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We invest a predator-prey model of Holling type-IV functional response with stage structure and
double delays due to maturation time for both prey and predator. The dynamical behavior of
the system is investigated from the point of view of stability switches aspects. We assume that
the immature and mature individuals of each species are divided by a fixed age, and the mature
predator only attacks the mature prey. Based on some comparison arguments, sharp threshold
conditions which are both necessary and sufficient for the global stability of the equilibrium
point of predator extinction are obtained. The most important outcome of this paper is that the
variation of predator stage structure can affect the existence of the interior equilibrium point and
drive the predator into extinction by changing the maturation (through-stage) time delay. Our
linear stability work and numerical results show that if the resource is dynamic, as in nature,
there is a window in maturation time delay parameters that generate sustainable oscillatory
dynamics.

1. Introduction

Predator-prey models are arguably the most fundamental building blocks of the any bio-
and ecosystems as all biomasses are grown out of their resource masses. Species compete,
evolve and disperse often simply for the purpose of seeking resources to sustain their struggle
for their very existence. Their extinctions are often the results of their failure in obtaining
the minimum level of resources needed for their subsistence. Depending on their specific
settings of applications, predator-prey models can take the forms of resource-consumer,
plant-herbivore, parasite-host, tumor cells (virus)-immune system, susceptible-infectious
interactions, and so forth. They deal with the general loss-win interactions and hence
may have applications outside of ecosystems. When seemingly competitive interactions
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are carefully examined, they are often in fact some forms of predator-prey interaction
in disguise. The dynamic relationship between predators and their prey has long been
and will continue to be one of the dominant themes in both ecology and mathematical
ecology [1] due to its universal existence and importance [2]. These problems may appear
to be simple mathematically at first sight, but they are, in fact very challenging and
complicated. There are many different kinds of predator-prey models in the literature [3–
5]; for more details, we can refer to [2, 6]. In general, a predator-prey system may have the
form

dx(t)
dt

= rx
(

1 − x
k

)
− ϕ(x)y,

dy(t)
dt

= y
(
μϕ(x) −D

)
,

(1.1)

where ϕ(x) is the functional response function, which reflects the capture ability of the
predator to prey. For more biological meaning, the reader may consult Freedman [6], May
[7], and Murray [8].

Some experiments and observations indicate that a nonmonotonic response occurs at
this level: when the nutrient concentration reaches a high level, an inhibitory effect on the
specific growth rate may occur. To model such an inhibitory effect, Andrews [9] proposed
the response function ϕ(x) = mx/(a+ bx +x2), called the Monod-Haldane function, and also
called a Holling type-IV function.

In the past several decades, the predator-prey systems play an important role in
the modeling of multispecies population dynamics [10, 11]. Many models of population
growth were studied with time delays [12–17]. Some other age- and stage-structured
models of various types (discrete and distributed time delays, stochastic, etc.) have been
utilized [18–23]. In the pioneering work [23], a stage-structured model of population growth
consisting of immature and mature individuals was proposed, where the stage-structure
was modeled by the introduction of a constant time delay, reflecting a delayed birth of
immature and a reduced survival of immature to their maturity. The model takes the
form

dxi(t)
dt

= αxm(t) − γxi(t) − αe−γτxm(t − τ),

dxm(t)
dt

= αe−γτxm(t − τ) − βx2
m(t),

(1.2)

where xi(t) and xm(t) represent the immature and mature populations densities, respectively,
to model stage-structured population growth. There, α > 0 represents the birth rate, γ > 0 is
the immature death rate, β > 0 is the mature death and overcrowding rate, and τ is the time
to maturity. The term αe−γτxm(t− τ) represents the immature who were born at time t− τ and
survive at time t with the immature death rate γ and thus represents the transformation of
immature to mature.

Motivated by the above important works [23–25], in the present paper, we consider the
following stage-structured predator-prey system with Holling type-IV functional response,
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which takes the form:

dxj(t)
dt

= bx − d1xj − be−d1τ1x(t − τ1),

dx(t)
dt

= be−d1τ1x(t − τ1) − ax2 −
lxy

x2 + dx + e
,

dyj(t)
dt

=
mxy

x2 + dx + e
−
me−d2τ2x(t − τ2)y(t − τ2)
x2(t − τ2) + dx(t − τ2) + e

− d2yj,

dy(t)
dt

=
me−d2τ2x(t − τ2)y(t − τ2)
x2(t − τ2) + dx(t − τ2) + e

− d3y,

(1.3)

where τ = max{τ1, τ2}, x(θ), y(θ) > 0 is continuous on −τ ≤ θ ≤ 0, and xj(0), x(0), yj(0) > 0,
y(0) > 0, x and y represent mature prey and the predator densities, respectively. And xj and
yj represent the immature or juvenile prey and the predator densities. The constant b is the
birth rate of the mature prey. We assume that immature prey suffer a mortality rate of d1 and
take τ1 units of time to mature, thus e−d1τ1 is the surviving rate of each immature prey to reach
maturity. The constant d2 is the death rate of the juvenile predator and take τ2 units of time
to mature, thus e−d2τ2 is the surviving rate of each immature predator to reach maturity. d3 is
the death rate of the mature predator. The mature predator consumes the mature prey with
functional response of Holling type-IV lx/(x2 + dx + e). It is assumed in model (1.3) that the
predator population only feeds on the mature prey and immature individual predators do
not feed on prey and do not have the ability to reproduce. Obviously, all the constants are
positive for their biological sense.

For the continuity of the solutions to system (1.3), in this paper, we require

xj(0) = b
∫0

−τ1

(
ed1sx(s)

)
ds. (1.4)

By the first equation of system (1.3), the initial conditions (1.4), and the arguments similar to
Lemma 3.1 in [26, page 672], we have

xj(s) = b
∫0

−τ1

(
ed1tx(t + s)

)
dt, (1.5)

that is, xj(t) is completely determined by x(t). Thus, the following system can be separated
from system (1.3)

dx(t)
dt

= be−d1τ1x(t − τ1) − ax2 −
lxy

x2 + dx + e
,

dyj(t)
dt

=
mxy

x2 + dx + e
−
me−d2τ2x(t − τ2)y(t − τ2)
x2(t − τ2) + dx(t − τ2) + e

− d2yj,

dy(t)
dt

=
me−d2τ2x(t − τ2)y(t − τ2)
x2(t − τ2) + dx(t − τ2) + e

− d3y,

(1.6)

where x(θ), yj(θ), y(θ) ≥ 0 are continuous on −τ ≤ θ ≤ 0, and x(0), yj(0), y(0) > 0.



4 Discrete Dynamics in Nature and Society

Notice that, mathematically, no information on the past history of yj is needed for
system (1.6). The dynamics of model (1.6) are determined by the first equation and the third
equation. Therefore, in the rest of this paper, we will study the following:

dx(t)
dt

= be−d1τ1x(t − τ1) − ax2 −
lxy

x2 + dx + e
,

dy(t)
dt

=
me−d2τ2x(t − τ2)y(t − τ2)
x2(t − τ2) + dx(t − τ2) + e

− d3y.

(1.7)

In our study, we assume that the initial conditions of system (1.7) take the form

x(θ) = φ(θ) ≥ 0, y(θ) = ψ(θ) ≥ 0, θ ∈ [−τ, 0], φ(0) > 0, ψ(0) > 0, (1.8)

the Banach space of continuous functions mapping the interval [−τ, 0] into R2
+0, where R2

+0 =
{(x, y) : x ≥ 0, y ≥ 0}.

Remark 1.1. Because xj(t) is completely determined by x(t) and yj(t) is completely
determined by x(t) and y(t), we can get all the dynamical behaviors at the equilibria of
system (1.3). Hence, we only study the system (1.7) in the following sections.

In the present paper, we present a qualitative analysis for the predator-prey system
(1.7) by incorporating stage structures for both prey and predator. The main goal of this
paper is to study the combined effects of the stage structure on prey and predator on the
dynamics of the system. The rest of the paper is organized as follows. In the next section, we
present some important lemmas. In Section 3, we get all the equilibria and their feasibility. In
Section 4, both necessary and sufficient for the global stability of the boundary equilibrium is
established. In Section 5, the stability switches of the coexistence equilibrium of system (1.7)
are gotten. Finally, we numerically illustrate our results and obtain very rich dynamics of our
model. The paper ends with a discussion.

2. Preliminary Analysis

To prove the main results, we need the following lemmas. In the biology significance, we only
study in R2

+ = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0}.
Using the similar arguments to Lemma 1 in [27], we directly have.

Lemma 2.1. System (1.7) with initial conditions x(t), y(t) > 0 (−τ ≤ t ≤ 0) and x(0), y(0) > 0 has
strictly positive solutions for all t > 0.

Lemma 2.2 (see [24, 27]). For equation

x′(t) = bx(t − τ) − a1x(t) − a2x
2(t), (2.1)

where a1 ≥ 0, a2, b, τ > 0, x(0) > 0 and x(t) > 0 for all −τ ≤ t ≤ 0, one has

(i) if b > a1, then limt→+∞x(t) = (b − a1)/a2,

(ii) if b < a1, then limt→+∞x(t) = 0.
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Lemma 2.3 (see [21]). If a < b, then the solution of the equation

u′(t) = au(t − τ) − bu(t), (2.2)

where a, b, τ > 0, and u(t) > 0 for −τ ≤ t ≤ 0, satisfies

lim
t→∞

u(t) = 0. (2.3)

Lemma 2.4. Positive solutions of System (1.7) with initial conditions x(t), y(t) > 0 (−τ ≤ t ≤ 0)
and x(0), y(0) > 0 are ultimately bounded.

Proof. Let (x(t), y(t)) be a positive solution of system (1.7) with initial conditions x(t), y(t) >
0 (−τ ≤ t ≤ 0) and x(0), y(0) > 0. It follows from the first equation of system (1.7)
that

ẋ(t) ≤ be−d1τ1x(t − τ1) − ax2. (2.4)

By Lemma 2.2, a comparison argument shows that

lim sup
t→+∞

x(t) ≤ be
−d1τ1

a
≤M. (2.5)

It implies that x(t) is ultimately bounded. No less of generality, we suppose that there exists
T1 > 0 and M > a/b such that x(t) < M for all t > T1. Define W(t) = (1/l)x(t) + (1/m)y(t),
we get

Ẇ(t) ≤ be
−d1τ1

l
x(t − τ1) −

ax2(t)
l

. (2.6)

By Lemma 2.2 and the comparison theorem, we get

Ẇ(t) ≤ be
−d1τ1

a
, (2.7)

which implies that there exists a constant C > be−d1τ1/a > 0, such that all trajectories initiating
in R2

+ enter the region Ω := {(x, y) ∈ R2
+ | (x/l) + (y/m) ≤ C + ε for any ε > 0}, proving

Lemma 2.4.
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Figure 1: The x- and y-isoclines, for various of τ1 and τ2, of the system (1.7) by removing the delays from
the arguments.

3. Equilibria and Their Feasibility

Apart from the zero solution, system (1.7) always has Eb = (be−d1τ1/a, 0) as an boundary
equilibrium. The components of any interior equilibrium must satisfy

y =

(
be−d1τ1 − ax

)(
x2 + dx + e

)
l

,
me−d2τ2x

x2 + dx + e
= d3. (3.1)

Whether an interior equilibrium E∗ = (x∗, y∗) is feasible or not depends on the values of
the parameters. Figure 1 shows the x- and y-isoclines of the system obtained from (1.7) by
removing the delays from the arguments. It is clear that a unique interior equilibrium will
exist if and only if

A2 +AB + C < 0 (3.2)

holds. Here, A = be−d1τ1/a, B = d − (me−d2τ2/d3), C = e,

x∗ =
−B −

√
B2 − 4C
2

, y∗ =

(
be−d1τ1 − ax∗

)(
x∗2 + dx∗ + e

)
l

. (3.3)

From (3.2) we can easily see that B < 0. Hence, the positive equilibrium E∗ exists for all prey’s
maturation times τ1 and predator’s maturation times τ2 in the interval I = [0, τ∗1 ) × [0, τ∗2 ),
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where τ∗1 and τ∗2 are the maximum values which satisfy the following equation:

d − me
−d2τ2

d3
< 0,

be−d1τ1 > ax∗,

x∗ =

[(
me−d2τ2/d3

)
− d −

√(
(me−d2τ2/d3) − d

)2 − 4e
]

2
.

(3.4)

Figure 1 also makes clear how the interior equilibrium E∗, if feasible, depends on
the prey’s maturation time delay τ1, the predator’s maturation time delay τ2, and the
other parameters. In Figure 1(a), we can easily see that for higher τ2, there is no interior
equilibrium. Also, increasing τ1 lowers the x-isocline in Figure 1(b), causing the coincidence
of E∗ with ((be−d1τ1/a)/a, 0) at a finite value of τ1. For enough higher τ1 there is only
boundary equilibrium (b/a, 0) and no interior equilibrium. In all our analysis, it will be
important to keep track of how the interior equilibrium depends on the parameters.

4. Global Stability of the Equilibrium (be−d1τ1/a, 0)

The following result gives conditions which are both necessary and sufficient for the global
stability of the equilibrium (x, y) = (be−d1τ1/a, 0) of system (1.7).

Theorem 4.1. limt→+∞(x(t), y(t)) = (be−d1τ1/a, 0) holds true if and only if me−d2τ2/d ≤ d3 holds
true.

Proof. For the sufficiency of the theorem, by positivity of solutions,

ẋ(t) ≤ be−d1τ1x(t − τ1) − ax2. (4.1)

This implies that limt→+∞x(t) = be−d1τ1/a ≤ b/a and therefore there exists Tε > 0 and a
positive constant N > b/a such that x(t) < N for all t ≥ Tε. Then, for t ≥ Tε + τ2,

ẏ(t) ≤
me−d2τ2y(t − τ2)N
N2 + dN + e

− d3y(t) ≤
me−d2τ2y(t − τ2)

d
− d3y(t). (4.2)

By comparison, y(t) is bounded above by the solution u(t) of

u′(t) =
me−d2τ2u(t − τ2)

d
− d3u(t), t > Tε + τ2 (4.3)

satisfying u(t) = y(t) for t ∈ [Tε, Tε+τ2]. Sinceme−d2τ2/d ≤ d3, Lemma 2.3 yields that u(t) → 0
which proves y(t) → 0. Hence by the first equation of system (1.7), we get limt→+∞x(t) =
be−d1τ1/a. This proves me−d2τ2/d ≤ d3 is the sufficient condition for limt→+∞(x(t), y(t)) =
(be−d1τ1/a, 0).
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Now, we prove limt→+∞(x(t), y(t)) = (be−d1τ1/a, 0) ⇒ me−d2τ2/d ≤ d3. Assume
the contrary, that is, me−d2τ2/d > d3, then system (1.7) has a positive equilibrium (x∗, y∗),
contradicting limt→+∞(x(t), y(t)) = (be−d1τ1/a, 0) for all solution (x(t), y(t)). Hence, there
must be me−d2τ2/d ≤ d3, and this proves Theorem 4.1.

Theorem 4.2. The system (1.7) is permanent if and only if it satisfies (3.2).

To prove Theorem 4.2, we engage the persistence theory by Hale and Waltman [28] for
infinite dimensional systems; we also refer to Thieme [29]. Now, we present the persistence
theory [28] as follows.

Consider a metric space X with metric d. T is a continuous semiflow on X, that is, a
continuous mapping T : [0,∞) ×X → X with the following properties:

Tt ◦ Ts = Tt+s, t, s ≥ 0, T0(x) = x, x ∈ X. (4.4)

Here Tt denotes the mapping from X to X given by Tt(x) = T(t, x). The distance d(x, y) of a
point x ∈ X from a subset Y of X is defined by

d
(
x, y

)
= inf

y∈Y
d
(
x, y

)
. (4.5)

Recall that the positive orbit γ+(x) through x is defined as γ+(x) =
⋃
t≥0{T(t)x}, and its ω-

limit set is ω(x) =
⋂
τ≥0 CL

⋃
t≥τ{T(t)x}, where CL means closure. Define Ws(A), the stable

set of a compact invariant set A as

Ws(A) =
{
x : x ∈ X, ω(x)/=φ, ω(x) ⊂ A

}
; (4.6)

define Ãα the particular invariant sets of interest as

Ãα =
⋃
x∈Aα

ω(x). (4.7)

(H0) Assume X is the closure of open set X0; ∂X0 is nonempty and is the boundary of
X0. Moreover, the C0-semigroup T(t) on X satisfies

T(t) : X0 −→ X0, T(t) : ∂X0 −→ ∂X0. (4.8)

Lemma 4.3 (see [28, Theorem 4.1, page 392]). Suppose T(t) satisfies (H0) and

(i) there is a t0 ≥ 0 such that T(t) is compact for t > t0,

(ii) T(t) is point dissipative in X,

(iii) Ãα is isolated and has an acyclic coveringM.

Then, T(t) is uniformly persistent if and only if for eachMi ∈M,Ws(Mi) ∩X0 = ∅.
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Proof of Theorem 4.2.

Claim 1. The condition (3.2) leads to the permanence of system (1.7).
Let C+([−τ, 0], R2

+) denote the space of continuous functions mapping [−τ, 0] into R2
+.

We choose

C1 =
{(
ϕ0, ϕ1

)
∈ C+

(
[−τ, 0], R2

+

)
: ϕ0(θ) ≡ 0, ϕ1(θ) > 0, θ ∈ [−τ, 0]

}
,

C2 =
{(
ϕ0, ϕ1

)
∈ C+

(
[−τ, 0], R2

+

)
: ϕ0(θ) > 0, ϕ1(θ) ≡ 0, θ ∈ [−τ, 0]

}
.

(4.9)

Denote C = C1 ∪ C2, X = C+([−τ, 0], R2
+), and X0 = IntC+([−τ, 0], R2

+), then C = ∂X0. It is easy
to see that system (1.7) possesses two constant solutions in C = ∂X0 : Ẽ0 ∈ C1, Ẽ1 ∈ C2 with

Ẽ0 =
{(
ϕ0, ϕ1

)
∈ C+

(
[−τ, 0], R2

+

)
: ϕ0(θ) ≡ ϕ1(θ) ≡ 0, θ ∈ [−τ, 0]

}
,

Ẽ1 =

{(
ϕ0, ϕ1

)
∈ C+

(
[−τ, 0], R2

+

)
: ϕ0(θ) ≡

be−d1τ1

a
, ϕ1(θ) ≡ 0, θ ∈ [−τ, 0]

}
.

(4.10)

We verify below that the conditions of Lemma 4.3 are satisfied. By the definition of X0 and
∂X0 and system (1.7), it is easy to see that conditions (i) and (ii) of Lemma 4.3 are satisfied
and that X0 and ∂X0 are invariant. Hence, (H0) is also satisfied.

Consider condition (iii) of Lemma 4.3. We have

ẋ(t)|(ϕ0,ϕ1)∈C1 ≡ 0, (4.11)

thus x(t)|(ϕ0,ϕ1)∈C1 ≡ 0 for all t ≥ 0. Hence, we have

ẏ(t)
∣∣
(ϕ0,ϕ1)∈C1 = −d3y ≤ 0, (4.12)

from which follows that all points in C1 approach Ẽ0, that is, C1 = Ws(Ẽ0). Similarly, we can
prove that all points in C2 approach Ẽ1, that is, C2 =Ws(Ẽ1). Hence, Ãα = Ẽ0 ∪ Ẽ1 and clearly
it is isolated. Noting that C1 ∩C2 = ∅, it follows from these structural features that the flow in
Ãα is acyclic, satisfying condition (iii) of Lemma 4.3.

Now, we show that Ws(Ẽi) ∩ X0 = ∅, i = 0, 1. By Lemma 4.3, we have x(t), y(t) > 0
for all t > 0. Assume Ws(Ẽ0) ∩ X0 /= ∅, that is, there exists a positive solution (x(t), y(t)) with
limt→+∞(x(t), y(t)) = (0, 0), then using the first equation of (1.7), we get

d(lnx(t))
dt

=
be−d1τ1x(t − τ1)

x(t)
− ax(t) −

ly

(x2 + dx + e)
>
be−d1τ1

2
, (4.13)

for all sufficiently large t. Hence, we have

lim
t→+∞

x(t) = +∞, (4.14)

contradicting limt→+∞x(t) = 0; this proves Ws(Ẽ0) ∩X0 = ∅.
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Now, we verify Ws(Ẽ1) ∩ X0 = ∅; assume the contrary, that is, Ws(Ẽ0) ∩ X0 /= ∅. Then,
there exists a positive solution (x(t), y(t)) to system (1.7) with

lim
t→+∞

(
x(t), y(t)

)
=

(
be−d1τ1

a
, 0

)
, (4.15)

and for sufficiently small positive constant ε with

ε <
2A + B +

√
B2 − 4C

2
, (4.16)

there exists a positive constant T = T(ε) such that

x(t) >
be−d1τ1

a
− ε > 0, y(t) < ε, ∀t ≥ T. (4.17)

By the second equation of (1.7), we have

y′(t) >
me−d2τ

2(
be−d1τ1a − ε

)
y(t − τ2)(

be−d1τ1a − ε
)2 + d

(
be−d1τ1a − ε

)
+ e
− d3y(t), t ≥ T + τ. (4.18)

Consider the equation

v′(t) =
me−d2τ

2(
be−d1τ1a − ε

)
v(t − τ2)(

be−d1τ1a − ε
)2 + d

(
be−d1τ1a − ε

)
+ e
− d3v(t), t ≥ T + τ,

v(t) = y(t), t ∈ [T, T + τ].

(4.19)

By (4.18) and the comparison theorem, we have y(t) ≥ v(t) for all t > T . On the other
hand, using Theorem 4.9.1 of [16, page 159], we have limt→+∞y(t) > ε, contradicting y(t) < ε
as t ≥ T . Thus we have Ws(Ẽi) ∩ X0 = ∅, i = 0, 1. Now, we get that system (1.7) satisfies all
conditions of Lemma 4.3, thus (x(t), y(t)) is uniformly persistent, that is, there exists positive
constants ε and T = T(ε) such that (x(t), y(t)) ≥ ε for all t ≥ T ; noting Lemma 2.4 shows
that (x, y) are ultimately bounded, and this proves the permanence of system (1.7). This
completes the proof.
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5. Linearised Analysis

We shall concentrate on the dynamics analysis in the two cases when d2 > 0 and d2 = 0. These
cases correspond, respectively, to the presence or absence of mortality among the immature
predators.

We will begin by examining the linear stability of the equilibrium (x∗, y∗), assuming
of course that (3.2) holds, so that the equilibrium is feasible. If d2 > 0 (i.e., there is mortality
among the immature predators) then, as one increases the delay τ2, the equilibrium loses
feasibility at a finite value of τ2. If d2 = 0 then, as prey’s maturation time delay τ1 increases,
the equilibrium loses feasibility at a finite value of τ1.

Let us linearise (1.7) at the interior equilibrium (x∗, y∗). Setting x = x∗ + u, y = y∗ + v,
where u and v are small, and linearising, gives

du(t)
dt

=
(
−2ax∗ − lp′x∗

)
u(t) − lp′y∗v(t) + be−d1τ1u(t − τ1),

dv(t)
dt

= −d3v(t) +me−d2τ2p′x∗u(t − τ2) + d3v(t − τ2),

(5.1)

where p(x, y) = xy/(x2 + dx + e), p′x = ((e − x2)y)/((x2 + dx + e)2), p′y = x/(x2 + dx + e).
The characteristic equation at E∗ is as follows:

G(λ, τ1, τ2) = λ2 − be−λτ1
(
λe−d1τ1 + d3e

−d1τ1
)
− d3e

−λτ2(λ + 2ax∗)

+ bd3e
−λτ1−λτ2−d1τ1 + λ

(
d3 + 2ax∗ + lp′x∗

)
+ d3

(
2ax∗ + lp′x∗

)
= 0.

(5.2)

Notice that G(0, τ1, τ2) = ld3p
′
x∗ > 0 if x∗ <

√
e. We always assume x∗ <

√
e below. So λ = 0

is not a solution of the characteristic equation (5.2). Thus, if there is any stability switch of
the trivial solution of the linearized system (5.1), there must exist a pair of pure conjugate
imaginary roots of the characteristic equation (5.2). When τ1 = τ2 = 0, the original model
(1.7) is an ODE model. The characteristic equation of its linearized equation is given by

G(λ, 0, 0) = λ2 + [2ax∗ − b]λ + ld3p
′
x∗ = 0. (5.3)

Clearly, all roots of (5.2) with τ1 = τ2 = 0 have negative real parts provided

2ax∗ − b > 0. (5.4)

Hence, we get the following conclusion.

Theorem 5.1 (Kar and Pahari [30, Theorem 2.1]). Assume (3.2) and (5.4) hold. Then the positive
equilibrium E∗ = (x∗, y∗) of (1.7) is globally asymptotically stable if τ1 = τ2 = 0.
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In the remaining part of this section, we assume that τ1 is a small delay, that is, let
e−λτ1−d1τ1 = 1 − λτ1 − d1τ1. So, (5.2) takes the general form

P(λ, τ1, τ2) +Q(λ, τ1, τ2)e−λτ2 = 0, (5.5)

where

P(λ, τ1, τ2) = (1 + bτ1)λ2 +A(τ1, τ2)λ + B(τ1, τ2),

Q(λ, τ1, τ2) = C(τ1, τ2)λ +D(τ1, τ2).
(5.6)

Here,

A(τ1, τ2) = d3 − b + lp′x∗ + 2ax∗ + bd1τ1 + bd3τ1,

B(τ1, τ2) = bd3(d1τ1 − 1) + d3
(
lp′x∗ + 2ax∗

)
,

C(τ1, τ2) = −d3(1 + bτ1),

D(τ1, τ2) = −2ad3x
∗ + bd3(1 − d1τ1).

(5.7)

Let us first consider the case τ1 > 0 and τ2 = 0, then the characteristic equation (5.5) is

(1 + bτ1)λ2 + [A(τ1, 0) + C(τ1, 0)]λ + [B(τ1, 0) +D(τ1, 0)] = 0. (5.8)

Clearly, all roots of (5.5) with τ1 > 0 and τ2 = 0 have negative real parts provided

(H1) A(τ1, 0) + C(τ1, 0) > 0 and B(τ1, 0) +D(τ1, 0) > 0.

We summarize the above analysis in the following theorem for model (1.7).

Theorem 5.2. Assume that (3.2), (5.4), and (H1) hold. Then, the positive equilibrium E∗ of (1.7) is
locally asymptotically stable if τ∗1 > τ1 > 0 and τ2 = 0. (Figure 2).

For now, fix τ1 > 0, assume τ2 > 0, and regard τ2 as a bifurcation parameter to
obtain finer results on the stability of E∗. Note that (5.2) takes the form of a second-degree
exponential polynomial in λ, with all the coefficients of P and Q depending on τ1 and τ2.
Thus, we use the method introduced by Beretta and Kuang [31], which gives the existence
of purely imaginary roots of a characteristic equation with delay-dependent coefficients (see
also [32, 33]). In order to apply the criterion in [31], we need to verify the following properties
for ω > 0 and τ2 ∈ I with I defined in (5.6). For simplicity, we drop the dependence of τ1 and
always assume that τ2 ∈ I:

(i) P(0, τ2) +Q(0, τ2)/= 0,

(ii) P(iω, τ2) +Q(iω, τ2)/= 0,

(iii) lim sup|λ|→∞,Reλ≥0|Q(λ, τ2)/P(λ, τ2)| < 1,

(iv) F(ω) = |P(iω, τ2)|2 − |Q(iω, τ2)|2 has a finite number of zeros,

(v) each positive root ω(τ2) of F(ω(τ2)) = 0 is continuous and differentiable in τ2

whenever it exists.
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Figure 2: a = 1.4, b = 0.4, d = 0.5, e = 0.05, and l = m = d1 = d3 = 0.5. E∗ is asymptotically stable for
τ1 = 0.08 and τ2 = 0. (a) shows the trajectories graphs of the system (1.7) with initial conditions near E∗.
(b) shows the phase portrait of system (1.7) corresponding to (a).

Here, P(λ, τ2) and Q(λ, τ2) are defined by (5.5) and

I = {τ2 ≥ 0 : ∃ω(τ2) > 0 such that F(ω(τ2)) = 0}. (5.9)

Let F be defined as in (iv). By (5.5), we obtain

F(ω) = (1 + bτ1)
2ω4 + a1(τ2)ω2 + a2(τ2) (5.10)

with

a1(τ2) = A2(τ2) − 2B(τ2)(1 + bτ1) − C2(τ2),

a2(τ2) = B2(τ2) −D2(τ2).
(5.11)

Before proceeding further, let us analyze the structure of I described by (5.9). Set

z±(τ2) =
−a1(τ2) ±

√
a2

1(τ2) − 4a2(τ2)(1 + bτ1)
2

2(1 + bτ1)
2

. (5.12)

We need the following hypotheses.

(H2) A(τ2) + C(τ2)/= 0 and B(τ2) +D(τ2)/= 0.

(H3) 0 < a2(τ2) < a2
1(τ2)/4(1 + bτ1)

2 and a1(τ2) < 0.

(H4) a2(τ2) ≤ 0.



14 Discrete Dynamics in Nature and Society

Theorem 5.3. Assume (3.2) holds.

(i) If (H3) is satisfied, then F(ω(τ2)) = 0 has two different positive roots
√
z±(τ2) denoted by

ω±, respectively.

(ii) If (H4) is met, then F(ω(τ2)) = 0 has a unique positive root ω+ =
√
z+(τ2).

Define

I1 = {τ2 ≥ 0 : (3.2), (H2) and (H3) hold},

I2 = {τ2 ≥ 0 : (3.2), (H2) and (H4) hold}.

Then,

I = I1

⋃
I2. (5.13)

Now, we verify the properties (i)–(v) for τ2 ∈ I. Firstly, (i) and (ii) are satisfied. Indeed,

P(0, τ2) +Q(0, τ2) = B(τ2) +D(τ2)/= 0,

P(iω, τ2) +Q(iω, τ2) =
[
B(τ2) +D(τ2) −ω2

]
+ iω[A(τ2) + C(τ2)]/= 0.

(5.14)

Then, from (5.5), we know

lim
|λ|→∞

∣∣∣∣Q(λ, τ2)
P(λ, τ2)

∣∣∣∣ = 0. (5.15)

Therefore, (iii) follows. Finally, (5.10) implies (iv) and (v).
Let λ = iω (ω > 0) be a root of (5.2). Substituting it into (5.2) and separating the real

and imaginary parts yield

(1 + bτ1)ω2 − B(τ2) = D(τ2) cosωτ2 + C(τ2)ω sinωτ2,

A(τ2)ω = D(τ2) sinωτ2 − C(τ2)ω cosωτ2.
(5.16)

Then, we have

sinωτ2 =

(
(1 + bτ1)ω2 − B(τ2)

)
Cω +ωAD

ω2C2 +D2
, (5.17)

cosωτ2 =

(
(1 + bτ1)ω2 − B(τ2)

)
D −ω2AC

ω2C2 +D2
. (5.18)

Here, the dependence of the coefficients on τ2 is implicitly assumed.
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By the definitions of P(λ, τ1, τ2) and Q(λ, τ1, τ2) in (5.6) and applying the property (ii),
(5.18) can be written as

sinωτ2 = Im
(
P(iω, τ1, τ2)
Q(iω, τ1, τ2)

)
,

cosωτ2 = −Re
(
P(iω, τ1, τ2)
Q(iω, τ1, τ2)

)
,

(5.19)

which lead us to

F(ω) = 0. (5.20)

Noting that Theorem 5.3 has given the explicit expressions of ω(τ2) that satisfies F(ω(τ2)) = 0
on τ2 ∈ I, define θ(τ2) ∈ [0, 2π] for τ2 ∈ I

sin θ(τ2) =

(
(1 + bτ1)ω2 − B(τ2)

)
Cω +ωAD

ω2C2 +D2
, (5.21)

cos θ(τ2) =

(
(1 + bτ1)ω2 − B(τ2)

)
D −ω2AC

ω2C2 +D2
. (5.22)

Such θ(τ2) defined above is well and uniquely defined for all τ2 ∈ I (see [31]).
Therefore, iω∗ with ω∗ = ω(τ∗2 ) > 0 is a purely imaginary root of (5.2) if and only if τ∗2

is a zero of the Sn, where

Sn(τ2) = τ2 −
θ(τ2) + 2πn

w(τ2)
, τ2 ∈ I, (5.23)

with n ∈N0 = {0, 1, 2, . . .}.
Hence, once we know such τ∗2 , this will give us a pair of delay values (τ1, τ

∗
2 ) at which

the stability switch may be possible when increasing the value of τ2 while keeping τ1 fixed
(Figure 3). The following result is due to Beretta and Kuang [31].

Lemma 5.4. The characteristic equation (5.2) has a pair of simple pure imaginary roots λ = ±iω(τ∗2 )
at τ∗2 ∈ I, provided Sn(τ∗2 ) = 0 for n ∈ N0. Moreover, if ω(τ∗2 ) = ω+(τ∗2 ), then this pair of simple
conjugate purely imaginary roots crosses the imaginary axis from left to right if δ+(τ∗2 ) > 0 and crosses
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Figure 3: A solution of model (1.7) with initial conditions (0.16, 0.05), where a = 1.4, b = 1.1, d = 0.5,
e = 0.05, l = m = d1 = d3 = 0.5, d2 = 0 (i.e., no mortality among the immature predators), τ1 = 1.5, and τ2
varies from 0.1 to 20.

the imaginary axis from right to left if δ+(τ∗2 ) < 0, where

δ+
(
τ∗2
)
= Sign

{
dRe(λ)
dτ2

∣∣∣∣
λ=iω+(τ∗2 )

}
= Sign

{
dSn(τ2)
dτ2

∣∣∣∣
τ2=τ∗2

}
, (5.24)

and ifω(τ∗2 ) = ω−(τ
∗
2 ), then this pair of simple conjugate purely imaginary roots crosses the imaginary

axis from left to right if δ−(τ∗2 ) > 0 and crosses the imaginary axis from right to left if δ−(τ∗2 ) < 0, where

δ−
(
τ∗2
)
= Sign

{
dRe(λ)
dτ2

∣∣∣∣
λ=iω−(τ∗2 )

}
= − Sign

{
dSn(τ2)
dτ2

∣∣∣∣
τ2=τ∗2

}
. (5.25)
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If I = I2, then only ω+ is feasible. In this case, we can easily observe that Sn(0) ≤ 0 and
Sn(τ2) > Sn+1(τ2) for τ2 ∈ I and n ∈N0, then without loss of generality, we may suppose

dSn
(
τ
j

2n

)
dτ2

/= 0 with Sn
(
τ
j

2n

)
= 0. (5.26)

Then, for one thing, stability switches occur at the zeros of S0(τ2), denoted by τ
j

20, if
(H1) holds. For another, applying Theorem 5.2 and Hopf bifurcation theorem for functional
differential equations (see Hale’s book [34]), we can conclude the existence of a Hopf
bifurcation. Before stating the main theorem, denote

τ2m = min{τ2 ∈ I : S0(τ2) = 0}, τ2M = max{τ2 ∈ I : S0(τ2) = 0}. (5.27)

Theorem 5.5. Assume (3.2), (H1), (H2), and (H4) hold.

(i) If S0(τ2) has no positive zeros in I, then E∗ is locally asymptotically stable for all τ2 ≥ 0.

(ii) If Sn(τ2) has at least one positive zero in I and (5.26) is met, then E∗ is locally
asymptotically stable for τ2 ∈ [0, τ2m)∪ (τ2M,∞) and unstable for τ2 ∈ (τ2m, τ2M), that is,
stability switches of stability-instability-stability occur. Hopf bifurcation takes place when
τ2 = τj2n, n ∈N0.

If I = I1, then both ω+ and ω− are feasible for τ2 ∈ I. We have the following two
sequences of functions on I:

S+
n(τ2) = τ2 −

θ+(τ2) + 2nπ
ω+(τ2)

, S−n(τ2) = τ2 −
θ−(τ2) + 2nπ

ω−(τ2)
, (5.28)

where θ±(τ2) is the solution of (5.22) when ω = ω±. Similarly, it is obtained for τ2 ∈ I that
S±n(0) ≤ 0 and S±n(τ2) > S±n+1(τ2) with n ∈ N0. Furthermore, if S+

0 (τ2) > S−0 (τ2), then S+
n(τ2) >

S−n(τ2) for n ∈ N0. Other than the case above, stability switch may depend on all real roots
of S+

n(τ2) = 0 and S−n(τ2) = 0. In addition, Hopf bifurcations can also appear at each root of
S±n(τ2) = 0. Naturally, we can also obtain results similar to Theorem 5.2. Here, we omit the
corresponding statements.

If I = I1∪ I2 with I1 /= ∅ and I2 /= ∅, then we can discuss different cases on their own sets,
respectively. The remaining discussion is the same as above.

6. Discussion

In this paper, we study the predator-prey model (1.3) of Holling type-IV functional response
with stage structure on prey and predator which we consider a fairly realistic one in this
category.

By Theorem 4.1, We have that limt→∞(x(t), y(t)) = (be−d1τ1/a, 0) if and only if the
following condition holds true: me−d2τ2/d ≤ d3. It is implied that the boundary equilibrium
Eb of system (1.7) is globally stable.

Our main purpose of this paper is to analyze a two-species predator-prey autonomous
model with stage structure for both prey and predator, in which there are two discrete delays
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due to the maturity for both immature prey and immature predator, respectively. Under
certain initial conditions, the boundary and the existence of the coexistence equilibrium of
system (1.7) were investigated, and also the stability switches of the coexistence equilibrium
of system (1.7) were shown by analyzing the corresponding characteristic equation as
predator’s maturation time delay (through-stage time delay). τ2 is increased from zero.
Additionally, in the last section, we have acquired very rich dynamical behaviours of the
nontrivial equilibrium point E∗ when varying the value of τ1(τ2) while keeping τ2(τ1) fixed.
Particularly, when we let τ2 = 0 (see Figure 2), our simulations show that the system does
not have sustained oscillations when the other delay parameter τ1 is not large. In the special
case when keeping τ1 > 0 fixed and τ2 varied, the oscillatory dynamics will persist and gain
complexity when we increase the delay τ2 (see Figure 3). Such distinct dynamical outcomes
highlight the importance of incorporating the through-stage death rate in stage structured population
models.

Observable delay effects are often gradual (distributed) and smooth in most
dynamical systems, it is thus natural to utilize distributed delay parameters rather than
discrete delays when modeling these systems. In other words, discrete delay is often a
simplification of the complicated dynamical process that is almost always best represented
by smooth (continuous and distributed) delay. However, mathematically, a single discrete
delay alone can often generate rich dynamics that enable and facilitate nontrivial and
interesting biological observations as evidenced by this work. Nevertheless, we plan to
pursue additional studies on the predator-prey system and sustained oscillations through
models with distributed time delays.
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