40,859 research outputs found

    Permanence and periodicity of a delayed ratio-dependent predator–prey model with Holling type functional response and stage structure

    Get PDF
    AbstractA periodic and delayed ratio-dependent predator–prey system with Holling type III functional response and stage structure for both prey and predator is investigated. It is assumed that immature predator and mature individuals of each species are divided by a fixed age, and immature predator do not have the ability to attack prey. Sufficient conditions are derived for the permanence and existence of positive periodic solution of the model. Numerical simulations are presented to illustrate the feasibility of our main results

    Stability Analysis of a Ratio-Dependent Predator-Prey Model Incorporating a Prey Refuge

    Get PDF
    A ratio-dependent predator-prey model incorporating a prey refuge with disease in the prey population is formulated and analyzed. The effects of time delay due to the gestation of the predator and stage structure for the predator on the dynamics of the system are concerned. By analyzing the corresponding characteristic equations, the local stability of a predator-extinction equilibrium and a coexistence equilibrium of the system is discussed, respectively. Further, it is proved that the system undergoes a Hopf bifurcation at the coexistence equilibrium, when Ď„=Ď„0. By comparison arguments, sufficient conditions are obtained for the global stability of the predator-extinction equilibrium. By using an iteration technique, sufficient conditions are derived for the global attractivity of the coexistence equilibrium of the proposed system

    Permanence and extinction for a delayed periodic predator-prey system

    Get PDF
    In this paper, the permanence, extinction and periodic solution of a delayed periodic predator-prey system with Holling type IV functional response and stage structure for prey is studied. By means of comparison theorem, some sufficient and necessary conditions are derived for the permanence of the system

    A Stage-Structure Rosenzweig-MacArthur Model with Effect of Prey Refuge

    Get PDF
    We proposed and analyzed a stage-structure Rosenzweig-MacArthur model incorporating a prey refuge.  It is assumed that the prey is a stage-structure population consisting of two compartments known as immature prey and mature prey. The model incorporates the functional response Holling type-II. In this work, we investigate all the biologically feasible equilibrium points, and it is shown that the system has three equilibrium points. Sufficient conditions for the local stability of the non-negative equilibrium point of the model are also derived. All points are conditionally locally asymptotically stable. By constructing Jacobian matrix and determined eigenvalues, we analyzed the local stability of the trivial equilibrium and non-predator equilibrium points. Specifically for coexistence equilibrium point, Routh-Hurwitz criterion used to analyze local stability. In addtion, we investigated the effect of immature prey refuge. Our mathematical analysis exhibits that immature prey refuge have played a crucial role in the behavioral system. When the effect of immature prey refuge (constant m) increases, it is can stabilize non-predator equilibrium point, where all the species can not exists together. And conversely, if contant m decreases, it is can stabilize coexistence equilibrium point then all the species can exists together. The work is completed with a numerical simulation to confirmed analitical result

    Stabilizing effect of cannibalism in a two stages population model

    Get PDF
    International audienceIn this paper we build a prey-predator model with discrete weight structure for the predator. This model will conserve the number of individuals and the biomass and both growth and reproduction of the predator will depend on the food ingested. Moreover the model allows cannibalism which means that the predator can eat the prey but also other predators. We will focus on a simple version with two weight classes or stage (larvae and adults) and present some general mathematical results. In the last part, we will assume that the dynamics of the prey is fast compared to the predator's one to go further in the results and eventually conclude that under some conditions, cannibalism can stabilize the system: more precisely, an unstable equilibrium without cannibalism will become almost globally stable with some cannibalism. Some numerical simulations are done to illustrate this result

    The Dynamic Complexity of a Holling Type-IV Predator-Prey System with Stage Structure and Double Delays

    Get PDF
    We invest a predator-prey model of Holling type-IV functional response with stage structure and double delays due to maturation time for both prey and predator. The dynamical behavior of the system is investigated from the point of view of stability switches aspects. We assume that the immature and mature individuals of each species are divided by a fixed age, and the mature predator only attacks the mature prey. Based on some comparison arguments, sharp threshold conditions which are both necessary and sufficient for the global stability of the equilibrium point of predator extinction are obtained. The most important outcome of this paper is that the variation of predator stage structure can affect the existence of the interior equilibrium point and drive the predator into extinction by changing the maturation (through-stage) time delay. Our linear stability work and numerical results show that if the resource is dynamic, as in nature, there is a window in maturation time delay parameters that generate sustainable oscillatory dynamics

    Hopf Bifurcation of a Predator-Prey System with Delays and Stage Structure for the Prey

    Get PDF
    This paper is concerned with a Holling type III predator-prey system with stage structure for the prey population and two time delays. The main result is given in terms of local stability and bifurcation. By choosing the time delay as a bifurcation parameter, sufficient conditions for the local stability of the positive equilibrium and the existence of periodic solutions via Hopf bifurcation with respect to both delays are obtained. In particular, explicit formulas that can determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are established by using the normal form method and center manifold theorem. Finally, numerical simulations supporting the theoretical analysis are also included

    A Predator-Prey Model with Functional Response and Stage Structure for Prey

    Get PDF
    A predator-prey system with Holling type II functional response and stage structure for prey is presented. The local and global stability are studied by analyzing the associated characteristic transcendental equation and using comparison theorem. The existence of a Hopf bifurcation at the positive equilibrium is also studied. Some numerical simulations are also given to illustrate our results

    Analysis of a Nonautonomous Delayed Predator-Prey System with a Stage Structure for the Predator in a Polluted Environment

    Get PDF
    A two-species nonautonomous Lotka-Volterra type model with diffusional migration among the immature predator population, constant delay among the matured predators, and toxicant effect on the immature predators in a nonprotective patch is proposed. The scale of the protective zone among the immature predator population can be regulated through diffusive coefficients Di(t), i=1,2. It is proved that this system is uniformly persistent (permanence) under appropriate conditions. Sufficient conditions are derived to confirm that if this system admits a positive periodic solution, then it is globally asymptotically stable

    Parallel Simulation of Individual-Based, Physiologically-Structured Population and Predator-Prey Ecology Models

    Get PDF
    Utilizing as testbeds physiologically-structured, individual-based models for fish and Daphnia populations, techniques for the parallelization of the simulation are developed and analyzed. The techniques developed are generally applicable to individual-based models. For rapidly reproducing populations like Daphnia which are load balanced, then global birth combining is required. Super-scalar speedup was observed in simulations on multi-core desktop computers. The two populations are combined via a size-structured predation module into a predator-prey system with sharing of resource weighted by relative mass. The individual-based structure requires multiple stages to complete predation. Two different styles of parallelization are presented. The first distributes both populations. It decouples the populations for parallel simulation by compiling, at each stage, tables of information for each of the distributed predators. Predation is completed for all fish at one time. This method is found to be generally applicable, has near perfect scaling with increasing processors, and improves performance as the workload to communications ratio improves with increasing numbers of predator cohorts. But it does not take best advantage of our testbed models. The second design decouples the workload for parallel simulation by duplicating the predator population on all nodes. This reduces communications to simple parallel reductions similar to the population models, but increases the number of cycles required for predation. The performance of the population models is mimicked. Finally, the extinction and persistence behaviors of the predator-prey model are analyzed. The roles of the predation parameters, individual models, and initial populations are determined. In the presence of density-dependent mortality moderating the prey population, competition via resource of the larger fish versus the smaller is found to be a vital control to prevent extinction of prey population. If unconstrained, the juvenile fish classes can — through their rapid initial growth and predation upon the juvenile prey classes — push the prey population to extinction. Persistence of the predator-prey community is thus threatened when the fish population is dominated by juveniles. Conversely, the presence of larger fish moderates the juveniles and stabilizes the community via competition for shared resource
    • …
    corecore