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a b s t r a c t

A periodic and delayed ratio-dependent predator–prey system with Holling type III
functional response and stage structure for both prey and predator is investigated. It
is assumed that immature predator and mature individuals of each species are divided
by a fixed age, and immature predator do not have the ability to attack prey. Sufficient
conditions are derived for the permanence and existence of positive periodic solution of
the model. Numerical simulations are presented to illustrate the feasibility of our main
results.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Traditional Lotka–Volterra type predator–prey with Holling III functional response has received great attention from
both theoretical andmathematical biologists, and has been well studied. The standard Lotka–Volterra typemodel is built by
assuming that the per capita rate of predation depends on the prey numbers only. Recently, the traditional prey-dependent
predator–prey model has been challenged by several biologists (see, for example [1–5]). There is growing explicit biological
and physiological evidence [1–5] that in some situations, especially when predator have to search for food (and therefore
have to share or compete for food), a more suitable general predator–prey model should be based on the ratio-dependent
theory. This roughly states that the per capita predator growth rate should be a function of the ratio of the prey to predator
abundance. This is strongly supported by numerous field and laboratory experiments and observations [1,3,5].
Based on theMichaelis–Menten or Holling type II function, Arditi andGinzburg [6] proposed a ratio-dependent predator–

prey function of the form

P
(
x
y

)
=

c(x/y)
m+ (x/y)

=
cx

my+ x

and the following ratio-dependent predator–prey model:
ẋ = x(a− bx)−

cxy
my+ x

,

ẏ = y
(
−d+

fx
my+ x

)
.

(1.1)
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Here x(t) and y(t) represent the densities of the prey and the predator at time t , respectively. a/b is the carrying capacity,
d > 0 is the death rate of the predator, and a, c,m and f /c are positive constants that stand for the intrinsic growth rate of
the prey, capturing rate, half saturation constant and conversion rate of the predator, respectively.
The ratio-dependent predator–preymodels with or without time delays have been studied bymany researchers recently

and very rich dynamics have been observed (see [7–17,37] and references cited therein). However, it is assumed in the
classical ratio-dependent predator–prey model that each individual predator admits the same ability to attack prey. This
assumption is obviously unrealistic for many animals. In the natural world, there are many species whose individuals have
a life history that take them through two stage, immature andmature, where immature predator are raised by their parents,
and the rate they attack at prey and the reproductive rate can be ignored.
Stage-structured models have received much attention in recent years (see [18–30,34–36,38]). In [18], a model of single

species population growth incorporating stage structure as a reasonable generalization of the classical logistic model was
derived and investigated. This model assumes an average age to maturity which appears as a constant time delay reflecting
a delayed birth of immature and a reduced survival of immature to their maturity. The model takes the form{

ẋi(t) = αxm(t)− γ xi(t)− αe−γ τ xm(t − τ),
ẋm(t) = αe−γ τ xm(t − τ)− βx2m(t), t > τ

(1.2)

where xi(t) represents the immature population density, xm(t) denotes the mature population density, α > 0 represents
the birth rate, γ > 0 is the immature death rate, β > 0 is themature death and overcrowding rate, τ is the time tomaturity.
The term αe−γ τ xm(t − τ) represents the immature who were born at time t − τ and survive at time t (with the immature
death rate γ ), and therefore represents the transformation of immature to mature.
We note that any biological or environmental parameters are naturally subject to fluctuation in time. As Cushing [31]

pointed out that it is necessary and important to consider models with periodic ecological parameters or perturbations
which might be quite naturally exposed (for example, those due to seasonal effects of weather, food supply, mating habits,
hunting or harvesting seasons, etc.). Thus, the assumption of the periodicity of the parameters is a way of incorporating the
periodicity of the environment.
In the present paper, we consider the following delayed ratio-dependent predator–prey system with Holling type III

functional response and stage structure.

ẋ1(t) = α1(t)x2(t)− γ1(t)x1(t)− α1(t − τ1)e
−
∫ t
t−τ1

γ1(s)dsx2(t − τ1),

ẋ2(t) = α1(t − τ1)e
−
∫ t
t−τ1

γ1(s)dsx2(t − τ1)− β1(t)x22(t)−
a1(t)x22(t)y2(t)
m2y22(t)+ x

2
2(t)

,

ẏ1(t) = α2(t)
x22(t)y2(t)

m2y22(t)+ x
2
2(t)
− γ2(t)y1(t)

− α2(t − τ2)e
−
∫ t
t−τ2

γ2(s)ds x22(t−τ2)y2(t−τ2)

m2y22(t−τ2)+x
2
2(t−τ2)

,

ẏ2(t) = α2(t − τ2)e
−
∫ t
t−τ2

γ2(s)ds x22(t − τ2)y2(t − τ2)
m2y22(t − τ2)+ x

2
2(t − τ2)

− β2(t)y2(t)

(1.3)

where x1(t) and x2(t) denote the densities of immature and mature individual preys at time t , respectively; y1(t) and
y2(t) represent the densities of immature andmature individual predators at time t , respectively. α1(t), α2(t), β1(t), β2(t),
γ1(t), γ2(t), and a1(t) are continuously positive periodic functions with periodω, and x2(t)/(m2y22(t)+ x

2
2(t)) here denotes

themature predator response function, which reflects the capture ability of themature predator. Themodel is derived under
the following assumptions.
(H1) The prey population: the birth rate of the immature population is proportional to the existing mature population

with a proportionality α1(t) > 0; the death rate of the immature population is proportional to the existing immature pop-
ulation with a proportionality γ1(t) > 0; the death rate of the mature population is a logistic nature, i. e., it is proportional
to square of the population with a proportionality β1(t). The term

α1(t − τ1)e
−
∫ t
t−τ1

γ1(s)dsx2(t − τ1)

represents the number of immature preys that were born at time t − τ1 which still survive at time t and are transferred
from the immature stage to the mature stage at time t . We refer to the article of Liu et al. [23]. The mature predators feed
on the mature prey only.
(H2) The predator population: the death rate of the immature population is proportional to the existing immature

populationwith a proportionality γ2(t) > 0; a1(t) is the capturing rate ofmature predator,m is the half capturing saturation
constant, α2(t)/a1(t) is the rate of conversion of nutrients into the reproduction of the mature predator, β2(t) is the death
rate of mate predators. The term

α2(t − τ2)e
−
∫ t
t−τ2

γ2(s)ds x22(t − τ2)y2(t − τ2)
m2y22(t − τ2)+ x

2
2(t − τ2)
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represents the number of immature preys that were born at time t − τ2 which still survive at time t and are transferred
from the immature stage to the mature stage at time t . It is assumed in (1.3) that immature individual predators do not feed
on prey and do not have the ability to reproduce.
The initial conditions for system (1.3) take the form of{xi(θ) = φi(θ) ≥ 0,

yi(θ) = ψi(θ) > 0,
φi(0) > 0, i = 1, 2, θ ∈ [−τ , 0].

(1.4)

where τ = max{τ1, τ2}, (φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) ∈ C([−τ , 0],R4
+0), the Banach space of continuous functions map-

ping the interval [−τ , 0] into R4
+0, where we define

R4
+0 = {(x1, x2, x3, x4) : xi ≥ 0, i = 1, 2, 3, 4},

and the interior of R4
+
,

R4
+
= {(x1, x2, x3, x4) : xi > 0, i = 1, 2, 3, 4}.

For continuity of initial conditions, we require
x1(0) =

∫ 0

−τ1

α1(s)e−
∫ 0
s γ1(u)duφ2(s)ds,

y1(0) =
∫ 0

−τ2

α2(s)e−
∫ 0
s γ2(u)du

φ22(s)ψ2(s)
m2ψ22 (s)+ φ

2
2(s)
ds.

(1.5)

We adopt the following notations throughout this paper:

f =
1
ω

∫ ω

0
f (t)dt, f L = min

t∈[0,ω]
|f (t)|, f M = max

t∈[0,ω]
|f (t)|,

where f is a continuous ω-periodic function.
The organization of this paper is as follows. In the next section, sufficient conditions are established for the positivity of

solutions and thepersistence of system (1.3)with initial conditions (1.4) and (1.5). In Section 3, by usingGaines andMawhin’s
continuation theorem of coincidence degree theory, we show the existence of positive ω-periodic solutions of (1.3) with
initial conditions (1.4)–(1.5). In Section 4, our main results are illustrated by numerical simulations. A brief discussion is
given in Section 5.

2. Uniform persistence

In this section, we will perform analysis on the permanence and extinction of system (1.3) with initial conditions (1.4)
and (1.5).

Definition. System (1.3) is said to be permanent if there exists a compact region D ⊂ IntR4
+
such that every solution z(t)

of (1.3) with initial conditions (1.4) and (1.5) eventually enters and remains in the region D.

Lemma 2.1. Solutions of system (1.3) with initial conditions (1.4) and (1.5) are positive for all t ≥ 0.

Proof. Let (x1(t), x2(t), y1(t), y2(t)) be a solution of system (1.3)with initial conditions (1.4) and (1.5). Set τ ∗ = min{τ1, τ2}.
Let us first consider y2(t) for t ∈ [0, τ ∗]. It follows from the fourth equation of system (1.3) that

ẏ2(t) = α2(t − τ2)e
−
∫ t
t−τ2

γ2(s)ds φ22(t − τ2)ψ2(t − τ2)
m2ψ22 (t − τ2)+ φ

2
2(t − τ2)

− β2(t)y2(t)

≥ −β2(t)y2(t) (2.1)

since φ2(θ) ≥ 0, ψ2(θ) > 0 for θ ∈ [−τ ∗, 0]. Therefore, a standard comparison argument shows that

y2(t) ≥ y2(0)e−
∫ t
0 β2(s)ds,

i.e., y2(t) > 0 for t ∈ [0, τ ∗].
By the second equation of system (1.3), for t ∈ [0, τ ∗], we derive

ẋ2(t) = α1(t − τ1)e
−
∫ t
t−τ1

γ1(s)dsφ2(t − τ1)− β1(t)x22(t)−
a1(t)x22(t)y2(t)
m2y22(t)+ x

2
2(t)

≥ −β1(t)x22(t)−
a1(t)x22(t)y2(t)
m2y22(t)+ x

2
2(t)

(2.2)
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since φ2(θ) ≥ 0 for θ ∈ [−τ ∗, 0]. Therefore, a standard comparison argument show

x2(t) ≥
1

1
x2(0)
+
∫ t
0 (β1(s)+

a1(s)y2(s)
m2y22(s)+x

2
2(s)
)ds

> 0 for t ∈ [0, τ ∗]. (2.3)

By (1.5) and the first and the third equations of system (1.3), one can rewrite x1(t) and y1(t) as follows:
x1(t) =

∫ t

t−τ1
α1(s)e−

∫ t
s γ1(u)dux2(s)ds,

y1(t) =
∫ t

t−τ2
α2(s)e−

∫ t
s γ2(u)du

x22(s)y2(s)
m2y22(s)+ x

2
2(s)
ds.

(2.4)

Hence the positivity of x2(t), y2(t) on [−τ ∗, τ ∗] implies that of x1(t) and y1(t) for t ∈ [0, τ ∗].
In a similar way we treat the intervals [τ ∗, 2τ ∗], . . . , [nτ ∗, (n + 1)τ ∗], n ∈ N . Thus, x1(t) > 0, x2(t) > 0, y1(t) > 0,

y2(t) > 0 for all t ≥ 0. This completes the proof. �

Lemma 2.2 ([26]). Consider the following equation:

ẋ(t) = ax(t − τ)− bx(t)− cx2(t),

where a, b, c and τ are positive constants, x(t) > 0 for t ∈ [−τ , 0]. We have
(i) if a > b, then limt→+∞ x(t) = a−b

c ;

(ii) if a < b, then limt→+∞ x(t) = 0.

Lemma 2.3 ([32]). Consider the following equation:

ẋ(t) = f
(∫

−δ

−τ

x(t + s)du(s)
)
− g(x(t)),

assume that (a1) and (a2) hold and xM > x∗, then x(t) = x∗ is absolutely globally asymptotically stable. Where
(a1) f (0) = 0; there is an xM > 0, such that f (·) is strictly increasing in [0, xM ] and strictly decreasing in [xM ,+∞);

limx→+∞ f (x) ≥ 0. There is a unique x∗ > 0 such that f (x) > g(x) for x ∈ (0, x∗) and f (x) < g(x) for x > x∗.
(a2) g(x) is strictly increasing, g(0) = 0, limx→+∞ g(x) = +∞.

Lemma 2.4. Positive solutions of system (1.3) with initial conditions (1.4) and (1.5) are ultimately bounded.

Proof. Suppose z(t) = (x1(t), x2(t), y1(t), y2(t)) is any positive solution of system (1.3) with initial conditions (1.4) and
(1.5). Let

ρ(t) = x1(t)+ x2(t)+ y1(t)+ y2(t).

Calculating the derivative of ρ(t) along positive solutions of (1.3), we obtain

ρ̇(t) = α1(t)x2(t)− γ1(t)x1(t)− β1(t)x22(t)−
a1(t)x22(t)y2(t)
m2y22(t)+ x

2
2(t)

+α2(t)
x22(t)y2(t)

m2y22(t)+ x
2
2(t)
− γ2(t)y1(t)− β2(t)y2(t).

By using the inequalities a2 + b2 ≥ 2ab, where a ≥ 0, b ≥ 0, we have

ρ̇(t) ≤ −γ L1 x1(t)+
(
αM1 +

αM2

2m

)
x2(t)− βL1x

2
2(t)− γ

L
2 y1(t)− β

L
2y2(t). (2.5)

For a positive constant ε (ε < min{γ L1 , γ
L
2 , β

L
2}), it follows from (2.5) that

ρ̇(t)+ ερ(t) ≤
(
ε + αM1 +

αM2

2m

)
x2(t)− βL1x

2
2(t).

Therefore, there exists a positive constant A such that

ρ̇(t)+ ερ(t) < A,

which yields

ρ(t) <
A
ε
+

(
ρ(0)−

A
ε

)
e−εt .
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Hence, positive solutions of (1.3) with initial conditions (1.4) and (1.5) are ultimately bounded, i.e., there exist positive
constants T1 andMi (i = 1, 2, 3, 4) such that xi(t) ≤ Mi, yi(t) ≤ Mi+2 (i = 1, 2) for t > T1. �

Lemma 2.5. Consider the following equation:

ẋ(t) = ax(t − τ)− bx2(t),

where a, b and τ are positive constants, x(t) > 0 for t ∈ [−τ , 0], then limt→+∞ x(t) = a/b.

Proof. It is easy to show that x(t) is positive and bounded for all t > 0. Clearly x∗ = a/b is the unique equilibriumof equation
ẋ(t) = ax(t − τ)− bx2(t). Suppose that x(t) is eventually monotonic, then limt→+∞ x(t) exists. Denote X = limt→+∞ x(t),
now we prove X = x∗. Otherwise if X > x∗, then

lim
x→+∞

ẋ = aX − bX2 = bX(x∗ − X) < 0,

which implies limt→+∞ x(t) = −∞, this is a contradiction, therefore X = x∗.
Now suppose that x(t) is not eventually monotonic, since x(t) is bounded, let δ = limt→+∞ sup |x(t) − x∗|, hence, δ is

bounded, we now show that δ = 0, otherwise, if δ > 0, then there exists a sequence x(ti)(ti > ti−1, limi→+∞ ti = +∞)
such that limi→+∞ x(ti) = x∗+ δ, or limi→+∞ x(ti) = x∗− δ, (x∗ > δ). Without loss of generalization, we only consider the
case limi→+∞ x(ti) = x∗ + δ. Then there is an ε (here 0 < ε < (3a+ 2bδ −

√
9a2 + 8abδ)/(2b)) such that

a(x∗ + δ + ε)− b(x∗ + δ − ε)2 < 0.

For this ε, there exists a T = T (ε) > τ such that for ti > T − τ , we have x(ti) < x∗ + δ + ε. We also know that there is a
ti > T such that ẋ(ti) = 0, x(ti)− x∗ > δ − ε. This implies that

ax(ti − τ) = bx2(ti).

Thus ax(ti − τ) > b(x∗ + δ − ε)2, by a(x∗ + δ + ε) − b(x∗ + δ − ε)2 < 0, we have ax(ti − τ) > a(x∗ + δ + ε). Hence
x(ti − τ) > x∗ + δ + ε, this is a contradiction to x(ti) < x∗ + δ + ε, then δ = 0, that is limt→+∞ x(t) = x∗. �

Theorem 2.1. System (1.3) with initial conditions (1.4) and (1.5) is permanent provided that
(H3) 2mαL1e

−γM1 τ1 > aM1 , β
M
2 < αL2e

−γM2 τ2 < 2βM2 .

Proof. Suppose z(t) = (x1(t), x2(t), y1(t), y2(t)) is any solution of system (1.3) with initial conditions (1.4)–(1.5).
It follows from the second equation of system (1.3) that for t > τ1,

ẋ2(t) ≥ αL1e
−γM1 τ1x2(t − τ1)− βM1 x

2
2(t)−

aM1
2m
x2(t).

We consider the following auxiliary equation:

u̇(t) = αL1e
−γM1 τ1u(t − τ1)− βM1 u

2(t)−
aM1
2m
u(t).

By Lemma 2.2 we derive

lim
t→+∞

u(t) =
αL1e
−γM1 τ1 −

aM1
2m

βM1
:= m∗2.

By comparison, there exist a T2 > τ1 and a positive constant m2 < m∗2 such that x2(t) > m2 for t ≥ T2. As a consequence,
from the fourth equation of system (1.3) we derive for t > T2 + τ2 that

ẏ2(t) > αL2e
−γM2 τ2

m22y2(t − τ2)
m2y22(t − τ2)+m

2
2
− βM2 y2(t).

Consider the following auxiliary equation:

u̇(t) = αL2e
−γM2 τ2

m22u(t − τ2)
m2u2(t − τ2)+m22

− βM2 u(t).

In order to apply Lemma 2.3, we now prove that the equation

u̇(t) = αL2e
−γM2 τ2

m22u(t − τ2)
m2u2(t − τ2)+m22

− βM2 u(t)
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satisfies conditions (a1), (a2) of Lemma 2.3. We let

f (u(t − τ2)) = αL2e
−γM2 τ2

m22u(t − τ2)
m2u2(t − τ2)+m22

, g(u) = βM2 u(t).

Clearly, f (0) = 0, there is an uM = m2/m > 0 such that f (·) is strictly increasing in [0, uM ] and strictly decreasing in
[uM ,+∞); obviously, limu→+∞ f (u) = 0. By (H3) and the equation

u̇(t) = αL2e
−γM2 τ2

m22u(t − τ2)
m2u2(t − τ2)+m22

− βM2 u(t),

we can obtain that there is a unique

u∗ =
m2
m

√
αL2e
−γM2 τ2 − βM2

βM2
> 0

such that f (u) > g(u) for x ∈ (0, u∗) and f (u) < g(u) for u > u∗. Hence, the condition (a1) of Lemma 2.3 holds. Since
g(u) = βM2 u(t) is strictly increasing, and g(0) = 0, limu→+∞ g(u) = +∞, the condition (a2) of Lemma 2.3 holds. By
αL2e
−γM2 τ2 < 2βM2 of (H3), we can also know that uM > u

∗. Hence, all conditions of Lemma 2.3 hold.
By Lemma 2.3, we now derive

lim
t→+∞

u(t) =
m2
m

√
αL2e
−γM2 τ2 − βM2

βM2
.

By the comparison principle, we have

lim inf
t→+∞

y2(t) ≥
m2
m

√
αL2e
−γM2 τ2 − βM2

βM2
:= m∗4.

Hence, there exist a T3 > T2 + τ2 and a positive constantm4 < m∗4 such that y2(t) > m4 for t ≥ T3.
By the second equation of system (1.3), for t > τ1, we derive

ẋ2(t) ≤ αM1 e
−γ L1 τ1x2(t − τ1)− βL1x

2
2(t).

We consider the following auxiliary equation:

u̇(t) = αM1 e
−γ L1 τ1u(t − τ1)− βL1u

2(t).

By Lemma 2.5 we derive

lim
t→∞

u(t) =
αM1 e

−γ L1 τ1

βL1
:= M∗2 .

By comparison, there exists positive constants T1 > τ1 andM2 > M∗2 such that x2(t) < M2 for t > T1. At the same time, by
the fourth equation of system (1.3), for t > τ1, we derive

ẏ2(t) ≤
αM2 e

−γ L2 τ2M2
2m

− βL2y2(t).

We consider the following auxiliary equation:

u̇(t) =
αM2 e

−γ L2 τ2M2
2m

− βL2u(t).

By the equation, we obtain

u(t) ≤
αM2 e

−γ L2 τ2M2
2mβL2

:= M∗4 .

By comparison, there exists positive constants T4 > τ2 andM4 > M∗4 such that y2(t) < M4 for t > T4.
It follows from (2.4) that for t ≥ max{T3 + τ , T4},

x1(t) =
∫ t

t−τ1
α1(s)e−

∫ t
s γ1(u)dux2(s)ds ≥

∫ t

t−τ1
αL1m2e

−γM1 (t−s)ds

=
αL1m2
γM1

(1− e−γ
M
1 τ1) := m1,
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and

y1(t) =
∫ t

t−τ2
α2(s)e−

∫ t
s γ2(u)du

x22(s)y2(s)
m2y22(s)+ x

2
2(s)
ds ≥

∫ t

t−τ2
αL2e
−γM2 (t−s)

m22y2(s)
m2y22(s)+m

2
2
ds

≥

∫ t

t−τ2
αL2e
−γM2 (t−s)

m22m4
m2y22(s)+m

2
2
ds ≥

∫ t

t−τ2
αL2e
−γM2 (t−s)

m22m4
m2M24 +m

2
2
ds

=
αL2m

2
2m4

γM2 (m2M
2
4 +m

2
2)
(1− e−γ

M
2 τ2) := m3.

We now let

D = {(x1, x2, y1, y2)|mi ≤ xi ≤ Mi,mi+2 ≤ yi ≤ Mi+2, i = 1, 2}.

Then D is a bounded compact region in R4
+
which has positive distance from coordinate hyper-planes. From what has been

discussed above, we obtain that there exists a T > T3 + τ2 such that if t > T , every positive solution of system (1.3) with
initial conditions (1.4) and (1.5) eventually enters and remains in the region D. The proof is complete. �

In the following, by using a similar method in the proof of Theorem 2.1 inWang et al. [29], we present a simple result for
extinction of the predator.

Theorem 2.2. Adult predator population will go to extinction if αM2 e
−γ L2 τ2 < βL2.

Proof. Let (x1(t), x2(t), y1(t), y2(t)) be a positive solution of system (1.3) with initial conditions (1.4) and (1.5). It follows
from the fourth equation of system (1.3) that

ẏ2(t) ≤ αM2 e
−γ L2 τ2y2(t − τ2)− βL2y2(t).

Consider the following auxiliary equation:

ẏ(t) = αM2 e
−γ L2 τ2y(t − τ2)− βL2y(t). (2.6)

Since αM2 e
−γ L2 τ2 < βL2, we can choose a positive constant q > 1 such that qα

M
2 e
−γ L2 τ2 < βL2. Take p(s) = q

2s, V (y) = y2.
Calculating the derivative of V (y) along solutions of Eq. (2.6) we obtain

V̇ (y(t)) = 2(αM2 e
−γ L2 τ2y(t − τ2)− βL2y(t)). (2.7)

If p(V (y(t))) > V (y(t + θ)) for−τ2 ≤ θ ≤ 0, we have |qy(t)| > |y(t + θ)|. Therefore, it follows from (2.7) that

V̇ (y(t)) ≤ 2y2(t)(qαM2 e
−γ L2 τ2 − βL2)

if p(V (y(t))) > V (y(t + θ)) for −τ2 ≤ θ ≤ 0. Since qαM2 e
−γ L2 τ2 < βL2, by Theorem 4.2 in Chapter 5 of [33], we can derive

limt→∞ y(t) = 0. A standard comparison argument shows that limt→∞ y2(t) = 0. This completes the proof. �

3. Existence of periodic solutions

In order to obtain the existence of positive periodic solutions of system (1.3), we first make the following preparations:
Let X, Y be real Banach spaces, let L : Dom L ⊂ X → Y be a linear mapping, and N : X → Y be a continuous mapping.

The mapping L is called a Fredholm mapping of index zero if dimKer L = codim Im L < +∞ and Im L is closed in Y. If
L is a Fredholm mapping of index zero and there exist continuous projectors P : X → X, and Q : Y → Y such that
Im P = Ker L,KerQ = Im L = Im (I − Q), then the restriction LP of L to Dom L

⋂
Ker P : (I − P)X → Im L is invertible.

Denote the inverse of LP by KP. If Ω is an open bounded subset of X, the mapping N will be called L-compact on Ω if
QN(Ω) is bounded and KP(I − Q)N : Ω → X is compact. Since ImQ is isomorphic to Ker L, there exists an isomorphism
J : ImQ→ Ker L.

Lemma 3.1 ([22]). Let Ω ⊂ X be an open bounded set. Let L be a Fredholm mapping of index zero and N be L-compact on Ω.
Assume
(b1) for each λ ∈ (0, 1), x ∈ ∂Ω

⋂
Dom L, Lx 6= λNx;

(b2) for each x ∈ ∂Ω
⋂
Ker L,QNx 6= 0;

(b3) deg{JQN,Ω
⋂
Ker L, 0} 6= 0.

Then Lx = Nx has at least one solution inΩ
⋂
Dom L.

We are now in a position to state and prove our result on the existence of positive periodic solutions of system (1.3).
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Theorem 3.1. Let (H3) hold. Then system (1.3)with initial conditions (1.4) and (1.5) has at least one strictly positive ω-periodic
solution.

Proof. We first consider the following subsystem:
ẋ2(t) = α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dsx2(t − τ1)− β1(t)x22(t)−
a1(t)x22(t)y2(t)
m2y22(t)+ x

2
2(t)

,

ẏ2(t) = α2(t − τ2)e
−
∫ t
t−τ2

γ2(s)ds x22(t − τ2)y2(t − τ2)
m2y22(t − τ2)+ x

2
2(t − τ2)

− β2(t)y2(t)
(3.1)

with initial conditions{
x2(θ) = φ2(θ), y2(θ) = ψ2(θ),
φ2(θ) ≥ 0, ψ2(0) > 0, φ2(0) > 0, θ2 ∈ [−τ , 0].

(3.2)

Let

u1(t) = ln[x2(t)], u2(t) = ln[y2(t)]. (3.3)

On substituting (3.3) into (3.1), we derive
du1(t)
dt
= α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dseu1(t−τ1)−u1(t) − β1(t)eu1(t) −
a1(t)eu1(t)+u2(t)

m2e2u2(t) + e2u1(t)
,

du2(t)
dt
= α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)ds e
2u1(t−τ2)+u2(t−τ2)−u2(t)

m2e2u2(t−τ2) + e2u1(t−τ2)
− β2(t).

(3.4)

It is easy to see that if system (3.4) has one ω-periodic solution (u∗1(t), u
∗

2(t))
T, then z∗(t) = (x∗2(t), y

∗

2(t))
T
= (exp[u∗1(t)],

exp[u∗2(t)])
T is a positiveω-periodic solution of system (3.1). Therefore, in the following we first prove that system (3.4) has

at least one ω-periodic solution.
To apply Lemma 3.1 to (3.4), we first define

X = Y = {(u1(t), u2(t))T ∈ C(R,R2) : ui(t + ω) = ui(t), i = 1, 2}

and

‖(u1(t), u2(t))T‖ = max
t∈[0,ω]

|u1(t)| + max
t∈[0,ω]

|u2(t)|,

where | · | denote the Euclidean norm. Then it is easy to see that X and Y are Banach spaces with the norm‖ · ‖. Let

L : Dom L
⋂

X→ X, L(u1(t), u2(t))T =
(
du1(t)
dt

,
du2(t)
dt

)T
,

where Dom L = {(u1(t), u2(t))T ∈ C1(R,R2)} and N : X→ X,

N
(
u1
u2

)
=

α1(t − τ1)e
−
∫ t
t−τ1

γ1(s)dseu1(t−τ1)−u1(t) − β1(t)eu1(t) −
a1(t)eu1(t)+u2(t)

m2e2u2(t) + e2u1(t)

α2(t − τ2)e
−
∫ t
t−τ2

γ2(s)ds e
2u1(t−τ2)+u2(t−τ2)−u2(t)

m2e2u2(t−τ2) + e2u1(t−τ2)
− β2(t)

 .
Define

P
(
u1
u2

)
= Q

(
u1
u2

)
=


1
ω

∫ ω

0
u1(t)dt

1
ω

∫ ω

0
u2(t)dt

 , (
u1
u2

)
∈ X = Y.

It is not difficult to show that

Ker L = {x|x ∈ X, x = h, h ∈ R2
},

Im L =
{
y|y ∈ Y,

∫ ω

0
y(t)dt = 0

}
,

Im L is closed in Y, and

dim Ker L = codim ImL = 2,
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and P and Q are continuous projectors such that

Im P = Ker L, KerQ = Im L = (I− Q).

It follows that L is a Fredholmmapping of index zero. Furthermore, the inverse KP of LP exists and has the form KP : Im L→
Dom L

⋂
Ker P,

KP(y) =
∫ t

0
y(s)ds−

1
ω

∫ ω

0

∫ t

0
y(s)dsdt.

Then QN : X→ Y and KP(I− Q)N : X→ X are given respectively by

QNx =


1
ω

∫ ω

0
(α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dseu1(t−τ1)−u1(t) − β1(t)eu1(t) −
a1(t)eu1(t)+u2(t)

m2e2u2(t) + e2u1(t)
)dt

1
ω

∫ ω

0
(α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)ds e
2u1(t−τ2)+u2(t−τ2)−u2(t)

m2e2u2(t−τ2) + e2u1(t−τ2)
− β2(t))dt

 ,
KP(I− Q)Nx =

∫ t

0
Nx(s)ds−

1
ω

∫ ω

0

∫ t

0
Nx(s)dsdt −

(
t
ω
−
1
2

)∫ ω

0
Nx(s)ds.

Clearly, QN and KP(I− Q)N are continuous.
In order to apply Lemma 3.1, we need to search for an appropriate open, bounded subsetΩ .
Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), we have

du1(t)
dt
= λ

[
α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dseu1(t−τ1)−u1(t) − β1(t)eu1(t) −
a1(t)eu1(t)+u2(t)

m2e2u2(t) + e2u1(t)

]
,

du2(t)
dt
= λ

[
α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)ds e
2u1(t−τ2)+u2(t−τ2)−u2(t)

m2e2u2(t−τ2) + e2u1(t−τ2)
− β2(t)

]
.

(3.5)

Suppose that (u1(t), u2(t))T ∈ X is a solution of (3.5) for a certain λ ∈ (0, 1). Integrating (3.5) over the initial [0, ω] we
obtain∫ ω

0
α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dseu1(t−τ1)−u1(t)dt =
∫ ω

0
β1(t)eu1(t)dt +

∫ ω

0

a1(t)eu1(t)+u2(t)

m2e2u2(t) + e2u1(t)
dt, (3.6)∫ ω

0
α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)ds e
2u1(t−τ2)+u2(t−τ2)−u2(t)

m2e2u2(t−τ2) + e2u1(t−τ2)
dt =

∫ ω

0
β2(t)dt. (3.7)

Since (u1(t), u2(t))T ∈ X, there exist ξi, ηi ∈ [0, ω] such that

ui(ξi) = min
t∈[0,ω]

ui(t), ui(ηi) = max
t∈[0,ω]

ui(t), i = 1, 2. (3.8)

Multiplying the first equation of (3.5) by eu1(t) and integrating over [0, ω] give∫ ω

0
α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dseu1(t−τ1)dt =
∫ ω

0
β1(t)e2u1(t)dt +

∫ ω

0

a1(t)e2u1(t)+u2(t)

m2e2u2(t) + e2u1(t)
dt. (3.9)

It follows from (3.9) that∫ ω

0
β1(t)e2u1(t)dt <

∫ ω

0
α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dseu1(t−τ1)dt,

which yields

βL1

∫ ω

0
e2u1(t)dt < αM1 e

−γ L1 τ1

∫ ω

0
eu1(t−τ1)dt = αM1 e

−γ L1 τ1

∫ ω

0
eu1(t)dt. (3.10)

By using the inequalities(∫ ω

0
eu1(t)dt

)2
≤ ω

∫ ω

0
e2u1(t)dt,

we derive from (3.10) that

βL1

(∫ ω

0
eu1(t)dt

)2
< αM1 ωe

−γ L1 τ1

∫ ω

0
eu1(t)dt,
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which implies∫ ω

0
eu1(t)dt ≤

αM1 ωe
−γ L1 τ1

βL1
, u1(ξ1) ≤ ln

αM1 e
−γ L1 τ1

βL1
. (3.11)

It follows from (3.5), (3.6) and (3.11) that∫ ω

0
|u′1(t)|dt <

∫ ω

0

[
α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dseu1(t−τ1)−u1(t) + β1(t)eu1(t) +
a1(t)eu1(t)+u2(t)

m2e2u2(t) + e2u1(t)

]
dt

= 2
∫ ω

0

[
β1(t)eu1(t) +

a1(t)eu1(t)+u2(t)

m2e2u2(t) + e2u1(t)

]
dt

≤ 2βM1

∫ ω

0
eu1(t)dt +

a1ω
m

≤
2αM1 β

M
1 ωe

−γ L1 τ1

βL1
+
a1ω
m
:= c1. (3.12)

We derive from (3.11) and (3.12) that

u1(t) ≤ u1(ξ1)+
∫ ω

0
|u′1(t)|dt ≤ ln

αM1 e
−γ L1 τ1

βL1
+ c1. (3.13)

Noting that∫ ω

0
α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dseu1(t−τ1)dt =
∫ ω

0
α1(t)e−

∫ t+τ1
t γ1(s)dseu1(t)dt,

it follows from (3.9) that∫ ω

0
β1(t)e2u1(t)dt =

∫ ω

0
α1(t)e−

∫ t+τ1
t γ1(s)dseu1(t)dt −

∫ ω

0

a1(t)e2u1(t)+u2(t)

m2e2u2(t) + e2u1(t)
dt

≥ αL1e
−γM1 τ1

∫ ω

0
eu1(t)dt −

aM1
2m

∫ ω

0
eu1(t)dt,

which yields

eu1(η1) ≥
αL1e
−γM1 τ1 −

aM1
2m

βM1
,

i.e.,

u1(η1) ≥ ln
αL1e
−γM1 τ1 −

aM1
2m

βM1
. (3.14)

We derive from (3.12) and (3.14) that

u1(t) ≥ u1(η1)−
∫ ω

0
|u′1(t)|dt ≥ ln

αL1e
−γM1 τ1 −

aM1
2m

βM1
− c1. (3.15)

This together with (3.13), leads to

max
t∈[0,ω]

|u1(t)| < max


∣∣∣∣∣ln αM1 e−γ

L
1 τ1

βL1

∣∣∣∣∣+ c1,
∣∣∣∣∣∣ln α

L
1e
−γM1 τ1 −

aM1
2m

βM1

∣∣∣∣∣∣+ c1
 := R1. (3.16)

Multiplying the second equation of (3.5) by eu2(t) and integrating over [0, ω] gives∫ ω

0
β2(t)eu2(t)dt =

∫ ω

0
α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)ds e2u1(t−τ2)+u2(t−τ2)

m2e2u2(t−τ2) + e2u1(t−τ2)
dt

≤
αM2 e

−γ L2 τ2

2m

∫ ω

0
eu1(t−τ2)dt =

αM2 e
−γ L2 τ2

2m

∫ ω

0
eu1(t)dt,
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which, together with (3.11), implies

u2(ξ2) ≤ ln
αM1 α

M
2 e
−(γ L1 τ1+γ

L
2 τ2)

2mβL1β
L
2

:= ln d1. (3.17)

It follows from (3.5) and (3.7) that∫ ω

0
|u′2(t)|dt <

∫ ω

0

[
α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)ds e
2u1(t−τ2)+u2(t−τ2)−u2(t)

m2e2u2(t−τ2) + e2u1(t−τ2)
+ β2(t)

]
dt

= 2β2ω. (3.18)

Thus, from (3.17) and (3.18) we can obtain

u2(t) ≤ u2(ξ2)+
∫ ω

0
|u′2(t)|dt ≤ ln d1 + 2βω. (3.19)

Multiplying the second equation of (3.5) by eu2(t) and integrating over [0, ω] again we derive∫ ω

0
β2(t)eu2(t)dt =

∫ ω

0
α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)ds e2u1(t−τ2)+u2(t−τ2)

m2e2u2(t−τ2) + e2u1(t−τ2)
dt

≥ αL2e
−γM2 τ2

∫ ω

0

e2u1(ξ1)+u2(t−τ2)

m2e2u2(η2) + e2u1(ξ1)
dt

=
αL2e
−γM2 τ2e2u1(ξ1)

m2e2u2(η2) + e2u1(ξ1)

∫ ω

0
eu2(t−τ2)dt

=
αL2e
−γM2 τ2e2u1(ξ1)

m2e2u2(η2) + e2u1(ξ1)

∫ ω

0
eu2(t)dt

which, together with (3.15), leads to

u2(η2) ≥ ln

√αL2e−γM2 τ2 − βM2
m2βM2

·
αL1e
−γM1 τ1 −

aM1
2m

βM1 ec1

 := ln d2. (3.20)

It follows from (3.18) and (3.20) that

u2(t) ≥ u2(η2)−
∫ ω

0
|u′2(t)|dt ≥ ln d2 − 2β2ω. (3.21)

This, together with (3.19), leads to

max
t∈[0,ω]

|u2(t)| < max{| ln d1| + 2β2ω, | ln d2| + 2β2ω} := R2. (3.22)

Clearly, R1 and R2 in (3.16) and (3.22) are independent of λ. DenoteM = R1 + R2 + R0, where R0 is taken sufficiently large
such that the unique solution (u∗, v∗)T of the system of algebraic equations

1
ω

∫ ω

0
α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dsdt − β1eu −
a1eu+v

m2e2v + e2u
= 0,

1
ω

∫ ω

0
α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)dsdt
e2u

m2e2v + e2u
− β2 = 0

(3.23)

satisfies ‖(u∗, v∗)T‖ = |u∗| + |v∗| < M.
We now takeΩ = {(u1(t), u2(t))T ∈ X : ‖(u1, u2)T‖ < M}. This satisfies the condition (b1) in Lemma 3.1. When (u1(t),

u2(t))T ∈ ∂Ω
⋂
Ker L = ∂Ω

⋂
R2, (u1, u2)T is a constant vector in R2 with |u1| + |u2| = M. Thus, we have

QN
(
u1
u2

)
=


1
ω

∫ ω

0
α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dsdt − β1eu1 −
a1eu1+u2

m2e2u2 + e2u1
1
ω

∫ ω

0
α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)dsdt
e2u1

m2e2u2 + e2u1
− β2

 6= (00
)
.

This proves that condition (b2) in Lemma 3.1 is satisfied.
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Taking J = I : ImQ→ Ker L, (u1, u2)T → (u∗1, u
∗

2)
T, a direct calculation shows that

deg
(
JQN(u1, u2)T,Ω

⋂
Ker L, (0, 0)T

)
= deg

((
1
ω

∫ ω

0
α1(t − τ1)e

−
∫ t
t−τ1

γ1(s)dsdt − β1eu1 −
a1eu1+u2

m2e2u2 + e2u1
,

1
ω

∫ ω

0
α2(t − τ2)e

−
∫ t
t−τ2

γ2(s)dsdt
e2u1

m2e2u2 + e2u1
− β2

)T
,Ω

⋂
Ker L, (0, 0)T

)
= sgn

{
2m2e3u

∗
1+2u

∗
2

ω(m2e2u
∗
2 + eu

∗
1 )2

∫ ω

0
α2(t − τ2)e

−
∫
t−τ2

γ2(s)dsdt

}
= 1,

where (u∗1, u
∗

2)
T is the unique solution of (3.23).

Finally, it is easy to show that the set {KP(I − Q)Nx|x ∈ Ω} is equicontinuous and uniformly bounded. By using the
Arzela–Ascoli theorem, we see that KP(I− Q)N : Ω→ X is compact. Consequently, N is L-compact.
By nowwehave proved thatΩ satisfies all the requirement in Lemma3.1. Hence, (3.4) has at least oneω-periodic solution

of system (3.1). Accordingly, system (3.1) has at least one positive ω-periodic solution.
Let (x∗1(t), x

∗

2(t), y
∗

1(t), y
∗

2(t))
T be a positive ω-periodic solution of system (3.1). Then it is easy to verify that

x∗1(t) =
∫ t

t−τ1
α1(s)e−

∫ t
s γ1(u)dux∗2(s)ds

and

y∗1(t) =
∫ t

t−τ2
α2(s)e−

∫ t
s γ2(u)du

(x∗2(s))
2y∗2(s)

m2(y∗2(s))2 + (x
∗

2(s))2
ds

are also ω-periodic. Thus, (x∗1(t), x
∗

2(t), y
∗

1(t), y
∗

2(t))
T is a positive ω-periodic solution of system (1.3) with initial conditions

(1.4) and (1.5). This completes the proof. �

4. Numerical simulations

In the section, we give some examples to illustrate the feasibility of our main results in Theorems 2.1, 2.2 and 3.1.

Example 1. In system (1.3), let α1(t) = 3 + sin t, γ1 = 0.3, β1 = 2, a1 = 4,m = 2, α2(t) = 2 + sin t, γ2 = 0.1, β2 =
0.6, τ1 = 0.5, τ2 = 0.3. It is easy to verify that the coefficients of system (1.3) satisfy (H3). By Theorem 2.1, system (1.3) is
permanent; by Theorem 3.1, we know that system (1.3) has at least one strictly positive 2π-periodic solution. Taking

(φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) = (k1, 0.6, k2, 0.6), (4.1)

where{
k1 = 6(1− e−0.15)+ 60[−1+ e−0.15(0.3 sin 0.5+ cos 0.5)]/109,

k2 =
12
5
(1− e−0.03)+ 12[−1+ e−0.03(cos 0.3+ 0.1 sin 0.3)]/101.

(4.2)

Numerical integration of system (1.3) with above coefficients can now be carried out using standard algorithms. As shown
in Fig. 1, numerical simulation also suggests that system (1.3) with the coefficients above admits at least one strictly positive
2π-periodic solution.

Example 2. In system (1.3), we let α1(t) = 3+ sin t, γ1 = 0.3, β1 = 2, a1 = 4,m = 2, α2(t) = 2+ sin t, γ2 = 0.1, β2 =
3.1, τ1 = 0.8, τ2 = 0.6. In the case, by Theorem 2.2 we can see that the adult predator will go to extinction. Taking

(φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) = (k3, 0.6, k4, 0.6), (4.3)

where{
k3 = 6(1− e−0.24)+ 60[−1+ e−0.24(0.3 sin 0.8+ cos 0.8)]/109,

k4 =
12
5
(1− e−0.06)+ 12[−1+ e−0.06(cos 0.6+ 0.1 sin 0.6)]/101.

(4.4)

Numerical simulation also confirms that the adult predator population goes to extinction (see Fig. 2).



Z. Li et al. / Journal of Computational and Applied Mathematics 233 (2009) 173–187 185

Fig. 1. The periodic solution found by numerical integration of system (1.3) with α1(t) = 3 + sin t, γ1 = 0.3, β1 = 2, a1 = 4,m = 2, α2(t) =
2+ sin t, γ2 = 0.1, β2 = 0.6, τ1 = 0.5, τ2 = 0.3, (φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) = (k1, 0.6, k2, 0.6),where k1 and k2 are defined in (4.2).

Fig. 2. The temporal solution found by numerical integration of system (1.3) with α1(t) = 3 + sin t, γ1 = 0.3, β1 = 2, a1 = 4,m = 2, α2(t) =
2+ sin t, γ2 = 0.1, β2 = 3.1, τ1 = 0.8, τ2 = 0.6, (φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) = (k3, 0.6, k4, 0.6),where k3 and k4 are defined in (4.4).

Example 3. In system (1.3), we let α1(t) = 3+ sin t, γ1 = 0.3, β1 = 2, a1 = 4,m = 2, α2(t) = 2+ sin t, γ2 = 0.1, β2 =
1, τ1 = 0.8, τ2 = 0.6. It is easy to verity that (H3) does not hold for system (1.3). In the case, we cannot get any information
by Theorems 2.1 and 3.1. However, if we take (φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) = (k3, 0.6, k4, 0.6), where k3 and k4 are defined
in (4.4), numerical simulation suggests that system (1.3) with above coefficients is still permanent and admits at least one
strictly positive 2π-periodic solution (see Fig. 3).

Example 4. In system (1.3), we let α1(t) = 3+ sin t, γ1 = 0.3, β1 = 2, a1 = 4,m = 2, α2(t) = 2+ sin t, γ2 = 0.1, β2 =
2.7, τ1 = 0.8, τ2 = 0.6. It is easy to verity that αM2 e

−γ L2 τ2 < βL2 does not hold for system (1.3). In the case, we cannot get
information by Theorem 2.2. However, if we take (φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) = (k3, 0.6, k4, 0.6), where k3 and k4 are
defined in (4.4), numerical simulation suggests that the adult predator population goes to extinction (see Fig. 4).

5. Conclusion

In this paper, we have studied the existence of positive periodic solutions and the permanence of system (1.3) in which
the coefficients are periodic and we also give the sufficient condition that the adult predator population goes to extinction.
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Fig. 3. The periodic solution found by numerical integration of system (1.3) with α1(t) = 3 + sin t, γ1 = 0.3, β1 = 2, a1 = 4,m = 2, α2(t) =
2+ sin t, γ2 = 0.1, β2 = 1, τ1 = 0.8, τ2 = 0.6, (φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) = (k3, 0.6, k4, 0.6),where k3 and k4 are defined in (4.4).

Fig. 4. The temporal solution found by numerical integration of system (1.3) with α1(t) = 3 + sin t, γ1 = 0.3, β1 = 2, a1 = 4,m = 2, α2(t) =
2+ sin t, γ2 = 0.1, β2 = 2.7, τ1 = 0.8, τ2 = 0.6, (φ1(θ), φ2(θ), ψ1(θ), ψ2(θ)) = (k3, 0.6, k4, 0.6),where k3 and k4 are defined in (4.4).

By using some comparison technique, we have presented some results on the permanence and extinction of the system.
Using Gaines and Mawhin’s continuation theorem of coincidence degree theory, we prove that for system (1.3) there exist
positive periodic solutions and they are also permanent.
On the one hand, numerical simulations indicate that our results are right; On the other hand, we would like to mention

here that Examples 3 and 4 show that our results in Theorems 2.1, 2.2 and 3.1 have room for improvement.
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