of an offshore wind project; consequently, any mechanism which 

requires increased structural material (thereby increasing the cost of the project) should be 

carefully considered by the designer. Marine growth (MG) increases mass and surface roughness 

for offshore structures, which can reduce natural frequency and increase hydrodynamic loads, and 

can also interfere with corrosion protection and fatigue inspections. Design standards and 

guidelines do not have a unified long-term approach for MG on OWTs, though taking into 

account added mass and increased drag is recommended. Some standards recommend inspection 

and cleaning of MG, but this would negate the artificial reef benefits which have been touted as a 

potential boon to the local marine habitat. This paper investigates the effects of MG on monopile-

supported OWTs with respect to natural frequency and hydrodynamic loading. Specifically, the 

objective of this paper is to assess how significant the influence is of MG on support structure 

behavior in order to provide basis for designers and project planners to allow MG and therefore 

sponsor artificial reef effects in an OWT development.  

Nomenclature 

ABS American Bureau of Shipping 

DNV Det Norske Veritas 



112  

IEC International Electrotechnical Commission 

MG Marine growth 

NREL National Renewable Energy Laboratory 

OWT Offshore wind turbine 

fn Natural frequency associated with n
th
 mode of structure 

g Acceleration due to gravity 

h Water depth 

kr Surface roughness 

kwave Wave number 

pu Ultimate soil resistance 

su Undrained shear strength 

t Thickness 

umax Maximum value of the orbital velocity at the bed 

z Depth below sea level 

x , x  Velocity and acceleration of water  

CD Morison’s equation drag coefficient 

CDS Drag coefficient under steady state flow 

CM Morison’s equation inertia coefficient 

D Cylinder diameter 

E Modulus of elasticity 

F Wave force 

H Wave height 

Hmud Horizontal mudline force 

Hs Significant wave height 

K Stiffness matrix 

KC Keulegan-Carpenter number 

M Mass matrix 

Mmud Mudline moment 

T Wave period 

Tp Peak spectral wave period 

c Strain at one-half the maximum stress in undrained compression test 

ξ Clay consolidation coefficient 

 Density 

 Wave amplification coefficient 

 Natural frequency

 

5.1 Introduction 

The installment of offshore wind turbines (OWTs) greatly benefits global renewable energy 

generation goals, but there is concern about the potential impact of OWTs on local marine 

environments. The primary environmental concerns surrounding offshore wind development 

include noise from monopile installation and operation, physical habitat disruption from the 

presence of foundations, the electromagnetic fields created by transmission cables, and bird 

collisions [1–7]. Of these environmental considerations, this paper discusses the physical 
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presence of OWT foundations in the marine environment; more particularly, this paper focuses on 

monopile foundations, as monopiles are the most prevalent foundation type of currently installed 

OWTs [8]. 

Most OWT monopiles are installed in soils, and consequently the hard substrate of the steel 

foundation can provide habitat opportunities for benthic organisms and increase biodiversity (i.e., 

artificial reef effect [1,9–11]). Unfortunately, marine growth (otherwise known as fouling) can 

also adversely affect offshore infrastructure by increasing the mass of the substructure 

contributing to natural frequency, increasing the roughness and effective diameter of the structure 

and thereby increasing hydrodynamic loads [12–14], and can affect corrosion rate, interfere with 

corrosion control systems (coatings, linings, or cathodic protection), and impede structural fatigue 

inspection [14–16]. Because monopile-supported OWTs designed in the soft-stiff frequency 

regime are relatively close to the frequency spectra of wave loads [17], decreases in the natural 

frequency should be treated with caution and examined closely by the designer. Additionally, the 

cost of OWT foundations is proportionally large and can comprise approximately 20-25% of the 

capital cost of an offshore wind installation [8,18,19], therefore any mechanism which increases 

design loading of the support structure (thereby leading to increased structural material and 

increased cost) may be considered highly undesirable. 

Some design guidelines acknowledge this potential increase in design loads and recommend that 

a strategy for inspection and possible removal of MG should be planned as a part of structural 

design [14], while other design guidelines recommend removal if the growth is found to be 

thicker than the original approved design [13]. In either case, removal of MG is costly [16] and 

would negate the possible environmental benefits associated with artificial reef effect. 

This paper presents the results of an investigation of the effects of MG on monopile-supported 

OWT support structures with respect to natural frequency and hydrodynamic loading considering 
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ultimate limit state design load cases. While it has been acknowledged that MG plays a role in the 

fatigue limit state, it is assumed in this paper that the most critical fatigue location for monopiles 

is at the peak stress point near the mudline (i.e. scour zone), which is at a depth considered 

inaccessible to inspection and repair and as a consequence is designed conservatively [14].  

The issue of MG has been well discussed in literature for offshore platforms (e.g. [21–24]) and 

for OWT jacket substructures (e.g. [16,25]), but the authors found few references in the literature 

which analyze the effects of MG on OWT monopiles from the engineering perspective. Research 

by Veldkamp briefly discusses the impact of MG on hydrodynamic loading, but does not trace 

MG directly to drag or inertia coefficients nor quantify any impact on natural frequencies [26,27]. 

This paper assesses the effects of MG on OWT monopile design: first, the impact of added mass 

on the natural frequency is analyzed by eigenvalue analysis; second, the increase in 

hydrodynamic loading as a function of increased effective diameter and drag. The NREL 5MW 

Reference Turbine (“NREL 5MW”, [28]) is analyzed assuming a 6 m-diameter monopile sited off 

the U.S. Atlantic coast in Delaware in 30.5 m of water. The environmental conditions are 

informed by buoy data from the National Data Buoy Center which is managed by the National 

Oceanic and Atmospheric Administration [29]. Soil profiles are not available at that site, and 

consequently there is little emphasis on soil-structure effects in this paper. The eigenvalue 

analysis used to assess natural frequency considers a monopile supported laterally by so-called p-

y springs for a variety of soil types, and the hydrodynamic analysis assumes a perfectly fixed (i.e. 

cantilevered) base at the mudline. Because the focus of this paper is on the effect of MG on OWT 

monopiles, the models used here are broadly representative and used as a basis for comparison. 

The balance of engineering, environmental, and economics considerations with regard to artificial 

reef effect are discussed in Section 5.2, followed by explanations of the methods of natural 

frequency and hydrodynamic analysis in Sections 5.3 and 5.4. The results from these analyses are 

presented in Section 5.5, followed by conclusions and recommendations in Section 5.6. 
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5.2 Marine Growth 

After installation, OWT substructures and monopiles can benefit the environment by providing an 

artificial reef and by creating a sanctuary from trawling and shelter from predation and provide 

enhanced feeding grounds [11,30,31]; in many situations, manmade structures have been placed 

in the marine environment to benefit fisheries and mitigate damage to the environment by 

rehabilitating habitats [1,10,11]. The hard substrate of offshore infrastructure provides an 

opportunity for the benthic organisms (e.g. mussels and barnacles) to colonize, and in some cases 

achieve biomass levels that exceed natural beds [9]. Conversely, the artificial reef effect can also 

impact fisheries by redistributing stock and facilitate the invasion of non-native species 

[1,9,11,30]. 

Putting aside the impacts of placing OWTs in the marine habitat, the impact of the marine 

environment on the engineering and design of the OWT is significant. OWTs must be designed to 

withstand stochastic loading from wind and waves for design lifetimes of 20 years [12,14], and 

must also consider the effects of sediment redistribution (i.e. scour). Sediment redistribution is 

also associated with artificial reef due to changes in local hydrodynamic patterns and increased 

biodiversity [9,10]. 

There are two types of MG: hard growth (e.g. mussels, barnacles, or tubeworms) and soft growth 

(e.g. hydroids, sea anemones, and soft corals). MG is most commonly seen in the upper 

submerged zone and the lower part of the splash zone, and generally decreases with depth as a 

function of access to space, food, and light [14,16,23–25,32]. In the North Sea, the greatest MG 

cover is to a depth of approximately 30 m and is typically dominated by mussels [16,23,24]. The 

colonization process is very dynamic, with MG growing not only on clean surfaces but also on 

top of existing MG [16,23–25], though typically tapers off after a few years [14]. 
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For the purposes of this paper, the most important aspects of MG to be considered is the thickness 

of the growth on the monopile and added mass associated with the MG. Mass densities in 

literature typically range from 900-1300 kg/m
3

 but may be as high as 2200 kg/m
3 

[15,16,25,33] 

and thicknesses up to 200 mm have been suggested or reported [14,16]. No MG thicknesses have 

been suggested for the U.S. Atlantic coast, but 200 mm is common off the coast of California and 

38 mm for the Gulf of Mexico [14]. Due to lack of site-specific data, this paper conservatively 

used a uniform MG thickness of 200 mm for the OWT substructure (from mudline to water line) 

and assumed a density of 2200 kg/m
3

. It is assumed that the MG covers the substructure 

uniformly from mudline to waterline.  

5.3 Eigenvalue Analysis 

Natural frequencies of the NREL 5MW were determined using eigenvalue analysis, where the 

natural frequency 𝜔 (rad/s) is determined by the eigenvalue problem 

  0det 2  MK   (1) 

 where K is the linear stiffness matrix and M is a mass matrix representing the OWT. The OWT 

was modeled using Euler-Bernoulli beam elements to represent the steel structural elements of 

the OWT (tower, substructure, and monopile) using the properties and dimensions shown in 

Figure 5.1.  
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Flooded substructure,   = 1027 kg/m³

 

Figure 5.1 NREL 5MW Reference Turbine finite element model for eigenvalue analysis 

Soil-structure interaction was modeled using nonlinear p-y springs for clay as defined by Matlock 

[34]. Initial stiffness K0 of the p-y springs was defined as  

25.00

c

u

D

p
K


  

(2) 

where pu is the ultimate soil resistance at a given depth, D is the diameter of the pile, c is the 

strain occurring at one-half the maximum stress in laboratory undrained compression tests of 

undisturbed soil samples, and ξ is an empirical coefficient equal to 10 for normally consolidated 

clay and 30 for overconsolidated clay [14]. The secant stiffness of the p-y springs was also used 

by applying mudline loads from the NREL 5MW under extreme storm conditions (from the 

hydrodynamic load analysis, Section 5.4), determining the displacement experienced by each 

spring and corresponding spring force, and defining the secant stiffness as force divided by 
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displacement (p/y).  The soil conditions considered in the eigenvalue analysis are representative 

of a medium stiff clay (with undrained shear strength su = 50 kPa, submerged density of 9.2 

kg/m
3
, c = 0.005, and ξ = 30), and are assumed to be constant for the depth of the monopile, with 

2 m spacing between p-y curves. Further details on how p-y curves are implemented in this type 

of model can be found in [35,36]. 

For the eigenvalue analysis considering MG, additional mass was added to the lumped nodal 

masses between the mudline and mean sea level (MSL) from 200 mm of MG thickness fully 

covering the circumference of the substructure at a mass density of 2200 kg/m
3
. MG in the splash 

zone was neglected. In addition to MG, it was assumed that the substructure was flooded during 

installation and therefore the added mass of the sea water (1027 kg/m
3
) was included in the 

lumped nodal masses for the substructure. 

5.4 Hydrodynamic Load Analysis 

Hydrodynamic loading for monopiles is typically calculated using Morison’s equation, where the 

wave force per unit length dF at a given depth below sea level z is defined as 

dzxx
D

Cdzx
D

CdF DM


24

2

   
(3) 

where  is the density of the sea water (1027 kg/m
3
), D is the diameter of the monopile, x  and x  

are the horizontal wave-induced acceleration and velocity of the water, CD and CM are drag and 

inertia coefficients. The drag and inertia coefficients are empirically determined, and a variety of 

recommendations have been presented in literature ([14,16,25–27,37,38], Table 5.1). 
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Table 5.1 Morison's equation drag and inertia coefficients used in literature for offshore wind turbine 

foundation analysis. Values in bold were used in analysis; the values within parentheses are the acceptable or 

recommended range of values given. 

Source CD (Range) CM (Range) 

Jusoh & Wolfram (1996) (0.6-1.8) (1.7-2.0) 

Veldkamp & van der Tempel (2005) (0.65-1.05)  (1.8-2.0) 

API (2005) (0.65-1.05) (1.2-1.6) 

Veldkamp (2006) 0.9 (0.6-1.2) 2.0 (1.3-2.0) 

Fischer (2006) (0.6-1.0) (1.6-2.5) 

Fevåg (2012) 1.0 (0.52-1.52) 2.0 (1.2-1.6) 

Shi et al. (2012) 1.0 (0.6-1.2) 2.0 (1.2-2.2) 

DNV (2013)  (0.65-1.05)  (1.6-2.0) 

Design guidelines and standards take different approaches to the uncertainty in selecting CD and 

CM for offshore structures: IEC [12] does not recommend any particular range of values and 

directs the readers to reference documents (ISO 13819-2 for cylindrical members); API [37] 

recommends pairs of CD and CM depending on whether the substructure is smooth or rough (CD = 

0.65, CM = 1.6 and CD = 1.05 and CM = 1.2, respectively); DNV [14] describes a process for 

selecting the appropriate values for CD and CM as a function of surface roughness (kr) and 

Keulegan-Carpenter (KC) number. Generally speaking, CD increases with kr and CM decreases 

with kr [24]. 

The DNV drag coefficient is depending on the drag during steady-state flow CDS, which is 

determined by 
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and the wave amplification factor ψ which is determined as a function of KC and CDS. The 

surface roughness kr is assumed to be 0.003 m for concrete and highly rusted steel and for MG 

can range between 0.005 and 0.05 m. 
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Figure 5.2 Wave amplification factor as a function of drag coefficient for steady-state flow (CDS) and Keulegan-

Carpenter (KC) number 

The KC number can be calculated by 

D

Tu
KC


 max

 
(5) 

where T is the wave period and the maximum value of the orbital velocity at the bed umax is 

determined by 

)sinh(
max

hkT
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which is a function of the wave height H, the water depth h, and the wave number kwave. The wave 

number is determined for a given sea state by solving the equation   

)tanh(
2
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(7) 

where g is the acceleration due to gravity. The drag coefficient CD is the product of the wave 

amplification factor  and the drag coefficient under steady-state flow CDS.  

Morison’s equation was used to calculate hydrodynamic loads on the NREL 5MW using the aero-

hydro-elastic program FAST [38] assuming linear wave theory using the JONSWAP spectrum 
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with Wheeler stretching and constant CD and CM for the substructure. A sensitivity study of the 

full range of drag coefficients was conducted using the environmental conditions from IEC [12] 

design load case 6.1c followed by a comparison of the average rainflow count from the stochastic 

time history analysis of IEC design load case 6.2a. These design load cases were selected from 

the parked design conditions under the assumption that the sea states associated with these 

extreme storm loads (with mean return period of 50 years) are more likely to influence ultimate 

limit state OWT support structure design than more regularly occurring sea states (such as those 

during power production). Design load case 6.1c considers 10-min simulations of steady wind 

and regular waves using the Reduced Wind Model and Extreme Wave Height [12]. Design load 

case 6.2a consists of six 1-hr simulations of stochastic wind and irregular (stochastic) waves 

using the Extreme Wind Model and Extreme Sea State [12].  

The environmental conditions used for each of these design load cases was determined using 

wind and wave data from the Delaware data buoy (Table 5.2). The power law was used to 

extrapolate wind speeds from the 5 m anemometer height to hub height using an exponent of 

0.14. The 50-year wind speed was determined by fitting a Generalized Extreme Value 

distribution to the annual maxima of the 1-hr wind speed data from 1986-2014 and taking the 98
th
 

percentile value from the fitted distribution. Because design load case 6.1c is a 10 minute 

simulation, the 50-yr wind speed was increased by a factor of 1/0.95, then additionally by a factor 

of 1.1 according to the Reduced Wind Speed model [12,14].The peak spectral period Tp was 

calculated as a function of the significant wave height Hs in a manner similar to [39], where 
















g

H
T s

p 1.1105.1  (8) 

for which g is the acceleration due to gravity. 
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Table 5.2 Environmental conditions for hydrodynamic study 

Design Load Case: 6.1c 6.2a 

Wave Type Regular Irregular 

50-yr Significant Wave Height 8.12 m 8.12 m 

Peak Spectral Period 10.6 s 10.6 s 

Wind Speed 42.7 m/s 36.9 m/s 

Turbulence Intensity 0% 11% 

Analysis Time History 10 min 1 hr 

5.5  Results 

The effects of MG on monopile-supported OWTs with respect to natural frequency and 

hydrodynamic loads are discussed below. The focus of these analyses are on the engineering of 

the support structure and do not include environmental or policy considerations of MG. 

5.5.1 Effect of Added Mass on Natural Frequency 

Despite the conservative estimations of MG thickness and density (200 mm and 2200 kg/m
3
, 

respectively), there was very little change in natural frequency when MG was included on the 

substructure (Table 5.3). In this scenario, the total mass of the MG (260,000 kg) is approximately 

54% of the mass of the steel substructure (480,000 kg) and about 24% of the total structural mass 

(1,000,000 kg, including the substructure, tower, and rotor-nacelle assembly). Three mudline 

conditions were considered for the purposes of comparison: (1) perfect fixity between the 

substructure and the mudline, (2) the initial stiffness (Hmud = Mmud = 0) of a p-y spring supported 

monopile in medium stiff clay, and (3) the secant stiffness (Hmud = 5.30 MN, Mmud = 221 MNm) 

of a p-y spring supported monopile in medium stiff clay. In all cases considered, the addition of 

MG on the substructure did not change first natural frequency f1, (considering a minimum 

threshold of natural frequency difference to be 0.01%) and at most the natural frequency changed 

by 0.50% (for f2, considering perfect fixity at the mudline). For the fixed base condition, a change 

in natural frequency occurred for f3 (0.24%), but the inclusion of p-y springs in the eigenvalue 

analysis caused the greatest difference to occur in f2. 
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Table 5.3 Natural frequencies as a function of marine growth thickness on the substructure 

Mudline 

Condition 

Natural 

Frequency, fn 

(Hz) 

Marine Growth 

Thickness, 

0 mm 

Marine Growth 

Thickness, 

200 mm 

Reduction in 

Natural 

Frequency (%) 

Fixed 

f1  0.256 0.256 - 

f2 2.02 2.01 0.50% 

f3 4.22 4.21 0.24% 

su = 50 kPa 

Hmud = 0 

Mmud = 0 

f1  0.215 0.215 - 

f2 1.00 0.999 0.10% 

f3 2.72 2.72 - 

su = 50 kPa 

Hmud = 5.30 MN  

Mmud = 221 MNm 

f1  0.163 0.163  - 

f2 0.677 0.675 0.30% 

f3 2.45 2.45 - 

In order to cause even 1% change in natural frequency (in f2 for the p-y cases and f3 for the fixed 

case), the required MG thickness for these cases would need to exceed 480 mm – over two times 

the thickness which was conservatively selected. 

While nominally the changes in higher frequencies were more significant than for the first natural 

frequency, these results differ from those presented in literature for jacket foundations and 

platforms which indicate more significant changes in mode shape with the addition of marine 

growth [16,24]. Given that the change in f1 changed by nearly 20% from the initial stiffness to the 

secant stiffness case, it can be concluded that soil conditions are much more significant in the 

assessment of monopile-supported OWTs than MG – changes of 0.5% attributed to MG can 

consequently be considered negligible in the face of other uncertainties in OWT modeling. 

5.5.2 Marine Growth Effects on Hydrodynamic Loading 

There are two considerations of MG when discussing hydrodynamic loading: first, small changes 

in natural frequency may affect the dynamic behavior of the OWT support structure when 

subjected to wave loading; second, MG increases surface roughness and the effective diameter of 

the substructure.  
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To isolate the impacts of added mass and natural frequency shift, aero-hydro-elastic time history 

simulations were performed in FAST considering the steady wind and regular wave conditions 

prescribed by IEC design load case 6.1c [12]. The added mass associated with MG thickness of 

200 mm with density 2200 kg/m
3
 was incorporated into the mass density of the NREL 5MW 

substructure, which required updating the distributed support structure properties in the FAST 

tower property input file and updating the polynomial coefficients which represent mode shape. 

Perfect fixity was assumed at the mudline, MG thickness was assumed to be constant in the 

submerged zone, and the Morison’s drag and inertia coefficients were assumed to be CD = 1.0 

and CM = 2.0, respectively.  
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Figure 5.3 Difference in total wave force as a function of marine growth (MG) mass 

Though small shifts in natural frequency can correspond to significant changes in hydrodynamic 

loading depending on the proximity of the natural frequency to the peak wave load frequency 

spectra, the very small changes in natural frequency attributed to MG found in the eigenvalue 

analysis are similarly reflected in the time history analysis (Figure 5.3). The total wave force was 

calculated by subtracting the thrust due to wind from the total mudline moment, and the 

difference between the case considering no added mass due to MG (MG = 0 mm) and that which 

included 200 mm of MG was negligible. 
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In more strict terms, the influence of MG on hydrodynamic loading is tied to the drag coefficient, 

CD. The process suggested by DNV [14] to determine CD was used to estimate the difference in 

drag factor when considering a coarse, 200 mm thick layer of MG versus a smooth, newly 

installed OWT with painted steel subjected to the wave conditions of design load case 6.2a (Table 

5.4). 

Table 5.4 Calculation of Morison's equation drag and inertia coefficients from DNV [14] for the NREL 5MW 

Reference Turbine  

Marine growth thickness 0 mm 200 mm 

Wave number, kwave 0.0418 

Keulegan-Carpenter Number, KC 2.58 2.42 

Surface Roughness, kr 0.0001 0.05 

Steady-State Drag Coefficient, CDS 0.65 1.03 

Wave Amplification Factor, ψ 0.38 0.53 

Drag Coefficient, CD = ψCDS 0.25 0.55 

Inertia Coefficient, CM 2.0 2.0 

In this case, the drag coefficients are extremely low, and are likely a result of the ratio between 

the surface roughness and the diameter of the monopile when determining the steady-state drag 

coefficient. In fact, the drag coefficient for the smooth case is below the bottom of the range of 

CD recommended and seen in literature, and the MG = 200 mm case is just above the lowest CD 

reported ([16], Table 5.1). Consequently, the maximum range of CD reported (0.52 to 1.52, [16]) 

was used for comparative purposes to find the impact of increased drag on hydrodynamic 

loading, using the wave kinematics obtained from the regular-wave time history analysis design 

load case 6.1c (Figure 5.4).  
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Figure 5.4 Influence of drag coefficient on unit wave force at arbitrary depth z below sea level 

Because of large monopile diameters and the D
2
 term in Morison’s equation, hydrodynamic 

loading for monopile-supported OWTs is primarily inertia-dominated; while the drag coefficient 

CD does influence hydrodynamic loading (Figure 5.4), the influence of the inertia coefficient CM 

is much more significant. The unit wave force (wave force dF per unit length dz) indicates a 

slight increase in wave force with increasing CD, but the change is minimal. Even so, the change 

in CD does not affect the peak wave load and therefore is unlikely to impact a designer’s 

assessment of ultimate limit state loading conditions – and consequently, the resulting OWT 

support structure design is not liable to change as a result of MG.  

While a full fatigue analysis is outside the scope of this paper, a comparison of the average 

rainflow counts of mudline moment from the limiting drag cases (CD = 0.52 and 1.52, CM = 2.00) 

was made using the stochastic extreme storm time history associated with design load case 6.2a. 

The average rainflow count represents the average number of cycles at a given amplitude 

obtained from six realization of a 1-hr storm time history. 
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Figure 5.5 Average rainflow counts of mudline moment considering drag coefficients CD of 0.52 and 1.52 from 

six realizations of the extreme storm time history associated with design load case 6.2a 

It is possible that the cumulative effect of increased drag may affect the fatigue life of the OWT, 

but the negligible change in cycle counts between the CD = 0.52 and CD = 1.52 cases imply that 

increased drag is not significant for OWT fatigue demand.  

5.6 Conclusions 

From an engineering perspective, there is minimal influence of marine growth (MG) on the 

design of monopile-supported offshore wind turbines (OWTs). Despite conservative estimates of 

0.200 mm of MG thickness at a density of 2200 kg/m
3
, the added mass due to MG had very little 

influence on natural frequency of the NREL 5MW; at most, the reduction was approximately 

0.2% in the second natural frequency when considering the cases which included p-y springs. The 

very small changes in first, second, and third natural frequencies imply that MG does not play a 

significant role in the dynamic characteristics of the OWT support structure especially when 

compared to other uncertainties in OWT modeling (e.g. soil-structure interaction). Similarly, the 

small changes in natural frequency and increase in effective diameter attributed to MG had 

negligible effect on the time history of wave force when considering a regular wave train. 
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Because the substructure of monopile-supported OWTs typically has a large diameter, 

hydrodynamic loading calculated by Morison’s equation is dominated by the D
2
 in the inertial 

force term. While there is a small increase in wave force with increased drag, these increases do 

not occur at the peak of the wave force and are therefore unlikely to impact the ultimate limit 

state design of the OWT support structure. Fatigue analysis was outside the scope of this paper, 

but a comparison of the average rainflow count of mudline moment from six realizations of the 

stochastic 1-hr extreme storm history defined by IEC design load case 6.2a showed negligible 

change with increased drag. 

The analyses and comparisons in this paper indicate that it is probably not necessary to clean MG 

off of a monopile-supported OWT for reasons related to the engineering of the structure. It is 

possible that MG may accelerate corrosion and in that way impact the fatigue life of the support 

structure; however, the location of highest stress on a monopile typically occurs at the mudline 

which is at a depth considered prohibitive for fatigue inspection [14] and will have little MG 

compared to the splash zone and upper portions of the submerged zone on the substructure. 

Further work is necessary to definitively conclude whether or not MG significantly influences the 

fatigue life of monopile-supported OWTs with respect to accelerated corrosion. 

From an environmental perspective, installation of OWTs changes the marine habitat. If the goal 

is to mitigate change to the environment, then MG should be removed periodically from the 

substructure; however, if it is decided that artificial reef effects on OWTs is desirable, then 

sufficient evidence needs to be provided to conclude the positive effects of adding artificial 

substrate to the environment [1]. Further discussion of this topic is beyond the expertise of the 

authors; consequently, it is suggested that further work be performed to assess the positive and 

negative effects of artificial substrate and whether they outweigh the potential risk of species 

invasion. Moreover, because no offshore wind developments have been decommissioned, it is 

unclear what the best course of action is with regard to MG if it is anticipated that the OWTs will 
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be removed from the environment at the end of their design life. The role of offshore wind 

infrastructure in the marine environment needs to be assessed for all stages of the design life, 

from installation through decommissioning. 
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDATIONS 

The broad objective of this dissertation was to provide a body of research which can further 

inform designers and policy makers on several critical aspects of offshore wind turbine (OWT) 

design, analysis, and maintenance. In light of this broad objective, this research was more 

specifically targeted at issues relating to monopile support structures, as the majority of currently 

installed OWTs are supported by monopile foundations.  

It is unclear how integrated the design of the support structure and the design of the foundation 

are in commercial OWT projects. In many cases, structural and geotechnical design are 

performed separately despite the dependence of OWT dynamics on the coupled behavior of the 

support structure and foundation. This dissertation combined the mechanics of complex programs 

suited for particular aspects of OWT design and analysis (e.g. FAST for aero-hydro-elastic 

modeling and INFIDEL for cyclic soil-pile modeling) via lumped parameter (i.e. reduced-order) 

modeling in order to more accurately capture the contributions of both the structural and 

geotechnical design to global OWT behavior. 

The topics covered by this dissertation (foundation damping, cyclic degradation of soil properties, 

natural frequency degradation, and marine growth) were selected specifically with the goal of 

reducing the high costs associated with offshore wind energy. The results from these pursuits are 

summarized below, followed by recommendations for further work. 

6.1 Summary of Results 

Each of this dissertation’s chapters (written as standalone papers) focused on an element of OWT 

monopile design which is not well understood by the current design community. While the NREL 

5MW Reference Turbine (“NREL 5MW”) [1] supported by a 6 m monopile was used in all of the 

following analyses, the wind, wave, and soil conditions vary from chapter to chapter. The 
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summary of results given here emphasizes the motivation for each chapter, the importance and 

novelty of the research performed, and focus on OWT behavior trends rather than site-specific 

results.  

6.1.1 Foundation Damping 

OWT are lightly damped structures, and thus the proximity of wind and wave load frequencies to 

OWT natural frequency requires careful consideration of different sources of damping – 

aerodynamic, hydrodynamic, structural, and soil damping – in order to reduce load demands and 

consequently required structural material costs. Of all the sources of damping, the contributions 

of soil damping (better termed “foundation damping” due to its reliance on soil-pile interaction) is 

least well defined, and currently there is no recommended methodology for calculating the 

contribution of the soil to the total damping of the OWT support structure. Chapter 2 proposed a 

method for converting hysteretic energy loss into a viscous, rotational mudline dashpot for a 

lumped parameter model (LPM), facilitating the inclusion of foundation stiffness and damping in 

OWT structural analysis without significantly increasing computational demand. 

Using the logarithmic decrement method on tower top free vibration time histories of the NREL 

5MW, mudline OWT foundation damping was estimated to contribute between 0.17-0.72% 

critical damping to total OWT damping. These results are broadly in agreement with previous 

estimates of foundation damping, taking into account differences in soil type, monopile 

foundation, wind turbine, and mudline load conditions. The majority of previous estimates of 

foundation damping were back-calculated from the logarithmic decrement of emergency 

shutdown or “rotor-stop” tests after subtracting out estimates for the other sources of damping, 

whereas this dissertation calculated foundation damping directly using soil mechanics. 

In extreme storm conditions where the OWT rotor blades were parked and feathered, the 

inclusion of foundation damping reduced cyclic moment demand by 8-9%. Reductions in high 
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amplitude cycle counts were observed in the average rainflow count of mudline moment from 

extreme storm conditions, which indicate that foundation damping may contribute significantly to 

the fatigue life of monopile-supported OWTs. 

6.1.2 Influence of Foundation Damping on Cyclic Demand  

As aforementioned, there is currently no recommended methodology for taking into account 

foundation damping in OWT analysis. In order to quantify the reduction in cyclic demand which 

can be attributed to foundation damping (thereby also assessing the relative importance of 

foundation damping in the design process), the influence of foundation damping was analyzed 

considering the design situations of power production, emergency shutdown, and parked 

conditions in finite element models and using the NREL developed aero-hydro-elastic software 

FAST v7 [3]. These design situations were modeled according to the design standard IEC 61400-

3 [10]. For stochastic time histories, three standard deviations (3σ) were used as a measure of 

cyclic amplitude for mudline response (i.e., shear, moment, displacement, and rotation); for 

emergency shutdown, the cyclic amplitude was defined as the difference between the mean 

response prior to shutdown and the absolute maximum response after shutdown; for cases with 

steady wind and regular waves, the cyclic amplitude was defined as half the difference between 

the maximum and minimum response. Foundation damping played a more significant role in the 

emergency shutdown and parked design conditions than power production. For power production 

cases, the average reduction in cyclic demand (mudline forces and moments) due to the inclusion 

of foundation damping was on the order of 2-3%. Comparatively, the cyclic moment demand was 

reduced by 2-10% on average for the parked conditions and by as much as 30% in some cases. 

The cyclic demand for emergency shutdown cases reduced by 1-10%.  

It should be noted in particular here that the percent critical damping which was calculated for 

emergency shutdown design situations was in good agreement with the experimental emergency 

shutdown results from [2] considering similar soil profiles. 
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6.1.3 Cyclic Degradation of Soil Properties 

Pile foundations are typically designed and analyzed using the p-y method to model lateral soil 

behavior due to simplicity and ease of implementation; however, p-y models are limited in their 

applications to OWT monopiles in that they assume flexible pile behavior, have limited ability to 

model cyclic effects, and contain no information for how to determine permanent accumulated 

rotation after cyclic loading. Two different p-y methods were presented for how cyclic 

degradation may be taken into account in a computational efficient manner: (1) cumulative cyclic 

p-y degradation and (2) quasi-static p-y methods with embedment reduction.  

The cumulative cyclic degradation method used p-y degradation in conjunction with rainflow 

counts of cyclic loading to determine the degraded state of the soil-pile system after storm 

loading. Cyclic load histories are idealized using load parcels consisting of numbers of load 

cycles at different load amplitudes, applied in order of increasing load amplitude. A cyclic 

accumulation/degradation method between each step was used to account for the equivalent 

degradation from the number of load cycles associated with that load amplitude. This method was 

compared to a quasi-static p-y method which eliminated the contribution of soil spring stiffness 

within a pre-defined “embedment reduction” zone, representing disturbed soil around the 

perimeter of the monopile which can no longer contribute to pile resistance. 

The natural frequency of the NREL 5MW was examined for monopiles in homogeneous clay 

deposits with undrained shear strength su = 35 kPa, 50 kPa, and 100 kPa (representing soft, 

medium, and stiff clays respectively) to demonstrate a range of clay behavior subjected to 

extreme storm loading. Using the quasi-static average maximum load from six realizations of 

extreme storm loading resulted in greater reduction in natural frequency (with respect to natural 

frequency assessed with zero load) than using the cumulative cyclic degradation method. 
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The serviceability limit state (SLS) imposed on OWT monopiles requires the designer to assess 

the accumulated permanent pile rotation after storm loading to ensure that the mudline rotation 

does not exceed a threshold magnitude (typically on the order of 0.25°). Design guidelines do not 

recommend a specific method for determining this permanent residual rotation and consequently 

some designers conservatively choose to design piles which do not exceed the SLS at peak 

loading. Assuming the elastic limit of half the ultimate resistance (0.5pu) and the cyclic unload-

reload modulus proposed in [4], the monopile in 100 kPa clay remained fully elastic (all springs 

were loaded < 0.5pu), partially inelastic for the 50 kPa clay, and almost fully plastic for the 35 

kPa clay (nearly all springs loaded > 0.5pu).  

These results indicated that extreme storm loading on OWT monopiles in stiff clays is unlikely to 

affect the natural frequency and permanent accumulated rotation; further consideration is required 

for OWT monopiles in medium clays, as storm load estimation and the number of storms 

experienced by the monopile during the design lifetime may affect future performance. Under the 

same design conditions, the monopile in soft clay is insufficient with respect to both natural 

frequency degradation and permanent rotation. Load magnitude played a strong role in both 

natural frequency and permanent rotation estimation. 

6.1.4 Marine Growth 

Marine growth (MG) had very little impact on the engineering design of a monopile-supported 

OWT despite conservative estimates of MG thickness and density. Added mass due to MG 

caused minimal changes in natural frequency of the NREL 5MW (0.2% at most, given MG 

thickness of 200 mm with a density of 2200 kg/m
3
), especially when compared to other 

uncertainties in OWT modeling (e.g. soil-structure interaction). Similarly, the small changes in 

natural frequency and increase in effective diameter attributed to MG had negligible effect on the 

time history of wave force when considering a regular wave train. While there was a small 

increase in wave force with increased drag, the increase did not occur at the peak of the wave 
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force and are therefore unlikely to impact the ultimate limit state design of the OWT support 

structure. A comparison of the average rainflow count of mudline moment from six realizations 

of the stochastic 1-hr extreme storm history for maximum and minimum drag coefficients were 

nearly identical. 

In light of these results, it is probably not necessary to clean MG off of a monopile-supported 

OWT for reasons related to the engineering of the structure. Further discussion of the 

environmental benefits (e.g. artificial reef effects) and drawbacks (e.g. increased potential for 

invasive species) of OWT infrastructure may still be debated.  

6.2 Recommendations for Further Work 

One of the major limiting factors for offshore wind research, particularly in the U.S., is the lack 

of available site properties and OWT field performance data. Site specific information regarding 

soil properties, profiles, structural designs, and installation is typically proprietary, which means 

that unlike many fields of research, research chases the innovations of industry and rather than the 

other way around. Many aspects of this dissertation would have benefited tremendously from 

experimental validation – most notably with regard to the cumulative cyclic degradation and 

unload/reload modulus assumptions made in this body of work. The following recommendations 

are categorized generally by topic, with specific, idealized (i.e., unconstrained by budget, 

timeline, or proprietary boundary) research objectives identified by bullet points. 

6.2.1 P-y Curves for Large Diameter Monopiles  

Because of the prevalence of p-y curves in design, full-scale experimentation is imperative for 

developing a new set of p-y curves which take into account the rigid behavior of large-diameter 

OWT monopiles. The benefits of large-diameter calibrated p-y curves formulations for clays and 

sand under monotonic and cyclic conditions are required in order to make substantial progress on 

reducing conservatism in OWT substructure and monopile design. In the absence of full-scale 
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data and calibrated p-y curves, enormous amounts of time (on behalf of both engineers and 

computers) are spent developing and executing complicated three-dimensional finite element 

programs which remain, like the p-y curves, largely uncalibrated against full-scale results.  

 Experimental research. Instrument large diameter (i.e., diameters exceeding 2 m) in a 

range of homogeneous soil profiles using L/D and D/t ratios which are similar to 

currently installed OWTs (where L is pile length, D is the diameter, and t is the thickness 

of the pile). These tests could be performed onshore in order to increase control over 

experimentation and results and to avoid the influence of wind and wave loading. Piles 

should be loaded monotonically and cyclically.  Determine p-y curves as a function of 

soil type, soil properties, pile stiffness, load magnitude, and load frequency and number 

of load cycles (for cyclic testing).  

 Computational research. Compare monotonic force-displacement curves from a pile 

supported by the original (small diameter) p-y curves, the experimentally-derived large 

diameter p-y curves, and three dimensional finite element model. Identify unloading 

modulus for p-y curves and define elastic/plastic behavior of the pile-soil system. 

6.2.2 Foundation Damping 

Foundation damping has some available data, in the form of emergency shutdown or “rotor-stop” 

tests; realistically, it is impossible to decompose the contributions of damping to OWT behavior, 

and consequently the only real necessity would be to aggregate a library of rotor-stop tests 

considering different soil conditions and turbines. Further work on foundation damping should 

include the influence of many aspects of soil behavior, e.g. dilative materials, such as dense sand, 

partially drained materials, scour and gapping that can cause loss of contact between foundation 

and soil, and combined static and cyclic loading. It is unknown at this time how much damping 

may be associated with sands versus clays, or the effects of soil layering (e.g., is the top layer of 
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soil the main contributor to foundation damping, or does the entire soil deposit within the 

embedment depth contribute to hysteretic behavior?). More tangible and finite aspects of 

foundation damping that should be explored including a sensitivity study of cyclic amplitude 

definition on the reduction in cyclic demand (e.g., 3 was used for stochastic time histories, but 

perhaps 2root mean square, or some other metric is more appropriate).  

The work here also assumed that the fore-after first natural frequency was the dominant 

frequency in all cases; while this is probably true for OWTs in parked conditions, it is possible 

that the wave load frequency may be more dominant than the OWT natural frequency. Full 

assessment of the dominant frequency in each design load cases should be taken into account in 

further work, or to determine a method which can take into account the frequency dependence of 

foundation damping. 

All of the results presented in this paper were for mudline reactions in the fore-aft direction for 

co-aligned wind and waves. Further work should assess the impact of foundation damping on 

side-to-side loads, particularly for power production situations (when aerodynamic damping is 

much smaller in the side-to-side direction than the fore-aft direction) and for misaligned wind and 

wave load conditions. 

 Experimental research. Collect emergency shutdown test data using methods similar to 

[2] during a range of wind speeds and for OWTs in a range of soil deposits. For OWTs of 

similar ratings and water depth, compare the contribution of foundation damping as a 

function of soil properties, as well as the relationship between wind speed (i.e., load 

level) and foundation damping.  

 Computational research. Model the emergency shutdown tests using the foundation 

damping methodology proposed above. Additionally, conduct a sensitivity study of how 

the definition of cyclic load level from a stochastic time history informs the amount of 
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foundation damping and the consequent reduction in load demand. Additional sensitivity 

studies on the dominant frequency used to estimate foundation damping should be 

considered, particularly for power production design situations. Influence of foundation 

damping on side-to-side loads should be assessed, particularly due to misaligned wind 

and waves. 

6.2.3 Fatigue Analysis  

A large portion of the work presented in this dissertation included the use of rainflow counting 

and alluded to fatigue analysis, which was considered outside the scope of this research. Fatigue 

of monopile-supported OWTs should be investigated in detail, particular with regard the 

contributions of foundation damping and degradation of soil properties with cyclic loading – 

reductions in natural frequency over time may lead to amplification of fatigue load demands. 

Additionally, the impact of MG on fatigue needs to be assessed before any definitive statement 

can be made from the engineering perspective about whether MG needs to be cleaned from OWT 

substructures. 

 Experimental research. The corrosion impact of MG on steel could be analyzed using 

different corrosion protection mechanisms (e.g. cathodic protection or protective 

coatings) as well as control cases which include MG removal. The added mass of MG 

over time could be measured and monitored. These experiments could be performed on 

scaled monopiles or newly installed metocean platforms. 

 Computational research. Perform a full fatigue analysis of an OWT considering and 

neglecting foundation damping in order to ascertain the influence of foundation damping 

on OWT fatigue life. Additional work could include analyzing the impact of natural 

frequency degradation over the design life of the OWT to examine whether accelerated 

fatigue may occur. 
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6.2.4 Monopile Installation Effects  

This work did also not include any driveability analyses or installation effects – the method of 

installation (hammering, vibration) can impact pile capacity and behavior (e.g. [5–7]), but here 

the pile was “wished in place” in all analyses. The following research objectives should be 

informed by a thorough literature review of the existing data and information regarding 

installation effects. 

 Experimental research. This research could be included in the large diameter p-y pile 

campaign. Set-up time and force-displacement curves could be compared for piles which 

have been installed by hammering and by vibration. 

 Computational research. Identify the limiting conditions of installation by vibration and 

hammering and compare the benefits and drawbacks of these methods. If significant 

difference is found in the force-displacement curves derived from piles installed by these 

methods, identify the impact of this difference in various OWT design situations. 

6.3 Conclusion 

The primary findings of this dissertation on monopile-supported OWTs may be summarized 

briefly as follows: 

 For the North Sea offshore soil profile considered here, foundation damping contributed 

between 0.17-0.72% critical damping to the OWT support structure. 

 The inclusion of foundation damping in analysis can significantly reduce cyclic 

foundation demand for parked and emergency shutdown design conditions (up to 30% 

and 10%, respectively). 

 By the methodology proposed in this dissertation, monopiles in stiff clay are unlikely to 

experience significant permanent accumulated mudline rotation (i.e., unlikely to exceed 
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the mudline rotation serviceability limit state) nor cause significant degradation of the 

OWT natural frequency; the same monopile in soft clay will be inadequate with respect 

to serviceability limit state and natural frequency.  

 Marine growth has negligible impact on the ultimate limit state design of monopile-

supported OWTs considering added mass or increased drag on the substructure. 

All of the recommendations for further work are made under the assumption that monopile-

supported OWTs continue to be prevalent in offshore wind developments. Jacket structures and 

floating platforms are more suitable than monopiles for water depths which exceed approximately 

30 m, and may be beneficial with respect to concerns of “visual pollution” from the shoreline 

since deeper water tends to be further from shore; however, the additional expense of these newer 

(or typically) technologies in the already strained economics of offshore wind energy leaves room 

for a future in which monopile-supported OWTs continue to be the most favorable support 

structure option. Larger diameter monopiles (beyond 6 m, perhaps 10-12 m) may be seen with the 

increase in wind turbine capacities, highlighting again the need for full-scale experimentation in 

order to better understand the interaction of OWTs with the offshore environment. 
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