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Abstract

Utilizing as testbeds physiologically-structured, individual-based models for fish and Daphnia pop-
ulations, techniques for the parallelization of the simulation are developed and analyzed. The tech-
niques developed are generally applicable to individual-based models. For rapidly reproducing pop-
ulations like Daphnia which are load balanced, then global birth combining is required. Super-scalar
speedup was observed in simulations on multi-core desktop computers.

The two populations are combined via a size-structured predation module into a predator-prey
system with sharing of resource weighted by relative mass. The individual-based structure requires
multiple stages to complete predation.

Two different styles of parallelization are presented. The first distributes both populations. It
decouples the populations for parallel simulation by compiling, at each stage, tables of information
for each of the distributed predators. Predation is completed for all fish at one time. This method is
found to be generally applicable, has near perfect scaling with increasing processors, and improves
performance as the workload to communications ratio improves with increasing numbers of predator
cohorts. But it does not take best advantage of our testbed models.

The second design decouples the workload for parallel simulation by duplicating the predator
population on all nodes. This reduces communications to simple parallel reductions similar to the
population models, but increases the number of cycles required for predation. The performance of
the population models is mimicked.

Finally, the extinction and persistence behaviors of the predator-prey model are analyzed. The
roles of the predation parameters, individual models, and initial populations are determined. In the
presence of density-dependent mortality moderating the prey population, competition via resource
of the larger fish versus the smaller is found to be a vital control to prevent extinction of prey
population. If unconstrained, the juvenile fish classes can — through their rapid initial growth and
predation upon the juvenile prey classes — push the prey population to extinction. Persistence of
the predator-prey community is thus threatened when the fish population is dominated by juveniles.
Conversely, the presence of larger fish moderates the juveniles and stabilizes the community via
competition for shared resource.

vi
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Overview

There are two purposes behind the research presented in this dissertation. The first purpose is to

explore the applicability of parallel computers for the simulation of individual-based, physiologically-

structured population and community ecology models. We utilize as testbeds for our techniques

extant population models for Daphnia (parameterized for D. magna) and trout (parameterized for

rainbow trout, Oncorhynchus mykiss). The second purpose is to understand for an individual-based,

predator-prey model composed of these two populations, the interactions between the parameters,

populations, and individual models.

Chapter 1 documents our testbed models and introduces our terminology and general solution

techniques. A decade ago, when we began our parallelization efforts, the size of our computational

problems was very large compared to the desktop and workstation-level computers available at the

time. The execution of these models took a long time, especially the original predator-prey models,

which could take several days to complete. Chapter 2 describes the parallelization of individual-based

population models. Chapter 3 describes the testbed community model and its parallelization.

Our testbed population models had been previously developed and their important behaviors

were well-understood. A preliminary version of the predator-prey model we took as our testbed

for parallelization had been developed, but the primary focus had been on toxicant flow through

the community and its effects. There had been no focus on the dynamics, important behaviors,

and features. In particular, the roles of the predation parameters, competition for resource, initial

populations, population structures were not known. Our discoveries for this model are described in

Chapter 4.
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Chapter 1

Introduction and Overview of

Parallelization of Individual-based

Models

1.1 Introduction

This chapter has two purposes. First, we introduce the models on which the parallelization efforts

are tested. Second, we provide an overview of our parallelization efforts introducing the terminology

and techniques we have applied during our research.

The first part of this chapter describes both the base individual models and the population

models which envelope these individual models. Important physiological aspects of the organisms

that affect our efforts are also described. The individual models play significant roles through

both the parallelization and analysis of these models, so this chapter is referred to throughout this

dissertation.

The Daphnia and fish models have been developed over a number of years. The references to

the development and analysis of these models are consolidated herein. The population models add

population density, births, initial populations, and per capita mortality to the individual models

which are each described in this chapter. Typical output and behavior of the individual models

and the population models are described and illustrated. Density-dependent mortality is introduced

especially because it is significant to our analysis of the predator-prey model.

2



The individual fish model differs significantly from the Daphnia model in that it utilizes a size-

structured resource. The predator-prey model introduced in Chapter 3 makes fundamental use of

the size-structure of the prey population. The functional response for the fish and its dependencies

on the particular prey items is important for both the parallelization and analysis efforts, so special

attention is focused on it in this chapter.

The second half of this chapter provides an overview of our parallelization efforts. The original

simulation codes on which we built our testbeds were not designed in a way that was conducive to

parallelization. The redesign required to draw out the parallel structure innate to individual-based

models is described. Further, parallelization efforts must always consider load balancing issues. Our

solution to these issues is illustrated in this chapter. For individual-based models, birth combining

is a unique aspect that must also be considered. The research directions that these efforts led to

are described. These led to the discovery of synchronizations that are inherent in individual-based

simulations that lead to oscillations in the populations. These oscillations are observed in natural

populations, but are often exaggerated in simulations. Even just small oscillations can lead to large

effects when combined with the threshold behavior of density-dependent mortality, a consequence

which is observed in later chapters. These synchronizations also provide an alternative way to

multiply the workload required for a particular simulation. We utilize this additional workload

to naturally scale our population models further into the realm where they benefit from parallel

execution.

1.2 Population Models

We applied our initial efforts to existing population models of Daphnia and fish. The particulars

concerning parallelization of these models are discussed in Chapter 2. In Chapter 3 the combination

of these models into a predator-prey system which we parallelized is discussed. In this section,

the basic equations and ideas are described on which these two population models are constructed.

During our discussion of the parallelization efforts, especially of the predation model in Chapter 3,

several of these topics will be revisited.

1.2.1 Individual-based Model for Daphnia Populations

Daphnia are a basic food resource for many aquatic populations. They are widely used as an indicator

species for water-quality management. An NSF-funded site devoted to the order Cladocera to which

Daphnia belong is waterflea.org. A picture of single Daphnia magna is reproduced in Figure 1.1.
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Figure 1.1: Single Daphnid with Brood

Note the brood apparent inside the parent’s body. Daphnia reproduce parthenogenetically, except

under conditions of stress when males can be produced. The parent carries the brood in a pouch

until they hatch and are born live. After release of her brood, she moults, a new, larger carapace

is formed, and new eggs are deposited into the brood pouch. Adults spend as much as 80% of

assimulated energy on reproduction (Dudycha and Tessier, 1999; Tessier et al., 1983). Because of

their wide use in ecology studies and availability of data, they also are a common target for modeling

studies; see for instance, Peters and De Bernardi (1987); Kooijman (2000); Hart and Gill (1993).

Individual Model

The model for Daphnia developed by T. Hallam’s group at the University of Tennessee’s Institute for

Ecological Modeling (TIEM) for environmental toxicant risk assessment studies has been described in

several publications. The fundamental paper describing the individual model for Daphnia appeared

in Ecology (Hallam et al., 1990b). The primary development and application of a population model

encompassing this individual model are described in Hallam et al. (1992b) and Hallam and Lassiter

(1994). Application of these models towards demonstrating the moderating influence of lipid on

lipophilic toxicants is in Lassiter and Hallam (1990); Hallam et al. (1990a). There have also been

several extensions of the Daphnia population model. For instance, sublethal toxicity effects were

added in Hallam et al. (1993). The effects of temperature and dissolved oxygen were added in Koh

et al. (1997). In this section, an overview of the mathematical basis of the individual Daphnia model

is given.
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Figure 1.2: The model of an individual organism

Being developed for application to ecological risk assessment, these models incorporate submodels

for testing the effects of lipophilic toxicants on populations of Daphnia. In order to accurately model

the effects of such chemicals, the dynamics of lipid in an individual must be followed. Let mL denote

the mass of lipid (mg) in an individual. Lipid serves as a source of energy for the individual and

plays a role in reproduction. During acute toxicant exposure it can also act as a buffer by diluting

the effects of the toxicant on the individual. Protein and carbohydrate are also important sources of

energy for an individual. These are combined into one variable called structure, with the justification

that the energy equivalents per unit mass of protein and carbohydrate are nearly equal. Let mS

denote the mass of structure (mg) in an individual. The lipid and structure compartments are further

considered to have a labile and a nonlabile portion. The final variable tracked for an individual is

age. Although age is not a physiological variable, it is useful for timing several life history events

for an individual. Let a denote the age of an individual.

Ordinary differential equations describing the growth with respect to time of mL and mS in

an individual are developed in Hallam et al. (1990b) through analysis of the structure and lipid

flows into and out of an individual daphnid. The flow diagram is pictured in Figure 1.2. Lipid

and structure are assimilated from the individual daphnid’s resource — lipid is assumed to compose

some fixed percentage of this resource with the remainder being structure. Both lipid and structure

can be used to provide energy for the individual. Or they may be used in bulk allocations to, for

instance, form components of the eggs for reproduction, or the carapace of the daphnid.

When modeling, a common requirement is determining the length of the individual. In our models

this is done through the concept of Protected Structure where mPS represents the nonlabile amount of
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the structure compartment. The concept is that protected structure is structural components of the

body that are not available for energy even in the event of starvation. Protected structure is modelled

as a non-decreasing fraction of mS . It is related to the length through an allometric relationship

that converts from the mass units to an expression of length; length = 3
√

mPS/allometric constant.

Labile structure is thus mS − mPS . Nonlabile lipid is assumed to be proportional to mPS by a

constant factor ε.

The end of the juvenile period is assumed to be size dependent, in that Daphnia magna females

are assumed to deposit their first brood when they reach a certain, fixed length. This will be termed

the first birth age, b1, later in this chapter. Bulk allocations, especially of lipid, are made from the

storage compartments for egg formation. The number of eggs is constrained by the labile resources

of the parent. There is a constant amount of structure allocated to each egg, with a variable amount

of lipid. The lipid per egg can vary within a fixed range. (This variance of initial egg stores will

also appear later in this dissertation.) A significant modeling assumption made is that after the first

birth time, the individual daphnid reproduces with a fixed period. A consequence of this assumption

significantly affects the population dynamics and is described in Section 1.3.6.

The differential equations for the growth of the mass of lipid and structure are:

dmL

dt
= GL(t, a, mL, mS)− LL(t, a, mL, mS) (1.1)

=
A0LxLmS

A1m
1/3
S + A2x

−

⎧⎪⎨
⎪⎩

A3(mL − εmPS) for D > E

A3(mL − εmPS)D/E for D ≤ E
, (1.2)

dmS

dt
= GS(t, a, mL, mS)− LS(t, a, mL, mS) (1.3)

=
A0SxSmS

A1m
1/3
S + A2x

−

⎧⎪⎨
⎪⎩

A4(mS −mPS) for D > E

A4(mS −mPS)D/E for D ≤ E
, (1.4)

where A0L and A0S are assimilation efficiencies for lipid and structure; xL and xS are the amount

of lipid and structure, respectively, in the resource; A1 is a parameter inversely related to maximal

filtering rate; A2 is a function k3m
−k1
PS (no longer a fixed parameter as in the Ecology paper) fitted

to published data with k1 < 1 that is inversely related to maximal ingestion rate; ε is the fraction

of lipid associated with nonlabile structure; mPS is the portion of structure unavailable for use

(nonlabile); A3 and A4 are maximum mobilization rates for stored lipid and structure; D is the

energy demand of the individual from movement, maintenance, and feeding; and E is the energy

available from the lipid and structure compartments. D, E, and A2 can be expressed in terms of
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Figure 1.3: Individual Model Lipid Profile

mL and mS . These equations express the dynamics of mL and mS on a continuous time scale —

allocation of mL and mS for reproduction and carapace formation are carried out at discrete times,

but are not described here. Because of these bulk allocations for reproduction, our output functions

for mL and mS are not continuous, but our expression for mPS is continuous since it is taken to

be a non-decreasing fraction of mS . Others do model reproductive allocations continuously; see,

Kooijman (1986). Energy requirements for movement for zooplankton are expressed using the work

of Gerritsen (1984); it is noted that most energy for Daphnia is spent on reproduction with relatively

little spent on movement. The units and values used for the parameters are given in Appendix A.

Typical outputs from the individual model are given in Figures 1.3 to 1.5. Notice the first birth

time around 5 days and the initial, explosive growth that is followed by relatively small increases.

The saturation of growth from the individual model will trace its way through all of the population

models and will be an important factor in the predator-prey model because of its effects on the size-

class distributions. Also notice the discrete allocations from stores for births and the non-decreasing

nature of the protected structure.

The function Gx describes the uptake of lipid from resource and the function Lx describes the use

of lipid and structure for energy and maintenance. As long as energy demand, D, does not exceed

the available energy, E, then only the fraction required for energy is used; otherwise the maximum
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mobilizable portion is used. This is the role of the switching function in the right-hand side of the

equations. The change of A2 to a function proportional to surface area rather than volume was

made to prevent daphnids from growing arbitrarily large. It is clear from the equations, since the

loss terms, Lx, are proportional to mass, then the feeding terms, Gx, must be proportional to mass

to some power less than one at high resource levels or else they will grow without bound when

presented with increasing resource levels (Hallam et al., 2000). The switching function’s effect on

the derivatives of these functions is carefully worked out in Appendix A.

A fundamental idea behind the development of this individual model for Daphnia is tracking

energetics. The energy required for various life requirements underlie the equations. S.A.L.M.

Kooijman is well-known for his development and application of Dynamic Energy Budget (DEB)

models to populations of individuals across different trophic levels (Kooijman, 1986, 2000). In his

book he explores many roles of storage materials and concludes that it is not possible to understand

the dynamics of populations without a storage compartment at the individual level, just as we have

incorporated into our models. The change of A2 to an expression rather than a constant also bring

our models into line with the derivations of Kooijman. This refactoring did cause a large change in

the simulation programs because it affected several important derivatives. Further, with it in the

denominator of the uptake term, several of the equations became more complicated because of the

quotient rule. All of these are detailed in the Appendix.

The form of the uptake terms for lipid and structure moderates between different feeding con-

straints. It is a hyperbolic uptake expression in x. A canonical form is shown in Figure 1.6. Note

that it crosses the x-axis at zero and that it has a horizontal asymptote which is approached for

large resource levels. When the functional response value nears the horizontal asymptote, then we

describe the organism’s uptake as saturated. We also describe an organism’s saturation level by the

percentage of the horizontal asymptote attained. When resource is limited, then the filter rate is

dominant; when resource is abundant, then maximal ingestion rate is dominant. The role of the

functional response in the uptake term is to determine how much of the resource is consumed when

the organism at a particular resource level. The uptake can be affected by filtering, ingestion and

similar rates, the amount of time required to find prey, the satiation level, availability of preferred

prey items, etc. See pages 130 forward in Kot (2001) for further discussion of the different potential

response curves. Understanding the uptake process as a sequence of steps in the feeding process that

have to be accomplished in sequence or parallel is an alternate way to derive the uptake terms. The

chapter Constraints to Feeding: A Mechanistic Approach in Henson (1994) and published in Henson

and Hallam (1995) are references to this alternate derivation. This process-oriented approach will
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be especially helpful to understand the development and parallelization of the predation process in

the predator-prey model.

Population Models

Individuals are incorporated into a population by a system of extended McKendrick-von Foerster

partial differential equations which are described in this section. These equations give a mathematical

framework for studying population effects proving results such as asymptotics. Having the individual

model, it is not strictly necessary to incorporate a differential equation-based population model;

individuals could be tracked through simple counting which is the case in modern agent-based models.

A recent individual-based model from TIEM for bat populations follows in this vein (Federico, 2007).

The use of a mathematically-based population model allows proofs and derivations to be made

of observed model behaviors. A derivation from first principles of the McKendrick-von Foerster

equation for age and size structured models, as well as its relationship with other standard models

of populations, can be found in Sinko and Streifer (1967). An early application of this equation to

a population of Daphnia can be found in Sinko and Streifer (1969). Work performed at TIEM on

these equations include Li and Hallam (1988) and Henson (1994).

These equations are termed “extended” in the sense that each parameterization of the individual

model is described its own McKendrick-von Foerster equation; i.e., populations built on different

parameterizations of 1.1 and 1.3 result in a separate PDE. Let ri be a vector of parameter values

chosen from a fixed set r1, r2, ..., rn. This vector is a set of parameter values fixed for the individual

model. Each vector ri is said to define an ecotype. For a fixed individual model, structured by ri,

its McKendrick-von Foerster equation is:

ρt + ρa + (gLρ)mL + (gSρ)mS = −μ(t, a, mL, mS , ρ; ri)ρ, (1.5)

where ρ(t, a, mL, mS ; ri) is a density function which represents the number (or density) per unit age

per unit mass of lipid per unit mass of structure of individuals which are age a, and have masses mL

and mS at time t. The functions gL and gS are the functions expressing the growth of the variables

mL and mS with respect to time given by equations 1.1 and 1.3, respectively, with parameter vector

ri. The mortality function μ expresses the per capita rate of mortality for individuals of age a,

and masses mL and mS ; this function can also depend on the density. In general, we assume that

μ = μA + μS + μD where μA, μS , and μD are the age, size, and density dependent mortality rates.

The density-dependent mortality function is described later in this chapter. Equation 1.5 requires
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initial and boundary conditions in order to be well-posed. The initial population distribution is

specified by

ρ(0, a, mL, mS) = φ(a, mL, mS). (1.6)

The method we used to generate initial populations will be discussed later in this chapter. The

boundary condition is an expression for the newborn individuals:

ρ(t, 0, mL0, mS0) =∫ ∞

0

∫ ∞

0

∫ ∞

0

β(t, a, mL0, mS0, mL, mS , ρ)ρ(t, a, mL, mS)dadmLdmS , (1.7)

where mL0 and mS0 are the initial sizes of the newborn, determined from the parent, and β is the

birth rate at time t by individuals of masses mL and mS for newborns of masses mL0 and mS0.

Note that β can depend also depend on ρ. Further note that for our models, mL0 varies over a fixed

range [mmin
L0 , mmax

L0 ] determined from the parent’s available lipid stores and based on the number

of eggs to be produced; but the structure value mS0 is a fixed allocation per egg produced. (This

variance comes up several times.) This boundary condition is sometimes referred to as the birth or

renewal equation. Together equations 1.5, 1.6, and 1.7 form a well-posed model of a population of

individuals whose growth is described by equations 1.1 and 1.3.

There being n ecotype vectors of parameters, then there are n distinct subpopulations. The

parents are assumed to convey their ecotype to their offspring, so the populations do not intermix

through the ecotypes. The subpopulations in the metapopulation are only coupled through the

density-dependent mortality term μD. The parameter values ri which we vary in the individual

model for Daphnia are

1. Percent of lipid in the resource (PLX),

2. A1, a parameter inversely related to filtering rate, and

3. x, the resource level.

These parameters were found to be the most sensitive for the individual model; see Hallam et al.

(1990b). Ecotypes introduce a type of diversity to the metapopulation. We vary these parameters

within a specified percentage. We can vary them any odd number of levels. For most studies, each is

varied 3 levels resulting in 27 ecotypes, but we can produce hundreds of ecotypes and thus magnify

our workload to any level desired (at least initially, because density-dependent mortality drives out
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ecotypic diversity over time). This fact is used to create problems of sufficient size to benefit from

parallel computation.

As an aside: I repeated this sensitivity analysis in preparation for generating differently-sized prey

populations for an experiment with multiple prey populations in the predator-prey model. I varied

the four “sensitive” parameters: resource, A1, percent of lipid, and the gut clearance parameter

k3. I found I could increase resource level by 100 times, which resulted in a weight increase of only

0.0014 mg. Varying A1 through orders of magnitude starting at 8 × 10−8 resulted in decreases in

size up to 0.5 mg after increasing A1 by 104. PLX was a reasonably sensitive parameter; varying

over 10% from nominal of 15% yielded expected changes in lipid stores. K3 turns out to be the

sensitive parameter. It sets the gut clearance rate which is the major determinant in how much food

is processed by the individual daphnid. In the presense of sufficient resource, then it is the primary

constraint on uptake.

Solution

This PDE system can be solved analytically in certain cases such as when the population is struc-

tured only by age; see Chapter 23 in Kot (2001) and Metz and Diekmann (1986). For age and

size structured populations, like ours, analytical solutions are not possible. To produce solutions

numerically, the method of characteristics is employed to reduce this PDE to a system of ODE’s.

The characteristic equations for equation 1.5 are

dt

ds
= 1 (1.8)

da

ds
= 1 (1.9)

dmL

ds
= gL (1.10)

dmS

ds
= gS (1.11)

dρ

ds
= −(μ + (gL)mL + (gS)mS )ρ. (1.12)

The method of characteristics has the biological interpretation of tracing cohorts of identical individ-

uals through their complete life cycle. Because of this interpretation, we will use the terms ‘cohort’

and ‘characteristic’ interchangeably. Although not precisely true — because each cohort represents

ρ-many identical individuals — in our interpretation and visualizations we consider each cohort to

represent an individual organism. The description of a new characteristic is defined by the renewal

equation 1.7. This equation gives the initial value of ρ (the number of individuals represented by
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the cohort). The initial values for mL and mS are determined from the parent’s available resources.

The remaining parameters represented by ri are copied from the parent’s values. The numerical

simulation thus involves the management of a set of cohorts, which, individually are formed from

the state variables, mL, mS , and a, a parameter vector, ri, and several intermediate variables gen-

erated in the course of numerically solving the ODEs. An initial population for study is likewise

given as a set of parameters and a set of cohorts specifying the population frozen at a fixed point

in time. These form the initial cohorts used to start the population simulation and the parameters

specify the values under which the population will be simulated.

Figure 1.7 shows typical output for the density function ρ for a fixed simulation time. The egg

classes (age < 4) tend to dominate, so we often use log-lin graphs to see the other classes; see Figure

1.8 and note that there are actually older members of the population, but they are not apparent

when compared in numbers to the egg classes. These figures are generated by summing the values

of ρ across all characteristics at a particular simulation time for a set of size, age, and lipid classes.

These classes are determined by taking equal-sized steps from zero up to a given, maximum value.

For instance, take the maximum age, say 50 days. Now, fix a number of classes, say 100, and

divide this by the maximum age. (The choice of 100 is nice, because it has easy interpretation as

a percentage, but it is an arbitrary number. I use 1000 in some situations, because, with a time

step of 0.05d, this guarantees that each cohort moves up an age class with each iteration of the

model.) Then, in this case, there are two classes per day of age. If an individual characteristic had

age = 20 days, then it would be in age class 40, or it has reached 40% of its maximal age. Similar

interpretation can be applied using maximal lipid and structure values. The class interpretation

makes calculating and recording output easier, because a common class value can be recorded once

and the sum of the ρ for each age, lipid, and structure class can be given rather than recording

age, lipid, and structure values separately. These graphs can be plotted through time in order to

visualize the surface traced out by the population models over the course of simulation as shown in

Figure 1.9. In Figure 1.10 the population density for lengths for population for the same simulation

are shown. The oblique angle was chosen to emphasize how the lengths saturate and that there is

a maximal size. Also notice that there are no daphnids in the smallest lengths because the minimal

size is around 1 mm.

Generally, for equation 1.12, (gL)mL and (gS)mS could be sufficiently negative as to cause the

μ + (gL)mL + (gS)mS to become negative, which would result in the equation describing growth in ρ

rather than simple mortality. See (Metz and Diekmann, 1986, p. 15) for an interpretation of this in

terms of an “elastic conveyor belt” that can contract and the mass class represented to stack up and
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Figure 1.7: Graph of ρ Over Age Classes for Simulation Time=0
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Figure 1.8: Log Graph of ρ Over Age Classes for Simulation Time=0
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Figure 1.9: 3D-Plot of ln(ρ) Over Classes for First 20 Days of Simulation

Figure 1.10: 3D-Plot of ln(ρ) Over Lengths for First 20 Days of Simulation. Oblique Angle to
Emphasize Saturating in Length.
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increase. Because we want to interpret this equation simply as representing mortality for a cohort,

a transformation of ρ is performed in order to get a density function n(t, a, mL, mS) such that only

mortality is acting on the characteristics. The equation which replaces equation 1.12 is

dn

dt
= −μ(t, a, mL, mS, n)n. (1.13)

See Hallam et al. (1992b) for an explanation of this transformation. This function now describes a

decreasing exponential function with variable μ.

For a given cohort, equations 1.8 through 1.11 and 1.13 are simulated numerically by the pop-

ulation model. Equations 1.8 and 1.9 are trivial to solve. Equations 1.10 and 1.11 are solved

simultaneously using a Runge-Kutta method described in Appendix A. These updated values of mL

and mS are then used to evaluate the various components of the mortality function μ, and the final

equation is solved. In Figure 1.11 the form of ρ is shown for an individual. The other individual

model outputs were shown earlier. A flowchart of this simulation is given in Figure 1.12.
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Mortality Assessment

The only direct control we have over a population is through the mortality function. The growth

of lipid and structure follow the same path as all of the predecessors. This has the result that

for constant resource, the physical growth will be identical for a particular age from cohort to

cohort within an ecotype. As already mentioned, we assume a form for the mortality function of

μ = μA + μS + μD where μA, μS , and μD are the age, size, and density-dependent mortality rates.

Another form of mortality imposed discontinuously is maximum age. Continuous age mortality is

useful to tune out large changes in biomass due to large cohorts reaching maximum age and suddenly

being removed from the population. Density-dependent mortality can serve many modeling functions

such as crowding and competition for resource. For our Daphnia populations which have constant

resource values, density-dependent mortality serves to limit the otherwise exponential growth of the

population.

The main forms of mortality with which we will be concerned are density-dependent and max-

imum age mortalities. As also previously mentioned, density-dependent mortality couples the

metapopulation models. It has the consequence of inducing the asymptotic dominance by a sin-

gle ecotype which was initially observed by simulation studies, then proven in Henson (1994).

The form of the density-dependent mortality we use is shown in Figure 1.13. There is an optimal

biomass, with a well around it. When above the optimal biomass, then the biomass of the population

is driven downward through mortality. When below the optimal level, there is an increasing level of

mortality imposed with decreasing biomass which almost certainly forces the population to extinc-

tion. The natural growth of the biomass for the population pushes upward, so the biomass levels for

a population tend to oscillate inside the well above the optimal value. The lower threshold value is

not normally exercised by any healthy population, but in our predator-prey dynamics studies this

does have significant effect.

Short-term and long-term oscillations in biomass are an often studied and observed feature of

natural and modeling studies which we will encounter later in this work. In combination with the

minimum threshold for biomass, oscillations can cause the population biomass to dip just a little too

far which leads to almost immediate collapse of the population. This is observed in our predator-prey

models in Chapter 4.3.

Note that the optimal biomass can be used along with a value for density in order to determine

an effective volume. Although the population models do not have a requirement for a volume, we

will need to introduce control volumes for the populations when we get to the predator-prey model.
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1.2.2 Individual-based Model for Fish Populations

The model for fish populations was also developed for ecological risk assessment purposes and follows

similar lines of development to the Daphnia model. In fact, in the final code base, they share the

same code except for the functions specific to the individual fish model. In particular, they share

the submodels for testing the effects of lipophilic toxicants and they share the same cohort tracking

population model. In this section the individual model for fish is presented, with emphasis on the

aspects of the model that present significant challenges when developing and parallelizing the fish-

Daphnia predator-prey model. The model we used is parameterized for rainbow trout (Oncorhynchus

mykiss). The big differences in this model arise from size-structured resource. Size-structured

resource for the fish is a requirement of our predator-prey models.

See Hallam et al. (2000, Modeling Fish Population Dynamics) and Henson (1994) for a complete

description of the fish model from the individual level through to the population level including

the parameters used. The Fish Dynamics paper is in the style of the Ecology paper for Daphnia,

tracing the energy and mass flows throughout the individual. The energy flow diagram for fish is

identical to Figure 1.2, with the exception of the flow into carapace formation. All of the functions

and derivatives used in simulation codes are contained in the appendix.

For the fish we also model the partitioning into lipid and structure components. Using F to

denote the feeding function, then the differential equations for the growth of the mass of lipid and

structure are:

dmL

dt
=

A0LxL

x
F −

⎧⎪⎨
⎪⎩

A3(mL − εmPS) for D > E

A3(mL − εmPS)D/E for D ≤ E
, (1.14)

dmS

dt
=

A0SxS

x
F −

⎧⎪⎨
⎪⎩

A4(mS −mPS) for D > E

A4(mS −mPS)D/E for D ≤ E
, (1.15)

with parameter descriptions matching those already made for Daphnia with the exception that units

of volume and mass are cm3 and g respectively. Also, the energy requirements for movement are

a large proportion of the energy requirements of the individual fish. Again, we apply the work

of Gerritsen (1984) to express the energy requirements of movement. See the Appendix to this

dissertation and the appendix to Hallam et al. (2000) where it is shown that the energy requirements

for movement grow by the fourth power of length. Thus larger fish will have much greater energetic

costs for movement. This has significance to us in our predator-prey models. Since the times spent

encountering and pursuing prey will vary with the resource level, the energy requirements to support
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these activities will vary in the predator-prey model. These critical times are now developed in terms

of prey availability.

The derivation for the expression for the uptake function F is the difficult part of this model

because of the structured resource. The role of F is to moderate consumption of resource; it is an

expression of satiation level. See Henson and Hallam (1995) and Hallam et al. (2000) for complete

derivations for our fish model; the first reference describes optimal feeding in general as a sequence

of sequential and/or parallel steps in the feeding processes. For fish we consider three steps in the

feeding process that take place sequentially: encounter, pursuit, and gut clearance. Let Te, Tp,

and Tg denote the times required to complete each of these steps, respectively, for a single food

item. Thus the total time budget (Holling, 1959) for a single particle to pass through the system

is Te + Tp + Tg. Under the premise that all organisms feed optimally subject to environmental and

biological constraints, then

F =
1

Te + Tp + Tg
(1.16)

=
1

R−1
e + R−1

p + R−1
g

(1.17)

where Re, Rp, and Rg the optimal task rates associated with each step. The reader is also referred

to Lassiter (1986) for another description of pursuit feeding (around equation (64) in his paper) on

which the process-oriented feeding derivation is based and to Hart and Gill (1993) for a comparison

of the application of foraging models to fish-Daphnia systems.

Because each of these rates involves values that depend on the prey, in anticipation of the

predator-prey model, each of these rates is now carefully expressed. The dependence for each rate

on values from the prey is summarized at the end of each of these short sections. They are also

described in Appendix A in the context of the population codes.

Encounter Rate

The encounter rate is expressed as Re = adNp (numbers day−1) where Np is the density of the

prey (numbers volume−1) and the encounter rate coefficient ad (volume day−1) is a function of the

reaction distance of the fish, the velocities of the fish and prey, and represents the volume swept per

unit time by the foraging fish. The encounter rate we used is developed in Gerritsen and Strickler

(1977) and has units cm3/d. The encounter rate is further used to produce a weighted average in

the predator-prey model in order to equitably assess mortality back onto the individual prey cohorts

that form a given fish’s resource.
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The expression we use for foraging fish is

ad =
πsd(mS)2spd(vp2 + 3vh(mS)2)

3vh(mS)
(1.18)

where sd(mS) (cm) is the reaction distance for the fish; spd = 86400 (seconds per day); vp (cm/s)

is the velocity of the prey item; and vh(mS) (cm/s) is the velocity of the fish while hunting, which

is calculated by multiplying a constant body-lengths per second while hunting by the length of the

fish which is determined from the structural mass ms. The reaction distance of the fish (Breck and

Gitter, 1983) is a function that depends on the lengths of the prey item and fish.

sd = (a · lp + b)
√

lf(mS) (1.19)

where a (cm−0.5) and b (cm0.5) are constants; lp (cm) is the length of the prey item; and lf(mS)

(cm) is the length of the fish determined allometrically from mPS (g).

When computing the population model for fish, most of these are constants. But, when we look

at the predator-prey model, then Np, vp, and lp for each prey item consumed will be determined

from the actual prey items.

Pursuit Rate

The pursuit rate (numbers day−1) describes the capture event after spotting a prey item.

Rp = δvNp/sd (1.20)

There is still a dependence on the prey items since δv = spd|vc(mS) − vp| where vc(mS) is the

(scalar) capture velocity of the fish, which generally is different than the encounter velocity. When

computing the predator-prey model, the velocity of the prey vp will vary so δv must be calculated

per prey item.

Gut Clearance Rate

The last rate concerns the time it takes to clear the gut of the consumed prey item. The rate

Rg =
kMgNp

Mp
(1.21)
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where Mg = volgut(mPS)bdensp, the mass capacity of the gut; bdensp (g cm−3) is the dry weight

body density of prey; volgut(mPS) is the volume of the gut which is related to the protected structure

mass of the fish; Mp is the total mass of the prey item (lipid plus structure); and k is an expression

for the gut emptying rate. k is not a constant but depends is the clearance time fitted to data

k = k3m
−k1
PS ; see Hallam et al. (2000). k3 is one of the ecotypic parameters for fish.

The dependence for this rate on the prey population is through bdensp and mp. This means

that we will have to calculate a mass density using each prey item consumed by the fish in the

predator-prey model.

Putting these all for an expression for F one obtains Hallam et al. (2000, Equation (15)).

FMp =
Np

[adMp]
−1 +

[
sd

Mpδv
+ [kMg]

−1
]
Np

(1.22)

The interpretation of F as one over the sum of the three process step times Te, Tp, and Tg is the

overall view taken in the code, because the energetic demands are also in terms of time. In other

words, we must determined how much time is spent foraging, capturing, and clearing food items.

Equation 1.22 can be seen to have a hyperbolic functional response structure, which is not apparent

from the time-budget form.

Since the remaining description for the fish population model mirrors that already given for the

Daphnia, we omit it. The derivation of each of the expressions used in the numerical calculations

for the fish population model can be found in the Appendix.

Ecotype Parameters

The ecotypic parameter values ri which we vary in the individual model for fish are

1. Percent of lipid in the resource (PLX),

2. k3, the parameter related to gut clearance rate, and

3. x, the resource level.

These parameters were found to be the most sensitive for the individual model. Since PLX and

x will vary with the prey population in the predator-prey mode, only k3 will remain as a direct

ecotype parameter. The size of the fish is used to determine a gape size through which the prey

population will be filtered, so individual model effects will remain.
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Young-of-Year Mortality

In recognition that the mortality rate is much higher for fish fry, an additional Young-of-Year (YOY)

mortality is assessed for fish in a certain fixed age range. This mortality function is similar to density-

dependent mortality in the sense that there is an optimal YOY number towards which the YOY are

driven. The mortality is assessed based on population density, not biomass.

1.3 Parallelization Efforts Overview

1.3.1 Development History

When we originally started our parallelization efforts, the size of our computational problem was

very large compared to the desktop and workstation-level computers available at the time. The

computational programs in use prior to our project had been written in the Fortran-77 language.

The execution of these models took a long time, especially the predator-prey models which took

several days. Parallel computation was in its early days of design, development, and standardization.

Could our models and similar ecological models benefit from these new technologies? Specifically

we were looking to decrease the execution times. In Haefner (1992), an introduction is given to

the state of the art for parallel computers at the time, with specific application to individual-based

models. An alternative benefit of parallel computation is to allow more detailed simulations (hence

larger) than those feasible on a single machine (Hwang, 1993).

Almost by definition, to say that we wanted to test our models in parallel execution, meant

that we had to utilize supercomputers, because supercomputers were the only parallel machines

available. An exception to this statement was PVM (Geist et al., 1994) which let one combine

networks of workstations (NoWs) into a single computational cluster. Scott Sylvester, in his thesis

(Sylvester, 1995), describes our use of NoWs in application to the Daphnia population models. The

programming of supercomputers was unique to each machine and was a tedious process. Often

libraries were provided that allowed programs written in PVM to be executed on supercomputers.

Since then, the rise of grid-computing (joining individual supercomputers themselves into clusters)

and the need for portability across all types of parallel computers has driven the development and

near universal adoption of the Message-Passing Interface (MPI) as the method used to express

parallel constructs. We have adopted MPI. The specification of MPI-2 is fairly recent (Gropp et al.,

1998) and its adoption continues to present. We experimented with some MPI-2 specific features
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and some advanced MPI constructs for the predator-prey parallelization, but otherwise only require

standard constructs.

Much time has passed between when we started and when we are finishing these results (mainly

because I became a computer consultant and IT Director based on the knowledge I gained in this

project). The final results are being computed on my own personal, dual-processor, 8-core desktop

computer containing two 3.0 GHz quad-core Intel X5365 CPUs which are incorporated by Apple

into a machine running Mac OS X — a version of Unix. (Currently these CPUs are special-run and

only available in this computer.) As our previous designs and results were reviewed for relevance, it

was interesting to find that several of the same problems we observed before for parallel execution

are still of significant concern. In some sense they are exacerbated by the advances in CPU cycle

speed. (Compare the 133 Mhz CPU clock speed of our fastest machines at the time to the 3000 Mhz

of a single core in my desktop computer.) Core memory has also significantly increased in size from

32 MB or less to 3 GB in my current desktop. At the desktop level, the ‘MHz Race’ — the move

towards ever faster CPU clocks speeds — is over. There has not been significant speed increases for

several years. The number of cores (computational units) is now being increased in order to continue

to advance desktop speeds. In a sense we are being forced to transition from sequential to parallel

computers in our own desktop machines. How to make use of this power in desktop applications is

a cause of current concern; see for instance Sutter (2005). These new resources are not as readily

available to programmers, so the speed increases they could count on have ceased for the time being

and foreseeable future. How we can take advantage of these resources and apply them effectively to

ecology models is the main thrust of the first part of this dissertation.

The size of supercomputers has also grown to tens and even hundreds of thousands of processors

in the effort to solve Grand Challenge problems; see top500.org for a current list of the top super-

computers. The CPUs in these computers have become commoditized and are often the same CPUs

in our desktop machines. The investment is in now in the interconnect network. The largest super-

computer on which we ran our codes originally was as the first public code run on a 256-processor

Cray T3D at the National Center for Supercomputer Applications (NCSA). The execution of the

computational core of the population model completed in about 5 seconds, but took 45 seconds to

initialize and shut down and cost about 4 hours of CPU time. In an experiment on my current

desktop, the same 500 day calculation took 5 seconds total on one processor and 6 seconds for two.

Clearly our base problems that we started with are now too small to tell us anything interesting.

26



In this section, several concepts are introduced to which we will refer later. They summarize

our decisions and solutions to the problems inherent to any parallelization efforts of these types of

models.

1.3.2 Population Models Redesign

We begin our parallelization efforts with the population models, because the individual-based food

web models are formed from coupling two population models together via a feeding mechanism;

thus an understanding of how to parallelize the population models is necessary for the successful

parallelization of the individual-based community models.

Looking at Figure 1.12, which shows the overall flow of our population models, one can see

that there are many steps which can be performed in parallel; e.g., the update of the ages on

each characteristic, the calculation of lipid and structure on each characteristic, etc. The only

point where the characteristics are coupled is when the total population biomass needs to be cal-

culated. Once the biomass is known, the calculation of mortality and all subsequent computations

can continue in parallel. Each of these are examples of data parallelism — the same computations

can be applied to different data independent of each other. Such a flow could be well-suited to a

Single-Instruction/Multiple-Data (SIMD)-type parallel architecture (also called vector processing).

The MasPar MP-2 was an example of such a machine to which we had access to at the start of

this project; it had 256 execution units lock-stepped together. We tried unsuccessfully to map our

models onto the MasPar. Such machines no longer are built as standalone computers, but several

vector-units are typically built into our CPUs in order to accelerate repeated mathematical opera-

tions like those in matrix computation and image processing. Furthermore, the Graphics Processing

Unit (GPU) in our video cards provides another such an example with dozens to hundreds of vector

execution cores.

This flowchart analysis shows that the model is a good candidate for parallelization. But all

standalone, parallel computers are now of the Multiple-Instruction, Multiple-Data (MIMD) design

for which the parallel execution design focus is different. Even the lone, common example of SIMD

execution, GPUs, are moving towards the MIMD-design with independent branching, conditional

execution, etc., with firmware programming through shaders (Rost, 2006). For the MIMD computa-

tional model, the effort is to draw out task parallelism. Towards this end, we reorder the population

model program into two parts. One is a computation portion which would perform all of the cal-

culations necessary to advance a given characteristic one time step which we call the blackbox. The
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Figure 1.14: Diagram of Program Redesign

other is a driver portion which would concern itself with holding the list of characteristics in memory,

calling the computation code for each characteristic, and performing any necessary communications

with the other nodes. This is pictured in Figure 1.14.

Because of this design change we also anticipated several other benefits, including:

• The driver can be written in another language, more suited for maintaining lists, communica-

tions, and report generation.

• The blackbox can be optimized and simplified so that it can calculate as fast as possible.

• The design of more complicated programs, such as predator-prey or higher food webs, is

simplified, because the computational portion for each species does not have to be changed at

all; only the driver requires modification in order to link the different populations together.

(This was found not to be entirely true; see Chapter 3.)

We have tried to capture each of these benefits into our serial and parallel versions of this model.

We chose C as the language in which to implement the driver. While C++ now would be the

natural choice for the base language, C++ support and its runtime environment requirements were

not universally available, especially on supercomputers. Likewise, while extensions had been made

to the Fortran language (Metcalf and Reid, 1993) that allow list management, etc., these were not

readily available.
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The overall flow of the new program is changed from the original. Figure 1.15 illustrates the

flow of the redesigned program. The only algorithm change was the movement of the computation

of the population total biomass from the middle of the simulation loop to outside of the loop. Total

biomass is required for the computation of the density-dependent mortality effects. Without this,

the mathematical equations would be decoupled. Moving the biomass calculation outside of the

computational loop proved convenient for two reasons. One is that the calculation of biomass is

located in the driver portion which has access to the entire local population, and can communicate

with the other nodes as necessary to compute the total population biomass. The other is that it

removes the only synchronization point of the algorithm from the middle of the computation loop.

The recoding of the various components of the Daphnia population model to conform to the

black box model was performed by myself. The Daphnia population model translated is the one

modified by H. L. Lee to include the effects of temperature and dissolved oxygen on the Daphnia

populations (Koh et al., 1997); which is itself an extension of the modified model by G. Canziani

which includes sublethal effects of toxicants (Hallam et al., 1993).

Our first translation of the population models had the driver portion in C with the computational

routines in F77. We then implemented parallel versions of the program on the Thinking Machines

CM-5 (32 nodes, 4.0 GFlops peak), and the Intel iPSC/860 (128 nodes, 5.1 GFlops peak). (These

numbers and descriptions were kept for comparison.) The desktop computer on which we ran the

final models is capable of approximately 90 GFlops using its eight processors. We also ran the

population and predator-prey codes on several other supercomputers including the Cray T3D using

MPI. These times are now matched by my desktop. As such, most of these timings have been

removed except for when they motivate an idea more clearly than new runs would.

There were a number of versions of the codes which, in their final versions, have been combined

into a single code base. The final code base is written entirely in C including the black box portion

which comprised a vast majority of the code base and was the least understood. We tried to avoid

translating the blackbox, but to gain optimizations and access to better tools it had to be translated.

The final code base uses MPI for parallel message passing. The code base between the population

and predator-prey models shares the same routines except for the predation routines. We also

unified the sequential and parallel codebases, so either version can be generated. This eliminates the

concern and problem we had being certain that the same versions of the routines are executed. This

also greatly simplifies maintenance in that updates to one codebase are easily applied to the other;

I found this useful several times, because I only had to solve problems and fix common bugs once.

We have retained all of the versions including the originals in a Concurrent Version System (CVS)
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archive which has been useful several times. For instance, I used it to pull the original predator-prey

program and initial populations used by Henson for Extinction Thresholds discussed in Chapter 4.1.

While minor, an addition made early in development deserves mention. As we translated from

Fortran’s array-based indexing, we found that an efficient system for managing ID numbers was

required. We created our own system based on the balanced-tree algorithm (Aho et al., 1985).

With FORTRAN, array index position was used to maintain parent-offspring relationships. These

relationships have to be maintained, stored into output files, and restored for Daphnia, because the

parent carries her brood in a brood pouch until they are released. This becomes especially important

for predator-prey systems where predation mortality assessed on the parent also results in mortality

on her brood. During program execution these relationships are maintained through pointers, but

for initial populations and output data files we needed a management system. It also let us grow

the problems to machine limits without concern for running out of space and made our predation

visualization in Chapter 4 possible.

1.3.3 Cohort (Birth) Combining

In the pure mathematical expression of characteristics, the renewal equation 1.7 specifies that a

new characteristic be generated and tracked for any difference in mL0 or mS0 no matter how small.

Since our initial values for mL0 and mS0 vary according to each parent’s resources, we would quickly

generate a geometrically-growing number of characteristics that would overwhelm any computer.

This is neither realistic nor feasible. We therefore combine births in the sense that if two parents

belonging to the same ecotype give birth at the same time step, then the value of ρ taken for the

combined characteristic is the sum of the two newborn characteristics. The parameter vector ri will

match because they are of the same ecotype. The value for mL0 is the only variable that is not

conserved. Birth combining will be revisited in several times throughout this thesis.

1.3.4 Node Rebalancing

In our models, since there is hardly any difference in execution time for different cohorts, and because

all cohorts must be advanced each time step, we calculate our work requirements in terms of number

of cohorts. As our parallel algorithms execute, different nodes accumulate different levels of work.

This occurs because of deaths or births that occur on the node. As the nodes become out of balance,

then inefficiencies increase as some nodes have to wait at a synchronization point while other nodes

complete their tasks.
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A rebalancing algorithm for efficiently balancing the number of characteristics on each processor

is required for efficient, scalable execution of the model on parallel computers. We did not consider

this in our original ideas for the parallelization of the population model, but we found it to be a

fundamental requirement for efficient use of parallel resources. Even ten years later, managing the

balance of workload remains a fundamental problem for any parallel effort.

The rebalancing algorithm implemented in our parallel codes takes a fixed rebalancing period as

a parameter; denote it by R. Every time the simulation time advances R steps, then the rebalancing

routine is called. This routine is executed on each of the processing nodes simultaneously. The

following steps compose this algorithm which is more carefully described in Chapter 2. A particular

challenge with any such parallel algorithm when working with MPI is exactly pairing SENDS and

RECEIVES. If they do not match, then parallel execution will deadlock.

For a simulation with n-nodes.

1. Each node computes how many characteristics it has and stores this value into its respective

position of a vector of length n. This vector is globally merged so that each processor knows

how much characteristics every other processor has. Each processor can now compute the

same average and also compute how much each processor differs from the average.

2. Each processor computes the left-most (or lowest numbered) node which is a sink (lower than

average) and the left-most that is a source (higher than average).

3. If the sink processor number equals the local node number, then it sets up to receive additional

characteristics. Likewise, if the source processor number equals the local node number, then it

sends a number of characteristics to the leftmost sink. The number of characteristics sent or

received is chosen so that either the source or the sink will have exactly the average number

of characteristics after the transaction is completed. If the local node number is not equal to

the source or sink, then it updates its local vector to reflect the changes, but otherwise it does

nothing.

4. Steps 2 and 3 are repeated until all nodes are balanced. Only one global communication is

necessary; all other communications are node-to-node.

An example for a four processor computer is pictured in Figure 1.16. The entire algorithm is

described precisely in Chapter 2.

For supercomputers, and multi-core machines it can be assumed that each node in a simulation

is equally capable and completely available to the program (homogeneous-case). For a network of
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Number of Characteristics per Node Prior to Rebalancing:

5 15 9 7

Average equals 9.

Number over or under average:

-4 6 0 -2

Node 0 = Left-most sink.

Node 1 = Left-most source.
Node 1 sends 4 characteristics to node 0.

0 2 0 -2

Node 3 = Left-most sink.

Node 1 = Left-most source.

Node 1 sends 2 characteristics to node 0.

Figure 1.16: Illustration of The Rebalancing Algorithm for Four Nodes
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Figure 1.17: Typical Graph of Total Rebalance Time with respect to Various Rebalancing Periods

workstations (NoWs) this is not the case. Different nodes can have different levels of load and

can have different processing speeds (heterogeneous-case). Sylvester in his thesis (Sylvester, 1995)

addresses this problem. It amounts to exchanging the total computation time required by each

node to advance its local population. This information is used to scale the rebalancing process

appropriately so that each node is balanced in terms of execution time. A NoWs also has the

problem of network contention which is also addressed in this thesis. We did not incorporate the

scaled load balancing into our MPI code because we assume uniform capabilities of each node. This

analysis utilizes graphs obtained from older machines, because current machines mask the effects of

imbalance. One of the adaptive rebalance methodologies tested is analogous in design to rebalancing

for the heterogeneous-case.

A typical graph of the total time required for rebalancing is pictured in Figure 1.17. It has a

hyperbolic shape because there are twice as many balancing steps when balancing every timestep,

as opposed to every two timesteps; and twice as many steps when balancing every two timesteps, as

opposed to every four, etc.

As an illustration of the benefit of rebalancing for various periods, consider Figure 1.18 which

shows the execution times of the same simulation run with varying rebalance times. This graph was

retained from our original data sets, because modern CPUs almost completely mask the effects of
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imbalance. The initial population is distributed evenly to each of the nodes. The top curve shows

that there is a significant decrease in execution time when the rebalancing period is chosen properly.

The next curve is the maximum amount of time any one processor spent in computation. The final

curve illustrates the maximum amount of time any one processor spent in communication waiting

at the synchronization point for the population biomass calculation. The two bottom curves do

not sum to the top curve because they are times from two different processors. The large amount

of time spent waiting by one node as the rebalancing period increases — actually surpassing the

maximum computation time at some point — illustrates the effect of imbalance. The final rebalance

time essentially shows how the program would behave if no balancing were performed.

One of our original ideas for parallelization was to have one ecotype per node. The reason that

we planned to do it this way was in order to minimize the amount of communication that had

to be performed in order to combine births. If characteristics of the same ecotype are on several

different nodes, then, in order to combine their births together exactly like in the serial code, a lot of

communication would be required. We quickly moved away from one ecotype per node paradigm for

two reasons. The first reason is that because of density-dependent effects one ecotype will dominate

the population after some period of time. This effect was first reported as an observation in Hallam

et al. (1990a). Henson in her dissertation (Henson, 1994) proved the asymptotic dominance of an

ecotype for models of our type. With this in mind, we knew beforehand that with only one ecotype

per node, then one processor would eventually end up doing a majority of the work, while the other

nodes remain idle. The second reason we moved away from one ecotype per node is that it failed

to use the full power of the parallel computer. For example, if there were only nine ecotypes, then

only nine processors would be used, even if there were 100 available.

The method we have chosen is to distribute the initial characteristics evenly among all of the

available nodes, and then use load balancing to keep the numbers per node even. This eventually

distributes the dominant ecotype evenly upon all of the nodes. In order to simplify the restoration

of the parent-offspring relationships for Daphnia we initially distribute the populations by ecotype.

These same issues come up again when designing the parallel predator-prey models. Since the

eggs are carried in a brood pouch, the mortality of the parent also applies to the offspring cohort.

If the offspring cohort is located on a separate node from the parent, then notifications would be

necessary to properly update the offspring. This is addressed in Chapter 3.
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1.3.5 Optimal Rebalance Strategy

I retained the old Figure 1.18 to show how the choice of the rebalance period had a significant effect

in the execution time of the algorithm on the old computers. The benefit of keeping the nodes

in balance was so high, and the cost (in terms of execution time) of rebalancing so low, that we

eventually decided to just rebalance every timestep. This eliminated the need to come up with some

choice for the rebalance period. With modern CPUs we have a similar problem of choosing a good

period for rebalancing for an opposite reason. If we rebalance too often, then we spend more time

in global communications keeping the workload balanced, than we would have spent just computing

the few extra characteristics. Rebalancing too often now can cause much higher execution times

because the computational abilities of the nodes so exceeds the communication bandwidth.

An interesting occurrence though is what happens when the workload exceeds CPU or core cache

size (typically 8 MB shared between two cores). This forces a much slower trip to main memory to

retrieve data for a cohort, which leaves the CPU idle while waiting. This is further exacerbated by

there being only one shared path to memory, so if several of the cores are faulting to main memory,

then the access times are even slower. We demonstrate superscalar speed-up for our models in this

thesis; i.e., execution times reduced by a greater factor than the number of processors added. Such

effects are caused by caching. If one core, because of imbalance starts faulting to main memory,

then all of the cores are idled waiting for the one at the next synchronization point. We use the load

balancing to add processors to large calculations in order dynamically expand parallel resources in

order to maintain the super-scalar speedup achieved.

Much analysis went into trying to mathematically determine an optimal rebalancing period a

priori. The effect that was determined to be dominant was that of birth combining. This led to the

concept of birth classes described in the next section in order to be able to compute an estimate

of the probability of births combining. With this information, the design was that the work and

waiting/communication costs generated by a run using only one initial characteristic of the dominant

ecotype could be scaled in order to yield an estimate for the optimal rebalancing period for a more

diverse population.

1.3.6 Birth Classes

When we first started examining the likelihood of births being combined, in the search for good, a

priori rebalancing period choice, we assumed that birth events will even out and be equally likely

at any particular simulation time interval. But further investigation revealed that this is not the
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case. Consider the life history of an individual daphnid of some fixed ecotype in the absence of any

mortality other than that of old age; this is illustrated in Figure 1.19. The daphnid is deposited as

an egg at age zero, begins to consume food and grow when it is released at age equal to the fixed

reproductive period, T , reaches the size necessary to reproduce at age b1, and continues to reproduce

(assuming sufficient growth) on a fixed cycle with period T until it reaches the maximum age. In

our model T equals 4 days, but could be chosen to be any reasonable value. The important thing

is that it is fixed. In the absence of mortality other than age, all characteristics of a fixed ecotype

will follow this same cycle. Density-dependent mortality affects the age of death of characteristics;

but the age of first birth for an ecotype is a constant since the resource level experienced by the

daphnids is fixed over the course of the entire simulation. The value b1 is fixed for an ecotype ri

unless other effects like sublethal effects or environmental effects cause the growth of the individuals

to be advanced or retarded over time. The age at first birth is one of only a few size-dependent life

history events in our models. Such events become more significant in the predator-prey model. As

shown in Figure 1.5, birth events cause temporary pauses in the change in length of the daphnid,

thus potentially causing them to spend more time in a prey-size window.

This shows why birth combining is such a successful technique with these types of models.

Consider a population initialized by one characteristic of ecotype r initialized as an egg at time zero.

Suppose for this ecotype, the age at first birth is b1, the reproductive period is fixed at T days, and

only maximum age mortality is assessed. Maximum age limits each characteristic to reproduce at

only a fixed number of times, say n. This first characteristic reproduces at the following simulation

times:

b1, b1 + T, b1 + 2T, . . . , b1 + nT .
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The offspring characteristic generated at age b1 will start reproducing b1 days later, and will repro-

duce at the following times:

2b1, 2b1 + T, 2b1 + 2T, . . . , 2b1 + nT .

Finally, the set of times when the characteristic, which was generated at age b1 + T by the initial

characteristic, will reproduce is:

2b1 + T, 2b1 + 2T, 2b1 + 3T, . . . , 2b1 + (n + 1)T .

Thus by the third generation from the first characteristic, there is a large amount of overlap in the

births; and this overlapping of generations continues through the whole simulation.

One can use these sets to define the Birth Class of a characteristic for a fixed simulation step

size. Let dt denote the time step used in the simulation. If one takes each birth time from the

first set modulo T , then one will always get b1 mod T . Let B the integer from 0 to T
dt − 1 (T/dt is

assumed to be an integer), defined such that b1 mod T ∈ [Bdt, (B + 1)dt); B is defined to be the

birth class of this characteristic. The second and third sets both belong to the birth class C where

2b1 mod T ∈ [Cdt, (C + 1)dt). It is apparent that this definition is very dependent on the value

of the time step. There is a total of T/dt possible birth classes. If one looks at the times of the

birth events modulo T , then one will find that the characteristics in a birth class will always give

birth at the same time modulo T . Analysis of the asymptotic dynamic behavior of the model was

examined by Funasaki in his dissertation. In Funasaki (1997, Chapter 5), he used these concepts of

birth classes as predictors for ultimate dynamical outcomes. For instance, when he runs the model

for long periods of time and for various levels of toxicant in the water, cw, then he has found various

dynamical behaviors exhibited by the model. For example, for cw = 0.0, dt = 1/20, and T = 4

days, he gets a five point attractor as his ultimate dynamic behavior. For this case, there are sixteen

classes that contain birth events; the remaining classes are empty. Dividing the 80 possible classes

by 16 yields five — the same number of attracting points. This generally holds true, because the

population can be in only a fixed number of states between new cohorts being added.

This same sort of analysis also shows why we have had such a problem comparing models with

different step sizes. One is generally inclined to think that decreasing the step size should make the

model more accurate in some sense. Thus, if one had a five point attractor when the step size was

equal to twenty steps per day, then one would expect that by decreasing the step size, then one
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should be able to get a better estimate of the values of the attractor. This is not the case, because if

dt is decreased to 40 steps per day, then one gets a quite different behavior from the model, aperiodic

in fact.

Birth classes are an additional source of oscillations in these types of models. Enserink (a former

student of Kooijman) in her dissertation carefully compared laboratory populations of Daphnia with

predictions from DEB models (Enserink, 1995). She found that the density oscillations predicted

were more pronounced than actual oscillations. She attributed this to the “convergence of body

sizes and synchronization of life cycles, being the main cause of unrealistic oscillations in population

simulations.” The periodic birth assumption of our model is one such source of synchronization.

But, because of birth combining, the periodic decision is a requirement, because the offspring cohorts

are disassociated from their parents. Events on an individual parent that may advance or retard

the release of its brood cannot be easily be modeled. We introduce later in this thesis a concept

called Brood Pouch that was found to be a solution for a similar problem introduced by parallel

execution of predator-prey models. This concept could be used to model delayed brood release or

similar individual parent effects on her brood if required by the study.

Another way that Birth Classes are used in this thesis was as a method to increase the work

requirements. By changing how the initial populations are generated, then populations can be

created that have cohorts in each potential birth class. By populating all possible birth classes,

we are in a sense creating several non-overlapping populations. This effectively lets us increase the

amount of workload by some factor. This was a non-trivial method I utilized to to increase the

simulation workload in order to study different parallelization designs, algorithms, and machines.

1.4 Creating Populations - “Egg-hatching”

A necessary process when studying these population models is that of creating new populations

“from scratch.” We call this process egg-hatching because both of our populations hatch from eggs.

There used to be a separate code that carried out the process, but, because it was separate, then it

was difficult to guarantee that the populations generated by the program as initial populations for

the general population and predator-prey models had experienced the same growth and mortality

calculations as they would experience in the general models. Thus starting populations were difficult

to generate, so starting populations tended to be taken as given values, which is apparent in our use

of “pop267” throughout one of our research projects.

The process of generating a new, initial population is:
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1. Generate a complete file of defining parameters including the number of varying levels for each

ecotypic parameter. These values can be retrieved from published works or from the initial

population files. Any initial population defined in the file can be deleted, because it will be

replaced.

2. Set the egg-hatching cycles to 1 or greater.

3. Run with the standard, sequential population model with this as an initial population for some

period of time. The standard model knows how to generate populations from eggs. At the

completion of this run, the output restart file will be the newly-generated initial population.

Typically, Daphnia populations are only run out to 50 days. Fish are run several years. Both

periods of time are chosen in order to get a certain number of birth cycles.

The process of starting a population from scratch can be summarized as make a bunch of eggs of

the right type and let them go. A few complications like generating the ecotype information for

each type of egg are necessary to this process. In order to guarantee that initial populations were

compatible, we combined this process into the population model, so that it could also be used as

an egg-hatching system to generate initial populations. (Egg-hatching is not defined for the parallel

versions of the code and will cause the program to abort.) This capability to easily generate new

initial populations helped when we found that we needed to change the cohort combining process

for the predator-prey model.

In order to create populations consisting of many more characteristics with which we could test

our computers in “overload”, we complicated the populations via additional ecotypes. Initially

this will multiply the number of characteristics that must be modelled until competitive exclusion

eventually drives out diversity. An additional way that we could multiply the populations was

through birth classes. We tested some populations with up to 729 ecotypes and all birth classes

filled with over 50,000 characteristics.

An minor item that is necessitated by starting populations this way is that they possess a certain

“age” which is the simulation time at which they are recorded as populations to be used as initial

populations for the population models. The population’s timed cycles such as births are centered

around this time. A TRUEAGE parameter is embedded in order to allow the populations to be

recentered at arbitrary start times for new simulations.
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1.5 Chapter Summary

In this introductory chapter we described the mathematical models on which we based our develop-

ment efforts. Of particular significance for later developments are the rapid initial growth exhibited

by the juvenile classes once they begin feeding and the approach towards a maximum size as the

organisms age. A maximum size is not assumed, but is a consequence of the functional response

which describes the uptake rate for an individual as a function of the resource level. The method of

characteristics used to solve the hyperbolic McKendrick-von Foerster population equations directs

us towards tracking cohorts through their life cycles. The calculation of the boundary condition

describing births will arise several times since births pose a parallelization challenge that is like

Daphnia, because the workload for local birth combining scales directly with the number of parallel

processes. to individual-based ecology models. Maximum age mortality assessed at the cohort-level

and density-dependent mortality assessed at the population level are the two main types of mortality

to which we will refer in the remaining chapters.

The cohort solution structure is what we mainly exploit for our parallel and analysis efforts, but

the role of the individual model and individual physiology described in this chapter is not completely

suppressed and had to be considered throughout our work.

A few subjects that arose during our parallelization efforts, such as Birth Classes, Initial Pop-

ulation Generation, and Optimal Rebalancing Period are described in this chapter. They play

subordinate roles in our work, so they appear only in passing reference later in this dissertation.

The development of a method for dynamic determination of the Optimal Rebalance Period was com-

pleted based on timing calculations which we added during the course of evaluating performance of

our designs. The method was not implemented, because the potential performance improvement on

modern multi-core processors was found to be minimal, but in Chapter 3 we will describe a new

design (hard-coded for now) in which these calculations will play a role in fitting the size of the

parallel calculation dynamically to the problem size.
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Chapter 2

Parallel Simulation of Population

Models

2.1 Introduction

This chapter covers a period of almost ten years. It begins with an edited version of a paper

we published in 1997 which summarizes progress to that point with our understanding of how

to parallelize individual-based ecology models. In this paper, we present a general scheme for

parallel simulation of structured population models. The critical development then was an efficient

method of balancing the load among the available processors, so that they all reached the global

synchronization points at the same time and no processors were left waiting. We introduce in this

paper: how we compare to sequential versions of the same model; the level at which we drew out

parallelism; the designs of parallelization by ecotype and by cohort; how we measure workload; two

different ways of handling births (local and global); the effects and necessity of load balancing; and

the design of the load balancing algorithm. Through the combination of parallelization by cohort,

frequent rebalancing, and global birth combining, then we were able to demonstrate good scaling and

speedup on 32-processors. These results were later extended to 64, 128, and 256-processor machines.

Revisiting this project in late-2006 presented a unique perspective and opportunity for retro-

spectively comparing to our earlier work. Technology had advanced an incredible amount in the

intervening years giving me exclusive access to my own 8-core, 3GHz, 90GFlop desktop computer.

Further, many software technologies had matured from their nascent forms in the mid-90’s. This

chapter describes the new choices made for our parallel hardware and software platforms. With the
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modern platforms and tools, we find is that in several cases the original challenges for which we had

to develop solutions had evaporated or were inverted, but the solutions became important for new

reasons. This is particularly true for load balancing.

In the course of development for the parallel predator-prey model, the population models were

completely redeveloped and many tools and capabilities added. The source-level details of both

the population and predator-prey testbed models and the significant programming structures are

detailed in this chapter.

Global versus Local Birth Combining was introduced in our original paper as two near equals.

Global combining was found to be superior because it maintained the workload to be the same

level as that required by sequential execution. The Local Birth Combining caused some additional

workload to be incurred that lessened the scaling performance, but did not eliminate parallel benefit.

Elimination of a global synchronization point and several parallel communications was its benefit,

because it was simpler and more time was spent in computation. It is hypothesized that with the core

execution speed being so high compared to communication bandwidth that Local Birth Combining

would be the superior choice now.

Finally, execution times for our parallel population algorithms under various workloads and for

varying numbers of processors are presented.

2.2 Parallel Simulation of Individual-Based, Physiologically

Structured Population Models

(Note: I removed many tables, references, and overlaps from this paper and parenthetically an-

notated it as needed to integrate into this presentation. Original paper was published as “Parallel

Simulation of Individual-Based, Physiologically Structured Population Models” in Mathematical and

Computer Modelling (Ramachandramurthi et al., 1997) on which I was a co-author.)

Ecology, traditionally an empirical science, is becoming increasingly simulation based. Current

applications of high performance computers in the ecological sciences are generally limited to global

or regional environmental problems with little effort directed towards population or community

ecology. We investigate the modeling and simulation of a class of individual-based population models

that have the common foundation of physiology and energetics. Parallel computation has been

proposed for individual-based models (Haefner, 1992; DeAngelis et al., 1995) but, as far as we know,

∗This work was funded in part by the National Science Foundation under the grant NSF-BIR-9318160 and by the
U. S. Environmental Protection Agency through the Cooperative Agreement EPA-XE-819569.
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very little effort has been directed toward development of the parallel computational methodology

needed for successful implementation. We develop a modular approach to design sequential and

parallel simulation algorithms for these models while attempting to meet three objectives: efficiency,

portability, and extensibility.

Modeling and simulation are invaluable tools for ecological risk assessments, especially those that

tend to focus on chemically stressed populations or communities (Suter, 1993; Bartell et al., 1992).

Two facts provide motivation to employ individual-based approaches in population and community

risk assessment. First, chemicals impact individuals directly and the organismal effect is transferred

through the higher levels of ecological organization. Second, because of composition and physiology,

different individual organisms can react quite differently to the same concentration of chemical.

Individual-based models are often able to capture the inherent complexity of many ecosystems

(DeAngelis and Gross, 1992). While the ability to model the behavior and physiology of individuals

in greater detail is beneficial, this technique also generally increases model detail and complex-

ity, creating a need for better algorithms and high performance computers to simulate these more

sophisticated models. Individual-based ecological models are conceptually ideal for parallel compu-

tation because there are many similar structures throughout the ecological hierarchy of individuals,

ecotypes, populations, and communities. For example, population dynamics are composed of inter-

acting dynamics of a multitude of individuals who progress temporally in similar stages through their

lifetime employing analogous processes of growth, reproduction, and death. It is the interactions

between individuals, such as competition for resources or reproductive advantage, that constrain

parallelization efficiency. These interactions are often density dependent phenomena whose repre-

sentation requires integrative information about many individuals in the population.

First, we describe a generic approach for employing parallel computers in the simulation of

physiologically structured populations. The generic model, a system of hyperbolic partial differential

equations, is described in biological and mathematical detail in Hallam et al. (1992b). Then, as a

prototype for developments, we describe our efforts to simulate Daphnia populations on parallel

computers. Sequential simulation of the Daphnia population model is described in Hallam et al.

(1990b).

Individual models are dynamic representations of the life history of the organisms that compose

the population. For n individual structural attributes, mi, such as size, protein mass, or lipid mass,

a form of the dynamic is

dmi

dt
= Gi(a, m1, ..., mn; α) = Fi(a, m1, ..., mn; α)− Li(a, m1, ..., mn; α)
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where Gi is the growth rate, Fi is the uptake term for growth, Li is the loss of mi for energetic

demands and reproduction and i = 1, 2, ..., n. α is a parameter vector defining rate process param-

eters and environmental properties such as resource level and resource quality; a fixed α defines

a specific type of individual, called an ecotype. The individual model is incorporated into an ex-

tended McKendrick-von Foerster model to study population dynamics (Hallam et al., 1992b). The

hyperbolic partial differential equation

∂ρ

∂t
+

∂ρ

∂a
+

n∑
i=1

∂(ρGi)
∂mi

= −μρ

describes the population in terms of a density function measured in terms of the numbers per age,

per structural attributes mi, for i = 1, 2, ..., n, while Gi is the growth rate of the individual attribute

i as above. (This format is a more general expression of the models presented in the previous

chapter for fish and Daphnia.) Variation among individuals in this model occurs only in age, and

subsequently, as age changes, so do the physiological variables mi. The advantage of this population

model is that it is a hyperbolic equation that can be solved by the method of characteristics; that

is, ordinary differential equation methods may be used to simulate the cohorts of individuals that

follow the dynamics of the characteristic. Because births are determined at the individual level, the

boundary condition for the birth of new organisms and the formation of new cohorts can be computed

simultaneously with the cohort dynamics. Our sequential numerical scheme employs the method of

characteristics that fully utilizes the individual model and follows cohorts in the population; this

procedure differs substantially from the generic escalator boxcar train approach of DeRoos (1988),

where moments of the population density are featured computational objects.

The purpose of the population model is to investigate effects reflected in the population dynamics

caused by the physiology of individuals. The spatial environment is assumed to be homogeneous.

While effects of both chemical and environmental stressors (temperature and dissolved oxygen)

are present in the model we employed, their presence does not require additional efforts for the

parallelization so discussion of these processes and their representations are omitted. Since they

potentially affect the rate of growth, hence the first birth times, these do have effects (sometimes

large effects) on the workload generated during simulation, but they do not have any direct effect

on the design choices we made.
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Figure 2.1: The decomposition of a population into ecotypes and cohorts.

2.2.1 The Sequential Algorithm

Two benefits can accrue from a carefully designed sequential algorithm for simulating a structured

population model. First, the sequential algorithm would serve as a benchmark against which to

compare any parallel implementation. Second, by elucidating the structure inherent in the model, the

sequential algorithm can also serve as a convenient starting point for developing parallel algorithms

with minimum effort. In this section, we present some techniques to design efficient sequential

algorithms.

The Concept of a Cohort

The Method of Characteristics mathematically directs us toward the concept of tracking identical

individuals as a single cohort. Overall, this concept is common in many ecological models as a

specification of the work that needs to be performed in order to simulate a population. (Because

individuals of the same age and the same ecotype share identical growth characteristics, then for

simulation purposes it is convenient to collect such individuals into a common cohort. An extreme

version of this concept is a pure Individual-Based model, where each cohort represents a single

member of the population (Grimm and Railsback, 2005). Such model designs still fit into our

conceptual framework.) Figure 2.1 shows the structure of a population studied here in terms of

ecotypes and cohorts.

For our simulations, in order to maintain the work required for simulation at a reasonable level, if

two or more cohorts of the same ecotype give birth at the same time, then the two offspring cohorts

are combined into a single cohort; i.e., we combined births. Combining births helps to minimize the

total number of cohorts in the population and hence the amount of computation required for the

simulation, without significantly compromising the accuracy of the results.
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Figure 2.2: Structure of the sequential algorithm

A Modular Approach

We propose a modular approach to the design of sequential algorithms in order to elicit the inher-

ent parallelism in individual-based models. We define an elementary unit of simulation to be the

simulation of one cohort for one time step. It is the function of the Individual Module to perform

this elementary unit of simulation. The task of the Population Module is to simulate a structured

population through time by invoking the Individual Module for each cohort for every time step.

Figure 2.2 shows the structure of such a modular sequential algorithm.

Typically, the Individual Module executes a numerical method to solve the ordinary differential

equations representing the individual. In the example below, we use higher order Runge-Kutta

methods to solve the individual models. In this design, the Population Module maintains all necessary

population level information including the computed values for all the cohorts in the population

(e.g., biomasses of lipid and structure, age, reproductive state). It also calculates the summary

statistics of the population (e.g., average age, average biomass of lipid or structure or total biomass,

total numbers) in order to assess the population level effects on individuals (e.g., density dependent

mortality regulation).

For the individual-based population model of Daphnia described, a sequential program was de-

veloped by Hallam et al. (1990a) and utilized for analyses of the effects of chemical stressors on the

population. We redesigned this program into the modular structure described above. We do not

discuss the Individual Module nor the Population Module in detail here because, except for organiza-

tion, they are quite similar to the approach utilized in the original sequential program. Our purpose

is to address the issues associated with parallelization. Later, we provide experimental results to

compare the performance of the sequential and parallel algorithms.
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2.2.2 Parallel Algorithms

We set three goals for our parallelization effort. First, we must achieve efficiency in terms of speedup

over the sequential algorithm. Second, our parallel programs must be easily portable to other

architectures that are based on similar programming paradigms. Third, the algorithms developed

for the population model should be easily extensible to more complex community and food-web

models.

The target architecture for our parallel algorithms was the multiple instruction multiple data

(MIMD), distributed memory parallel computer. Typically, such a computer consists of a collection

of processors each with private memory that pairwise have no shared memory. They have facilities for

interprocessor communication and synchronization. Such computers are usually programmed using

the single program multiple data (SPMD) paradigm where a copy of the same program executes on

each processor but on different data. The wide availability and popularity of distributed memory

MIMD parallel computing both through dedicated hardware and through heterogeneous computer

networks, means that our algorithms would be easily accessible.

Methodology Overview

Our parallel algorithm design is also based on a modular approach that can be viewed as an extension

of the sequential algorithm design. First we present a temporal overview of the parallel simulation.

The simulation is initialized with each of the processors assigned a portion of the initial population.

At the start of each time step, all the processors must cooperate to compute the statistics needed

for computing the population level effects. This cooperation is a point of synchronization of all the

processors at the start of each time step. Once the population statistics have been computed, the

processors work in parallel, independently advancing their local populations through the next time

step.

Figure 2.3 presents an overview of the structure of the parallel algorithm. Typically, a parallel

algorithm for an individual-based population model would consist of three different modules: the

Individual Module and the Population Module as in the sequential algorithm, and the Load Balancing

Module. A copy of all three modules resides in each processor. We further utilize node (or process)

zero as both a compute node and as the host whose job includes the handling of input and output of

data, as well as distributing the initial population among all the processors in the system. The other

compute nodes are idle during these host operations. This is potentially a significant bottleneck for

any parallel computation.
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Figure 2.3: Structure of the parallel algorithms

Each processor executes the Population Module, which employs the Individual Module, to simulate

its local population. This simulation is accomplished in much the same way as the sequential

program, namely, by repeated invocations of the Individual Module at each time step for each cohort.

When all the cohorts in the local population have been advanced one time step, the total biomass

(or some other measure of total statistics) of the population across all the processors is calculated

in order to assess the global effects of individual behavior. This entails synchronization of all the

processors and interprocessor communication. Similarly, additional communications can be required

in order to collect output data for analysis of the simulated population.

We compare two different ways to distribute the population among the processors for parallel

simulations. First, we present the coarse-grained approach of parallelization by ecotype. Then, we

describe the finer-grained strategy of parallelization by cohort.

Parallelization by Ecotype

The organization of a population into ecotypes suggests a simple way to distribute the population

across the processors of a parallel computer, namely, using only one processor per ecotype. If there

are n ecotypes and p processors, then each processor is assigned n/p ecotypes. If a parent and

its offspring are assumed to belong to the same ecotype always — as is the case in our models —

then this method has the advantage that once the simulation is started, then there is no need to

move cohorts across processors during the simulation in order to maintain the “only one processor

per ecotype” paradigm. Furthermore, combining births is also simplified because each ecotype is
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localized to one processor. Therefore, this method of parallelization can significantly reduce the

amount of interprocessor communication.

One limitation of this method is that the amount of parallelism cannot exceed the number of

ecotypes. Another limitation of this algorithm arises from the survival of the fittest principle (Henson

and Hallam, 1994) which states that as the simulation progresses, a small number of ecotypes will

dominate the population while the others are doomed to die out gradually. This principle translates

into an uneven usage of the processors because the simulation would eventually become localized to

a few processors while the rest are idle.

Since all the processors must synchronize before the start of each time-step, any imbalance in

the distribution of cohorts can mean longer waits for synchronization. While it can be tempting to

enlist multiple processors to work on a given ecotype, such attempts would detract from the main

advantage of this method, namely, minimum interprocessor communication. It is conceivable that

under certain circumstances, gradually easing the restriction of “only one processor per ecotype”

into a more liberal “one or more processors per ecotype” would speed up the simulation sufficiently

to outweigh the additional communication cost. However, it is difficult to determine a priori when

such an approach would be beneficial.

The performance of this algorithm for the Daphnia population model will be compared with

other algorithms in a later section.

Parallelization by Cohort

In this method, the cohorts that constitute the initial population are distributed evenly across all the

processors without regard to their ecotype. This represents a finer granularity of parallelism than

the previous method with the amount of parallelism here limited only by the number of cohorts.

In a sequential computation, birth combining can be performed perfectly without additional

effort, completing the simulation with the minimal amount of work. A problem arises when dis-

tributing the population across several nodes that do not have access to each other’s memory. How

can births be combined? As a part of this study, we will investigate the efficiency of combining

births locally on a single processor (called the Local Combine Algorithm) or globally across all pro-

cessors (called the Global Combine Algorithm). In the Local Combine algorithm, where combination

is restricted to the population local to each processor, two or more new-born cohorts of the same eco-

type on the same processor are combined into a single new cohort. This is easily accomplished and

involves no interprocessor communication. However, it does create more cohorts in the population

than the sequential algorithm and thus leads to additional computation, which can translate into
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longer execution times. An alternative is the Global Combine algorithm, where births are combined

across the entire global population; i.e. combination of births is made across all the processors in

the system. The benefit of this approach is that the number of cohorts in the total population, and

hence, the amount of computation are kept to the absolute minimum, namely, identical to the pro-

cedure of the sequential algorithm. However, this can only be accomplished by means of additional

costs in communication. Note that when parallelization is by ecotype, use of the Local Combine

algorithm is sufficient to minimize the amount of computation.

2.2.3 Load Balancing

Because local populations (number of cohorts) on different processors can grow at different rates,

an even initial distribution of cohorts across the processors can become unbalanced during the sim-

ulation. We have devised an efficient parallel load balancing algorithm to remedy such a situation.

When necessary, all the processors execute the Load Balancing Module in parallel in order to redis-

tribute the population evenly.

This algorithm is designed specifically for parallelization by cohorts. While imbalances also arise

when the model is parallelized by ecotype, they cannot be remedied without compromising the “only

one processor per ecotype” paradigm.

We define the terms balance and imbalance more precisely before presenting the load balancing

algorithm.

Determining the Imbalance

Let p be the number of processors and for 1 ≤ i ≤ p, let li denote the load located at processor

i. Here we assume that li is simply the number of cohorts at processor i. The total load L on the

system is
∑p

i=1 li and the average load per processor, l, is L
p .

We say that the load on the system is balanced if the load at each processor satisfies the condition

|l − li| < 1.

The excess load at processor i, xi, is determined as follows:

xi =

⎧⎪⎨
⎪⎩

li − [L
p ]− 1 if 1 ≤ i ≤ L mod p;

li − [L
p ] otherwise.
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where [y] denotes the greatest integer in y. If xi > 0 then we say that processor-i is overloaded. If

xi < 0 then processor-i is underutilized. The reason this function is split into two is that the total

system load will usually not be evenly divisible by the number of processors.

The following lemma shows that our definition of excess load is consistent.

Lemma 2.2.1 The net excess in load is zero i.e.,
∑p

i=1 xi = 0

Proof ∑p
i=1 xi =

∑L mod p
i=1 (li − [L

p ]− 1) +
∑p

i=L mod p+1(li − [L
p ])

=
∑p

i=1(li − [L
p ])− (L mod p)

= L−∑p
i=1[

L
p ]− (L mod p)

= L− p[L
p ]− (L mod p)

= (L mod p)− (L mod p)

= 0

If any overloading is detected on a processor, then we can move some cohorts from that processor

to an underutilized processor in an attempt to achieve balance. The following lemma shows that

this strategy will indeed result in balanced load across the system.

Lemma 2.2.2 Redistributing the excess load results in a balanced load i.e., for each 1 ≤ i ≤ p,

|l − (li − xi)| < 1.

Proof If i > L mod p, then xi = li − L
p and the proof is trivial. Suppose i ≤ L mod p. Since

xi = li − [L
p ] − 1, we have li − xi − 1 = [L

p ] and l − (li − xi − 1) = L
p − [L

p ]. Since i ≥ 1, we know

that L mod p ≥ 1 or [L
p ] < L

p . Therefore, 0 < L
p − [L

p ] < 1. Hence, 0 < l − (li − xi) + 1 < 1 or

−1 < l − (li − xi) < 0 or |l − (li − xi)| < 1.

A Parallel Load Balancing Algorithm

Our algorithm for load balancing consists of two components. The first component, called algorithm

BALANCE, computes the amount of imbalance at every processor. The second component, called

algorithm REDISTRIBUTE, redistributes the load in order to achieve a balanced load. These two

algorithms are sketched below.
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Algorithm BALANCE

begin

0. Initialize the data.

i← processor-id;

p← number of processors;

Let l[1...p] and x[1...p] be arrays of p integers.

1. Determine the load on each processor in the system.

for (j ← 1 to p)

l[j]← the number of cohorts on processor-j;

2. Compute the average load per processor.

L←∑p
j=1 l[j];

average← [L
p ];

remainder← L mod p;

3. Compute the imbalance levels.

for (j ← 1 to p) x[j] = l[j]− average;

for (j ← 1 to remainder) x[j] = x[j]− 1;

4. Call Algorithm REDISTRIBUTE to achieve balance.

end

Algorithm REDISTRIBUTE

begin

0. Initialize the variables.

source← 1;

destination← 1;

1. Find the source with lowest id.

while ((x[source] ≤ 0) and (source ≤ p))

source← source + 1;

2. Find the destination with lowest id.

while ((x[destination] >= 0) and (destination ≤ p))

destination← destination + 1;

3. Check for termination.

if ((source > p) or (destination > p)) then exit;
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4. Determine the number of cohorts to be transferred.

number← min(x[source], x[destination]);

5. The source processor sends the cohorts to the destination.

if (i = source) then send(destination, number, cohorts);

6. The destination processor receives the cohorts from the source.

if (i = destination) then receive(source, number, cohorts);

7. Update the imbalance levels.

x[source]← x[source]− number;

x[destination]← x[destination] + number;

8. Go to step 1.

end

Analysis of the Load Balancing Algorithm

The first non-trivial feature of algorithm BALANCE is the interprocessor communication required

by Step 1 in order for each processor to determine the loads at all the other processors in the system.

This is a point of synchronization of all the processors in the system. Steps 2 and 3 are straight-

forward. In algorithm REDISTRIBUTE, Steps 1 through 4 are also straightforward computations.

Only Steps 5 and 6 of algorithm REDISTRIBUTE involve interprocessor communication.

The computation of the number of cohorts in Step 4 of REDISTRIBUTE ensures that the load

at either the source or the destination processor will be balanced after the transfer. If there are p

processors in the system, then it is easy to see that algorithm REDISTRIBUTE terminates after at

most p iterations. In fact, since the last step must saturate both the source and the destination, the

number of iterations cannot exceed p− 1.

In the following section, we examine the performance of the parallel algorithms presented thus

far.

2.2.4 Performance of the Parallel Algorithms

Recall that we defined an elementary unit of simulation to be the simulation of one cohort for one

unit of time. We can measure the amount of computation during a simulation in terms of the

total number of units of simulation performed during the entire period of the simulation i.e., in

cohort-steps.
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Table 2.1: A comparison of the sequential and parallel algorithms

Algorithm Computer Execution time Max. time for
in seconds communication

Sequential SPARC 20/61 1026 –
(1 processor)

Parallel by ecotype CM-5 851 99%
(32 processors)

Parallel by cohort CM-5 489 15%
with local combine (32 processors)
Parallel by cohort CM-5 250 19%
with global combine (32 processors)

Experimental Results

We used a 32-processor Thinking Machines CM-5 as our parallel program development platform.

The CM-5 consists of a collection of SPARC processors interconnected by a fat-tree network (Hwang,

1993). Each processor has its own private memory, which in our case was 32 megabytes, and there

is no shared memory in the system. We used the CMMD message-passing library for interprocessor

communication. Most of our program development was done using the C language.

Table 2.1 can be used to compare the performance of our sequential algorithm and three different

parallel algorithms by indicating the total time required for the same experiment and the maximum

percentage of the time required for communication as contrasted with time required for computation.

The sequential simulation was performed on a SPARC 20/61 workstation. The data represents a

500-day simulation of an established Daphnia population initially consisting of 267 cohorts. For

this simulation, the size of a time step was fixed at 0.05 days, and the load-balancing algorithm

was invoked at the end of every day i.e. after every 20 time steps. The effects of toxicants and

temperature variation on the Daphnia population were also assessed in this simulation.

From the table, it is clear that the Global Combine algorithm is the fastest of the three parallel

algorithms. The difference between the Local Combine and Global Combine algorithms stems from

the fact that while the former simulated 23 million cohort-steps the latter had to simulate only

about 9 million cohort-steps for the same population. In this case, a little additional communication

resulted in huge savings in computation.

Before we can compare the parallel and sequential algorithms, we need a measure of the relative

difference in computational power between a SPARC 20/61 processor and one processor of the CM-5.

The SPARC 20/61 took 76 seconds to simulate the above data for 50 days whereas one processor

of the CM-5 alone took 522 seconds. Both systems simulated an identical number of cohort-steps.
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Therefore, we may say that for this application, the SPARC 20/61 is about 6.8 times faster than each

processor of the CM-5. Thus, in principle, we may expect that a 32-processor CM-5 would be 4.7

times as fast as the SPARC 20/61. However, when two or more processors cooperate, interprocessor

communication comes into play.

Table 2.1 shows that in reality, the Global Combine algorithm on a 32-processor CM-5 is only

about 4 times faster than a SPARC 20/61. The difference can be accounted for by interprocessor

communication. In the Global Combine algorithm, each processor spent only 210 seconds at the most

for actual simulation i.e., in the Individual Module. The rest of the time was spent on communication,

synchronization, and other overhead.

Performance of the Load Balancing Algorithm

Load balancing represents a trade-off between computation and communication. The amount of

computation involved in the load balancing algorithm itself is insignificant. Load balancing does

not decrease the total number of cohorts in any way. By evenly distributing the cohorts across all

the processors, it simply helps minimize the maximum number of cohorts on any one processor.

Thus, depending on the degree of imbalance, load balancing can save us a considerable amount of

computing time.

(This is the point where the relationships have flipped. The communication time relative to com-

putation time is now large. Thus having a small number of timesteps between rebalancing typically

increases the simulation execution times. For the basic population models, the cost of maintaining

perfect balance, now exceeds the potential gain. There is a potential for 5-10% performance gain

in the predator-prey model, but not in our population models. Since we are aiming to be more

generally applicable than to just our simulation models, then reviewing and including the rebalance

algorithm is merited. )

The communication involved in load balancing can be broken up into two parts. The first is

the global communication required to exchange load information among all the processors. If any

imbalance is detected, some cohorts must be transferred between individual processors in order to

achieve balance. Hence, the amount of communication required for load balancing depends partly

on the degree of imbalance at the time of invocation. Therefore, we are faced with a choice of

frequencies with which we use the load balancing algorithm.

Figure 2.4 shows the time taken by our load balancing algorithm for various balancing frequencies.

The population data used was the same as that used for Table 2.1. Recall that each time step is

0.05 days. From the figure, it is clear that load balancing is extremely fast both in absolute terms
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Figure 2.4: The cost of load balancing
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Figure 2.5: Speed-up achieved by doubling the number of processors

and also when compared to the total time taken by a 500-day simulation. (For these reasons, we

later decided to just rebalance every time-step, because the computational benefits far exceeded the

few seconds of costs.)

Speedup

For a given algorithm, the speedup attained by using p processors to solve a problem is the ratio

of the time taken by one processor to the time taken by p processors to solve the same problem

(Almasi and Gottlieb, 1989).

Figure 2.5 shows that doubling the number of processors used on the CM-5 nearly halves the

execution time of the global combine parallel algorithm. From the figure we can conclude that this

algorithm scales very well, sustaining a speedup very close to the ideal for up to 32 processors on

the CM-5.

2.2.5 Initial Conclusions

We have proposed a modular approach to design parallel simulation algorithms for physiologically

structured individual-based population models in ecology. The objectives of our approach were

three-fold: efficiency in terms of speedup, portability to a variety of computational platforms, and

extensibility to more complex ecological models. A modular design for the sequential simulation
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algorithm was also presented with a view to easing the development of parallel algorithms. It was

shown how such sequential algorithms lend themselves to parallelization easily.

Our parallel algorithms were targeted toward the MIMD parallel computing paradigm. Issues

such as granularity, communication and synchronization, and load balancing were addressed in the

effort to obtain maximum speedup. Two different parallelization strategies of different granularity,

each based on the structure of the simulated population were presented. We showed two contrasting

schemes to handle discrete events such as births in the population during a parallel simulation. An

efficient and general load-balancing algorithm was also presented and analyzed.

Using the modular approach, concrete algorithms were developed to simulate a specific individual-

based, physiologically structured model for Daphnia populations. These algorithms were imple-

mented on a Thinking Machines CM-5 parallel computer. Using a fine-grained parallelization strat-

egy together with global combining of births, and frequent use of the load balancing algorithm, we

were able to obtain nearly ideal speedup. Thus we have demonstrated that individual-based popu-

lation models can be efficiently simulated and analyzed by using parallel computational techniques.

Moreover, owing to their modular design, we were able to port these programs easily for execution on

a network of heterogeneous workstations using the PVM (Parallel Virtual Machine) software. The

wide availability of PVM, even in homogeneous parallel computing platforms, makes this approach

very attractive.

We consider our efforts to parallelize a generic structured population model to be part of a

larger mission, namely, the determination of efficient algorithms to simulate an integrated food-

web model. The next specific step in this direction is the development of parallel algorithms to

implement an individual-based predator-prey model where, for example, Daphnia are the prey and

fish are the predators. The modular approach that we have used to construct algorithms for the

individual-based population model ensures that these algorithms will serve as valuable components

in food-web analyses.

2.3 Transition to Modern Systems

As a way of transitioning from the paper presented in the last section to the final design, I record

major developments and applications of both the population and predator-prey models in Table 2.2.

The predator-prey model is described in the next chapter.

Between the time that the paper was published and when I left the project, we did have a

computer time grant from NCSA which had several types of machines at the time include Cray,
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Table 2.2: Major Development Milestones

Code Description Code Type Parallel Library Computers Utilized
Population hybrid F77/C MPI NCSA: Cray, SGI, and

HP Convex
Predator-Prey hybrid F77/C MPI NCSA: Cray, SGI, and

HP Convex
Predator-Prey Se-
quential and Pure
Parallel

C MPI NCSA, Network of two
dual-processor Linux
PCs, and Suns

Population C MPI NCSA, Network of two
dual-processor Linux
PCs, and Suns

Population and
PPrey

C Home-Grown Shared
Memory

Network of two dual-
processor Linux PCs

SGI, and HP Convex machines. (Ours was the first public code run on a 256-node Cray T3D.) An

MPI version was developed from our earlier CM-5 codes for these machines. As part of working with

these machines I finally completed the translation of the remainder of the program to C. This made

porting between machines easier as well as debugging. A “fish-on-all” predator-prey version was

mostly implemented when I left, but was not completely debugged. The pure parallel version was

tested on several of the NCSA machines, but it too was not completely debugged. On the HP Convex

we did exhibit superscalar speed up for the first time. Almost always these are caused by taking

advantage of caching and hardware. The HP Convex was a shared-memory design versus multi-

processor. None of these NCSA timings are directly reported, but the knowledge gained does make

appearances throughout this thesis, such as superscalar speed-up, shared memory, large problem

sizes, and MPI.

To give these machines any challenge, especially the ones with 128 or more nodes, we ramped up

the workload by increasing the number of ecotypes and by birth class multiplication as described in

Section 1.4. We would utilize populations with 125 ecotypes and variable numbers of birth classes

filled. Each machine was still somewhat unique. Even though all supported MPI, there were various

I/O, compiling, debugging, and timing and profiling options. There still remain flags and references

in the final code base referring to these machines and the CM-5.

In 1997 and 1998, MPI-1 was still being adopted and its early incarnations did not necessar-

ily take full-advantage of machine resources. For networks of workstations, the presumed base

communication method was TCP, even on multi-processors. I developed my own shared-memory,

message-passing library in order to avoid this overhead and was able to handedly beat the MPI
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libraries at the time. I also learned a lot about dead-locking, semaphores, cache lines, and other

shared memory and parallel problems and concepts. One of the first things I did after picking this

project back up was to test my shared memory version against the newest MPI implementations.

Mine was close, but they all bested my execution times indicating that they are taking advantage

of the faster communication channels.

2.4 Modern Systems

Picking this project back up late 2006, I had to reorient myself to all of the technology choices

available. I initially built a small network of two dual-core machines in my house with a gigabit

connection between them to act as a testbed.

2.4.1 Parallel Methodologies

Threads

Message-passing is not the only parallel methodology. The other common methodology is that of

threads. Threads are separate execution paths inside of a single program which are scheduled and

executed independently and simultaneously by the operating system. (Since threads are all in the

same process, they share the same process ID.) They can communicate information through various

methods including inter-process calls, method calls on the thread, shared memory, and similar

mechanisms. Threads are the preferred method for single programs to gain benefit from multi-

processor/multi-core machines because they can be set up and utilized within a program without

any external files or other setup. For instance, worker threads can be spawned by a program to

carry out a long-running task, while not disrupting the responsiveness of the user-interface. POSIX

Threads (pthreads) are the current standard; see Butenhof (1997). Threads can require significantly

more design and implementation effort and extending the concept across disjoint computers or

supercomputer nodes is impractical. Because of the rise of multi-core processors and the need to be

able to efficiently multi-thread applications in order to get better performance for applications from

these machines, there are many current efforts. Applying the techniques to these models in which

we have already invested so heavily in MPI did not make sense.
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Shared Memory

Another concept is shared-memory, with all of the information sitting in a common memory space

and processors all having access to this information. Earlier, I did implement a shared-memory,

message-passing library based on SYSV shared memory (Stevens, 1993). This was especially ben-

eficial in the early days of MPI, because MPI was encumbered by network protocols even if it was

running on a single machine, so I was able to achieve significant speed improvements from early

dual-processor PC computers. The possibility of using a full shared memory space with the work

located in the middle with the processors around each grabbing a new task as it completed the

previous was considered, but would also have required significant reconceptualization and redesign,

so I did not pursue it.

Computational Grids

Another parallel methodology I considered was that of computational grids and these are addressed

briefly. Originally this term applied to the concept of joining entire supercomputer centers into

clusters with high-speed network connections. The supercomputers would then each become a node

in a larger calculation. The term has evolved to include a single computational tasks carried out

in small segments by entirely separate computers which are not necessarily aware of or in contact

with each other. This allows problems of immense size to be tackled that could not be otherwise be

performed. The utilization of several computers to apply to tasks like compiling, video rendering,

and similar, is behind the concept of the XGrid system built into all Macs.

Computational resources joined via XGrid can be utilized for research computations. For exam-

ple, the Xgrid@Stanford project utilizes XGrid to couple computers on the Stanford campus and

all over the world to work on a pharmacology problem which allows them to “run a calculation in

1 week instead of 1 year” (Parnot, 2007). Another particularly interesting application of the Xgrid

feature is the Kentucky Data Seam project (kydataseam.com) which utilizes the statewide net-

work joining all of the schools and the Macs placed in each school as a large grid. It is “dedicated

to advancing research and promoting education to support economic growth.”

I explored grids after my return because I initially thought they were the next, natural step be-

yond clustered computers. Further, XGrid is advertised as MPI-compatible. I eventually determined

that the problems which work best on this parallel methodology are uncoupled problems which split

out into self-contained units that can be completed in any order, at any time, without common

communication. This description does not fit our ecology simulation problems.
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MPI

I tested several MPI versions that claimed XGrid-compatibility, but found them lacking, especially

the advanced structures required by the predator-prey parallel model. I initially returned to MPICH2

(MPICH2, 2007), because I had used MPICH1 in my earlier development. The MPI-2 implemen-

tation is now mainly Python-based including the daemon-processes. (Python is freely-available

scripting language supported on many platforms (www.python.org).) Because it is Python-based,

then it is easy to diagnose and fix problems. But performance and usage was often clumsy and

very dependent on configuration file formats that were not well-documented. Also, in a PVM-like

manner, it requires the user to start and maintain daemon processes on all of the machines that will

be participating in the computation, which adds another layer of maintenance problems.

OpenMPI, www.open-mpi.org, is the implementation of MPI that I use exclusively in this

presentation. I was introduced to it at the WWDC2007 conference by some researchers after months

of trying to get MPI and XGrid to function together as advertised. OpenMPI can spawn MPI jobs

onto various grids including XGrid. It is developed and maintained by consortium of “academic,

research, and industry partners” including the University of Tennessee, so it is well-supported.

2.4.2 Modern Parallel Hardware

The final results in this report are being made on an eight-core Apple Mac OS X with each core

running at 3.0 GHz. There are two quad-core CPUs. Each of these quad-core CPUs is effectively two

dual-core CPUs on a single die. The picture that the reader should have in mind of the computational

core and memory layout of this system is in Figure 2.6 (Wilson, 2007). In particular note that there

is a shared cache of only 8MB for each pair of cores. This machine mostly functions as four dual-core

CPUs, except that there is a shared path to the northbridge (memory and video access) for the cores

on a single CPU. Further, all eight cores have to contend for access to Main Memory.

Cache contention and CPU idling while accessing main memory are some significant causes of

lessened performance which we encountered. Many real-world applications do not benefit over the

otherwise identical dual dual-core Mac Pro, which is a common desktop machine for graphics and

media applications. Even the base operating system, Mac OS X 10.4 “Tiger” does not handle the

eight cores as efficiently as it could, because it will often move a long-running task to a different

CPU core. This requires cache to be flushed, the program’s state to be reloaded, and other time

consuming tasks. The next version of OS X called “Leopard” does have better core affinity in order

to perform better on these processors. We have observed a 10% or more gain in performance entirely
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due to better affinity when testing on a pre-release version of Leopard. All timings in this report

are from running under Tiger. It cite this to show that parallel performance is still an evolving field

of research. As new hardware is created, then new bottlenecks can appear that have to be worked

around by new techniques. In this case, the task-scheduling at the OS level is the culprit.

2.5 Program Design

The overall program design for individual-based ecology models is now described more fully. We did

settle on the individual cohorts as the basic unit of work. This design is pictured in Figure 2.7. We

do not try to go inside the Individual Model as it was termed in the paper (or the black box as we

informally called it). That is where a bulk of the computations are done, but the parallelism available

inside is hard to extract. Machines like the MasPar and streaming processors like GPUs depend

on doing simple computations on vector streams of data, but there are too many branches and

individual behaviors for ecology models to map well into this paradigm. (For our Daphnia models,

the initial population is distributed by ecotype in order to re-establish parent-offspring relationships,

but this is not generally required.)

With a population of typically thousands of cohorts, but each independent except for a few

population-level calculations, then the parallel advantage is from distributing them onto individual

compute nodes and letting each node advance its local population to get it done faster than one

node doing all of the work. Obviously, parallel programs require work at least equal to the compute

resources to be of any potential benefit. In other words, parallel problems require a minimum amount

of work in order to be justified. Further, the granularity, the total size of work per processor, needs

to be chosen well or else too much time is spent in communication shuttling the workload around

and not enough time is spent doing useful calculations. One can choose how many processors are

involved in different stages of the work and this may be appropriate in order to balance workload

against communication load. This idea is discussed in the next chapter.

For the population model we focused on the Daphnia version because of its short reproductive

period and resulting large numbers of cohorts. A fish population has an annual reproductive period

and a lifetime of a little over eight years. The fish lay thousands of eggs each, but these all combined

into a single cohort, so they induce only the load of one more cohort.

The run loop is diagrammed in Figure 2.8. Note that the local population on a processor can be

zero. It has to continue to participate in the collective operations or else the parallel program fails.
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It just does not have any real work to do, so it proceeds to the next parallel call and waits for the

others.

Even though my final MPI-programs were all run inside the same machine, each node participat-

ing in the parallel execution program is a completely disjoint process which can only communicate

with other members via messages. Each node in the computation has its own process ID and is

independently scheduled by the OS onto the available processors. Messages copy information from

one node’s memory space into another’s memory space. We heavily use these types of parallel

communication patterns:

1. Point-to-Point: One node directly to another

2. Reduction: All nodes performing some common operation like sum or max on their local data,

with a single node compiling the final result. For example, summing biomass across all nodes.

3. Broadcast: One node transmitting data to all other nodes.

These are the main methods of communication, but there are several others; see Snir et al. (1998).

For the fully-parallel predator-prey simulation we had to utilize more advanced communication

techniques in order to distribute predation tables. The techniques for predator-prey are described

in the next chapter.

2.5.1 Source Code Descriptions

Table 2.3 lists how each of the source code components is used by the various versions of models we

have. If the source file is identical and shared between both population and predator-prey models,

then it is marked as Shared. Otherwise it is marked as Population or Predator-Prey Only. It

can be marked both Population-only or Predator-Prey Only if it is changed uniquely for both, like

constants.h. If a file is needed only for the parallel versions, then it is marked Parallel-Only. Only

header (*.h) files that define significant structures are listed. This table demonstrates the amount

of unification we were able to achieve between the two types of models.

These sources are now briefly described as an orientation towards the functions that need to be

carried out during the course of simulation. This gives an idea of where to find the routines related

to different portions of the simulation.

balance.c, balance.h Cohort imbalance and rebalancing routines for the parallel simulations.
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Table 2.3: Source Code Usage

Source File Population-Only Predator-Prey Only Shared Parallel-only
balance.c X X
blck box cmn.c X
check pops.c X
constants.h X X
dbsqlout.c X
deck.c X
deck.h X
driver.c X
error.c X
generic stack.c X X
id decls.h X
id manager.c X
inithost.c X
initnode.c X
mysqlout.c X
parallel.c X X
parpred.c X X
pgsqlout.c X
popbirth.c X
popmort.c X
popsim.c X
ppmain.c X
pred.c X
reports.c X
shared memory.c X
shared memory clear.c X
timing.c X
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blck box cmn.c, blck box cmn.h Individual-model numerical integration routines. Note that

for fish in predator-prey model their numerical routines because of the feeding are so different

that none of the population routines are used.

check pops.c, check pops.h Debugging - Performs advanced sanity checks on the memory struc-

tures and computed values. This is to locate exactly when an aberrant value shows up during

debugging. Tests are embedded throughout the loops so that we can determine exactly what

procedures caused any detected errors.

constants.h The most important configuration file. This has all of the main structure variables and

defines so that the various models can be built from the same source. Heavily documented.

dbsqlout.c, dbsqlout.h The general routines called for SQL database output of computed data

and populations.

deck.c, deck.h The population memory structures and routines.

driver.c, driver.h The main loops for the population models.

error.c, error.h Error reporting and careful shutdown.

generic stack.c, generic stack.h Used to hold the affected prey items for each predator as preda-

tor feeding is calculated.

id decls.h, id manager.c, id manager.h ID Management system.

inithost.c, inithost.h Initialization and shutdown routines for the sequential program and host

node in a parallel program. Mainly initialization and restart file I/O.

initnode.c, initnode.h Initialization and shutdown routines for compute nodes in a parallel com-

putation.

mysqlout.c, mysqlout.h MySQL database specific routines

parallel.c, parallel.h Parallel functions and types generalized, so that we can compile against and

use any parallel communication libraries. This includes all of the point-to-point, broadcast,

etc. functions, and types, including global combine.

parpred.c, parpred.h Predation routines for distributed fish and prey populations.

pgsqlout.c, pgsqlout.h Postgresql database-specific routines
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popbirth.c, popbirth.h Birth

popmort.c, popmort.h Scans populations removing any individual cohorts that have died due to

toxicant exposure, too low of a density remaining (minimum population cutoff), starvation, or

age. It also checks for and carries out births in the case that DELAYBIRTHS option is set.

(Because the number of eggs per individual is multiplied by ρ and used to set the population

density on the new characteristic, then delaying births until after mortality assessment can

have a large effect. DELAYBIRTHS is required for predator-prey simulations.)

popsim.c, popsim.h Routines to calculate total population biomass or, in the case of fish, the

total biomass and YOY biomass. Also routines to make projections forward of the lipid and

structure in order to provide starting values for Newton’s Method.

ppmain.c, ppmain.h Main loops for the predator-prey model

pred.c, pred.h Sequential and Fish On All predation routines for predator-prey

reports.c, reports.h Reporting functions

shared memory.c, shared memory.h Shared memory message-passing library which I devel-

oped based on SYSV shared-memory structures.

shared memory clear.c, shared memory clear.h Frees shared-memory locations if incomplete

shutdown.

timing.c, timing.h Wall and processor timing routines and elapsed timing structures.

This may seem a complicated base of code. It does combine several models and can produce all of

the different versions we utilize include the predator-prey models. (See the Appendix for additional

development history.) This is much preferred over having several just slightly different versions of

the same overall program. Further, being able to generate good sequential and parallel versions from

the same codebase demonstrates that parallel coding does not have to be different, nor does one

have to start over. As we added and tried different machines, features, scenarios, ideas, reporting

mechanisms, etc., then the code base for our testbed examples was also expanded, so it would be

smaller if we redeveloped just aiming at a single design.

Program Heritage and Improvements

As an aside, when we began this project there were several programs that were handed down through

my predecessors. The basic program design ideas and implementation mostly had to be derived from
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the code, papers, and folklore. In particular, I was concerned about the mathematical computations

for both of the populations, hence the results presented in this thesis in the Appendix. These

derivations have all been incorporated into the source code as comments, so that one can read

through the source and know what is being done at each step.

These codes were not particularly handed down as sets and they were written in several languages.

For instance, we have already talked about the difficulties encountered just trying to generate initial

populations. I gathered together many sources and have stored them together as a CVS archive for

comparison and archiving. For the most part we have produced another set of code in a different

language, C, but we have unified all of the required functions and variations into a single codebase. As

described earlier, for parallelization, having a good sequential version to start from and test against

is helpful. The sequential and parallel versions of all of our programs are built from the same source.

Similarly, knowing the differences and similarities between the population and predator-prey models

helps in their mutual development.

2.5.2 Memory Structures

The development of the population models has kind of a strange loop. I actually wrote the predator-

prey as C-only and then extracted the population models from it. In doing so, several of the

developments I had made for the predator-prey model got carried back to the population models.

Once the hybrid C/Fortran population codes were replaced, then we could allow the compilers to

fully-optimize. (Optimization of mixed language programs often causes problems with linking.) This

also allowed the more effective use of profiling tools among other benefits.

One of the bigger problems for the food web models was the management of the information for

each of the populations. First, I developed file formats that allow us to specify multiple populations

in the initialization files including all of their parameters and initial cohorts. The basic structure is

diagrammed in Figure 2.9. This file structure is shared by the “restart” file which is compiled from

all of the populations (unified across the nodes if in parallel) and output at the end of a simulation, so

that the simulation can be continued if desired. The files are self-documenting in the sense that each

parameter is commented and comments are preserved. Second, I developed structures to manage

the populations in memory. These structures have the benefit that they can be stepped through

by generic code that is the same no matter what the specific population with which it is working

actually is. Each characteristic carries with it an identifier, so that the correct individual model

routines are applied to it in order to advance it forward in time. The main memory structures for
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# Population Specification Information
numpops: Number of populations defined in this file.
maxprms: Maximum number of data parameters for any species.

Additional Populations....

{ Start of Population 1 }
Parameters
   Parameter list includes if population is fish or daphnids

Initial Population
   Characteristics forming Initial Population
{End of Population 1 }

{ Start of Population 2 }
Parameters
   Parameter list includes if population is fish or daphnids

Initial Population
   Characteristics forming Initial Population
{End of Population 2 }

Figure 2.9: Initialization and Restart File Format
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the multi-populations are diagrammed in Figure 2.10. Note that the characteristics are actually

stored into stacks split out by ecotype. (They started out stacks, but predation calculations could

be simplified by changing them to double-linked stacks which are termed dequeues.) So if there

are 125 ecotypes for a population, then there would be 125 “ecostacks” allocated and the initial

population would be sorted into these bins. As new cohorts are created, then they are pushed onto

the top of the appropriate ecostack and nearly so by size. (Variation of initial lipid per egg prevents

equivalence between sorting by age and size.)

The ability to simulate multiple populations simultaneously in the population model may seem

esoteric. But one could conceive of two different species of Daphnia, parameterized to different size

ranges, run simultaneously and coupled through density-dependent effects. We later propose just

such an extension for the predator-prey model to make a simple food-web. It does introduce the

requirement that all of the major routines, especially those for output, are multi-population aware

in the sense that separate outputs are compiled and written for each of the populations. Also,

the memory structures being unified between the population and predator-prey models helped with

consistent handling and debugging.

2.6 Load Balancing

On our modern computer system, small imbalances of load for our style of simulations has become

of no significance. An imbalance of 1000 cohorts adds maybe 5 seconds to the execution time. It

is much better to let the processors work through their local populations without requiring them

to pause, count, and shuttle a few cohorts around. Equally significant to consider is that as the

number of processors increases, then the amount of time to load balance also increases.

Although Load Balancing has diminished in its original role, its occupies a useful position and

function in the run loop. If for some reason we want to add additional computational resources as a

simulation progresses, then the load balance module could be invoked in order to populate the new

processor and reduce the load on the other processors. By reducing the load per processor, then

perhaps they can operate out of cache rather than main memory. This is considered in the next

chapter. Also, as the execution time per time step of one cohort has decreased, then the amount of

imbalance that can be tolerated has increased. Thus we can be less strict about the definition of

balance. This is also considered in the next chapter.
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array[1..numeco] of ecostacks;

number of ecotypes - numeco;
population id - popid;

array[1..numeco] of ecostacks;

number of ecotypes - numeco;
population id - popid;

populations information structure
Dimension: Number of Popuations

Dimension: Number of Ecotypes 
in Population

parameters array - cohort;

pointers to maintain parent child 
relationships

pointers to add remove from birth 
combining lists

parameters array - cohort;

pointers to maintain parent child 
relationships

pointers to add remove from birth 
combining lists

parameters array - cohort;

pointers to maintain parent child 
relationships

pointers to add remove from birth 
combining lists

parameters array - cohort;

pointers to maintain parent child 
relationships

pointers to add remove from birth 
combining lists

parameters array - cohort;

pointers to maintain parent child 
relationships

pointers to add remove from birth 
combining lists

parameters array - cohort;

pointers to maintain parent child 
relationships

pointers to add remove from birth 
combining lists

parameters array - cohort;

pointers to maintain parent child 
relationships

pointers to add remove from birth 
combining lists

srecord - cohort information 
structure

Dimension: Number in Ecotype

linked list of srecords;

number in stack - count;

linked list of srecords;

number in stack - count;

linked list of srecords;

number in stack - count;

linked list of srecords;

number in stack - count;

linked list of srecords;

number in stack - count;

linked list of srecords;

number in stack - count;

linked list of srecords;

number in stack - count;

linked list of srecords;

number in stack - count;
ecostack structure

Figure 2.10: Population Memory Structures
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2.7 Global and Local Birth Combining

The subject of births and the combining of the populations (i.e. summing ρ) of newborn charac-

teristics has already arisen several times and is a unique aspect of individual-based ecology models.

Birth combining was our biggest and most persistent challenge when parallelizing these models. It

seemed that no matter what direction we took toward parallelization, we ran into birth combining

issues. This is a point where the individual model definitely affected our choices. The easiest way

around was for us to “parallelize by ecotype” as we did initially. For a sequential model where all of

the characteristics are listed in a single array, then birth combining can be performed exactly and

without much additional effort. It was done in order to keep the size of the problem tractable for

regular computers.

Combining does compromise the pure mathematical concept of the method of characteristics, so

we considered that maybe combining was not something we should do in any case. It can be further

argued that this will produce a “more detailed” study that is not compromised by random losses or

gains of biomass at the time of births. The reason for the random gains and losses of biomass at

birth times is because the lipid allocated per egg varies in the individual model depending on the

particular parent’s lipid stores at the time of reproduction. When the newborns are combined, then

the first lipid value is the one carried forward, so potentially some lipid biomass may be gained or

lost from the population, thus violating conservation of biomass. Further, first is not well-defined;

it is just which parent was processed first. We had to handle this problem, because in a parallel

simulation, there are now potentially several first parents; one on each processor.

We thought perhaps not combining births was a pathway and an opportunity for parallelization.

Since we have large, parallel computers at our disposal, then maybe we should throw out any such

compromises made merely to enable of sequential computation. It is also closer to the mathematical

concepts and conserves biomass. But, as we will demonstrate in this section, not combining births

causes many more problems. We also further demonstrate that global combining is a requirement

for effective parallelization in our ecology models, since we model a rapidly reproducing populations.

Birth Combining’s main effect is on the value of ρ, the population density associated with a

characteristic. Recall the renewal equation (Equation 1.7), which determines the value of ρ on a

newborn characteristic (age = 0) with given initial lipid and structure values:

ρ(t, 0, mL0, mS0) =∫ ∞

0

∫ ∞

0

∫ ∞

0

β(t, a, mL0, mS0, mL, mS , ρ)ρ(t, a, mL, mS)dadmLdmS
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Table 2.4: Execution Time and Workloads for 4-Processor Simulation with No Birth Combining or
Minimum Threshold

Simulation Output Time Execution Time (s) Maximum Cohorts Per Processor
9.95 4 18,090
19.95 26 86,495
29.95 132 420,605
39.95 652 2,130,980

Further recall, that along characteristic curves, equation 1.13 describes the dynamics of ρ as a

decreasing exponential function with exponent determined by the mortality function μ:

dn

dt
= −μ(t, a, mL, mS, n)n. (2.1)

Mathematically, the linearity of equation 2.1 allows us to split and combine characteristics without

consequence. The problem arises in the numerical simulation of these equations. When the value

of ρ decreases below a fixed threshold value ρmin, then it is considered to be insignificant and

is eliminated from the population. This is done in order to keep the population culled and to

prevent the simulation from becoming burdened by lots of insignificant characteristics. Since this is

a decreasing exponential, all characteristics will eventually fall below any fixed, positive threshold.

But, as shown in Figure 2.11 with the threshold effect it does cause the problem of advancing the

time of removal of the two uncombined characteristics. This is pictured for two characteristics, but

can be extended to any number of characteristics. This is not a problem by itself, because the value

of ρmin is chosen so that only insignificant characteristics are removed, but it can become a problem

if large segments of the simulated population somehow becomes “insignificant” by this criteria.

2.7.1 No Birth Combining

If one eliminates the threshold, then the problem quickly becomes intractable even by our modern,

parallel computers. The timing and workload data from such a simulation is given in Table 2.4.

This data is for a 4-processor simulation, so the cohort-steps workload is over 8M within 800 time

steps. I had to stop the simulation at this point, because each process was consuming over 600M

of memory which was approaching the limits of my machine. This clearly demonstrates that some

method of culling characteristics is required.

Now, examining the case of no birth combining, but retaining some fixed, positive value for the

threshold ρmin, what happens? Do the total biomasses of the combined and no-combined simulations
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Figure 2.12: Total Population Density for a 2500-Day Run - Normal Birth Combining

match? Figure 2.12 gives a graph of the total biomass for a simple, single ecotype population started

from eggs utilizing birth combining. This 2500-day simulation runs in about 20 seconds. In contrast,

Figure 2.13 gives the same graph for the same population, with the only difference being that birth

combining is not utilized — every newborn generates a new characteristic. They hardly look alike,

but they are in fact identical for about the first 33 days of simulation. That is the point that deaths

start to occur in the uncombined population that are not matched in the combined population.

One should also note the instability exhibited in Figure 2.13. The values of ρ are much more

erratic compared to the combined case. What is occurring in this case is that large portions of

the population are being eliminated shortly after birth because of dropping below the threshold as

evidenced in Figure 2.14.

2.7.2 Local versus Global Birth Combining

With the necessity of combining established, what further did we find with regards to birth com-

bining? Table 2.1 in our paper at the start of this chapter compares global and local combining in

parallel simulation. We started with the local combine case because it was a much simpler path to

parallelization, eliminates another synchronization point, and allowed us to more closely match the

sequential simulation’s behavior. We concluded in the paper that global combine was the fastest
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0 500 1000 1500 2000 2500
0
2
4

x 10
4 Total Number of Characteristics Removed

0 500 1000 1500 2000 2500
−1

0
1

Total Number Removed for Age

0 500 1000 1500 2000 2500
−1

0
1

Total Number Removed for Starvation

0 500 1000 1500 2000 2500
0
2
4

x 10
4 Total Number Removed for Threshold

0 500 1000 1500 2000 2500
−1

0
1

Total Number Removed for Toxicant

0 500 1000 1500 2000 2500
0
2
4

x 10
4 Total Number Removed in Brood Pouch

Simulation Time

N
um

be
r

Figure 2.14: Cohorts Removed from Population for No Birth Combining Case
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Table 2.5: Comparing Local and Global Combine Execution Times and Workloads

Local Combine Workload Ratio Global Combine
Processors cohort-steps execution (s) Loc to Seq cohort-steps execution (s)

1 (seq) 6,054,622 9
2 10,073,100 8.7 1.66 6,054,525 7.3
4 16,466,202 12.0 2.72 6,054,497 12.1
6 21,834,464 18.0 3.61 6,054,483 23.8
8 26,439,529 25.4 4.37 6,054,481 36.3

option because required work load was minimized, which more than made up for the time required

in extra communication. But now, given that processors are so much faster, one might be inclined

to think that the best choice for modern parallel computers would be local combine.

One of the tables eliminated from the paper listed the cohort-steps required by the local combine

case compared to the global combine. Such a table for our test system is listed in Table 2.5.

Results are listed for a simple population consisting only of a single ecotype, so that the effects of

interacting ecotypes is eliminated. (A simple population was chosen for illustration, rather than for

parallel advantage.) Observe the ratio of the numbers of cohorts simulated by the local combine

version with the number required by the sequential simulation. This ratio increases and approaches

equality with the number of processors. How quickly it approaches depends on the birth period.

Thus, for a rebalanced, local combine simulation, workload scales at the same pace as the number

of processors, erasing any advantage gained by distributing the population.

Observation 2.7.1 For a local-combined, rebalanced population simulation, where the population

has a short birth period relative to the length of the simulation, then the workload measured in

cohort-steps scales by n where n equals the number of processors.

Proof Given n and a single cohort with density ρ, duplicate the cohort into n cohorts, assigning

to each density ρ/n. Distribute each of these cohorts to a separate processor (rebalancing). When

simulated, then each will produce progeny at the same times because births are not affected by

density. These are not combined (local combine), therefore the number of cohorts is scaled by n.

This process can be repeated for all cohorts in the initial population.

The action of splitting a cohort is mimicked by births. Therefore if the birth period is relatively

short, then the splitting and dispersal to nodes will be effectively carried out.

With this in mind, then the advantages of local combining evaporates for fast-reproducing pop-

ulations like Daphnia, because the workload will just scale at the same rate at which processors are
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added. There is a delay for larger numbers of processors as it takes time to generate the progeny

which eventually are distributed to each processor which is observed in Table 2.5, but once a gener-

ating characteristic gets placed on a processor, then it will start to replicate the population at the

same rate as the original. The delay in this table is illustrated by looking at the slight (20-30 simu-

lation day) delay between the numbers for the study given. Because of this result, local combining

was not studied further and global combining is turned on in all of our parallel calculations.

2.7.3 Global (Parallel) Birth Combining

Finally, this section is closed with a description of the parallel Global Combine process. Our Global

Combine algorithm depends on our Local Combine algorithm which is executed by each processor

on its local population. The Local Combine algorithm carries out birth combining by keeping a

stack of all newborn cohorts. This stack is scanned when a new birth is generated. If there is a

cohort already in the stack that has matching ecotype, then the ρ values are summed and the second

cohort’s data is unallocated. (Both parent cohorts point to the same offspring cohort in this case;

they own a percentage of the offspring cohort. This percentage is used to scale the effect of a parent

on the combined offspring cohort.) Otherwise, the new cohort is added to the stack. This stack is

local to each processor. Note that the value of initial lipid for the newborn characteristics can vary,

depending on which parent is processed first.

Algorithm GLOBAL COMBINE

begin

0. Initialize the data.

i← processor-id;

p← number of processors;

e← number of ecotypes;

locbirths← local births stack;

Let lipidmass[1...e] and childdensity[1...e · p] be arrays of floats.

1. Scan locbirths (if any) and prepare for reduction. Note that locbirths has e or fewer elements,

since it is a result of the local combine algorithm.

foreach (lb← locbirths)

lipidmass[ecotype(lb)]← lipid(lb);

childdensity[i][ecotype(lb)]← population density(lb);
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2. Reduce across nodes. Note that SUM is really a MAX because all rows in childdensity are zero

except for i-th

Let lipidmassr[1...e] and childdensityr[1...e · p] be arrays of floats.

lipidmassr← parallelReduction(MAX, lipidmass);

childdensityr← parallelReduction(SUM, lipidmass);

3. Determine total births for each ecotype.

Let totaldensity[1...e] be an array of floats.

for (j ← 1 to e) totaldensity[j] =
∑p

k=1 childdensityr[j][k];

4. Decide where combined cohort will reside in an using dest, starting always with the first processor.

dest← −1;

dest← (dest + 1) mod p;

for (j ← 1 to e)

while (childdensityr[dest][j] equals 0) dest← (dest + 1) mod p;

if (i equals dest)

update local newborn of ecotype j to values in totaldensity and lipidmassr.

else delete local newborn of ecotype j.

end

After each local population has been advanced forward in time and any local births determined

and combined by the local combine algorithm, then the GLOBAL COMBINE algorithm is executed

collectively (even if no local births are recorded). This algorithm must be executed every time step.

This combines across each local population the births into one set of at most number of ecotypes

elements. Thus at each time step, at most number of ecotypes cohorts can be generated. An upper

bound on the maximum work load for a given simulation can be computed from this. As we have

already seen, birth events are not equally likely, so this upper bound is not achieved. An interesting

feature of the algorithm is the use of a 2D array in order to receive both node location and total

population information in one reduction, so that the determination of the node retaining the newborn

can be determined in parallel. Note that the maximum value at the time step for lipid per egg is

the one chosen to be carried forward. This is still not completely deterministic, because the local

combine algorithm does not deterministically determine this value.
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2.8 Performance

In this section, we demonstrate the performance of our design by reporting the execution times for

a 2500-day simulation using the same Daphnia population shared with the predator-prey model. By

varying the cutoff value under which a cohort is removed from the population, we can control the

work level without affecting the predicted outcome of the simulation. Charts are presented for cutoff

values of 0.1, 0.01, 0.001, and 0.0001. The total workload increased from 127 million to 886 million

across these four values. (This cutoff value was set to 0.000001 for the predator-prey populations I

was given. For this value the workload would climb into the hundreds of thousands of cohorts and

billions cohort-steps for a calculation. Until I found this I thought my programs had a bug that I

could not locate.) We list for 1 (sequential), 2, 4, 6, and 8 processors. We list total times in seconds

for the total execution time, simulation time (actual calculation of the model), communication time

(parallel communication), reporting, and rebalancing. The workload values are given in number of

characteristics simulated over the simulation. The speedup is the sequential execution time divided

by the execution time for the parallel version. If the speedup is greater than the number of processors

then it is said to be super-scalar.

We list each table twice. We used both the gcc compiler that is standard with all Macs and the

Intel C++ Optimizing Compiler, v10.0 which is a commercial product. At first glance it appears

that the results from the Intel compiler is not as good as from the gcc compiler, because the speedup

obtained are smaller. But, the total execution times are typically about half for the Intel versions,

so there is not as much room for improvement in terms of speedup. The Intel compiler adds so much

performance by introducing automatic vectorization to the sequential model and adds optimized

math libraries.

Each performance run was made with a moderate level of output. Each simulation produced

about 700 Mb of output files. Previously, we did not include output in our published results because

it evaporated much of our performance gains. For several of our runs, the reporting time exceeds

the simulation time. There is often some parallel advantage during reporting, because for several

types of reports the values can be partially computed on each processor in parallel and then reduced

to obtain the final values recorded by the host processor. Reporting does slow down computation

because the host node is busy with I/O while the compute nodes are not. I attempted to develop

several parallel output options and other MPI-2 methods to try to decrease the parallel reporting

time further, but found that any reductions to the execution time were overwhelmed by the time it

took in post-processing to sum the data together. Sylvester in this thesis did use a post-processing
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Table 2.6: Performance Chart, GCC, Cutoff = 0.1

Processors Total Simulation Comm Report Rebalance Workload Speedup
1 183.00 130.00 0.00 53.00 0.00 127,739,252
2 107.94 66.72 0.55 38.43 0.09 62,501,453 1.70
4 77.80 37.45 2.85 35.36 0.13 31,339,096 2.35
6 75.10 29.77 3.22 34.71 0.39 21,957,900 2.44
8 85.99 30.53 5.14 40.36 0.67 16,864,908 2.13

Table 2.7: Performance Chart, Intel, Cutoff = 0.1

Processors Total Simulation Comm Report Rebalance Workload Speedup
1 88.00 56.00 0.00 31.00 0.00 127,739,238
2 60.93 27.45 0.90 31.91 0.09 62,501,459 1.44
4 52.49 16.77 1.65 31.91 0.19 31,339,097 1.68
6 59.06 15.70 3.07 33.47 0.52 21,957,901 1.49
8 75.88 20.05 4.46 40.34 0.80 16,864,909 1.16

approach with reporting (Sylvester, 1995), because access to local drives was so much faster than

reducing across the network of workstations.

These data presented in Tables 2.6 to 2.13 show an interesting connection between the execution

times and the cutoff value for the sequential versions. As the workload doubles, the execution times

of the sequential process more than double. Between cutoff levels of 0.01 and 0.001, the workload

doubled, but execution time increased by more than 2.5x. The data also show that the lowest

execution times are typically for 6 processors. Superscalar speedup was attained for two processors

and nearly so for 4 and 6 processors. With 8 processors the times rarely improved those for 6

processors. As the workload increased, then the performance for the parallel programs continued

to improve. With lower workload, then the overall performance gain was marginally above 1; the

simulation times did scale with increasing numbers of processors, but the reporting I/O masked the

performance gains.

2.9 Conclusions

This project occurred at an opportune time. The major issues we were dealing before with trying

to get parallel performance from supercomputers are now the current major issues being dealt with

for our personal computers. Gaining parallel performance from multi-core, desktop computers is

a current primary computational objective (Merritt, 2007; Reinders, 2007; Marowka, 2007; Sutter,

2005). We demonstrated that the current parallel programming software libraries can be utilized to
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Table 2.8: Performance Chart, GCC, Cutoff = 0.01

Processors Total Simulation Comm Report Rebalance Workload Speedup
1 423.00 334.00 0.00 87.00 0.00 316,865,868
2 229.43 166.54 2.04 61.17 0.06 158,835,565 1.84
4 139.83 86.45 4.59 46.54 0.16 77,585,900 3.03
6 115.31 63.33 4.04 42.22 0.38 54,553,754 3.67
8 123.77 58.58 7.77 47.63 0.79 40,380,344 3.42

Table 2.9: Performance Chart, Intel, Cutoff = 0.01

Processors Total Simulation Comm Report Rebalance Workload Speedup
1 190.00 144.00 0.00 46.00 0.00 316,865,295
2 109.79 68.26 1.53 40.17 0.06 158,835,305 1.73
4 77.54 36.72 2.49 35.95 0.18 77,585,901 2.45
6 77.58 30.50 3.85 36.89 0.40 54,481,805 2.45
8 103.56 36.20 7.72 49.89 0.86 40,380,344 1.83

Table 2.10: Performance Chart, GCC, Cutoff = 0.001

Processors Total Simulation Comm Report Rebalance Workload Speedup
1 1065.00 849.00 0.00 215.00 0.00 720,010,017
2 506.63 391.41 9.08 113.11 0.24 364,440,325 2.10
4 272.29 190.98 8.53 70.83 0.42 176,704,295 3.91
6 208.07 136.99 13.56 59.99 3.03 126,089,025 5.12
8 207.19 115.70 12.99 63.24 1.70 88,712,471 5.14

Table 2.11: Performance Chart, Intel, Cutoff = 0.001

Processors Total Simulation Comm Report Rebalance Workload Speedup
1 521.00 384.00 0.00 135.00 0.00 720,009,986
2 244.50 168.05 6.00 74.54 0.25 364,440,315 2.13
4 155.60 79.98 4.31 69.35 0.43 176,704,295 3.35
6 122.80 58.81 8.10 53.23 3.11 126,089,025 4.24
8 155.54 69.97 13.26 61.16 1.74 88,712,468 3.35

Table 2.12: Performance Chart, GCC, Cutoff = 0.0001

Processors Total Simulation Comm Report Rebalance Workload Speedup
1 1425.00 1097.00 0.00 328.00 0.00 886,061,646
2 634.08 489.96 7.40 140.93 0.23 446,954,725 2.25
4 328.22 234.59 9.44 82.16 0.44 218,018,844 4.34
6 248.89 167.44 14.95 68.30 4.02 153,695,315 5.73
8 260.88 151.68 27.78 79.10 3.46 114,387,245 5.46
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Table 2.13: Performance Chart, Intel, Cutoff = 0.0001

Processors Total Simulation Comm Report Rebalance Workload Speedup
1 763.00 560.00 0.00 201.00 0.00 886,061,662
2 298.05 217.15 8.52 77.33 0.24 44,695,471 2.56
4 154.13 99.24 4.97 47.96 0.44 21,801,829 4.95
6 131.64 73.85 9.86 44.52 4.06 15,369,530 5.80
8 195.18 93.13 23.35 73.97 3.51 11,438,724 3.91

extract scalar and superscalar speedup for individual-based, population models without having to

resort to lower-level programming as we had to before. So now the focus is more on the science and

less on the low-level details of the computer on which it is being simulated. The standardization

imposed by the near universal acceptance of MPI has also solved the portability problems we had

before that lower-level solutions caused. Further as familiarity and experience is gained with the new

hardware, then the underlying OS continues to be improved which produced further performance

gains.

We have demonstrated that performance can be gained through parallel techniques; and, in cases

of sufficient workload, super-scalar performance gains can be had. As part of the development of

our techniques we simulated much larger problems. For example, one stress test simulated 729

ecotypes (=93) with all birth classes filled. This induced a load of 58,320 initial characteristics that

grew to about 300,000 before the diversity was driven down by the dominant ecotype. This was an

overwhelming simulation for sequential execution, but was completed quickly (about 20 minutes) in

parallel. The no-combine cases in this chapter also exhibit the robustness of the parallel techniques

to allow us to research ideas we would not have looked at before. So parallel techniques allow for

increased performance and increased problem sizes and level-of-detail.

Are parallel techniques worth the effort? First, they are a useful tool and an applicable option

when needed and are worth keeping in mind during development. When sufficient workload is avail-

able to benefit from parallel execution, then we demonstrated superscalar and near scalar speedup.

The overall design of recognizing the correct units of work, decoupling the work units so that they

can be managed and completed independently, and then executing the resulting silo of work via

whatever means available is the fundamental contribution of this work. It has a direct mapping

into current parallelization efforts for agent-based simulations (Reynolds, 2006; Quinn et al., 2003).

Sequential versions were improved themselves by such a redesign as we developed the parallel ver-

sions. Second, we demonstrate, by producing both from the same codebase, that parallel versions

do not require starting over, but can be created as extensions of a well-designed sequential version.
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Third, we also demonstrate that the compiler can add performance through vectorization without

additional cost. Furthermore, other benefits such as reporting are demonstrated.

In Section 2.2.5, Initial Conclusions, we found previously that a fine-grained distribution of the

work load with global combining and frequent rebalancing was required to obtain speedup. We find

now that load balancing is of almost no importance for its original purpose of efficiently utilizing all

of the processors, but is usable for matching and maintaining the parallel resources to the dynamic

size of the computational problem. In particular, this application can be used to maintain the local

population distributions so that superscalar speedup can be obtained. In regards to global versus

local birth combining, we find that global combining is the only valid choice for rapidly reproducing

populations like Daphnia, because the workload for local birth combining scales directly with the

number of parallel processes. Since the workload is inversely tied to the reproductive period, then

simulations that are large enough to benefit from parallel computation will be primarily applicable

to rapidly reproducing populations. We observe that without global combine, then workload scales

directly with the number of processors for such populations if the workload is rebalanced.

We considered our original efforts to parallelize a generic structured population model to be part

of the larger mission of determining efficient algorithms to simulate community models, which is the

subject taken up in the next chapter.
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Chapter 3

Structured Predator-Prey Feeding

Algorithms and Parallelization

3.1 Introduction

In this chapter we develop two different designs for parallelizing individual-based community models.

The testbed model is a predator-prey model composed of one instance each of the fish and Daphnia

population models joined by a predation module. The two parallel designs, referred to herein as

the Pure Parallel and the Fish-on-All algorithms, are new directions explored for predator-prey

models. The predation module we utilize is size-based and models competition for resources by

sharing proportional to body mass. The general effects on parallelization of alternative predation

expressions are diagrammed and explored. The predation module and individual-based nature of

both populations introduces several new interdependencies and relationships that require significant

efforts to decouple. Our parallel algorithms involve decoupling the local populations and is essentially

an information flow problem. Following a detailed description of the predation and competition

models, we develop a complete listing of the interdependencies and stages of predation and mortality

assessment. The Pure Parallel algorithm solves the information flow problem by collecting and

distributing tables of information to all of the processors, so that a “pseudo-fish” can stand in the

stead of a predator located elsewhere on the machine. This algorithm is generally applicable, handles

large populations, features en masse feeding calculations, and, as we will demonstrate, exhibits

near scalar performance scaling with increasing numbers of processors. But, it is complicated,

requires a distinct predation module separate from the sequential version, and imposes some stringent
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requirements that we had to retroactively add to our testbed models. These requirements arise from

the physiology of the Daphnia population.

Addressing the deficiencies of the first algorithm leads to a second algorithm, Fish-on-All, that

takes advantage of the inter-trophic structure of our predator-prey model by focusing on the much

larger prey population. It is an extension of the sequential model and integrates directly into the

source code base. It decouples the workload by duplication of the predator population on all prey

nodes. All nodes begin with an identical copy of the fish population that is kept in coordination by

duplicate calculations on all nodes. This reduces the parallel communications to only a few reductions

similar to the population model’s biomass requirements. We will show that the population model

parallel performance is mimicked by this algorithm.

Body size is one of the most important components affecting physiological processes, such as

metabolism and fecundity, and ecological interactions, such as predation risk and foraging. With

fish consuming their prey entire, then the morphology of the gape determines the prey items that can

be utilized. Incorporating such a component into model studies requires physiologically-structured

population modeling techniques to connect the individual model to the population effects (De Roos

and Persson, 2001). A similar model to the one presented herein has recently been used to predict

alternative states and to provide guidance on restoration of top predator fish species that have

been depleted by over-harvesting (Persson et al., 2007). The recovery of the top predator species is

slowed because their removal allowed many stunted individuals with lower fecundity to fill up the

prey-species classes. This lowers the resource available to the top-level predator, whose preferred

prey are the young because they are easier to pursue, capture, and ingest whole. This indicates the

importance of considering structured predation and predator-prey models. Additional motivation for

the use of structured predation models is to understand the effects and flow of a lipophilic toxicant

through a community via uptake in the resource, which is most directly modeled by the use of a

structured model.

3.2 Structured Predation and Mortality Model

The first challenge is the formulation of expressions for predation that produce a resource level

compatible with the population model for the fish and the corresponding per capita mortality rate

that is compatible with the Daphnia models. These will be the first items taken up in this chapter.

Reduction of these theoretical expressions to computational elements will follow.
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At first thought, one might envision a one-to-one, this-fish-eats-that-daphnid kind of model. But

emphasis must be placed on the fact that the rates are defined at the population-level, not the

individual-level. Additionally, since these models do not incorporate a spatial-component, then we

do not have any sense of this fish is close to that daphnid, so there is no natural way to proceed

to a one-to-one expression of a predation. This lack of spatiality has the further consequence that

it requires all of the predators to know about all of the potential prey items. Vice-versa, each

prey cohort is potentially affected by every predator cohort. The size and complex exchange of

information implicit because of this entire-to-entire correlation induces computational complexity,

which is magnified when attempting parallelization.

Papers previously published related to our structured predator-prey models are: Hallam et al.

(1992a), Jaworska et al. (1995), and Henson (1994). In particular, Henson (1994) presents similar

derivations of shared feeding mechanisms for the predator-prey model in her sections on Communi-

ties. These published articles focus on ecotoxicology and toxicant flow through a community model,

but not on the extinction and persistence relationships between the populations.

And advantage of the individual-based approach to predation is that the basis of community

dynamics is contained in the individual model. The feeding mechanism of an individual predator

on a prey population likewise composed of individuals can be directly observed and modeled rather

than trying to apply aggregated mechanisms. Once the feeding mechanism is prescribed, then the

resource uptake and growth of the individual predator are determined and the mortality caused

by this predator on the prey population can be determined. The predation function expresses the

resource density to which an individual fish cohort responds. Likewise, for every expression of

predation, there is a calculation of the corresponding mortality. Thus each set of expressions is

composed of a pair of equations.

3.2.1 New Concepts

Before we get into the specific expressions we utilize for our community models, a couple of new

concepts are introduced.

Gape Size

To moderate prey choice for our size-structured models, we utilize the concept of gape size. Each

fish has a certain prey window which gives a range of sizes of prey upon which it can forage. This

prey window is determined from predator’s overall length and has both upper and lower bounds.
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The idea behind the lower bound is that prey items that are too small will either be ignored or will

pass through the gills. Likewise, prey items that are too large will either not be pursued or will not

fit into the fish’s mouth. For our models, these bounds are taken to be linear functions of the fish’s

length; this is consistent with the literature (Gill, 2003). Note that the lengths of both the predators

and the prey are required for this formulation. Also recall that length in our models is determined

using a non-decreasing function based on the mass of protected structure.

One can think of Gape Size acting as a scaling between the populations that brings them into

compatibility. Through varying gape size values, then we could easily cause the two populations to

be disjoint in that no member of the prey population meets the gape size criteria for predation. A

conceptual diagram of the Gape Size criteria is given in Figure 3.1. The range of prey items available

to the larger fish B is larger than, but also partially overlaps with, the range of prey items available

to Fish A. How to handle the competition for shared resources must be specified by the model. The

relation can be inverted to give the range of possible fish lengths that can predate upon a specific

daphnid. This is referred to as the Inverse Prey Window in this paper. Every fish that falls in this

window will be presented this daphnid as part of its resource level. To simplify the mathematical

expressions, through the allometric relationship between length and mass, the gape size will be

converted to a prey window determined by masses of the fish and daphnids. For simulation we

compute and store the lengths and endpoints required for evaluation of the prey window rather than

utilize masses.

Effective Volumes

Another concept that we introduce is that of effective volumes in order to convert from numerical

density to the resource volume densities (g/cm3) for feeding. In the description of the population

models there is not an explicit volume associated with the populations. While we can simulate large

numbers of cohorts, ecotypes, and populations of daphnids, there is not a sense in which the daphnids

take up more “room” or become more crowded. As shown earlier, density-dependent mortality does

impose an optimal biomass on it and therefore implicitly has a density concept behind it, but an

operating volume has never been defined. The fish model was developed with grams per cm3 density

of resource. To convert to volume density for predation, VD is introduced and defined to be the

operating volume for the prey population. Similarly, VF is defined to be the operating volume for

the predators. The ratio of VD to VF is used to scale the predation mortality. VD is conceptually

presumed to be smaller than or equal to VF , but does not necessarily have to be. The idea is that

the daphnid population is replicated throughout the operating volume of the fish population.
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Figure 3.1: Illustration of Gape Size/Prey Window and Inverse Prey Window
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Overall, there are only four new parameters introduced for the community model, further in-

dicating that most of the structure required is already specified in the population and individual

models. The parameters are the

1. Two parameters, kmin and kmax, which are used to determine minimum and maximum prey

size,

2. A parameter, termed rscale = 1/VD, used to scale the prey population to a density and to

scale the volume up to that of the fish, and

3. A parameter, termed fscale = VD/VF , used to scale back down the prey mortality.

3.2.2 Predation Formulations

To provide a resource level to the predating population, we need to formulate an expression for the

density of resource to which the predating individual responds. The functional response (equation

1.22 for fish) is used to convert from the resource density to the actual grams of resource consumed by

a fish. The total grams of resource consumed, must then be converted back to mortality expressions

assessed against the prey items consumed. In a broad categorization:

1. Effective density = Actual Density of Resource. E.g. filter feeders which encounter resource,

but do not actively pursue it.

2. Effective density ≤ Actual Density. There is some level of partitioning or sharing of food

among the predators. Two examples are:

(a) Dominant Feeders — Biggest organism gets all it needs, next biggest, etc. As an illustra-

tion of the potential effects of this method of feeding, see Figure 3.2

(b) Proportional Partitioning — Food is partitioned according to the weight of the predator

in proportion to the total weight of all of the predators.

As the simplest example, if ρ is the number of prey individuals in volume V , then a predator responds

to a resource density of ρ/V .

In this section we derive the predation and mortality expressions we used for our predator-prey

studies. We partition resource proportionally but do not force a hierarchy based on size. In other

words, all fish, when competing for a shared resource will get some portion. In our model, the

resource values for the Daphnia are still assumed to be constant, so they continue to grow and
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Figure 3.2: This is a picture of two fish from same brood. It is an illustration of the effects of
different feeding methods. The food was given in large chunks, so tiny initial size differences were
amplified by dominant feeding. (Credit: Kooijman (2000)[p. 21])
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increase in size as before. Similar to what we have seen, the effect of predation mortality is only on

the values of ρ along characteristics — their physical growth is not directly affected.

3.2.3 Continuous Predation Model

We model resource sharing for the individual fish to be the proportion of the mass of the fish to the

total mass of the other fish which can also consume the same resource elements. Resource density

level for fish is expressed in units of grams per cubic centimeter. Describing in words, the resource

for a fish of mass mF (sum of lipid and structure, g) is:

xmF =
mF

Total Mass of Competing Fish
· Total Mass of Prey Items in Window

VD
.

With the assumption that a fish of length LF can only consume prey with sizes LD in the range

10LF kmin ≤ LD ≤ 10LF kmax (3.1)

where kmin and kmax are fixed constants (recall unit conversion from cm to mm). Since length is

assumed to be isometrically related to weight we can convert to terms of mass rather than calculating

the lengths each time. Restating the prey window as

k1mF ≤ mD ≤ k2mF

where mF and mD are the mass of the fish and a particular daphnid (sum of lipid and structure,

converted to grams) , respectively, and k1 = k3
min

aD

10aF
and k2 = k3

max
aD

10aF
, where aF and aD are

the isometric constants relating length to weight for fish and Daphnia, respectively. Inverting this

inequality gives the range of fish masses that can predate upon a daphnid of mass mD. This range

is

k−1
2 mD ≤ mF ≤ k−1

1 mD

Using these inequalities to sum over the entire prey population yields the expression for the prey

density experienced by a fish of mass mF :

xmF =
mF

VD

∫ k2mF

k1mF

mD

∫ ∞
0

ρD(t, a, mD)da∫ ∞
0

∫ mDk−1
1

mDk−1
2

mρF (t, a, m)dmda
dmD (3.2)

97



where VD is the control volume, and ρF and ρD are the density functions of fish and Daphnia,

respectively. Note particularly the role of the inner integral in the denominator which yields the

total mass of the fish that can predate upon a daphnid of mass mD. This expression gives the

resource density to which a particular fish responds. It is relatively simple and inexpensive to

calculate as we will see later when this is split into discrete sums.

Now, for this given predator, a fish of mass mF , the corresponding per capita mortality rate

(grams consumed/gram of biomass) for a prey cohort of mass mD in its prey window is computed

by:

1. Calculate the functional response f(xmF ) (Equation 1.22) which gives the total grams per day

of prey eaten by a single predator of mass mF . This converts from the resource density to the

total mass consumption rate at this time step.

2. Multiply by the number of predators of mass mF to get total grams per day eaten by all

predators represented by this cohort at this time:

∫ ∞

0

f(xmF )ρF (t, a, mF )da (3.3)

3. Multiply by scaling factor (VD/VF ) to scale mortality down to the prey population.

4. Divide by the total biomass of the prey population in order to get a per capita rate numbers

per day.

The per capita mortality rate due to predation by this predator and all of its same-size cohorts is

thus given by:

μPRED(t, mF ) =
VD

VF

∫ ∞
0 f(xmF )ρF (t, a, mF )da∫ ∞

0

∫ ∞
0 mDρD(t, a, mD)dadmD

(3.4)

where f(xmF ) is the total grams of prey eaten per unit time by a predator of mass mF . Summing

over all fish yields a total predation of

μPRED(t) =
VD

VF

∫ ∞
0

∫ ∞
0

f(xmF )ρF (t, a, mF )dadmF∫ ∞
0

∫ ∞
0

mDρD(t, a, mD)dadmD

(3.5)

This gives the total predation mortality at time t on the total prey population. Note that the

denominator is the total biomass of the prey population which is the same value used in density-

dependent mortality.

The functional response converts the resource density into total grams per day consumed for

single fish, so we know total grams consumed, but, in order to assess mortality on the resource
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Figure 3.3: Individual-based Predation Flow Diagram

characteristics, this consumption must be converted into a mortality rate that is distributed equitably

over the prey cohorts that were in its windows. We utilize the encounter rate to perform this

conversion. This is developed further in a later section in this chapter, because it is very important

to how the models perform and behave.

3.2.4 Discretized Predation Model

Equations 3.2 and 3.5 are the continuous forms. We now start the process of discretizing these equa-

tions. We are leading towards determining the minimal information involved in order to calculate

predation and mortality for the community model, because this is the information that has to be

exchanged for a parallel algorithm. It also leads us to understand potential improvements to the

algorithm.

The predation flow diagram in Figure 3.3 illustrates the stages of the predation process. When

prey are in overlapping prey windows, then a portion of this prey related to the relative masses of the

fish is contributed to the fishes’ resource levels. After the resource level, x, is determined for a fish,

then the functional response f(x) determines the amount of uptake. This is in units of grams per

day. The rate has to be converted back to a mortality rate for assessment against the prey cohorts

which provide the resource, which are obviously the ones that were in the original prey window.

What is not obvious is how to apportion the mortality. The method we use is described in detail

in the following subsection. For a long time I focused my efforts for parallelization on the resource

level integrals, but the difficulties are in the evaluation of f(x) and the assessment of mortality. The

resource integrals are quite easy to compute and understand.
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The discrete analogue of 3.2 for resource for a fish cohort of total mass mF :

xmF (t) =
mF

VD

prey∑
k1mF ≤mD≤k2mF

mDρD(t)∑pred
k−1
2 mD≤m∗

F ≤k−1
1 mD

m∗
F ρ∗F (t)

(3.6)

Notice that the sum

tmass(mD) =
pred∑

k−1
2 mD≤m∗

F ≤k−1
1 mD

m∗
F ρ∗F (t) (3.7)

over the predator population denotes a calculation that can be carried out independently for each

prey cohort and stored onto the cohort for reuse. This requires that each prey cohort have access

to the total mass and population density for each predator cohort (in its window). (Later referred

to as (Sum1).) The outer sum

prey∑
k1mF ≤mD≤k2mF

mDρD(t)
tmass(mD)

(3.8)

denotes a scan over the prey population for a fixed fish cohort. For this sum, the fish cohort must

have access to the total mass, population density and the pre-calculated value for tmass() for each

prey item (in its window). (Later referred to as (Sum2).)

This completes the discrete calculations necessary to yield the resource density for each preda-

tor. Determining the resource density is not too complicated: involving only a scan over the fish

population for each prey cohort to determine tmass() and a scan over the daphnid population per

fish cohort. The Information Requirements to this point only have minimal information involving

total mass and population densities. The complication comes with recording the mortality induced

by predation. This is what we start looking at now.

Recall the derivations in Chapter 1 for the Encounter, Pursuit, and Gut Clearance Rates (Equa-

tions 1.18 – 1.21). After each of these equations, the dependencies on the daphnid population were

noted. These will be summarized in a table later in this chapter when we list the information

requirements, so they are not repeated here. For a given fish, to calculate f(xmF ):

1. The entire prey population is scanned and values retrieved from these cohorts in order to form

the three fundamental rates.

2. During this scan, store the encounter rate, rmF ,i for this fish onto the daphnid characteristic.

3. During this scan, sum the total of the encounter rates into rsum.
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4. Structure and lipid component masses for calculating total percentage of lipid in resource and

lipophilic toxicant uptake.

5. If the current daphnid is a parent, then retrieve the offspring characteristic and add its contri-

bution for resource, lipid and structure components to the current fish’s totals. The parent’s

encounter rate (and percentage of ownership if not Brood Pouch, introduced later in this

chapter) is used to scale the values for the offspring.

f(xmF ) can now be determined for this fish by calculating the three fundamental rates and therefore

the three fundamental times.

To account for this fish’s predation mortality: Scan the prey population again, to update the

value of predation inflicted by this fish on each prey item. On this pass, if toxicity effects are

in play, then calculate the amount of toxicant consumed from each daphnid using the same rsum

sharing factor and store on the fish’s characteristic for later use. (The class of toxicants modelled

are lipophilic, therefore the accumulated concentration varies per daphnid depending on its lipid

mass.) This completes the computation of μPRED(t, mF ). Repeat for each fish.

Thus, the computation of μPRED(t, mF ) requires two complete passes over the prey population

for each fish. Thus, if n is the number of prey cohorts, and m is the number of predator cohorts, then

this involves on the order of 2m · n operations to complete the predation mortality calculations for

all fish. It is a two-pass calculation because the feeding kernel cannot be computed until individual

values are retrieved from each prey item. There are several potential ways to reduce the number of

operations. A couple of which are explored later in this chapter.

A physiological demand of our populations that is not apparent in the mathematical expressions

arises from the fact that broods are carried internally. Thus predation of the parent affects the eggs.

In the method of characteristics, the eggs are on a separate cohort and may or may not be combined

with those from other parents. Contributions of the eggs to the resource and toxicant update of the

consuming fish also must be calculated. This turns out to be a significant boost to the fish’s diet

and a significant source of mortality to eggs. This also introduces significant complications to the

parallelization efforts as we shall see.

3.2.5 Encounter Rates, Competition, and Mortality

The sharing of resource invoked by overlapping prey windows introduces an element of competition

to our model which turns out to be a vital control mechanism as we will see in the next chapter. In

this section we describe its important features more carefully.
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Figure 3.4: Different sized boxes represent different total masses of prey items. Colors indicate
apportionment of prey items to two predators with overlapping prey windows.

With the apportionment of resource by relative masses, if a prey item is in a fish’s window, then

it will receive some portion of it in its resource level sum. This guarantees that the resource level

is greater than zero if any prey items are in a fish’s prey window. Since we do not have a spatial

component, then each prey item must be evaluated by each fish.

Two factors affect the amount of resource each prey cohort represents: total mass mD and total

population density ρD. The first is affected only by the growth model for the Daphnia. Predation

or lack thereof does not affect the growth of mD. (There are species for which this is a survival

mechanism: knowing the size of the predation window for the predators, they will slow growth rate

just underneath the size window, then surge across the window in order to minimize the predation

risk. This is called a juvenile bottleneck; for instance, see Bystrom et al. (1998).) The value for ρD

is the value directly affected by predation mortality. The total biomass of the prey population is

affected by predation since total biomass =
∑

D ρDmD.

Figure 3.4 represents prey items as several boxes of various widths. The skinny boxes may

be small because they are small in mass, density, or both. But, since they are cohorts in the

population, they still must be included in the predation scans. Two fish with partially overlapping

windows receive a portion of the contested resource. If mF1 < mF2, then the portion is smaller for

fish 1 and is precisely mF1/(mF1 + mF2). The number of horizontal splits depends on the number

of predators competing for the same resource and the height of the split depends on the ratio of the

mass of the fish to the total mass of all of the other fish for which the prey item is in their window.

This is represented by Sum1. In the extreme, if kmin = 0 and kmax = ∞, and n = number of

prey cohorts and m = number of predator cohorts, then every prey characteristic will be in every

predator’s window, so it will be split m times. The resource density for each fish is the sum of its

apportionment across all n daphnids. Resulting in m · n operations required; I refer to this as the

complexity.
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To evaluate the functional response, Equation 1.16, the Encounter, Pursuit, and Gut Clearance

rates must be calculated. These three rates have dependencies on the particular prey which were

described in Chapter 1. The most important to recall is the Encounter Rate coefficient, ad, which

gives the volume swept out per day by the fish. As noted, its value is affected by length of the prey

and the velocity of the prey. The number of prey encountered in the volume swept out depends

on the prey’s density. This expression provides the calculation we require to fairly assess mortality

back onto the prey cohorts once total consumption is determined for a fish.

The total consumption of a predator on a prey population is called its outtake (relative to the

prey population). Just because a fish is guaranteed a portion of resource, does not assure the survival

and growth of the fish. The energetic/mass-equivalent demands for work required for movement and

the maintenance of body mass can be higher than the resource consumed at a given time. The

difference must be allocated from stores. If insufficient stores are available, then starvation occurs.

This of course just describes the individual growth model for fish described in Chapter 1. What is

significant is that a fish can be unable to consume sufficient resource to meet energetic requirements

in two different ways:

1. If there are too many big fish competing for the same prey, then the fraction apportioned can

be too small.

2. Insufficient resource is available in the fish’s prey window.

If the consumption just matches the movement and maintenance requirements, then this is called

the zero-growth condition. It is useful for determining the least amount of mass/energy required

from a system to support a fish and can be used to determine carrying capacity for an environment.

We look at this further in the following chapter. Recall also that the size/length of a fish cannot

decrease, so a fish cannot “grow backwards” in order to return to a prey window where there was

sufficient resource; rather, it will starve.

Finally, the assessment of mortality portion back onto the prey cohorts in the fish’s prey window

is a weighted sum of the encounter rates. The ratio mF

tmass(mD)ad gives the proportion of the encounter

rate on this daphnid due to the current fish and is used to apportion μPRED(t, mF ). This is used

to distribute the mortality. Sum over all encounter rates for all fish on a particular daphnid and call

this rsum. Now, for a particular fish, determine its encounter rate relative to the particular daphnid,

rmF ,i, and assess the fraction rmF ,i

rsumμPRED(t, mF ) as mortality against this daphnid. This method

of assessing the mortality rate adds another layer of careful bookkeeping to the problem which is

further complicated when we distribute the populations. Similarly, a weighted average based on the
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encounter rate and total mass consumed from each cohort is used to determine aggregated values

such as total lipid and structure components and total pursuit times. Through the encounter rate,

there is a skewing towards the larger by mass, but still a little is apportioned from each cohort in

the prey window.

A question is how closely aligned this is with optimal foraging theory which describes prey choice

by a predator. The components are presumed “optimal” when the functional response was derived

(Henson and Hallam, 1995; Hallam et al., 2000). But a truism of foraging theory is that a predator

will choose the largest prey available because the same amount of energy is required to capture it

or a smaller prey item. For our model we potentially have competition clear down from the top

predators to the smallest. This actually has a controlling effect as we will see, because the growth

of otherwise unmoderated newly-feeding fish can be explosive and can drive the prey population to

extinction. The values for kmin and kmax can be varied to eliminate or enhance overlapping prey

windows. But generally, our model does not directly give a preference to larger prey. We considered

adding more than one prey population of a different Daphnia species than magna as an experiment

to test the relation to optimal foraging theory, but did not carry out the experiment. Theoretical

and experimental references to fish on Daphnia foraging in relation to foraging theory can be found

in Hart and Gill (1993); Gill (2003).

3.2.6 Differences from Population Model for Fish

There are several differences between the numerics for the fish between the population model and

the predator-prey model. Since the resource is a varying level composed of discrete, non-uniform

organisms, then the biggest difference is that the difficulty is not in the calculation of the correct

derivatives, but in the bookkeeping required to generate the discrete sums and properly apportion

mortality. The resource uptake is calculated through prey window, functional response, and the

varying shared resource levels, so the growth portion of the basic resource model is overridden. The

basic equations of the fish growth and energetics models are the same, but since they are composed

over discrete sums, then derivatives are not practical. Numerical integration is just a simple Euler’s

method. For our predator-prey model, the complexity for the model comes from the information

flow rather the numerical method.
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Figure 3.5: Parallel Algorithm Modular Design

3.3 Design of the Parallel Algorithm

Following what we learned from the population models, then the basic design of a predator prey

would be something like that diagrammed in Figure 3.5. From experience with the population

models, we learned that the parallel benefit is in two things: first, dividing the workload by cohorts,

and second, distributing so that each processor has a smaller workload to process locally in order to

pick up caching and memory performance benefits. We did see also from the population model that

the parallel programs had increasing benefit as the total workload increased. When the workload

was minimal, then one or two processors would perform just as well as eight.

As we develop different parallelizations of the predator-prey model in this section, we will morph

this diagram various ways by duplicating, combining the fish and predation modules. The Daphnia

module will remain basically the same as in the population model with a distributed population

over some number of processors. Just as in the population model where birth combining caused

us to have to have some overlap between the population and individual modules, the physiology

of the prey will have a large impact on our parallel design. We have seen that the functional

response/predation module will require several scans and updates to both populations. Another

feature from the population model that we have to back away from is a single pass, unified individual
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model containing feeding, growth, birth, and mortality all in one pass (see Figure 1.15). We had made

these design changes to the population model in order to simplify the driver module design, eliminate

synchronization points, and to more easily load balance, but they turned out to be incompatible

with the back-and-forth interaction required for the predator-prey model.

(As another note related to design changes: the births calculations in all of my versions follows

mortality assessment. The justification for this is that the initial density of the newborn charac-

teristics is determined by multiplying together the population density of a birthing cohort and the

number of eggs per individual; individuals that are about to be eliminated should not contribute to

the newborn cohort’s population density. This differs from previous implementations of this model.)

Recall Figure 1.1 and the descriptions of the brood pouch found in the introductory chapter.

There is no direct predation of fish upon broods, so this removes a block of cohorts from considera-

tion. A complication that we did not have to deal with in the population model was the mortality

inflicted on a brood cohort when its parent experiences predation. This requires us to establish

and maintain a connection between each parent and its offspring. The lack of this requirement in

the population model allowed us extra freedom with respect to load balancing that we lose in the

predator-prey model. Also, the only realistic design choices are that we redesign so that the brood

cohort is internal to its parent cohort before its release, so it will be on the same node as its parent,

or that we impose the requirement that the parents and their offspring to be maintained together on

the same nodes. We chose the latter. Maintaining processor location information for point-to-point

updates or broadcasting messages of mortality (that have to be coordinated to be received or else

deadlock occurs) by each node in order to update the mortality of a brood characteristic which it

may or may not have would be a poor design choice. (Although MPI-2 does introduce the concept

of one-sided messages for just such a purpose; see Gropp et al. (1998).)

Another figure that will help illustrate the challenges of parallelization and the decisions we

made is Figure 3.6. This figure illustrates several challenges. If the prey population is distributed

as shown, then how will we distribute the prey window and resource density calculation? Likewise,

once we do have the consumption by the fish, how do we distribute it back? With all of the record

keeping and the intricate knowledge required by the predator calculations from each of the prey

items in its prey window, then the compilation of information will be a challenge. Finally, just to

add a little complexity, how can this be done if the fish are themselves also distributed? The answers

to these questions is the subject of this section.

Figure 3.6 also illustrates some other predation scenarios and guides us on how they might affect

parallelization efforts. After a few preliminary passes to decouple the work required, the sequential
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version of our program follows the design of working down the middle column and performing the

calculations for one fish at a time. (They do not need to be in any order.) Since all of the prey items

are in local memory, then there are no complications and the loop is basically take a fish and scan

every prey item to see if it is in the fish’s prey window. After feeding the fish, then rescan every

prey item and update the mortality for the cohorts in the fish’s prey window. If we were attempting

to model a dominant feeding population, then there would be an ordering down the middle column,

scan order would be forced to be dominant to smallest, and mortality would have to be assessed

after every feeding of the fish. Finally, we will note that if there was no competition of resource and

all predators were presented with the same resource density, then the left-hand side of the graphic

would be just a single calculation.

For this first parallel design which we will term the Pure Parallel version, suppose the prey

population is distributed across nodes as shown. Further suppose that the fish cohorts themselves

are also distributed across the same nodes. So a particular fish will have resource that is both local to

the same node and remotely located on other nodes. How can the predation module be distributed

so that it can be executed in parallel? Basically, we will compose tables of information that will be

compiled from the nodes and then redistributed across the nodes so that they all have access to the

predator information. This table will be further annotated per node to indicate for which predators

it is responsible. This is a disjoint set whose union over the processors forms the entire predator

population. In a sense we are creating “ghosts” of all of the fish on all of the processors, so that

the predation process can be completed in parallel. Also note that we feed all of the fish en masse
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rather than stepping through one at a time. After the predation module is complete, then all that

will remain for the fish module to perform is the Euler’s method step.

Sorting out the information requirements, compiling, distributing, maintaining, and updating

the distributed tables through the stages of predation, and computing the predation en masse are

unique features of this solution. An especially significant offshoot of the algorithm was the method I

used to eliminate the repeated population scans that are otherwise necessary. The first requirement

is sorting out the information flow and what must be included in the distributed predation tables.

3.3.1 Parallel Algorithm - Information Flow

Building on our efforts for the population models, we extend the results to this predator-prey system.

We achieved success before by distributing the populations across computational nodes. The only

shared, dynamic information for the population models is biomass. With the predator-prey model,

more information must be shared in order to calculate predation. In this section we first discuss the

information requirements, then describe our parallel algorithm.

As before we inherit a requirement for calculating total population biomass per time step. This

was required for the population models in order to access density-dependent mortality. In the

predator-prey model, the total biomass for prey plays a role directly in the predation expressions.

We also maintain density-dependent mortality in order to help constrain the prey population to

realistic population densities for its control volume VD. Total population biomasses are calculated

for all populations per timestep just as for the population models.

In addition to biomass calculations, the calculation of predation involves the exchange of infor-

mation described in Table 3.1. This table summarizes the information requirements of each stage

of this calculation. The predation calculation is a separate module that computationally follows

the advancement of the prey populations and precedes the advancement of the predator population.

There are several predation calculations, such as for the tmass() function, Equation 3.7, that are

shared among all of the predating fish, so these are completed locally before starting to advance

the predator population. Since, as part of the predation process, the three fundamental rates are

calculated per fish in order to determine the functional response f(xMF ) , then there remains little

necessary to advance the fish population in time. Movement costs are determined from the funda-

mental rates. The remaining maintenance costs are simple functions. The almost complete usurping

of the population model by the predation module in this design is diagrammed in Figure 3.7.

108



Daphnia

Population
Module

Individual 
Module

Population
Module

Individual 
Module

Population
Module

Individual 
Module

Population
Module

Individual 
Module

Processors
Predation Module

Fish

Population
Module

Individual 
Module

Population
Module

Individual 
Module

Population
Module

Individual 
Module

Population
Module

Individual 
Module

Figure 3.7: Predation Module simultaneously calculates predation and growth values for entire fish
population and mortality for prey

109



T
ab

le
3.

1:
In

fo
rm

at
io

n
R

eq
ui

re
m

en
ts

fo
r

E
ac

h
St

ag
e

of
P

re
da

ti
on

C
al

cu
la

ti
on

.
m

an
d

n
ar

e
th

e
nu

m
be

r
of

pr
ed

at
or

an
d

pr
ey

co
ho

rt
s,

re
sp

ec
ti
ve

ly
.

St
ag

e
In

fo
rm

at
io

n
R

eq
ui

re
d

C
on

su
m

er
s

C
om

pl
ex

it
y

N
ot

es
Su

m
1:

tm
as

s(
m

D
)

T
ot

al
m

as
s

an
d

de
ns

it
y

fo
r

ea
ch

pr
ed

at
or

P
re

y
C

oh
or

ts
n
·m

C
al

cu
la

te
d

on
ce

fo
r

ea
ch

da
ph

ni
d

an
d

st
or

ed
Su

m
2:

R
es

ou
rc

e
D

en
si

ty
T
ot

al
m

as
s,

de
ns

it
y,

an
d

tm
as

s(
m

D
)

fo
r

ea
ch

pr
ey

co
ho

rt
P

re
da

to
r

C
oh

or
ts

m
·n

f
(x

m
F
):

Fe
ed

in
g

K
er

ne
l

C
om

po
se

d
fr

om
R

e
,R

g
,
R

p
P

re
da

to
r

C
oh

or
ts

m
·n

R
e
:

E
nc

ou
nt

er
R

at
e

T
ot

al
m

as
s,

nu
m

er
ic

al
de

ns
it
y,

ve
lo

ci
ty

,
an

d
le

ng
th

fo
r

ea
ch

pr
ey

it
em

co
ns

um
ed

-
A

ct
ua

lly
a

lin
ea

r
ex

pr
es

-
si

on
in

vo
lv

in
g

le
ng

th
is

us
ed

R
p
:

P
ur

su
it

R
at

e
V
el

oc
it
y

fo
r

ea
ch

pr
ey

it
em

co
ns

um
ed

-
R

g
:

G
ut

C
le

ar
an

ce
R

at
e

T
ot

al
m

as
s

fo
r

ea
ch

pr
ey

it
em

-
W

e
m

od
el

de
ns

it
y

of
ea

ch
of

th
e

pr
ey

it
em

s
as

co
n-

st
an

t
P

L
X

an
d

T
ox

ic
an

t
L
ip

id
an

d
st

ru
ct

ur
e

m
as

se
s

fo
r

ea
ch

pr
ey

it
em

-
T
ot

al
s

us
ed

to
de

te
rm

in
e

pe
rc

en
t

lip
id

in
re

so
ur

ce
an

d
lip

op
hi

lic
to

xi
ca

nt
up

ta
ke

M
or

ta
lit

y
A

ss
es

s-
m

en
t

In
di

vi
du

al
fis

h
on

in
di

vi
du

al
pr

ey
it

em
en

-
co

un
te

r
ra

te
(r

m
F

,i
)

an
d

to
ta

l
en

co
un

te
r

ra
te

fo
r

in
di

vi
du

al
fis

h
(r

su
m

).

-
-

U
se

d
to

pr
od

uc
e

w
ei

gh
te

d
av

er
ag

e
fo

r
eq

ui
ta

bl
e

pr
ed

at
io

n
m

or
ta

lit
y

as
se

ss
m

en
t

110



To be precise, the cohorts really only need access to the information for each item inside of its

forward or inverse prey windows. The easiest way to satisfy this requirement is just to make all

cohorts from both populations available and scan them entirely. Thus there are several passes each

costing m ·n operations as shown in the complexity column of the Table. Memory movement can be

expensive on multi-core processors as has been described, so lessening the required number of passes

increases performance. One method to do this is to notice that if a fish cohort is determined to

be in the inverse predation window while tmass() is being calculated for a particular daphnid, then

the daphnid must be in the predation window for that fish. If this information could be recorded

somehow, then the subsequent passes could be restricted to only the cohorts of interest. How I was

able to implement this efficiently is described below. One could also envision taking advantage of

sorting to restrict searches to only the cohorts of interest. This also will be described later in this

chapter.

3.3.2 Pure Parallel Algorithm

In order to satisfy the information requirements for computation, we initially utilized MPI’s combined

gather/scatter operations and user-defined datatypes in order to of MPI in order to compile and

exchange the minimal tables of information required to allow the computation to proceed in parallel.

For population models only we only had to exchange simple vectors of numbers, but distributed

tables of information about each predator cohort are required for the predator-prey model in order

to decouple the local populations. We compose our own user-defined datatypes in order to exchange

the rows of data needed. (I eventually replaced these advanced features with simpler ones of my own

design in order to utilize alternate communication libraries, but the overall idea remains the same.)

A particular feature to watch for is how the locality of cohorts is handled. In other words, a cohort

described in the table may be located in local memory or it may be on another node. Similarly, each

node holds a portion of both daphnia and fish populations on which it is responsible to carry out the

operations required to advance them in time. As the computation progresses, then the other nodes

will need to be made aware of values from these local populations; vice versa, the local populations

need to be made aware of values from the cohorts on the other nodes. This is particularly driven by

the sharing of resource. The procedure I designed to carry out this distributed table composition is

not a basic feature of MPI. The Information Tables are described in the sequence that they appear

in the computation. The interchange of tables is outlined in Figure 3.8.
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Local ProcessorsParallel Operations

Compile Info from Local Predators for 
Table1

Distribute Complete Table1 to All Nodes

Extend Table1 for Local Prey Items and 
Local Predators

Table1Ext

Victims
Victims
Victims
Victims

Local Predator
Local Predator

Pointer Local Cohort
Mortality Info for Self and Eggs 

from This Fish

Pointer Local Cohort
Mortality Info for Self and Eggs 

from This Fish

Pointer Local Cohort
Mortality Info for Self and Eggs 

from This Fish

Compile Local Resource for Each 
Predator

Sum Table2 
All Predators Resource Levels

Using Reduced Table2 Compute 
Feeding and Energetics Local Preds

Sum Table3 
All Predators Resource Consumption

Complete Mortality Assessment on 
Local Prey

Sum Table4 (If required)
Toxicant Uptake from Prey

Figure 3.8: Parallel Predation Table Interchange Diagram
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Defined per each predator cohort

Characteristic ID
Processor Number
Total Mass
Prey Window Upper and Lower Bounds
Predicted Rho
Capture and Hunting Velocities
Square Root of Length

Table1Row

Figure 3.9: Row of Table1 - Distributed Table for All Predators

Table1 - Table of All Predators

This first table is the method by which the predatory information is distributed to the nodes. It

is augmented and used to guide the computation. The table has one row for each predator cohort.

Each node builds an identical copy of this table at the start of the parallel predation process. Table1

is used as an index into the local and dispersed populations and is used as a base to which the

reduction tables that follow are attached. In its basic function, it provides the information necessary

so that Sum1 can be completed in a distributed way. A row for Table1 is described in Figure 3.9.

Each processor now executes Algorithm BUILDLOCTABLE1 in order to compile the entries from

the local, feeding (i.e. no longer fry) predators for Table1. Note that the same memory structures

are used to manage the cohorts as were defined for the population codes, except for the addition of

PredTableRow which holds for each local, feeding predator its index into Table1 once it is compiled.

The LocTable1 table created in this algorithm is combined with the corresponding tables from all of

the other nodes to compose the complete Table1, so each row has type Table1Row. The LocPreds

table created in this algorithm holds pointers back to the local predators. After Table1 is composed,

this table is used to get back to the local predators. Note that if on some processor there are no

predators that are feeding, then these two tables are just set locally to NULL.
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Algorithm BUILDLOCTABLE1

begin

0. Initialize the local predator population.

for (scan ← local predator population)

scan.PredTableRow← -1;

if (predator is feeding) then

increment numPreds;

calculate values for Table1;

end if

end for

1. Create Local Portion of Table1.

LocTable1[ ] ← allocate(Row Type: Table1Row, Count: numPreds);

LocPreds[ ] ← allocate(Row Type: pointer, Count: numPreds);

for (scan ← local predator population)

if (predator is feeding) then

LocPreds[k] ← scan;

LocTable1[k].proc ← processor ID;

LocTable1[k].* ← scan.*;

increment k;

end if

end for

end

The next step in the parallel process is to distribute and consolidate the complete Table1 onto

each node. Each node will have an identical copy which it will link up to its local predators (if any).

This consolidation involves the parallel Algorithm DISTRIBUTETABLE1. This algorithm is of my

own design. It is a combined scatter/gather type parallel operation with variable length vectors

on each node, which is defined by MPI, but I used a series of broadcasts instead. In particular I

designed it to be compatible with the various versions of MPI which may or may not implement the

user-defined types, as well as the shared memory message passing library I had created in the course

of this project.

At the end of this algorithm, each node has an identical copy of Table1. Locally, Table1 is

extended in order to provide pointers back to the local predators and in order to provide to each row
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in Table1, the base of a variable-length list of local prey which fall into the prey window. This list of

local prey is used to eliminate the additional scans of the populations. Setting PredTableRow for the

feeding fish enables one to step from the local predator characteristics into the corresponding entry

in the tables. This is especially important for the subsequent tables; they have the same dimension

and indexing as Table1.

Algorithm DISTRIBUTETABLE1

Given:

numPreds: Number of Feeding Predators on Local Node

LocTable1: Local portion of Table1

LocPreds: Pointers to the local predators

begin

0. Initialize the local node.

i← processor-id;

p← number of processors;

Let preds[1...p] be array of p integers.

preds[i] ← numPreds;

1. Parallel: Determine the number of predators on each processor in the system via reduction.

for (j ← 1 to p)

preds[j]← the number of cohorts on processor-j;

2. Compute the total number of predators.

totPreds ←∑p
j=1 preds[j];

3. Allocate Table1.

Table1[ ] ← allocate(Row Type: Table1Row, Count: totPreds + 1);

4. Parallel: Each node in turn broadcasts LocTable1. Likewise, each node receives broadcast and

adds to Table1.

for (j ← 1 to p)

if (j equals i) then broadcast(LocTable1);

else

Table1[currentRow]← receive broadcast(LocTable1[j]);

end if

currentRow ← currentRow + preds[j];
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end for

5. Extend Table1 to Table1Ext.

for (j ← 1 to totPreds)

Table1Ext[j].predinfo ← Table1[j];

Table1Ext[j].victims ← NULL;

if (Table1[j].proc equals i) then

Table1Ext[j].locpred ← locPreds[k];

locPreds[k]-¿PredTableRow← j;

increment k;

end if

end for

end

With the transmittal of the information in Table1, each node now scans its local populations of

prey checking against each predator’s upper and lower prey window. The list of predators is the one

in Table1, not just the local predators, but the prey cohorts in this check are only the local ones.

If a prey cohort is found to fit inside a prey window, then it is added to the victims list for that

predator. A prey item can appear in multiple lists; this merely indicates that it is a potential prey

item for several fish. Sum1, the calculation of tmass() for each daphnid, can now be completed.

Note that the brood cohorts are not scanned, nor included in the victims lists. This completes the

primary use of the information in Table1. The extension of Table1 is diagrammed in Figure 3.10.

Table2 - Table of Predator Resource Levels

The second distributed table, unoriginally named Table2, is now composed in order to complete the

computation of each predator’s resource levels and the values that need to be compiled to compute

growth. This combines Sum2 and provides the information from the prey population required to

compute the feeding kernel for each fish. The design of a row of Table2 is shown in Figure 3.11. The

information in Table2 is compiled by each node with values from the local prey for each predator in

the total population. The details of the calculations of the rates have already been covered, so they

are omitted. The important items to note at this stage are:

1. Any eggs carried by a parent are included in the resource calculations at this point.

2. The mortality partitioning weights (I term them Relative Rates) that could previously be

stored onto the prey cohort because only a single fish at a time was being fed now must be
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Predator 1 Victims
Victims
Victims
Victims

Local Predator
Local Predator

Pointer Local Cohort
Mortality Info for Self and Eggs 

from This Fish

Pointer Local Cohort
Mortality Info for Self and Eggs 

from This Fish

Pointer Local Cohort
Mortality Info for Self and Eggs 

from This Fish

Table1 Extended

Predator 2
Predator 3
Predator 4

Figure 3.10: Extending Table1 to Local Predator and Prey Populations

 Reduction of Predator Resource Levels
One Row Per Fish (all nodes)

INUM = number of local prey items for this fish
A1, Resource, Encounter Rate Sum, lipid and protein partial sums

Table2Row

Figure 3.11: Row of Table2 - Predator Resource Levels Compiled from Distributed Prey
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duplicated. This was my original purpose behind the victims list. It can act as such a container

because there is a one-to-one correspondence between each local prey cohort and each predator.

Further note that the internal brood of eggs must also be included in the calculations. Thus

the brood characteristic must exist on the same node as its parent. The mortality partitioning

weights for the brood characteristic must also be stored; this is also stored in the victims list.

3. Values like the resource density that were previously accumulated in local variables as the prey

population was scanned are now stored into a local copy of Table2. Before reduction, on each

node Table2 is composed of the partial sums arising from the local prey populations for each

predator.

This stage is completed by reducing Table2 across all nodes summing each corresponding entry. The

reduced Table2 now contains the complete sums for Resource Density, etc., for each predator.

Table3 - Table of Predator Resource Consumption

With the resource density information compiled across all nodes in distributed Table2, the compu-

tation of the feeding kernel, energetics, and growth for each predator can be completed in parallel

for each local population of fish. The amount consumed by each predator is stored into Table3. The

design of a row of Table3 is shown in Figure 3.12. Each node only computes the feeding kernel and

growth for its local predator population. All of the cohorts in the local predator population need to

be advanced in time, even if they are too young to be feeding. For this reason it is not sufficient to

index through the local entries in Table1. But, for the predators in the local population that are old

enough to feed, then the PredTableRow index value is used to quickly extract its information from

Table2 and update its information in Table3. An identically sized Table3 is allocated on each node,

but, since the predator population is distributed across the nodes in a non-overlapping way, then the

rows of Table3 will also be updated in a non-overlapping way. Thus, when Table3 is finally reduced

via a parallel sum, then Table3 will have all of the resource consumption information unified for all of

the fish across all of the nodes. (Although the RSUM value for mortality partitioning was calculated

in the reduction of Table2, it is not required until mortality is assessed by the prey population. This

follows the reduction of Table3 with the total resource consumption. I found it convenient just to

copy the data from Table2 to Table3, so that Table2 can be freed at the end of this step rather than

maintaining both tables.)
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 Reduction of Predator Consumption from All Nodes
One Row Per Fish (all nodes)

RSUM (Copied from Table2), Functional Response and Growth

Table3Row

Figure 3.12: Row of Table3 - Distributing Total Predator Resource Consumption to All Nodes

Table4 - Toxicant Uptake

Finally, the reduced version of Table3 contains the information required to complete the mortality

calculations on the prey. If toxicant exposure is in effect, then the predators are exposed to the

toxicant through their consumption of the contaminated prey. The amount of toxicant in the tissues

of the prey items varies, so it can only be determined after the assessment of mortality on the prey.

The only purpose of Table4 is to account for the amount of toxicant uptake by each predator, so

it is not pictured. After reduction, then the toxicant uptake is copied by each node onto its local

predator cohorts. If toxicant exposure is not in effect, then the reduction of Table4 is skipped.

The interesting item to note in this final step is that the only local prey items that can possibly

incur predator-induced mortality are the ones that appear in the lists attached to each predator

in Table1Ext. The way that mortality is assessed is to walk the list for each predator, computing

the mortality effects, while simultaneously releasing the associated memory. At the end of this

procedure, then Table1Ext can be freed.

This completes the parallel predation algorithm. Since the growth and energetics were completed

in the Table3 phase of predation, then all that remains to complete the advancement of the predator

population is to complete the Runge-Kutta step (which is just Euler’s method) and to evaluate any

toxicant effects. These two steps are all that remain in the predator’s time advancement routine.

3.3.3 Design Analysis of the Pure Parallel Algorithm

We now take a closer look at some unique features of the Pure Parallel Algorithm.

Population Scans

The Pure Parallel algorithm required the addition of extra memory structures in order to retain an

array of values for mortality assessment. These Relative Rate values have to be retained by the prey

cohorts until the end of the calculation for a single fish in order to partition mortality equitably.
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In the sequential design, the repeated filtering of the populations through the prey or inverse prey

windows via complete scans seemed inefficient, especially for tens of thousands. I wanted a way to

efficiently restrict the attention of each predator to its prey and vice versa.

By using a simple list structure attached to each fish cohort, I was able to eliminate the repeated

scans, because at the end of the first scan each fish has available an exact and complete list of the

prey items in its window. I needed the list structure anyway, in order to retain the Relative Rate

information for each prey item in the predator’s window. Since the number of prey items potentially

changes with each time step, then it has to be dynamic. My first attempts were to try to take

advantage of sorting by sizes in order to eliminate the extra population scans, but this algorithm

produces the same benefits , is generally applicable, and does not have any additional requirements.

Brood Pouch

The second requirements imposed on the parallel simulation arise from the physiology of the Daph-

nia populations. When separating the populations across nodes the physiological feature of eggs

developing in a brood pouch has to be considered. This requirement is not beneficial to the design

of the algorithm like the first requirement was. Because the eggs are associated so closely to the

parent, they suffer the same mortality effects. But, their mathematical dynamics are different be-

cause they are only in maintenance mode; as such, they are on a cohort distinct from its parent.

The algorithmic requirements are two fold and were emphasized in the section on describing Table2.

For the Daphnia population:

1. The brood characteristic must be on the same node as its parent.

2. The Relative Rate mortality information for the brood characteristic must be calculated and

stored simultaneously for all predators.

The first condition requires that if a parent is moved across nodes by rebalancing, then its brood

cohort must move with it. The second condition is a difficulty because the brood may be combined

onto a cohort with other broods. The mortality calculation can be separated out to account for

only the portion of mortality on the brood cohort due to the predation on a single parent, but if the

brood has been combined with others, then it becomes difficult to maintain the correct values for

ρ on the brood cohort, especially if the parent is subject to being moved to a different processor at

any time step.

The solution I developed for this problem is called Brood Pouch in the codes. The idea is to

delay the “birth” combining until release time. Mathematically, this means changing the initial
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condition from age zero to the age that they are released from the parent. (The linearity of the

initial condition is utilized to justify this.) All of the same algorithms developed earlier apply —

local and global birth combining — except they are applied at the age of release rather than the age

of birth. At birth, the parents each receive a separate cohort for their brood, so its brood cohort is

entirely owned by the parent. Thus if a parent is moved by load balancing, then one merely has to

move its offspring cohort with it. No additional work is required. Similarly, there is a factor of one

in the predation mortality assessment on the broods, so no scaling or adjustments are necessary to

correctly assess mortality.

The brood pouch design does have some other benefits from a modeling perspective.

1. It respects conservation of biomass in the sense that the exact lipid per egg allocation from the

parent is transmitted to the offspring cohort. (This variation is combined out of the normal

versions by the birth combining process.) This variation does disappear when the cohorts

are released from the brood and are combined. (Similar to the normal case, we choose the

maximum lipid at the time of release from all of the cohorts of the same ecotype being released

at the same time.) For processes like toxicity studies, then this can be a significant modeling

feature.

2. Another benefit that is related to this is that individual birth and release timing events after

the first event can be varied. In other words, the births after the first are not required to be

periodic. Periodicity is forced in the normal version because the brood cohort must start feeding

at some age (i.e. the age at release from the brood pouch). Since the cohort is potentially

composed of several broods, then the broods of all of the parents must start feeding at the

same time. The release of its current brood from the brood pouch initiates the birth process

in the parent. With the Brood Pouch design, then these timings can be varied individually. I

built this potential variability of birth times in as I revised this code for Brood Pouch.

This latter advantage could allow us to “fuzz up” some of the birth classes and eliminate some of

the life cycle synchronization described by Enserink in Chapter 1. Sublethal, dissolved oxygen, and

temperature effects had all required design changes centering on the size at first brood.

The Brood Pouch design has several costs. The first is the complexity of the code required to ex-

ecute it. The complexity really arises because I maintain both a normal version and a Brood Pouch

version in the same code base for the predator-prey and population models, so there are several com-

piler directives to maintain this dichotomy. Further, guaranteeing the conditions from the beginning

of simulation requires either that the Brood Pouch condition be imposed from the generation of
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the initial populations forward (hence, the impetus behind rewriting the initial population codes

described earlier), or one has to unwrap the initial population, creating additional offspring cohorts

as necessary to satisfy the one-brood-per-parent condition. The load balance had to be modified

to send its offspring cohort with a parent or the parent cohort with an offspring. Since our load

balancing routine does not have a preference in what cohorts it sends, then either case can occur,

so the offspring has to be linked to the parent too. (Originally, I only foresaw the necessity of the

parent being linked to the offspring, so I signed this with single-linked lists. When I later realized

that the reverse relationship was required, then I linked the otherwise unused child pointer of the

offspring back to the parent, so there is some abuse of notation.) Further, since sends and receives

have to match, then the receiving node has to decode the received cohort in order to detect that

it needs to set up an additional receive transaction in order to receive the second cohort in a pair.

Finally, but most significantly in terms of performance evaluation, the Brood Pouch design roughly

doubles the workload in terms of number of characteristics. Brood Pouch is not absolutely required

in sequential, shared memory computation, so this workload and complexity arises from a combi-

nation of parallel execution and the physiology of the simulated populations. This cuts into the

potential performance gain of parallel computation.

3.3.4 And...It Didn’t Work

For all of this beautiful work and unparalleled design, I could not get the models to behave correctly.

I presumed that it was because of something I did. There were four problems that I observed and

worked on, but could not find anything wrong.

1. Large numbers of prey cohorts made the execution intolerably slow. I presumed this was

because of some overlooked consequence of the Brood Pouch algorithm. The several days

running time of the original models looked speedy by comparison.

2. Movement energetics for the fish required 108 J/day against an ingest rate of around 104 J/day.

This was completely masked by the ED
EA being capped at 1 in the model.

3. Starvation of the fish never occurred in spite of these energetic demands, perhaps because the

energy factor was capped at 1.

4. Lengths for the fish were not realistic. The trout were growing to 75 centimeters long.

These problems I traced back and forth between the population and predator-prey codes. Given the

complexity of the programs — especially with all of the complexity I added — and the fact that
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we had published papers and runs with the initial populations I was given, I presumed there was a

mistake someplace that I had made.

I did trace through the original codes and went carefully through the numerics. There were

several functions that were incorrectly calculated and written in the original codes which I fixed, but

then the original models exhibited the same behaviors (minus the brood pouch problem of course).

These problem inspired some interesting, unique and useful ideas which are described in this short

section, but overall I still could not find the source of the fundamental problems which I was working

around. I am very happy to report that I finally found each problem.

The first problem is caused by the cutoff value we explored earlier when we looked at the No-

Combine examples, Section 2.7.1 and which was varied for the population timings presented at the

end of the last chapter. Somewhere along the line it was set to 10−5 which for the long predator-

prey runs caused sometimes hundreds of thousands of extra cohorts to be maintained although

they were insignificant to the population. When combined with kmax = ∞ and kmin = 0, then

they produced extraordinarily long runs. This sensitivity to workload was behind my carefully

considering the complexity of the calculations, because it was slowing down noticeably with each

additional fish cohort. Turning off Brood Pouch led to the the runs being tolerable with the number

of characteristics being halved.

While working with these large and long runs, we noticed that although at the beginning higher

numbers of processors was slower, by the time it got to the equivalent point in the simulation, then it

was faster than our normal 4 or 6 processors. The idea was to change the number of processors to be

in line with the workload. The MPI2-specified way to do this is with MPI SPAWN PROCESS(), but

this is another of the library calls that is not widely supported. I could only find it supported on SGI

machines. We did it a different way which utilizes the load balance function. By starting a larger

number of processes, but not assigning any population to some of them, then they will participate in

all of the collective operations preventing deadlock; they just will not have any contribution. When

the load reaches a currently hard-coded level of 15K on any one processor, then a new processor is

added from the idle pool and the load balance routine redistributes load off of the other processors

onto the new one. This allows the simulation to stay in cache and maintain its super-scalar speedup.

We do not yet have a way to go backwards, but can foresee it being useful for problems that start out

large and parallel execution is very beneficial and then shrink during the simulation. The individual-

based bat model by Federico (2007) starts out very large and then decreases in size with execution

time. By resurrecting the runtime adaptive rebalance period calculations and the heterogeneous,
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runtime, workload adjustments reported by Sylvester (Sylvester, 1995) we plan to create an algorithm

that will adaptively add and remove processors at runtime to yield better execution times.

The lengths and energetics turned out to be caused by the same problem: the allometric constant.

The allometric constant for fish that has been utilized and published (Hallam et al., 2000) was off

by a factor of 10. After correcting the value to 1.7 × 10−2, then all of the calculations, energetics,

and lengths fall into line. The appendix to Hallam et al. (2000) has a complete derivation of the

energetics calculation for movement. The cost rises to the fourth power of length, so the lengths

being large was causing the absurdly large values for energetics. The fish model with the corrected

constant have a maximum size of about 35 cm and the energetics are much closer with the ED
EA being

less than one for smaller fish. I have located two of the three references cited for our allometric value

(Staples and Nomura, 1976; Elliott, 1976), but have not located our precise source for this constant.

Finally, starvation was turned off by my predecessors by setting the starvation level to be below

the smallest value of the protected structure. Since the mass of structure cannot be less than

protected structure, then no starvation will ever occur. My feeling is this was done because of the

energetics problem: the fish would otherwise die quickly or be so lean at birth times that they would

starve with any discrete allocation of mass to eggs. I altered the value and found that a level of

90% (i.e., 10% loss of structure stores from peak) gives a 2 week starvation period for larger fish and

about a month for smaller fish, but they died when the discrete allocations were made for births. A

value of 80% is what I used for the simulations in order to prevent starvation at birth events, but

to allow for starvation to occur if inadequate resource is available.

In the next chapter I will utilize some of the old populations, because I was trying to match some

results previously published, but the dynamics studies are generated with the corrected values for

the fish populations as are the timings reported below.

3.4 Performance of Pure Parallel Algorithm

The performance of the Pure Parallel algorithm is compared to the sequential version using the

Intel compiler and full optimization in Tables 3.2 and 3.3. The Intel compiler actually vectorizes

several of the loops too, so it is performing a partial parallelization. The initial population is the

same Daphnia population as utilized for the Population Model performance tests mated with a fish

population. The tests were run for 2600 simulation days for two different workload levels. Wall-

clock timings were used, rather than processor time. This is because bus system contention is not

reflected in processor times. The highest time from all of the processors and the highest workload
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Table 3.2: Performance Chart, Pure Parallel version, Intel, Cutoff = 0.1, Rebalance = 1000 cycles,
2600 Simulation Days

Processors Total Predation Comm Report Workload Max Workload Speedup
1 452 361 0 79 194,496,152 23492 1.00
2 672 579 45 71 64,575,079 2131 0.67
4 488 354 36 77 33,197,076 1068 0.93
6 469 283 56 92 21,755,181 752 0.96
8 498 275 147 115 16,605,057 594 0.91

Table 3.3: Performance Chart, Pure Parallel version, Intel, Cutoff = 0.001, Rebalance = 1000 cycles,
2600 Simulation Days

Processors Total Predation Comm Report Workload Max Workload Speedup
1 4287 4019 0 259 1,005,322,181 106596 1.00
2 4316 4114 152 175 362,274,119 8317 0.99
4 2287 2036 235 120 185,486,582 4296 1.87
6 1708 1430 251 137 113,333,858 2733 2.51
8 1487 1053 300 130 75,396,178 2260 2.88

are recorded in these tables, so the components may not sum to the total time given. All times are

in seconds. Workload is in cohorts simulated of Daphnia.

The runs are for 2600 days which was chosen so that the initial population would be removed by

maximum age mortality before the end of the simulation. The rscale parameter is set to 2 × 10−6;

fscale is set to 2× 10−5; and kmin and kmax were set to 6× 10−3 and 2.7603× 10−1. The values for

kmin and kmax were chosen from the persistence maps values in the next chapter as a combination

known to survive through the full 2600 days of simulation. They are right on a zero-growth condition

boundary, so the recruited fish (born during the simulation) and the initial fish population hold each

other in check through competition for resource. Once the initial population disappears, then the

recruits go from under 1000 g total biomass to over 2M g total biomass in about 300 days. The

simulation ends with 2.45M g of biomass in the fish population. There are 39 fish cohorts with

total biomass 157,460 g, and which have age such that they almost immediately give birth once the

simulation starts. There are 3069 prey cohorts in the initial population with total biomass of 1836

mg.

3.4.1 Analysis of Timings

The timings again exhibit that a minimal amount of work load must be available for parallel al-

gorithm to perform well. In the first Table with a light workload, then the speedup is close to

parity, but still negative, when compared to the sequential version. With a heavier workload, then
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the performance of the parallel version exceeds the sequential version. A most interesting trend

is that the algorithm gets better with more processors added. The collective feeding of the entire

fish population does seem to function better with problem size as seen by the decreasing predation

values. Simulation and predation timings are not separated for this version, because the predation

almost entirely encompasses the simulation steps. The total predation time continues to decrease

as processors are added up through the maximum of eight and the communications to work ratio

improves. These are notable because it indicates that the algorithm is improving with increasing

numbers of processors. Between 2 and 8 processors there is an improvement by a factor of 3.9 in

predation performance, while communications only increased by a factor of 2.

Reporting was enabled and totalled about 1.4 Gb of output per execution. This explains why a

significant amount of time per execution is spent in reporting. The maximum time was for the host

node, because it is the one actually performing the write to disk. The other nodes spent their time

waiting for the host.

The Intel compiler hides a lot of the performance because it improves the baseline performance.

With gcc the sequential timings especially were more than double and super-scalar speedup was the

norm. The Intel compiler automatically vectorizes when it optimizes and utilizes an advanced math

library. It is also an expensive product.

It was a lot of work to get this parallelization. It was started in an era of balance between CPUs

and communications and has some nice traits, but it is still unsatisfying. Is there an easier and

better way to get performance?

3.5 Alternatives to Pure Parallel Algorithm

In this section a simpler alternative to the Pure Parallel algorithm are presented. The Pure Parallel

version was developed in line with the direction our design experience with the population models

led us: distribute the work out across the processors in roughly equal chunks. With no spatial-

component to draw upon, then the downside to distributing the populations completely are the

communication costs of compiling the information so that all of the interactions can be accounted

for. Three (or four) synchronization points with large transfers of data are introduced to disseminate

this information just for the predation calculation and then is destroyed. Comparing to the one,

minor sync point for biomass in the population model, then it is apparent that communications are

a much larger portion of the execution time.
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3.5.1 Fish-on-All

What else could we draw from the experience with the population models? We would like the super-

scalar performance gains that we were able to get from the population models, but without the

complicated design exhibited by our Pure Parallel version. The alternative we built depends on the

observation that we should focus on the population with the most cohorts in order to take advantage

of the parallel execution benefits for the population, while doing whatever we need to do in order to

lessen the communication requirements. The “Fish On All” (FOA) alternative algorithm duplicates

all of the predator population on all of the nodes; whereas, the prey population is distributed as

in the population model. Biologically, this makes sense in that the prey population typically vastly

exceeds the predator population, but the feeding complexity is with the predator population. The

nodes duplicate all of the predator population and duplicate each of the predator’s calculations with

the same values, so they each maintain identical copies of the predator population. This is inefficient

in terms of memory and processing cycles, but eliminates most of the communication costs since the

information tables exchanged were all predator-centric.

The FOA algorithm requires little redesign beyond the population model. The initial fish pop-

ulation is broadcast to all of the nodes rather than being distributed individually. The sequential

predation code was directly modified with the addition of a few parallel reduction operations which

sum up the resource levels from across all of the nodes for the current fish. The fish are fed one-

at-a-time just like the original sequential design. We avoided this design-choice with the parallel

algorithm, but it is much simpler to feed one and then move to the next and does not require the

extra memory structures to track the mortality information. We avoided this previously because it

could lead to lessening performance with increased numbers of processors.

With the duplication of the predator population, then the large Table1 from the Pure Parallel

version does not need to be compiled. The nodes can immediately apply the calculations for resource

density to their local populations and sum together via a parallel reduction to get the total resource

level for a fish. The consumption of the fish can then be calculated by each node, which can then

apply the appropriate mortality to their local populations. The only other parallel sum required is

for total toxicant uptake by the fish. With this version being so similar to the population model it

was anticipated that it would perform similarly.
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Table 3.4: Performance Chart, FOA version, Intel, Cutoff = 0.1

Processors Total Simulation Predation Comm Report Workload Max Speedup
1 452 91 270 0 79 194,496,152 23492 1.00
2 270 54 138 30 65 97,315,655, 11736 1.67
4 328 70 138 30 70 51,279,354 7150 1.38
6 635 180 180 35 86 32,853,700 4336 0.71
8 850 185 335 53 105 28,509,208 3700 0.53

Table 3.5: Performance Chart, FOA version, Intel, Cutoff = 0.001

Processors Total Simulation Predation Comm Report Workload Max Speedup
1 4287 783 3236 0 259 1,005,322,181 106596 1.00
2 1981 400 1382 35 180 540,987,881 59199 2.16
4 1968 355 1365 46 180 351,786,915 50135 2.18
6 2000 420 1215 51 209 246,552,344 35114 2.14
8 3023 523 2025 65 220 219,141,357 31820 1.42

3.5.2 Sorting

Another algorithm that I attempted to work out for a long time was using sorting to prevent repeated

scans of the populations. The ecostacks structures which are used to maintain the populations in

memory have the feature that they are inherently sorted by age, because the newborn cohorts are

always placed at the top. Since we have a non-decreasing expression for size once feeding begins,

then one almost has sorting by size too. The variation of the initial lipid disallows the presumption

of sorting by size. Reexamining Figures 3.3 and 3.1, one can see that if the prey are sorted by size,

then “high-watermarks” could be recorded so that the next predator search could skip over any prey

items that would be guaranteed to be outside its prey window. It is apparent now that this would

fail to be of any benefit if one has many overlapping windows, which we do — oftentimes all of them

overlap. The victims list is a generally applicable technique that makes all remaining population

scans after the first one as efficient as possible. It is attached to the parallel algorithm because I had

need of the memory structures for other reasons, but the algorithm could be used in other designs.

3.6 Performance Revisited

We now revisit in Tables 3.4 and 3.5 the same initial populations and setup as we used for testing

the performance of the Pure Parallel algorithm and executed them with the FOA version. We also

turn off load balancing and Brood Pouch in Tables 3.6 and 3.7 as examples of the performance hit

induced by the Brood Pouch requirement.
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Table 3.6: Performance Chart, FOA version, No Brood Pouch, Intel, Cutoff = 0.1

Processors Total Simulation Predation Comm Report Workload Max Speedup
1 228 40 128 0 49 59,970,636 3069 1.00
2 180 25 85 28 58 33,761,676 1592 1.27
4 282 57 102 29 65 21,113,033 795 0.81
6 610 168 160 33 79 11,713,772 569 0.37
8 800 180 282 50 96 19,267,265 490 0.29

Table 3.7: Performance Chart, FOA version, No Brood Pouch, Intel, Cutoff = 0.001

Processors Total Simulation Predation Comm Report Workload Max Speedup
1 648 130 452 0 67 242,919,351 5850 1.00
2 392 76 245 28 65 131,756,105 3061 1.65
4 392 84 207 30 70 78,269,120 1765 1.65
6 679 189 210 32 87 49,322,958 1108 0.95
8 948 220 506 55 111 69,893,826 1441 0.68

3.6.1 Fish-on-All Analysis

The first thing to note is that for a much simpler algorithm to implement, this version does con-

sistently give improved performance even with lower workload levels. In some cases it exhibits the

super-scalar speed up anticipated from the population models. It is interesting that we went from

marginal performance gain to near superscalar based a redesign and simplification of the algorithm.

This is much more satisfying.

The improvements when using the gcc compiler are much more dramatic with superscalar gains

up through 6 processors. When performing calculations I would use the FOA model with 6 processors

in order to complete the runs as quickly as possible. The comparison was between 15 minutes total

versus an hour and a half or more otherwise.

The peak performance is with 2 to 4 processors. This is in line with the population model peaking

at 4 to 6 nodes. Once the workload has scaled down below 1000 cohort per processor, then there

remains little performance to gain. It is also clear that simulation/predation time scales, but our

simulations are becoming I/O bound, with reporting sometimes nearly a third of the total execution

time.

Rebalancing still imposes the offspring-on-same-node requirement, but rebalancing has so little

benefit compared to its cost of extra workload, that if the physiological refinements afforded by the

Brood Pouch model are not required by the model, then it is best just to satisfy the constraints with

the initial population distribution and then turn off rebalancing. An alternate solution is to only

move juveniles which would also allow the Brood Pouch option to be turned off. Juveniles are free
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to be moved, because they are released from the brood and do not yet have an associated brood.

This requires the addition of a bias towards the juveniles to the load balancing algorithm. This

method will not be able to achieve the same level of load balancing, but, as we have already seen,

much more imbalance can be tolerated by the modern processors. Lessening the workload is much

more significant to performance.

3.7 Discussion and Conclusions

First, we developed a methodology to decouple the workload by condensing the predator population

data into a set of distributed tables. This was the most direct approach to parallelizing the predator-

prey model. It follows the direction established by our parallel population models of distributing the

populations to gain parallel advantage, but unfortunately this design could not be implemented as

a simple extension of the sequential model or population models. With the size of the information

tables being directly tied to the number of predator cohorts, the advantage of this parallel design

increases as the predator population’s workload increases. As the ratio of work to communication

improves with increasing predator workload, then, per cycle, more information is being condensed

by the distributed tables and more work is being decoupled for parallel execution. This benefit was

demonstrated by our Performance Analysis of this design in this chapter.

The dimensions of workload for our testbed problems — large number of prey cohorts and

considerably fewer numbers of predators — does not take best advantage of the distributed table

design. Our problem’s dimensions are driven by going across trophic levels. For a similar but

intra-trophic (fish-on-fish) model the number of cohorts never exceeds 50 for either population over

800-year simulations (Claessen et al., 2002), so such models are also not of the optimal dimension.

Natural, ecological predator-prey-type situations of the correct dimension for the distributed table

design, where the number of predator cohorts is large and on parity with the number of prey cohorts

are rarer. Agent-based, predator-prey models are one potential source, such as BOIDS-based, bat-

insect models (Raghavan, 2005; Kolli, 2007). Economics and Finance are other areas of application

of individual-based techniques (Luna and Perrone, 2002; Billari et al., 2006; Holling, 2001) which

could be a potential source for problems of the correct dimension for this parallel design.

The creation of pseudo-predators via the distributed tables on each node, as in the Pure Parallel

design, is in the style of the parallel technique of ghosting (Reynolds, 2006). The distributed table

design is generally applicable and for us has the feature of predating en masse, so that only one

pass through the predator population is required to execute the predation module. We further
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demonstrate the elimination of inefficient scans and the conveyance of required information to all

nodes in an efficient manner without resorting to direct tracking of the location of particular prey

or predator cohorts.

For our testbed applications, we then found that the simpler Fish-On-All design allowed us to

take advantage of the dimensions of our problems. By focusing on the larger workload of the prey

population and using fast CPUs to duplicate the predator calculations in order to eliminate slower

communications, then we are able to take advantage of the hardware and to mimic the performance

gains achieved with the population models. It does not exhibit the same parallel scaling benefits as

the distributed tables method, but advantageously, it could be implemented as an extension of the

sequential version.

The FOA design also solved other problems that were not apparent and enabled the efficient

analysis of the predator-prey model in the next chapter. These problems include solving tracking

fish predation behavior. With the Pure Parallel version, the fish could trade processors and thus

change their identifier. To track this, these exchanges had to be recorded and then backtracked after

the simulation was complete. Further, the predation total values were vital to finally understanding

the predator-prey mechanisms. As runtime-only data that cannot be easily extracted from data

files, then the data had to be recorded as it was generated. When distributed, consolidating it for

I/O would have been complex. Both of these problems were solved elegantly by the FOA design.

Independent of the parallel design, we found that the requirements arising from the existence

of the daphnid population’s brood pouch and the corresponding assessment of predation mortality

against the both parent and offspring cohorts were a source of complexity that did not arise in

either the sequential or parallel population simulations. The required maintenance of one-to-one,

parent-offspring relationships across all nodes was a complex requirement that had to be added to

our testbed models. Although only directly required for parallel execution of Daphnia-fish commu-

nities, the Brood Pouch solution is a feature that affords unique benefits to our individual-based

models however they are executed and would be included in any new models. Because we applied

it retroactively, it required changes to our load balancing algorithms, additions of complex memory

structures, and updates to the cohort-combining routines. With its application, then we were able

to maintain for the parallel versions the relationships required for the correct simulation of these

community models. As with the population models, we could back off these stringent requirements

by not rebalancing and by distribution by ecotype for the prey population. This was unique problem

for parallel simulation faced by individual-based models that arises directly from the individual’s

physiology in interaction with the predation model.
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Although currently just hard-coded and uni-directional only, a most interesting development for

changing the parallel simulation to fit the problem size is reported in this chapter. The predator-

prey model could produce pathologically large workloads as the simulation progressed. Initially

these problems were simulated most quickly by smaller numbers of processors, but as the workload

increased, then adding processors was beneficial. Dynamically resizing the parallel resources was

impossible with MPI. A method for adding processes to the parallel simulation was added to the

MPI-2 specification, but it is not widely-implemented. We added this ability via another method

to our simulations by not initially distributing any cohorts to a few reserve processors which were

added later via the load balancing algorithm when the workload exceeded a hard-coded level on any

one processor. To generalize this to a more general, dynamic resizing of the parallel machine size will

make use of unused calculations that we had originally developed to solve dynamically the optimal

rebalancing period problem described in Section 1.3.5. The reverse situation where problems start

out large — thus potentially benefiting from parallel techniques — and then decrease in size could

also be encompassed by a scaling of the parallel machine to the dynamic problem size.
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Chapter 4

Persistence and Extinction

Conditions of the Structured

Predator-Prey Model

In this chapter, we focus on the dynamic behavior of the predator-prey model itself. Our goal

is to find regions of compatibility in parameter space where a simulation of the fish and Daphnia

community will persist indefinitely. Specifically we examine the effects, constraints, and valid value

ranges for the four predation parameters. Further, the roles of the initial distributions, individual

models, and dynamic structures of the two populations are explored. The population models by

themselves have been explored and are well-understood, but the predator-prey model composed

from these population models has not been explored. Henson, in the last part of her dissertation,

made a few observations concerning prey extinctions for the predator-prey model which form the

starting point for our discussion.

For the first two sections, we restrict the mortality effects imposed, so we can directly observe

the effects of predation mortality without the complication of exogenous deaths.

In the first section, we focus on the prey population and indicate how to choose the predation

parameters that will lead to or avoid predation-driven extinction. The basic concept introduced is

called the Extinction Threshold, which gives the upper bound for the level of mortality that can

be sustained by a given prey population arising from a given predator population. This yields a

method to choose appropriate values for the two effective volumes, VD and VF , that determine the
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predation mortality scaling factor. We duplicate and expand upon the observations of Henson which

were not completely specified nor explored in her dissertation because of the constraints of how long

the numerical simulations previously took to execute.

In the second section, we focus on the predator population and understand the restrictions placed

upon the predators by the gape-size parameters kmin and kmax. We will restrict our attention for

most of this section to understanding predation for a single predator cohort. The prey choice effects

of a predator upon a prey population are observed and validated, which leads to understanding the

location and size of the prey window itself. Possible effects of the prey window that can lead to

the extinction of a predator are enumerated. In particular, the effect by smaller fish of depletion of

resource levels available to larger fish is explored. This effect arises because of the reduction from

the smaller prey size classes that would have otherwise grown into the larger size classes utilized

by larger fish. The minimum population density of a fish cohort required to totally deplete the

resource in its prey window (and thus totally deplete resource for all larger fish) is the idea behind

the Quiescence Threshold defined in this section. This concept encompasses the variety of extinction

effects for a predator.

In the final section, we complete our parameter space search for the regions of compatibility. The

extinction mechanisms and parameter determination techniques explored in isolation in the first two

sections will be fundamental to understanding the extinction pathways observed in this final section.

Density-dependent mortality is required to control the otherwise exponential growth of the Daphnia

population, because we do not model any depletion of the resource available to them. The fish

population competes for a variable resource that can be depleted. Starvation and maximum age are

the only paths by which a predator cohort can be removed from the fish population. No additional

types of mortality are imposed on the fish population. The effects of total predation pressure and

the dynamic effects of biomass oscillations and density-dependent mortality will be observed in this

section. The roles of competition, initial population distributions, and the individual models on the

regions of persistence and extinction are all described in this section.

4.1 Extinction Thresholds

We start with our analysis of the structured predator-prey model, by picking up where Henson left

off in her dissertation (Henson, 1994). The last chapter in her thesis is entitled Size-Dependent

Predation in Structured Predator-Prey Models. For this first section we will repeat and expand
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on this chapter. The major idea introduced in this chapter was Extinction Thresholds. For the

remainder of this section, we operate under the assumptions that:

1. All mortality on the prey is either due to predation or old age;

2. For predators there is no mortality except due to starvation (total population density for fish

is constant);

3. The Daphnia population has constant resource density;

4. Birth rates and prey growth are not density or volume dependent;

5. Finally, the only dependence for a predator’s growth rate on volume or population densities is

through the predator’s resource level.

The first three assumptions lead to the consequence that extinction can only occur in one of two

ways. The first scenario is if all of the daphnids are consumed, so the fish starve. This scenario is

familiar from aggregated models: there exists a minimum threshold required for the initial number

of prey, otherwise extinction of the prey occurs. The second extinction scenario is unique to size-

dependent predation models: the fish may not find enough prey of the correct size to eat, and thus

starve while the prey population survives. Extinction Thresholds are related to the first scenario

and are focused on the survival or extinction of the prey. The second scenario is taken up later in

this chapter.

Following the notation of Henson, let ρ̂(a, m) and q̂(a, n) be the fixed, initial density distributions

for the prey and predator populations, respectively, in units of numbers per unit age per unit

mass (mL and mS are combined into total mass). We now vary the initial volumetric densities by

varying the volumes VD and VF . Recall from the previous chapter that 1/VD is used to convert the

Daphnia population ρ(t, a, m) to volumetric density for fish resource density calculations, and that

the predation mortality assessed on the Daphnia population is scaled by VD/VF (presumed ≤ 1).

These two values correspond to rscale and fscale in the predation parameters. Note that as VD and

VF are increased in size, thus making the initial population distributions less volumetrically dense,

then V −1
D and V −1

F decrease. Because of this correlation of direction and the fact that VD and VF

most often appear in the denominator in our calculations, we use V −1
D and V −1

F in our analysis.

Given the initial population ρ̂(a, m)/VD, define the Extinction Threshold to be the smallest V −1
F ,

such that the initial fish density distribution q̂(a, n)/VF drives the Daphnia population to extinction

within a fixed number of days. We choose 100 days for our extinction runs to match Henson. (We
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did note that on some of the runs the populations became extinct just after the 100-day period, but

typically extinction occurred well before the 100 days elapsed.)

Definition 4.1.1 (Extinction Threshold) Given the initial population distributions

ρ̂(a, m) and q̂(a, n) and volume VD, where it exists, define the extinction threshold to be the

inf{V −1
F |q̂(a, n)/VF drives ρ̂(a, m)/VD to extinction in 100 days}

The condition on VF will just be termed the Extinction Condition. Note that a fixed value of VD

determines the value of the rscale parameter. As different values for V −1
F are tested, then it is

actually the calculated value for fscale that is varied in the parameter files. Note also that this

infimum may not exist for a given set of initial conditions, because no population of fish is able to

control the Daphnia population. Descriptions of these regions appear later in this chapter.

An alternate way I created to look at extinction level is through what I termed Volume Replica-

tion. Let ξ be set to the extinction threshold for a given set of initial populations and fixed volume

VD. Then

VDξ = inf

{
VD

VF
|VF satisfies extinction condition

}

= inf {fscale (or mortality scaling)|VF satisfies extinction condition}

Definition 4.1.2 (Survival Volume Replication) Define the Survival Volume Replication to be

ν =
1

VDξ

= sup{VF

VD
|VF satisfies extinction condition} (4.1)

So ν represents the minimum number of replicants of VD that will support a fish population.

4.1.1 Extinction Thresholds as a Function of V −1
D

This first experiment involves looking at how the Extinction Threshold varies as the initial volumetric

density of the prey is varied. We set the gape size parameters kmin and kmax to zero and infinity,

respectively, for these tests, so all predators have access to all prey items and partition between

themselves accordingly. (Values for kmin and kmax for this experiment were not specified by Henson.)

As a validation for our models, we retrieved from our archives the initial populations and source

codes used by Henson to create her figures. We corrected several numerical calculations in the
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original programs that related to the lipid and structure Jacobian calculations in the Runge-Kutta

method for the Daphnia and some other bugs that caused the program to crash or not compile on

newer computers. (Because of the corrections, some differences between the outputs are expected.

The values originally obtained for the components of the Jacobian were on the order of 1.0× 10−12.

After correction, then these values scaled to where they should be.) For direct comparison, these

original populations and parameters were translated to population files compatible with our new

population and predator-prey models.

By varying V −1
D over six values ranging from 1.0 × 10−8 to 100 in multiples of 100 (values

determined from her graph), Henson reported the figure shown in Figure 4.1. She attributed the

flat section to the fish feeding below satiation, so an increase in initial density does not increase

the initial density of the fish population required to drive the Daphnia to extinction. The figure we

obtained from the updated programs is Figure 4.2. Both the original (corrected) and modern codes

were tested and confirmed these values. The values obtained are recorded in Table 4.1. The figures

are plotted on log-log. Further note that ln(fscale) = ln(V −1
D ) − ln(V −1

F ). The values for VD, VF ,

and Volume Replication are included because they represent volumes which we can understand, so

the extreme values required to pick up the bottom of the curves is understood. Initially I thought

only that the linear increasing portion remained and the behavior Henson observed and attributed

to satiation was an artifact of the incorrect numerics. (Many more intermediate values for rscale

were also calculated to trace out the curves, but are omitted from this final presentation.)

The threshold curve is exactly where mortality and births in the prey population balance. If the

births are a little ahead, then, in the absence of other mortality, the population grows exponentially;

vice versa for mortality. Thus the curve is an unstable equilibrium (zero isocline). To determine

these values, I initially used both the original Henson codes and our PPrey Fish-On-All (FOA)

code with 7 processors. After it was shown that the codes both produced essentially the same

behaviors, then I switched completely to the FOA version. Initially this search was performed by

hand, adjusting the fscale parameter above and below the threshold in a binary search to close in

on the value. When the parameter value was below the threshold, then a typical 100-day run would

take about 90 seconds, versus 5-10 minutes for the original code. When it was above then extinction

usually occurred within 5 seconds. A python-script was developed to automate this binary search.

Each curve represents approximately 800 executions of the model in order to refine the value, so the

difference in execution time was the difference between overnight or several days.
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Figure 4.1: Figure 1 from Henson. Plotting the Extinction Threshold for Several Values of VD.

Figure 4.2: Plotting the Extinction Threshold for Several Values of VD.
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Especially difficult to resolve were the smallest values of V −1
D . Henson produced her graph with

six points. Given the period of time this represented, this was probably several days of computation.

The lowest portions being much more difficult to refine, it is not surprising that these are shown in

her graph as constant. Our graph and Table 4.1, show that the graph is still decreasing in this area.

Overall, did we get the same thing as was previously reported? Did our code pass its first

test? We have a much extended linear growth region starting at rscale = 1 × 10−6; whereas, her

growth region did not start until rscale = 1 × 10−3. Her constant region is not quite constant in

our graphs. She attributed both of these behaviors to the fish feeding below satiation for very low

densities of prey, so an increase of the predator population was not necessary to control a more dense

prey population. Once the fish reach saturation, then corresponding increases in initial density are

required to control the prey. Is this a valid explanation? Does this explain our curves? Are our fish

reaching saturation at much lower initial densities?

Investigating this question, led to looking more closely at the constant difference between ln(V −1
F )

and ln(V −1
D ) reflected in the constant value for ln(FSCALE) past rscale = 1× 10−6. This investi-

gation leads to the concept of Volume Replication defined above which is trying to determine how

many replicants of the prey population are required to support the predators. This describes satia-

tion, because it gives the point at which the fish population is saturated and cannot absorb any more

prey increase. Figure 4.3 plots the Volume Replication curve corresponding to our computed values.

Note the distinct S-shape with the middle portion corresponding to the transition in Figure 4.2.

Can these curves be attributed to satiation level? Satiation level is determined by the Functional

Response, which for fish was presented in Equation 1.22. It was noted that this is in the form of

a standard, hyperbolic response, whose canonical form is x
1+x . This is a curve with a horizontal

asymptote and which has value zero for x = 0. The mystery is solved when one plots a hyperbolic

functional response in log-lin as the Volume Replication curve is. The canonical hyperbolic response

curve is so plotted in Figure 4.4. So we can conclude that saturation of the functional response is

determining the extinction thresholds.

Transforming Extinction Thresholds for Scaled Populations

This still leaves open the question of whether our model outputs are similar? If not, then why not?

If so, then why do they look so different? Can we transform our output onto hers? We did not have

values for two of the parameters and we also changed the numerical calculations, but fundamentally

we are still executing the same model. Further, we are producing effectively the same extinction

threshold values. Are we just off by a scaling factor or something simple?
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Up to now we have been treating VD and VF essentially as scaling parameters, we pause briefly to

note the question how the extinction threshold transforms if the initial populations are scaled as in

a mesocosm experiment. Suppose the initial populations ρ̂ and q̂ are scaled by α and γ, respectively,

along with new volumes V ′
D and V ′

F . Defining “equivalent dynamics” and how the control parameters

must be adjusted to produce such dynamics is the subject of the first chapter in the Communities

section of Henson (1994). The question arises wanting to utilize mesocosm experiments and to isolate

some dynamic of interest for study. The discussion involves careful inventories of the endogenous

(fixed by population) and exogenous (adjustable) parameters and a priori determination of the

dynamic of interest. This theorem follows from her developments for scaling for mesocosms. Its

proof follows easily by substitution into conditions she develops for equivalent dynamics based on

the PDE and by uniqueness of solutions, so it is omitted.

Theorem 4.1.3 (p. 135, Henson) The predator-prey model with initial distributions (αρ̂, γq̂),

volumes V ′
D and V ′

F , and solution (ρ′, q′) has dynamics equivalent to those of the model with initial

distributions (ρ̂, q̂), volumes VD and VF , and solution (ρ, q) if

ρ(t, a, m)
VDq(t, a, n)

=
ρ′(t, a, m)

V ′
Dq′(t, a, n)

(4.2)

and
q(t, a, n)VD

VF

ρ(t, a, m)
=

q′(t, a, n)V ′
D

V ′
F

ρ′(t, a, m)
(4.3)

for all t, a, m, and n.

The result important to us is that conditions 4.2 and 4.3 hold for the solution (ρ′, q′) = (αρ, q)

if and only if αVD = γV ′
D and VF = V ′

F . This gives us the transformations

V
′−1
D =

γ

α
V −1

D and V
′−1
F = V −1

F

which transform the extinction threshold graph to the graph for the scaled initial distributions. Note

that V ′
F is not changed, while V ′

D is scaled by this transformation. If we want our point of inflection

at 1 × 10−7 to match her point of inflection at 1 × 10−2, then a factor of 105 is required. When

inventorying our archives we had found a second population set which differed from the first only in

the magnitudes of ρ and q. We had noted the population as a curiosity, but it was not the one in

the working directories, so we did not pursue it further. This section prompted remembrance of this

oddity — why would there exist a population that differed only in the magnitude of the ρ-values?
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Retrieving my notes about this population set, I found that the difference factors are α = 10−4 and

γ = 101, which transforms precisely by a scale of 105.

I translated the population into our new format and tested. The graph of the extinction curve

for this alternate population generated by our program is given in Figure 4.5. The shape (except

for the one point, which was not calculated in Figure 4.1 anyway) reproduces the shape reported

by Henson. The Volume Replication curve is shown in Figure 4.6. (I do not have an explanation

for the one aberrant point other than it is in the middle of the S-curve which I had found before

to be a difficult area to resolve. I calculated it several times with different levels of sensitivity and

I chose different values of rscale around it. The values around it all calculated in line.) Overall,

we can conclude that we pass our first test, but chose the wrong populations for comparison. We

can further conclude that the numerical corrections did have some effect on the particular values for

the extinction threshold, but not for the overall shape. The values for these alternate populations,

especially for the Volume Replication graph, are conceptually out of my reach. I can understand 22

replications required to support the fish, but not billions. For this reason, I continued to use the

first set of populations.
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4.1.2 Extinction Thresholds as a Function of kmax

For our size-structured predator-prey model the extinction thresholds also have a dependency on

the prey window (gape size) of the predators. We now look at the dependency on kmax, which sets

the upper bound of the prey window for each predator. In this section kmin is held at 0. In the

previous work with extinction thresholds, these were set to infinity and zero, respectively, so that

the gape size had no effect. By reducing the values for kmax, then we are removing the predation

on the largest prey items.

A couple of expectations of the relationship of extinction thresholds and kmax can be immediately

derived from our knowledge of the size-relationships and populations. We expect there to be a lower

value for kmax below which the extinction threshold does not exist, because none of the daphnids

will fit inside the prey window for any sized fish. On the other end, we expect there to be a upper

value for kmax beyond which further increases of kmax will have no effect, because all of the prey

items fit in the prey window for all feeding fish. With kmax set to a very large number in our

previous analysis, then we were in this region, therefore we can use the appropriate values from

Table 4.1 for the extinction threshold down to this upper value of kmax. Between these two values,

we expect the extinction threshold curve to trace from the finite value on the right, to the vertical

asymptote on the left. Further, we expect that it is non-decreasing when viewed from right-to-left.

We did plots of the extinction thresholds for a variety of fixed values of V −1
D as another test of

our model against the results reported in Henson (1994). Her reported curve is shown in Figure

4.7 and our curves are shown in Figure 4.8. (Henson did not note the value of V −1
D that she used

for her graph so we computed the curves for several. We also wanted to see if a relationship could

be discerned between kmax and V −1
D . Plotting on a surface did not reveal anything additional that

cannot be seen from this presentation of all of the runs on the same graph.) The values at the

left where our curves level off are an artifact of our computational method. They represent points

at which a value for the extinction threshold could not be determined. Note the range of values

reported by Henson and the range of values for kmax that she used. Her values for V −1
F were on the

order of 10−10 (which is actually less dense than ours) and the values kmax were from below 0.003

up to about 0.0125. Her values were lower than I would have expected. The curve closest in shape

and values to hers is the one for V −1
D = 1×10−2. All of the curves do exhibit the expected behaviors.

The rise-and-plateau structure arises from relieving segments of the prey population from predation.

The larger prey members have to be eliminated by additional predation effort before they grow into
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Figure 4.7: Extinction Threshold Curve from Henson for kmin = 0 and Varying kmax
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Figure 4.8: Extinction Threshold Curve for kmin = 0 and Varying kmax for Various Values of VD

the protected classes or else the fish will not be able to maintain control of the population. Our prey

populations do not have a uniform distribution of size, hence the plateaus.

Construction Method:

For each fixed value of V −1
D , we started at a large value for kmax and stepped backwards across

our region of interest. We adjusted our step size backwards based on how much change there was

between the previous two calculated values. For each step backwards for kmax we performed a

binary search for the extinction threshold. We again use the technique of trapping the extinction

value between “good” (prey survive) and “bad” (prey driven to extinction) values for the fscale and

perform a binary search under automation. (The Python automation script was actually developed

first for these calculations because of the thousands of runs required to determine the curves, then

later applied to recompute and extend the curves that had been calculated manually in the previous

subsection.) Originally the script restarted each search with the same base value for fscale, but it

was noted that this restricted the output values to a certain fixed subset and as the curve stepped up

to the left, then fewer of the runs were to extinction so the calculation was taking longer. The script

was modified to take advantage it being a non-decreasing function as kmax is stepped backwards, so

the last known good value from the previous step can be used as the starting value for the good value
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on the current step. This balanced the extinction and complete runs so that the overall computation

time was decreased.

Given various parameters and knowledge we have of the individual models, can we calculate the

upper and lower limits for kmax? Recall Equation 3.1 the expression of the prey window:

10 · LF kmin ≤ LD ≤ 10 · LF kmax

Let Lmin
D and Lmax

D be the smallest and largest attainable daphnid lengths. Likewise, let Lmin
F and

Lmax
F be the smallest and largest attainable fish lengths. For what value of kmax would the fish be

unable to predate on any daphnids? If the upper bound of the prey window were smaller than the

smallest daphnid, then no fish could possibly feed on any daphnids. Thus if

kmax <
Lmin

D

10 · Lmax
F

then the condition will be satisfied. Similarly, if

kmax >
Lmax

D

10 · Lmin
F

then all daphnids will fit into the prey window for all of the fish. Recalling that length is determined

from protected structure levels through the allometric relationship

length =
( mPS

Allometric Coefficient

)1/3

then the max and min lengths can be determined for these populations if the maximum protected

structure levels are known. Table 4.2 lists the values for our initial populations which results in

lower and upper effective limits for kmax of 0.0036 and 0.57, respectively. The lower limit agrees

with our graphs, but the upper limit seems to be reached by our graphs much earlier than 0.57.

Recall that we observed that our population of daphnids tended to saturate growth at around 50%

of the maximum. Taking this into account yields a effective upper limit on kmax of about 0.3, which

is in agreement with our graphs. (This is much smaller than the values we had been given to us

for testing in all of our predation parameter sets, so our simulations have traditionally been with

wide-open (upper) gape.)
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Table 4.2: Parameters for Max and Min Length Calculations

Parameter Daphnia Units Fish Units
Max Structure 0.75 mg 1080 g
Min Structure 0.0082 mg 0.0238 g
% Protected Structure 50% 71%
Allometric Coefficient 0.002 0.017
Max Mass PS 0.375 mg 766.8 g
Min Mass PS 0.0041 mg 0.017 g
Max Length 5.72 mm 35.6 cm
Max Length 1.27 mm 1.0 cm

4.1.3 Extinction Thresholds as a Function of kmin

By reversing and varying kmin while setting kmax to infinity, then one would expect similar behavior.

The change relative to the predation though is to start releasing the small and young from predation.

Once the juveniles are allowed to reproduce at least once, with a clutch size greater than one, then no

finite fish population will be able to control the population. We might therefore expect the extinction

threshold curves to be more sensitive to kmin. This is what we report in Figure 4.9. Compared to

Figure 4.10 from Henson, none of our curves reproduce the long shoulder she reported. Our step

size was larger than hers, and our initial populations saturate and grow faster than hers as was seen

earlier. Thus the juvenile period, the end of which is only dependent on reaching a fixed length,

is shorter. This explains why we do not see quite same length of shoulder before approaching the

right-hand asymptote. As before, the level portion to the right in our figure is a result of maxing out

mortality range which we allowed to be searched. This region indicates that the extinction threshold

cannot be determined and probably does not exist.

Similar to our work with kmax, can we calculate the upper and lower limits for kmin? Below

what value of kmin would all of the fish be presented with all sizes of prey? If the lower bound of

the prey window of the largest fish were smaller than the smallest daphnid, then daphnids of all

sizes would fit in the prey window of all fish. Thus if

kmin <
Lmin

D

10 · Lmax
F

then the condition will be satisfied. The right hand side is the same value calculated for the left-hand

asymptote for kmax. The size required for onset of reproduction is 2.5 mm. Similarly, if

kmin >
2.5

10 · Lmin
F
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Figure 4.10: Extinction Threshold Curve from Henson for kmax=∞ and Varying kmin
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then all juvenile daphnids will escape predation and reproduce at least once, thus no finite fish

population could control them. This results in lower and upper effective limits for kmin of 0.0036

and 0.25, respectively.

4.1.4 Comments

Although the extinction threshold is defined for a relatively short period of time and under conditions

of unrestricted growth for the prey population, the results and techniques can be extended and used

for populations in which density-dependent mortality is acting. It gives a rough idea of where the

edge of support is, even for longer runs. Further, the concept of replication volumes is useful to keep

in mind as it indicates how insulated a prey population is from extinction from predation. If it is

close to the edge of supportability, then its dynamics will be much wilder than one further from the

edge.

4.2 Size-Dependent Predation

In this section, we are focused on the persistence and extinction of the predators due to size-related

effects. The previous section addressed the extinction of the entire prey population and thus the

predators. In our models the predators have a selective window in which they draw their resource.

Such prey windows are observed in nature, with some prey even responding by adjusting their growth

rates in order to avoid the predation risk (Bystrom et al., 1998).

With a restricted window from which the fish are allowed to draw their resource, there are several

potential results that lead to starvation.

1. The most basic problem could be that there is no resource available in the window either

because the prey are all too big or too small.

2. Relatedly, because the window is a function of the fish’s length and because length is a non-

decreasing function in our model, the fish could grow off of their resource support. They

cannot shrink to pick up additional resource, nor can they advance in size without additional

resource. In the absence of resource entering the window, then only starvation can result.

3. Lack of sufficient resource in the prey window could be caused by the size classes being under

populated or the prey moving so quickly through the predation window via rapid changes in

size, that the predator again is left with an insufficient or a wildly fluctuation resource level.
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4. Further, perhaps the predators deplete the resource in their window, thus invoking starvation

on themselves.

These scenarios arise from the dynamics of the size structure in the prey population. Finally, because

of the competition of resource based on weight between the other fish, a smaller fish’s growth may

be stunted or prevented altogether through competition with the larger fish because their portion

of the resource is insufficient for growth.

With our models being across trophic levels, we have additional complications that arise from

very different abilities for the populations to respond by increasing or decreasing population numbers.

This is termed the numerical response, and is the complement of functional response. Both terms

were introduced by Holling (Holling, 1959). The fish have an annual window in which they can give

birth; whereas, the generation time for the Daphnia is four to six days. In order to explore the

depletion limits of the fish population we will artificially adjust the numerical response.

4.2.1 Goals

In order to better understand size-based predation, first, I wanted to visualize the effects of predation

on the prey both immediate and long-term. Secondly, I wanted to see the resource density dynamics

caused by varying resource. Next I wanted to understand and put specific meaning to the term

Predation Pressure and to see what I kept envisioning as Predation Waves. I had a picture in

my head of these concepts, but I wanted to figure out a way to visualize them. (Perhaps more

significantly, I additionally had the motivation to figure out why the models were recalcitrant. So I

focused on visualizing the actual predation in order to confirm correct behavior. What amount of

prey was one predator receiving? Could the number of prey be blowing the top out of the energetics

because something was not being summed correctly? These questions were also behind some of the

ideas in this section.)

Predation Pressure is used often in the literature. From the perspective of the prey it is used as

a synonym for predation risk. Or it is used to indicate a change in predation state, for example if a

species is found in two different lakes, but is only exposed to predation in one and thus takes some

action like hiding in a refuge or moving deeper in the lake, then this action may be described as a

result of predation pressure. From the perspective of the predator it may be used to describe the

amount of outtake or the amount of energy required of the prey system. The term is used often, but

I could not find a mathematical description. (It even appears in one of our own predator-prey model
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papers Jaworska et al. (1995).) I was trying to understand predation pressure from an individual

perspective.

A feature of our models that masks these concepts is that of sharing resource. With two different

predators which share resource in overlapping prey windows, the effects become muddled. For this

reason I decided to restrict my attention to the effects of one fish and to try to understand its effects.

This is analogous to the analysis technique behind functional response: understand the effect of one

predator on a prey population and then multiply by the number of predators to get the effect for

all.

4.2.2 Effects of Structured Predation

We maintain the initial populations and assumptions utilized in the previous section, in particular

that no mortalities are imposed except those due to predation or reaching a fixed maximum age.

We maintain this in this section so that the effects of predation are not obscured by other mortality

effects.

Total Predation Effect

The overall idea in this section is to use the fact that we have both a population and a predator-prey

model available that are identical in their effects on the prey population except for those imposed

by predation. (As part of the development process I repeatedly confirmed that the output of the

predator-prey version when restricted to the prey population matched exactly the output of the

population version.) Thus we can run the same initial population through both models and examine

the difference. Comparing the two models, then we can see the differences caused by predation

since we have not imposed any other mortalities. (This idea seems obvious now, but I was searching

for so long for some mathematical expression and did not think of this idea until thinking about

differencing integral expressions for predation.) Since we are trying to understand the effects of one

fish, then we limit the predator population to one cohort.

The experimental design was to take the initial populations utilized in the previous section and

isolate out one fish, testing it against the prey population. There was little diversity of size and

numbers left in the fish population as tested in the previous section, but I wanted to stay tied to the

first section. We will remedy this in the next section. I chose a single fish cohort with CHARID 135,

age 409 days, initial population density of 0.2, lipid mass of 89 grams, structure of 277 grams, and

protected structure of 210 grams, which is equivalent to a length of about 50 cm. (These populations
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Figure 4.11: Predation Effects for Chosen Fish over 10 Days

used the old allometric parameter value, so the lengths are inflated.) The populations were run for

10 days of simulation. One run was performed with the predator-prey model in “Daphnia-only”

mode. The second run was done normally. kmin and kmax were set such that the one fish could

prey on Daphnia with lengths in the range [3 mm, 4 mm]. The reason this range was chosen was

that previous experience indicated this to be a range of lengths through which the daphnids quickly

grow, so we should observe the effects of fluctuating resource level.

The resulting differences between the prey in the unstressed state and the prey stressed by the

predator are shown in Figure 4.11. This was not quite what I expected and it revealed some things I

had not previous observed about the prey population. The predation clearly starts its effects in the

correct size range. In terms of overall numbers of prey removed was small, and of no consequence to

the prey population. As these daphnids move out of the window, their trails are clear. At about 2602

days the first effects on reduced birth count is seen in the size classes near 1 mm. The movement out

of the prey window and the delayed effect on the egg classes was expected. A larger predation effect

is observed at about 2603 days. Why the sudden predation effect there? Further, why does the wall

build up along lengths around 3 mm? It seems that the predator was not uniformly predating, but

perhaps was favoring smaller size classes.
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Figure 4.12: Prey Population Length Class Structure over Same 10 Days

The mysteries are cleared up by looking at the length classes for the prey population in Figure

4.12. I chose the oblique angle in order to emphasize that there is a dichotomy of sizes built-up for

this prey population. There is a segment of the prey population that is undersized with maximum

length just over 3 mm. And there are the normal sized ones which grow to about 5.5 mm. The

characteristic curves emphasize the variable numbers of prey in the size classes through time. There

is a concentration of cohorts moving through the prey window at about 2602.5 days followed by a

relative sparsity. The predator is taking from the undersized daphnid classes in between spurts from

the normal sized classes. This is what it should do. It illustrates the dynamic relationship to the

prey population. If the prey window were just a little higher and missed the resource building up

at 3 mm, then the fish would have been in a feast or famine situation. This is illustrated in Figure

4.13 where several resource density curves are pictured for different locations of the prey window

on this same prey population run over the same 10 days. (Note that the high-densities of resource

(> 1g/cm3) are because density-dependent mortality is not being applied.)

This version of predation effect illustrates the total effect of a predator over a period of time.

Total effects include subsequent changes in births and the ripple effect through time caused by

predation. The direct effects are the result of the outtake integral and direct feeding. The indirect
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effects are the subsequent changes in the population structure that are caused by the removal of

some number of prey. These indirect effects quickly clutter the graph and confuse the effect.

4.2.3 Effects of Structured Predation

We now go through each of the potential reasons for lack of sufficient resource which were given in

the introduction to this section.

All Prey Too Big or Small

For sufficiently small values of kmax and sufficiently large values of kmin, the limits of the prey

window will positioned below or above the prey size classes. Similarly, if kmin equals kmax, then no

prey items can be consumed.

These extreme cases could be viewed as arising from incorrect setup of the model. In the case

that kmin equals kmax obviously it is. But there can arise “alternative states” as they are termed,

where the predator finds itself positioned above or below the available prey sizes. Such a case is

described in Persson et al. (2007), where the removal of a top predator species of fish has allowed the

previously predated species of fish to grow too large to be easily predated, but insufficiently large

to have higher fecundity, so the preferred YOY of the prey are suppressed. This slows or prevents

recovery of the top predator species. This observation led to the counterintuitive culling of the prey

species in order to promote the recovery of the top predator species by returning the lakes back to

their previous predator-dominated states.

Growth Off of Support

Related to the first case is where the predator receives sufficient resource for a period of time to

grow, but the growth then moves the lower limit of the prey window to be above the size classes that

were supporting the fish. I term this as growing off of its support. This is not a result of incorrect

setup of the model. Note that this does not mean that the resource level for the fish is zero. It just

means that it is insufficient for additional growth. Starvation may or may not occur depending if

the resource available is sufficient over time to meet energetic requirements. This situation can also

be caused by smaller fish consuming the resource before it can grow into the size classes required by

the larger predator. (This is a common natural method by which the smaller fish can outcompete

larger fish; see Bystrom et al. (1998); De Roos et al. (2003); van Kooten et al. (2007); Claessen

et al. (2002).) Further note that new resource will not immediately result in increased length of the
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predator because the mass of structure must increase to a point above the previous high-water mark

at which the level of protected structure was set previously.

Fluctuating Availability

The resource level can be fluctuating as we saw in the visualization and Figure 4.13. This may cause

the growth of the predator to be slowed or prevented when its prey window is passing over a region

of high fluctuation. Fluctuations in resource can be exacerbated by smaller cohorts consuming from

smaller prey size classes.

Depletion

Depletion of the resource in the prey window by the fish cohort itself is typically not sufficient to

drive the prey population to extinction. This is similar to an extinction threshold for a single cohort.

If the juvenile classes of prey can reproduce once, then no finite predator population can control

the prey population. So if the prey window of the fish does not include the juvenile classes, then

it cannot drive the prey population to extinction. It can consume all of the resource available to

it, so new resource is only available from the growth of the smaller size classes of prey. This input

resource may or may not be sufficient to support the predators and is a tenuous survival at best.

With density-dependent mortality or some other effect, then indirectly the prey population could

be driven to zero by sufficient removal of segments of the population.

One can define what I term a Quiescence Threshold similarly to the Extinction Threshold. Define

the function np(kmin, kmax, LF ) to be the number of prey cohorts available as resource in its prey

window for a fish of length LF .

Definition 4.2.1 (Quiescence Threshold) Given a fixed number of days, N , values for kmin

and kmax, the initial population distribution ρ̂(a, m), volumes VD and VF , and a fixed fish cohort,

F, define the quiescence threshold for F to be the

inf{q ∈ �+|Fwith density q drives np(kmin, kmax, LF ) to zero in N days}

What we are doing is by arbitrarily increasing the population size on the fish cohort, when does it

deplete its resource? It could also grow off of its support, but the presumption is N is small, so that

growth is not a significant concern.

Conceptually I picture a gape-size prey window as a type of band-pass filter: it reduces or

eliminates any frequencies in a precise range. Prey items above the effects of the filter have a limited
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lifetime. If no prey items survive through the filter, then all larger size classes will be eliminated.

The Quiescence Threshold for a fish gives an indication of how strong of a filter it is. Obviously, this

is not an experimental value that is directly obtainable, and it depends on the prey population. It

is an exploration of the concept of predation pressure from an individual perspective. It also gives

a value at which juvenile classes could block all resources from progressing upward. This latter is a

natural occurrence and is behind the Dwarf-Giants dynamics reported in Claessen et al. (2002) for

cannibalistic fish populations. The populations are dominated by small fish that consume all of the

zooplankton resource. A few fish grow to an extraordinary size because they grow large enough by

cannibalize. The other size classes die out by starvation.

One can calculate the Quiescence Threshold exactly if N is one time step, dt. Multiplying

Equation 3.2 by VD gives the total resource mass for a single fish with a certain prey window.

Equation 3.3, the total outtake integral, gives the total consumption by all fish of the same size. Since

there is only one cohort, then the outtake integral reduces to a single value with units grams/day.

Multiplying by the time step, equating, and solving for ρF , yields the exact value for the Quiescence

Threshold for fish cohort F.

Quiescence Threshold(F ) =
mF

f(xmF )dt

∫ k2mF

k1mF

mD

∫ ∞
0 ρD(t, a, mD)da∫ ∞

0

∫ mDk−1
1

mDk−1
2

mρF (t, a, m)dmda
dmD (4.4)

If one gives a longer time for quiescence to occur, then integration over time does give an equation

for Quiescence Threshold, but a program that varies the population density and then runs the

simulation over the prescribed time period is required to determine a value. The first point of zero

resource could be earlier than N days and new resource characteristics will encroach for a period

of time as they grow into the window. I performed this search with another python script and a

simple modification to the predator-prey model that outputs a notice if there are no items in the

prey window.

Table 4.3 gives the Quiescence Threshold for the fish characteristic chosen for the predation

visualization. As the size of the window is increased, then it takes more fish to deplete the prey

which is a behavior one would expect from pressure. As we increase the segment of the population

over which the predation is applied, then the population density must also be increased in order to

exert the same amount of predation pressure.
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Table 4.3: Quiescence Threshold Calculations

Lower Upper Window Quiescence
Bound Bound Size Threshold

3 3.25 0.25 0.0162125
3 3.5 0.5 3.3063889
3 3.75 0.75 7.8954697
3 4 1 28.6922455
3 4.25 1.25 43.7097549
3 4.5 1.5 92.2079086
3 4.75 1.75 142.5619130

Competition

The last effect that can constrain uptake in structured predation is competition and sharing of

resource. I had developed the other ideas for one fish cohort, because sharing complicates the

concepts and mathematics, but this turns out to be an important limit on the otherwise explosive

growth of small fish as we shall see in the next section.

We have already been through the design and reasons for competition, encounter rates, and

sharing of resource, so they are not repeated here. But do note that if kmin is zero, then competition

for resource will always be present and the larger fish will dominate resource uptake. This dominance

can be so heavy that the smallest fish subsist or starve. If kmin is greater than zero, then there is a

corresponding decrease in competition from larger fish on the resource available to small fish.

4.2.4 Predation Pressure and Zero Growth Condition

Looking at the definition, calculation, and behavior of the Quiescence Threshold, then a process

leading towards one possible definition of predation pressure emerges. We use Equation 3.3, the

total outtake integral, to tie the individual predator’s functional response/outtake to the cohort of

which it is a representative. Since the population is a composition of cohorts, then integrating over

all fish sizes yields a total outtake for the population in units of grams (of prey biomass) per day.

The prey population must be able to sustain this rate of predation. What had previously gone into

increasing the biomass of the prey population by growth is now partially siphoned off by predation,

thus acting to decrease the prey population’s biomass. We will observe this effect in the next section,

where its interplay with density-dependent mortality will be significant. The Quiescence Threshold

gives the extreme value of this depression at which all growth is consumed by predation.
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Representing total consumption rate and its effects on the prey population are both features

I was looking for in a definition of predation pressure. There are some features that I wanted

too that total consumption does not feature. It does not give clear direction on sufficiency of the

resource, long-term survival/growth of the individuals, and carrying capacity of the environment.

Further, it is dependent on the prey population as part of its definition. As we just saw, underlying

several of the consequences of structured predation is a condition where no further growth is possible

without additional resource. The level of resource may be sufficient to sustain, but is insufficient for

additional growth. At what point is this?

A related concept used by de Roos and Persson repeatedly in their papers as an analysis tool they

term both zero-growth and critical resource level. See Claessen et al. (2002); De Roos and Persson

(2001); Claessen et al. (2000); Persson et al. (1998) for development and application of these functions

to an aquatic, size-dependent predation, physiologically-structured, predator-prey model which is

very similar to ours. It features a predation window, cohorts, birth combining, periodic and discrete

births, energetics, etc., similar to ours. Their model has a zooplankton resource, but the fish can also

meet energetic requirements through cannibalism. Further, see Persson and De Roos (2006) where

it is reported that the location of the minimum of the zero-growth function determines one of three

ultimate population dynamics. The Zero-Growth equation arises from going back to the individual

model and setting the equations expressing growth to zero. This expression gives the ingestion

required at each step in order to exactly balance the work and maintenance losses. This is used

to calculate the lowest resource density that an individual of a specific size needs for maintenance

which is termed the critical resource level. The critical attack, metabolic, and gut clearance rate

functions are all directly in terms of the length and size of the fish. The minimum and shape of

the critical resource density curve determines the ultimate population dynamics. They had very

carefully examined the time series outputs before and knew there were three types of outcomes

which are tied to this curve (Claessen et al., 2002). The important feature to us of this equation is

that it indicates the level of resource at which an individual can persist without growth or starvation.

This is calculated from the individual without dependence on the prey population.

Theoretically we can apply the same technique to our models by zeroing the two growth model

ODEs in Equations 1.14 and 1.15. The loss terms in this equations express the amount labile

lipid/structure required for energetic requirements. Direct calculation is prevented by our current

formulation because we do not directly tie length to some of the components and have functions like

percent lipid in resource that vary with the prey. Calculation is further complicated by the energy

integrator feature. Although, until I fixed the ED/EA fraction was always one, so the loss term was
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simplified considerably, so that one could by estimating a few values calculate the critical resource

level. (See the appendix to Hallam et al. (2000) for derivation of the energetics equations.) Another

problem is that the same level may not apply to both equations. Theoretical issues aside, we will

detect zero-growth and near-zero growth conditions in our extinction/persistence maps in the next

section.

The zero growth condition does have several features that such as not depending on the prey pop-

ulation directly, can give estimates on carrying capacity, can be directly calculated from the model

(at least approximately), and precisely defines the conditions of growth or subsistence underlying

structured feeding. Summing the actual outtake leads to the rate at which the prey population must

replenish to survive. Whereas the zero-growth condition gives the resource level at which the preda-

tors must feed to survive. Conceptually, I settled on these as practical and theoretical expressions

of predation pressure. We will see both effects in the dynamics maps in the next section.

A note for completeness: When predation pressure is interpreted as predation risk, then the

question becomes how long is a prey item exposed in certain prey windows? Since we have constant

resource and the growth equations, then we could calculate predation risk in terms of exposure times.

But, since we do not model any direct mechanism by which the prey item can change its exposure

to predation — it cannot grow faster or slower, for instance — there is no benefit to pursue this

direction with the models as they are currently.

4.3 Extinction, Persistence, and Compatibility

In the sections preceding we have analyzed extinction (or quiescence) for the prey and predators

separately. In this final section we examine conditions for long-term persistence: Given two popu-

lations which are themselves persistent as population models, for the four parameters which define

our structured predation, is there a region of parameter space such that the predator-prey model

persistent (i.e., the populations coexist with the prey population providing sufficient resource for

the predating population to thrive)? I term this region the Compatibility Region. This section

puts together all of the analysis tools introduced in this chapter thus far and was inspired by the

dynamics studies in Claessen et al. (2002). Note that for the definitions of Extinction and Quies-

cence Thresholds in the previous sections that additional types of mortalities can be imposed on the

populations.
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4.3.1 Mortalities Imposed

The first problem to solve is to be able to run the model longer than 100 days. The initial populations

chosen are the same ones described and used previously in Section 3.4 for the Performance Runs.

Here we make the additional notes that the ages span 364.47-2915.43 days and the sizes span 21.6-

31.9cm. The initial total biomasses for each population are Daphnia = 1836 mg and Fish = 157,460

g. A total run time of 2600 was chosen so that all of the fish in the initial population would be

removed before the end of the simulation; so if the population is to remain viable long-term, then it

must be through replenishment by the fish born during the course of the simulation (recruitment).

In addition to maximum age, we now impose density-dependent mortality effects on the Daphnia.

Without this control on the Daphnia population, given unlimited resource, it will exhibit exponential

growth. Recall the shape of density-dependent mortality curve in Figure 1.13, with a well around an

optimal biomass. For populations whose total biomass exceeds the upper lip of the well, a very high

mortality is imposed which drives their biomass down. Dropping below the optimal biomass begins

an increase in density-dependent mortality (models undercrowding) which causes further decreases

in biomass. The effect for a population whose biomass declines below this value is usually a rapid

decline to extinction. It was proven in Henson (1994) that density-dependent mortality drives out

the ecotypic diversity of the population in a population model. This is another reason I delayed

the invocation of this until now, but it is required now for us to study the long-term effects on the

predator population.

Only maximum age mortality is imposed on the fish population as a whole. Starvation will

occur for an individual through lack of sufficient resource once all its stores are depleted. Starvation

is considered to occur when the structure stores drop to a certain percentage above the level of

protected structure. As described previously I settled on a value of 80% of peak mass structure

for the starvation threshold compared to 71% for the protected structure threshold. This yielded

starvation times of about 80 days for large fish and about 240 days for smaller fish. These are

excessively long, but starvation can also occur at reproduction times, when bulk allocations from

lipid and structure stores are shunted to eggs. Starvation during the mass allocations for births did

not occur with it set to this value as it did for higher values. (A value of 90% yielded starvation

times of 15 days for large fish.) Young-of-year mortality is imposed on the newborn fish aged 18

to 60 days pushing the towards a fixed population density (not directly biomass related). This was

usually set to 8000 with a resulting newborn biomass of 250 g, but I did vary it some to see if I could

induce persistence by allowing additional recruit population size. The role of density-dependent
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mortality is not required as a control for the fish population, because they are competing through

shared resource.

It is built into the model that reproduction for both the fish and Daphnia can be delayed or

prevented altogether if insufficient stores are available when the reproduction window arrives. Thus

starvation or subsistence can prevent reproduction. We have not noted this before this point because

we were always operating under conditions of sufficient resource for growth and reproduction.

4.3.2 Experimental Design and First Results

With knowledge from the Section 4.1, we fixed the value for rscale to be 0.2×10−5 which corresponds

to VD equal to 500 liters or approximately 130 gallons. I determined through a binary search that

an extinction threshold for 1000 days for a wide-open gape was above the value fscale= 0.510×10−3.

This corresponds to a value for VF of 1 million liters or 265,000 gallons. This represents a volume

of replication value of 2000 — certainly conceivable. Further, I did not observe the biomass of the

Daphnia population to drop below 1000 mg for this value (bottom threshold for density-dependent

mortality is 860 mg), so I thought it a reasonable value to begin with. The only other value I had

from my archives for fscale was 0.2×10−4 which corresponds to 25 million liters or 6.6 million gallons

which seemed to be way too conservative of a value for anything interesting to occur and a volume

of replication of 51,000 which seemed way out of range. For values above fscale= 0.530× 10−3 the

Daphnia population went extinct before the end of my test simulations.

With these two values chosen, all that remains is to choose are values for kmin and kmax. Choices

for these two parameters form the parameter space over which I searched for regions of compatibility

with kmax on the horizontal axis and kmin on the vertical. What constraints are there on these

besides they are non-negative, real-valued parameters? We know kmin < kmax, because otherwise

the gape size is completely closed. This restricts our search region to the lower triangle in the first

quadrant. An additional constraint on kmax comes from the smallest of fish at least must be able

to have at least the smallest of daphnids in its prey window. Thus 10kmaxLmin
F ≥ Lmin

D . Plugging

in values from our populations (see Table 4.4) yields an effective lower bound for kmax to be 0.1272.

Finally, similar to when we searched for Extinction Thresholds for kmax, when kmax is chosen

such that the entire prey population is in the smallest of fish’s prey window, then there will be no

difference between using this value for kmax and setting kmax =∞. Using our populations’ values,

this yields an effect upper limit of 0.5735 on kmax. Thus the region to be searched for compatible

values of kmin and kmax and the expected outcomes at the edges is shown in Figure 4.14.
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Table 4.4: Maximum and Minimum Individual Sizes

Parameter Value Units
Daphnia
Max Structure 0.75 mg
Min Structure 0.0082 mg
% Protected Structure 50 %
Allometric Coefficient 2× 10−3

Max Length 5.72 mm
Min Length 1.27 mm
Fish
Max Structure 1080 g
Min Structure 0.0238 g
% Protected Structure 71 %
Allometric Coefficient 1.7× 10−2

Max Length 35.6 cm
Min Length 0.998 cm

The initial population has lengths of 21 to 32 cm. For any resource to be available to the initial

population from the prey population, then kmin must be less than 0.0159. This is the value at which

the largest of the initial fish (31.9 cm) can still feed on the largest of the daphnid population (5.1

mm). We search the entire parameter space, but this condition puts a strong condition on the viable

values for kmin to be near the kmin = 0 axis.

Generally, for a given fish of length LF , in order for any prey items to appear in its prey window,

then kmin <
Lmax

D

10LF
. This gives the restriction for the largest of prey items to appear at the bottom

edge of the fish’s prey window. Thus, for all except the smallest of fish (1 cm), this means that most

values of kmin will eliminate their ability to forage on this prey population.

I added displays of Daphnia and fish population total biomasses as the programs ran which were

recorded in addition to all predation and population structure data. The fish population biomass

output was further split into that for the initial population and the recruits. With these I could

monitor what was happening while the program ran. A python script was written that parsed the

space into about 100 runs, created the appropriate predation parameters files and ran the predator-

prey model repeatedly. After it completed, then I analyzed the dynamics of each output file and

compiled a table of the results based on the outcomes. For all combinations of the parameters

extinction occurred, but there were a variety of pathways through which extinction occurred. The

Extinction Map for this set of runs is shown in Figure 4.15. The size of the dots indicate how close

to a complete run the simulation reached. None completed, but the ones along the kmin=0 axis

ended at about 2550 days.
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4.3.3 Extinction Pathways

I was surprised by two things once I plotted this map. One is that I did not find any values leading

to persistence. The second was by the variety of methods through which extinction occurred. So

many of the runs looked like they would make it, the populations seemed healthy and growing, but

then would go extinct for one reason or another. These different pathways to extinction are revealing

and grouped into regions in the parameter space. Each pathway is now described from my original

list and examples given. I later pared this list down.

Type 1: Initial and Recruit Populations Starve

The first extinction pathway occurs at the upper and left edge of the parameter space. On the upper

edge the gape size is nearly closed so minimal feeding occurs. On the left edge, for the non-zero

values of kmin tested the initial population could not see any resource. For the recruits there was

too little resource available in their window, because kmax was chosen such that the recruits just

had access to the smallest (non-brood) items of the prey population.

The total biomass values for this extinction pathway are shown in Figure 4.16 for the prey and

predator population. Figure 4.17 shows the recruits and initial fish population biomasses. Note the

number of days to starvation. There is some feeding occurring for the recruits, but at unsustainable

levels. Also note the precipitous drop for the recruits caused by YOY mortality; the biomass levels

off at about 250 g. The decreasing modulation of the biomass levels for the Daphnia population is

typical when density-dependent mortality is imposed.

Type 2a: Prey Driven to Extinction by Recruits

In this scenario, the initial population had been removed from the fish population by starvation

through growth off of its support. This left the recruit population without competition. Often, in

this situation, with relatively few numbers and biomass, it was able quickly drive the prey population

to extinction.

I give two different examples for this extinction pathway. In the first example, Figures 4.18 and

4.19, shows the typical example where the recruits, as soon as they start feeding, rapidly drive the

prey population to extinction. In the second example, Figures 4.20 and 4.21, shows an example

where the recruit population grows slowly, but once it increases in size sufficiently to start growing

rapidly, it again drives the Daphnia to extinction.
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Figure 4.16: Total Biomasses for Daphnia and Fish Populations for Type 1 Extinction
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Figure 4.17: Total Biomasses for Recruits and Initial Fish Populations for Type 1 Extinction
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Figure 4.18: Total Biomasses for Daphnia and Fish Populations for Type 2a Extinction
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Figure 4.19: Total Biomasses for Recruits and Initial Fish Populations for Type 2a Extinction
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Figure 4.20: Alternate Example Total Biomasses for Daphnia and Fish Populations for Type 2a
Extinction
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Figure 4.21: Alternate Example Total Biomasses for Recruits and Initial Fish Populations for Type
2a Extinction
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Figure 4.22: Total Biomasses for Daphnia and Fish Populations for Type 2b Extinction

Type 2b: Recruits Starve Until Initial Population Reaches Max Age, Then Drives Prey

to Extinction

This pathway is a interesting variation on the one above. I later stopped making a distinction

between this pathway and “Prey Driven to Extinction.” This type only occurred on the kmin = 0

axis. Figures 4.22 and 4.23 show that the recruit population for the first seven generations was

outcompeted by the larger fish to the point of elimination from the population. Each recruit class

would starve off due to lack of sufficient resource because they could not compete against the initial

population. But the last generation which was hatched just before the last of the initial population

was removed, grew so rapidly that they drove the prey to extinction. This demonstrates both the

effects of competition and rapid growth. This simulation does almost reach 2600 days. Note the

jump in biomass when the Daphnia population is released from the predation pressure exerted by

the initial fish population.

Type 2c: Initial and Recruit Populations Survive, Drive Prey to Extinction

This is also a variation on the “Prey Driven to Extinction” pathway. Figures 4.24 and 4.25, shows

that both Initial and Recruit populations remain at the end of the simulation, but together had
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Figure 4.23: Total Biomasses for Recruits and Initial Fish Populations for Type 2b Extinction

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000
Total Biomasses Per Population (KMAX = 0.499133, KMIN = 0.000000)

Simulation Time

T
ot

al
 B

io
m

as
s 

P
re

y 
P

op
ul

at
io

n 
(m

g)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.4

1.6

1.8

2

2.2
x 10

5

T
ot

al
 B

io
m

as
s 

P
re

da
to

r 
P

op
ul

at
io

n 
(g

)

Figure 4.24: Total Biomasses for Daphnia and Fish Populations for Type 2c Extinction
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Figure 4.25: Total Biomasses for Recruits and Initial Fish Populations for Type 2c Extinction

driven the prey population to extinction. The simulation ended before the initial population had been

removed by old age. This type only occurred on the kmin = 0 axis at the far right. It is exhibiting

a Quiescence Threshold-type extinction, because the recruit class is growing and surviving between

generations, eventually accumulating enough numbers to drive the prey population to extinction.

Type 3: Initial and Recruit Populations Grow Off of Support

The most common pathway of extinction is caused by both segments growing off of their support

and starving. This was sometimes difficult to distinguish from starvation caused by a closed gape.

Looking at the .pred output file in which I record all predation values and activity, I was able to

distinguish by confirming that the lower value of the prey window had exceeded the maximum length

of the prey population. This turned out to be a fast filter for my later analysis. I could look at the

.pred file and eliminate all of the parameter values which indicated growth off of the prey population.

The total biomass values for this extinction pathway are shown in Figures 4.26 for the prey

and predator population. Figure 4.27 shows the recruits and initial fish population biomasses. The

recruits begin feeding at 51 days after they have consumed their yolk sac. The feeding causes a drop

in the biomass of the Daphnia population, but with the rapid increase in size, the recruits grow off

of their support and the Daphnia population recovers.
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Figure 4.26: Total Biomasses for Daphnia and Fish Populations for Type 3 Extinction
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Figure 4.27: Total Biomasses for Recruits and Initial Fish Populations for Type 3 Extinction
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Figure 4.28: Total Biomasses for Daphnia and Fish Populations for Boundary Case

An Interesting Boundary Case

In this final set of Figures 4.28 and 4.29, kmax = 0.424767, and kmin = 0.15 which is on the boundary

between extinction of the fish by growth off of support, and extinction by driving the daphnids to

zero. The lone fish cohort almost drives the prey population to zero, but its resulting growth restricts

it to only the top portion of the prey population (> 4.7mm). The Daphnia population is able to

continue to reproduce, although with very small numbers; whereas the lone fish starves. This is also

a longer-term, Quiescence Threshold-type of extinction.

4.3.4 Analysis of Extinction Map

The most surprising aspect of this Extinction Map are the Type 2 Extinctions. Repeatedly, the

Daphnia was driven to extinction by a relatively number of recruits. This is partially explained by the

explosive nature of the early growth of the recruits, which when they are moderated by competition

is suppressed, but it still did not explain why a relatively huge population of fish exerting much

more pressure on the daphnids (enough to suppress the normal biomass level by several hundred

mg) were able to thrive and survive on the same prey population, but just a few kilograms of small

fish could not survive on the same population. I initially thought it was their explosive rate plus
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Figure 4.29: Total Biomasses for Recruits and Initial Fish Populations for Boundary Case
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normal oscillations of biomass, which was knocking the daphnid population under the bottom edge

of its density-dependent mortality bowl; thus leading to the rapid extinction of the daphnids. This

is partially true and leads to the rapid elimination of the large daphnids, but it does not explain

completely how such a small population was able to effect such a large change in biomass.

It turns out to be another Quiescence Threshold-type of effect where the juvenile fish are out-

competing the larger fish for food and eliminating any from growing into the size classes above.

Figure 4.30 is the lengths plotted over the simulation time for the first example shown as Type 2a.

It clearly demonstrates the depletion of the lower-size classes (brood classes are protected). The

depletion of the juvenile classes quickly prevents recruitment into the larger size classes.

I did think that perhaps lessening the YOY mortality imposed would allow the biomass of the

fish born in the course of the simulation to rise sufficiently to suppress the explosive feeding of

newborn cohorts that follow it. As it is, each new population of YOY fish born in the course of

the simulation are collectively limited to about 8000 which represents a total biomass of about 250

grams. This is decrease from a population of hundreds of thousands and thousands of grams as the

graphs have shown. I ran such a set of tests allow four times as many to remain. There were no

regions of compatibility that appeared.

The conclusion seemed obvious. I had apparently chosen the value for fscale too close to the

extinction threshold. Choosing a new value well away from the extinction threshold would certainly

insulate the Daphnia population from the shocks of newborn fish. This would at least eliminate this

pathway to extinction and lead to regions of compatibility where the fish growth would be balanced

moderated by older fish and would not grow off of its support until at least after first reproduction.

This lead to my second set of experiments.

But before we get into the second set of experiments, there are a couple of other synchronicities

with the analysis results that I want to point out. In Claessen et al. (2002) they focus heavily on time

series analysis of the dynamics. Their dynamics map separating their parameter into regions inspired

the extinction/persistence maps of this study. They also mention that oscillation frequencies in the

populations portend a change in dynamic. Our two previous papers published on this predator-prey

model also describe the oscillations (Hallam et al., 1992a; Jaworska et al., 1995). Figures 4.31 and

4.32 demonstrate these oscillations. I did not especially study the time series data, so I do not have

any other comment on the fluctuations.

The other comment is that one can explore different regions and different parameter values

through the inequality relations in order to try to induce overlap or buffer the foraging regions of

the initial and recruit populations. I worked out many different scenarios and ratios trying to detect
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Figure 4.30: Depletion of the Lower Size Classes by Small Fish

Figure 4.31: Short-Term Fluctuations in Size Classes
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Figure 4.32: Long-Term Fluctuations in Size Classes
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critical regions and boundaries. There is some analogous work in Claessen et al. (2002). But, with

the general parameter space search, these values are explored, so I do not report any results from

these scenarios, because they are usurped by the general maps.

4.3.5 Second Set of Experiments

For the second set of experiments, I took the other value I had for fscale in order to be on the

safe side and to be certain to generate regions of compatibility presuming there were such regions.

So fscale was set to 0.2 × 10−4 and the runs were repeated. During the course of the runs I was

able to see that several parameter sets did lead to persistence as expected. The biomass level for

Daphnia would often hardly budge from a value of about 1800 mg. This was also expected since

we were scaling down mortality by a factor of 200,000. With such insulation, I theorized that the

Extinction/Persistence Maps would be boring. In particular, there should be no regions where the

insulated daphnid population is driven to zero. Other than the new value for fscale, all other values

and populations were fixed between the first and second set of experiments.

The first Extinction/Persistence Map I generated is given in Figure 4.33. Most of the parameter

space is covered by growth off of support as expected. There were several parameter sets along

the bottom axis that survived to the required 2600 days, and an off-axis combination at 0.2 also

survived. Starvation along the left and top edge was not surprising. What was surprising was a

single green dot indicating that the prey population had once again been driven to extinction. When

I was analyzing the data set, when I came to this run I was puzzled as to what happened; the fish

seemed fine. I was surprised to see the extinction of the prey — I had not been looking at the prey

biomass. Upon later review I found a whole row of such extinctions for kmin = 0.025. It seemed like

a replay each time: the recruit biomass would reach 1.85M g and the daphnid population would go

to zero. What was going on? Was the model breaking? The same prey population was supporting

much larger biomass levels when kmin = 0. How could the Daphnia population possibly be driven

to zero?

An additional set of runs was made that was made in step sizes of 0.001 vertically and was

bounded above by 0.02. I was looking right along the axis to try to find values off of the axis that

were in the compatibility region. It did not make sense that the interior of the compatibility region

should be empty, since the smallest sizes of Daphnia are around 1.0 mm. It should be an open set

of some sort. Analyzing these new runs yielded Figure 4.34. It indicated that there was indeed an

extended off-axis area of persistence for kmin < 0.01 with a bulbous region forming near the left.
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But it also revealed an extended region where the Daphnia were driven to zero. This region really

surprised me both for its existence, location, and size. Did it make sense and why was it persistently

there?

In the first set of experiments we did see the effect that juveniles could cause extinction by

eliminating the smallest size classes. With the longer runs and the fish population allowed to grow

larger, another mechanism emerges that duplicates the same effect. The fish population size can

grow to such a point that its outtake suppresses the biomass of the Daphnia population below

optimal biomass. This can occur by just a random oscillation starting the feedback loop towards

increasing mortality with decreasing population size. Figure 4.35 gives such an example where the

predating cohorts all had prey windows above 3 mm, so the juvenile classes were not being directly

predated upon. Note the flaring of the prey biomasses near the end. I did not try to distinguish

between this type and extinction caused by the juvenile classes being eliminated from the Daphnia

population; they both had the same outcome.

To further analyze these emerging regions and to try to determine boundaries between the

regions I realized that I needed more runs, but my ability to accurately analyze the outputs and

assign extinction types was flagging. I had already filled half of a new 500 Gb hard drive with output

files. So I wrote a python script to perform a binary search for the boundaries of the persistence,

prey-extinct, and predator-extinct regions. The script was consistent where I was not and could

extract terminal execution times and biomasses which I had been doing initially but quit doing

because of the tedium. The first output of this binary search combined with all of the data I had

collected to this point is summarized in the Existence/Persistence Map in Figure 4.36.

A few more surprising features emerge from this map. The continued existence of the Type

2 Extinction region notable, capping the persistence region and separating it from the region of

Zero-Support. Further, many of the runs in the Type 2 region ran to a substantial portion of the

2600 day limit. Time before extinction decreased as the parameters neared the Zero-Support region.

The band of survival across the top of the Type 2 Extinction region at the boundary between the

predator-to-zero and prey-to-zero region is surprising to detect. Such an interface is rare to find,

although mathematically it exists. Finally, the size of the bulbous region at the left is ten times

higher than the rest of the survival band.

I focused on the left-hand side to try to understand what was happening there. See Figure 4.37.

Surprisingly, more areas of persistence showed up detached from the lower axis. These were near

the upper boundary. Had I been overlooking regions of compatibility, presuming there to be nothing

interesting above the Zero Support region? I had finally discovered the strong restriction on kmin
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Figure 4.35: Total Biomasses for Daphnia and Fish Populations Demonstrating Type 2 Extinction
Caused by Predation Pressure
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resulting from the large sizes of the initial population and I had observed the required competition

to suppress the rapid growth of the juvenile class. These together explained the compatibility region

along the bottom axis, but what could I make of the off-axis regions? The mystery is cleared up

when the plots are made with relative to the terminal total biomass for the fish populations as

shown in Figure 4.38. What is happening is that the recruits were subsisting, but not increasing

in biomass above their original levels. By my definition, the populations survive to 2600 days and

should therefore be included in the persistence region, but they fail to meet the qualification of truly

representing compatible populations which would persist indefinitely. The recruits cannot generate

enough stores to reproduce, therefore they will not persist. This observation indicates the role that

the choice of 2600 days plays. It plays a similar role to our choice of time period in the definition of

Quiescence and Extinction Thresholds.

This last observation led to wondering if any of the regions truly show persistence. Was it only

a matter of time before the fish population built up to an unsupportable level? I had repeatedly

observed the biomass level of the Daphnia being drawn down lower and lower with each successive

generation of fish. Could it be drawn under the optimal biomass, thus leading to a Type 2 Extinction?

Is some other mortality required to induce compatibility? To this end I ran a final set along the

bottom axis for 10,000 days. I had thought that the compatibility regions might disappear, but

had indication that the middle region ran just a little bit closer to pushing the prey under optimal

biomass. All of the populations persisted except for the ones with low kmax. Figure 4.39 reports

the terminal biomass for both populations. As observed, the middle values of kmax did have slightly

higher terminal biomasses for fish which pushed the prey population slightly closer to the optimal

biomass of 1400 mg. This did surprise me that none of them built up quite enough to push the

Daphnia to zero. Figure 4.40 demonstrates why none of them built up too high. When the fish

population had built up almost enough biomass to push the Daphnia under optimal, then the oldest

characteristic would be removed because of maximum age. The Daphnia population would then

recover.

4.4 Analysis and Conclusions

At first appearance Extinction Thresholds seem to indicate that persistence of the community model

is determined solely from the value of the predation scaling factor fscale = VD/VF . If the predation

scaling factor is chosen below the threshold, then the community model survives. In fact, the
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Daphnia population either goes to zero or infinity, depending on if the predation is sufficient to

control the prey. The absence of density-dependent mortality gives this rudimentary structure and

sharp threshold. The overall method of determining the extinction threshold can still be applied in

the presence of more complicated mortalities.

Similarly, the Quiescence Threshold is defined in the absence of density-dependent mortality so

that predation mortality is isolated. Further, isolating a predator cohort and then defining the

Quiescence Threshold in terms of the minimal population required to deplete the resource in its prey

window seems to be without direct application. But, we see in Figures 4.24 and 4.25 that addition

to small classes of the fish population over successive generations can built up to a point at which

the smaller classes of the prey population are depleted and the prey population collapses. Again,

the overall idea behind the quiescence threshold is applicable in the presence of more complicated

mortalities.

For the complete community model with density-dependent mortality imposed on the prey pop-

ulation it is demonstrated that decreases of fscale are insufficient to ensure persistence of the

community model for all valid values of the gape-size parameters kmin and kmax. The Persis-

tence/Extinction Maps demonstrate that in the kmin-kmax parameter space three types of regions

persist under changes to the fscale parameter. The predator-extinction region was the largest. For

parameter values in this region, then the predators grew off of their supporting resource. In spite

of increased insulation of the prey population from predation mortality afforded by decreases in fs-

cale, a region of prey-extinction persists. We demonstrated two causal mechanisms for this behavior

in that both the rapid initial growth of the juvenile fish and their predation on the juvenile prey

classes, assisted by density-dependent mortality and natural oscillations in biomass can lead to this

conclusion. Finally, a region of persistence emerges along the kmin = 0 axis. The persistence region

is constrained to this region because of the requirements for competition from larger fish to control

the juvenile classes. For the fish from the initial population to survive and compete with the juvenile

classes, then the size-structure of the initial fish population and the overall size-structure of the prey

population determined from the individual model delineate the maximum value of kmin that can

produce persistence.

Overall, we found that the stability of the community model is threatened when the predator

population is dominated by juveniles. Conversely, stability is maintained by the presence of larger

fish. This indicates that determination of the health and stability of fish populations requires

inclusion of size-distribution in addition to assessment of population or biomass.
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The model is very sensitive to the choice of kmin, while kmax is less significant. This was

first indicated in Section 4.1 where we had difficulty determining the extinction threshold for kmin.

Because kmin is fundamental in prescribing the prey window overlap and the level of competition

between the size classes, the reasons for the sensitivity of kmin is clear. Although for a population

model-only and through different mathematical analyses, this conclusion is in line with the results

of Persson and de Roos who found that the lower window parameter determined the dynamical

behavior and outcome while the upper window parameter only had effect on the life history and

population structuring. Another similarity was the role of the juvenile classes on restricting food

from advancing up to the larger fish.

4.5 Future Research

With these results established, now one could proceed to study long-term dynamics and bifurcation

diagrams as was done in the papers by de Roos and Persson for a fish population. Their primary

analysis tool was time series analysis with the ability to discern predator-prey dynamics from cohort-

driven dynamics. As a future research project, we could do a similar analysis. Questions of interest

include the following. Do our regions of persistence further segment into dynamical regions as they

found? Do the shapes of the critical rate functions in the functional response for the fish also

determine these dynamics?

Another potential project would be examine how the diagrams change with perturbation in

starvation sensitivity. The size structure of the prey population is not evenly distributed. If the fish

were particularly sensitive to feast-or-famine cycles, then different outcomes could be expected. The

starvation levels and preventing starvation during birth cycles are model features that need to be

reconsidered.

Finally, as we saw in this chapter, our maximum age condition is unrealistically abrupt. We

do have a formulation for an age-based mortality, but it was never applied. Smoother dynamics

would result if the older cohorts were slowly reduced over time. Similarly, starvation as modelled

by Persson and de Roos is smoother, reducing the cohort numbers over time rather than an abrupt

removal.

193



Bibliography

194



Bibliography

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1985). Data Structures and Algorithms. Series in

Computer Science and Information Processing. Addison-Wesley.

Almasi, G. and Gottlieb, A. (1989). Highly Parallel Computing. Benjamin-Cummings, New York.

Bartell, S., Gardner, R. H., and O’Neill, R. V. (1992). Ecological Risk Assessment. Lewis, Chelsea.

Billari, F. G., Fent, T., Prskawetz, A., and Scheffran, J., editors (2006). Agent-Based Computational

Modelling: Applications in Demography, Social, Economic and Environmental Sciences. Physica-

Verlag: Heidelberg.

Breck, J. and Gitter, M. (1983). Effect of fish size on the reactive distance of bluegill (lepomis

macrochirus) sunfish. Canadian Journal of Fisheries and Aquatic Sciences, 40:162–167.

Butenhof, D. (1997). Programming with Posix Threads. Addison-Wesley Professional.

Bystrom, P., Persson, L., and Wahlstrom, E. (1998). Competing predators and prey: Juvenile

bottlenecks in whole-lake experiments. Ecology, 79(6):2153–2167.

Claessen, D., de Roos, A. M., and Persson, L. (2000). Dwarfs and giants: Cannibalism and compe-

tition in size-structured populations. American Naturalist, 155(2):219–237.

Claessen, D., Van Oss, C., de Roos, A. M., and Persson, L. (2002). The impact of size-dependent

predation on population dynamics and individual life history. Ecology, 83(6):1660–1675.

De Roos, A. M. and Persson, L. (2001). Physiologically structured models - from versatile technique

to ecological theory. Oikos, 94(1):51–71.

De Roos, A. M., Persson, L., and McCauley, E. (2003). The influence of size-dependent life-history

traits on the structure and dynamics of populations and communities. Ecology Letters, 6(5):473–

487.

195



DeAngelis, D. L. and Gross, L. J., editors (1992). Individual-based Models and Approaches in Ecology:

Populations, Communities, and Ecosystems. Chapman and Hall, New York, NY.

DeAngelis, D. L., Rose, K. A., and Huston, M. A. (1995). Individual-oriented approaches to modeling

ecological populations and communities. In Levin, S. A., editor, Frontiers in Mathematical Biology,

volume 100 of Frontiers in Mathematical Biology, pages 390–410. Springer Verlag.

DeRoos, A. (1988). Numerical methods for structured population models: The escalator boxcar

train. Numerical Methods for Partial Differential Equations, 4:173–195.

Dudycha, J. L. and Tessier, A. J. (1999). Natural genetic variation of life span, reproduction, and

juvenile growth in daphnia. Evolution, 53(6):1744–1756.

Elliott, J. M. (1976). Body composition of brown trout (salmo trutta l.) in relation to temperature

and ration size. The Journal of Animal Ecology, 45(1):273–289.

Enserink, E. L. (1995). Food mediated life history strategies in Daphnia magna : their relevance to

ecotoxicological evaluations. PhD thesis, Free University of Amsterdam.

Federico, P. (2007). Bat Population Dynamics: An Individual-Based Model Approach. PhD thesis,

University of Tennessee.

Funasaki, E. T. (1997). Examination of Dynamical Behavior and Estimation of Toxicant Levels in

Chemically Stressed Population Models. PhD thesis, University of Tennessee.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. (1994). PVM:

Parallel Virtual Machine: A Users’ Guide and Tutorial for Network Parallel Computing. The

MIT Press.

Gerritsen, J. (1984). Size efficiency reconsidered - a general foraging model for free-swimming aquatic

animals. American Naturalist, 123(4):450–467.

Gerritsen, J. and Strickler, J. R. (1977). Encounter probabilities and community structure in zoo-

plankton - mathematical-model. Journal Of The Fisheries Research Board Of Canada, 34(1):73–

82.

Gill, A. B. (2003). The dynamics of prey choice in fish: the importance of prey size and satiation.

Journal Of Fish Biology, 63:105–116.

Grimm, V. and Railsback, S. (2005). Individual-Based Modeling and Ecology. Princeton Series in

Theoretical and Computational Biology. Princeton University Press.

196



Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, W., Saphir, W., and Snir, M.

(1998). MPI—The Complete Reference, Volume 2, The MPI-2 Extensions. The MIT Press.

Grove, D., Loizides, L., and Nott, J. (1978). Satiation amount, frequency of feeding, and gastric

emptying rate in salmo gairdneri. Journal of Fish Biology, 12:507–516.

Haefner, J. W. (1992). Parallel computers and individual-based models: An overview. In DeAngelis,

D. L. and Gross, L. J., editors, Individual-based Models and Approaches in Ecology, pages 126–164.

Chapman and Hall, New York, NY.

Hallam, T. G., Canziani, G. A., and Lassiter, R. R. (1993). Sublethal narcosis and population

persistence - a modeling study on growth effects. Environmental Toxicology And Chemistry,

12(5):947–954.

Hallam, T. G. and Lassiter, R. R. (1994). Individual-based mathematical modeling approaches

in ecotoxicology: A promising direction for aquatic population and community ecological risk

assessment. In Kendall, R. J. and Lacher, Jr., T. E., editors, Wildlife Toxicology and Population

Modeling: Integrated Studies of Agroecosystems, Proceedings of Ninth Pellston Workshop, July

22-27, 1990, pages 531–542, Lewis Publishers, Boca Raton, USA.

Hallam, T. G., Lassiter, R. R., and Henson, S. M. (2000). Modeling fish population dynamics.

Nonlinear Analysis-Theory Methods & Applications, 40(1-8):227–250.

Hallam, T. G., Lassiter, R. R., Jaworska, J., and McKinney, W. (1992a). Physiologically based

models in predator-prey ecology: An introduction. In Agarwal, R., editor, Recent Trends in

Differential Equations, volume 1 of World Scientific Series in Applicable Analysis, pages 285–299.

World Scientific Publishing Company.

Hallam, T. G., Lassiter, R. R., Li, J., and McKinney, W. (1990a). Toxicant-induced mortality in

models of daphnia populations. Environmental Toxicology And Chemistry, 9(5):597–621.

Hallam, T. G., Lassiter, R. R., Li, J., and McKinney, W. (1992b). An approach for modelling

populations with continuous structured models. In DeAngelis, D. L. and Gross, L. J., editors,

Individual-based Models and Approaches in Ecology, pages 312–337. Chapman and Hall, New York,

NY.

Hallam, T. G., Lassiter, R. R., Li, J., and Suarez, L. A. (1990b). Modeling individuals employing

an integrated energy response - application to daphnia. Ecology, 71(3):938–954.

197



Hart, P. J. B. and Gill, A. B. (1993). Choosing prey size - a comparison of static and dynamic foraging

models for predicting prey choice by fish. Marine Behaviour And Physiology, 23(1-4):91–104.

Henson, S. M. (1994). Individual-based physiologically structured population and community models.

PhD thesis, University of Tennessee.

Henson, S. M. and Hallam, T. G. (1994). Survival of the fittest: Asymptotic competitive exclusion

in structured population and community models. Nonlinear World, 1:385–402.

Henson, S. M. and Hallam, T. G. (1995). Optimal feeding via constrained processes. Journal of

Theoretical Biology, 176(1):33–37.

Holling, C. S. (1959). The components of predation as revealed by a study of small mammal predation

of the european pine saw fly. The Canadian Entomologist, 91:293–320.

Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems.

Ecosystems, 4(5):390–405.

Hwang, K. (1993). Advanced Computer Architecture: Parallelism, Scalability, Programmability.

McGraw-Hill, New York.

Jaworska, J., Hallam, T. G., Henson, S. M., and McKinney, W. (1995). Ecotoxicology of predator-

prey communities: An individual-based modeling perspective. In Hughes, J., editor, Environmen-

tal Toxicology and Risk Assessment - Third Volume, volume ASTM STP 1218. American Society

for Testing and Materials, Philadelphia.

Koh, H. L., Hallam, T. G., and Lee, H. L. (1997). Combined effects of environmental and chemical

stressors on a model daphnia population. Ecological Modelling, 103(1):19–32.

Kolli, H. (2007). Study of interaction between mexican free tailed bats (tadarida brasiliensis) and

moths and counting moths in a real time video. Master’s thesis, University of Tennessee.

Kooijman, S. (1986). Population dynamics on basis of budgets. In Metz, J. and Diekmann, O.,

editors, The Dynamics of Physiologically Structured Populations, volume 68 of Lecture Notes in

Biomathematics. Springer Verlag.

Kooijman, S. (2000). Dynamic Energy and Mass Budgets in Biological Systems. Cambridge Univer-

sity Press, Great Britain, 2nd edition.

Kot, M. (2001). Elements of Mathematical Ecology. Cambridge University Press, Great Britain.

198



Krohn, C. M. (2001). An Individual-based approach to population dynamics with applications to

sockeye salmon and iteroparous organisms. PhD thesis, Univeristy of Tennessee.

Lassiter, R. R. (1986). A theoretical basis for modelling element cycling. In Hallam, T. G. and

Levin, S. A., editors, In Mathematical Ecology: An Introduction, volume 17 of Biomathematics,

pages 341–380. Springer Verlag.

Lassiter, R. R. and Hallam, T. G. (1990). Survival of the fattest - implications for acute effects of

lipophilic chemicals on aquatic populations. Environmental Toxicology And Chemistry, 9(5):585–

595.

Li, J. and Hallam, T. G. (1988). Survival in continuous structured populations models. Journal Of

Mathematical Biology, 26(4):421–433.

Lika, K. (1996). Interactions of predator-prey ecological processes and advective movement in a

spatially heterogeneous environment. PhD thesis, University of Tennessee.

Lovelock, C. M. (1996). The effects of temperature and dissolved oxygen on a model fish population.

Master’s thesis, University of Tennessee.

Luna, F. and Perrone, A., editors (2002). Agent-based Methods in Economics and Finance: Simua-

tions in Swarm. Kluwer Academic Publishers, Boston.

MAPLE (1996). MAPLE. Waterloo Maple, Inc., 57 Erb Street West, Waterloo, ON, Canada,

http://www.maplesoft.com.

Marowka, A. (September 2007). Parallel computing on any desktop. In Communications of the

ACM, volume 50(9).

Merritt, R. (July 23, 2007). M’soft: Parallel programming model 10 years off. EETimes.

http://www.eetimes.com/showArticle.jhtml?articleID=201200019. Retrieved August 7, 2007.

Metcalf, M. and Reid, J. (1993). Fortran 90 Explained. Oxford University Press.

Metz, J. and Diekmann, O., editors (1986). The Dynamics of Physiologically Structured Populations,

volume 68 of Lecture Notes in Biomathematics. Springer Verlag.

MPICH2 (2007). MPICH2. Argonne National Laboratory, Mathematics and Computer Science

Division. http://www-unix.mcs.anl.gov/mpi/mpich2.

199



Parnot, C. (2007). XGrid@Stanford. http://http://cmgm.stanford.edu/ cparnot/xgrid-stanford.

Retrieved August 2007.

Persson, L., Amundsen, P. A., De Roos, A. M., Klemetsen, A., Knudsen, R., and Primicerio, R.

(2007). Culling prey promotes predator recovery - alternative states in a whole-lake experiment.

Science, 316(5832):1743–1746.

Persson, L. and De Roos, A. M. (2006). Size-structured interactions and the dynamics of aquatic

systems. Polish Journal Of Ecology, 54(4):621–632.

Persson, L., Leonardsson, K., de Roos, A. M., Gyllenberg, M., and Christensen, B. (1998). Onto-

genetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model.

Theoretical Population Biology, 54(3):270–293.

Peters, R. H. and De Bernardi, R. (1987). Daphnia, volume 45 of Memorie dell’Istituto Italiano di

Idrobiologia Dott. Marco de Marchi. Verbania Pallanza.

Quinn, M., Metoyer, R., and Hunter-Zaworski, K. (2003). Parallel implementation of the social

forces model. In Proceedings of the Second International Conference in Pedestrian and Evacuation

Dynamics (August 2003), pages 63–74.

Raghavan, A. (2005). Modeling study of individual and group behavior of brazilian free-tailed bats

(tadarida brasiliensis) and dynamic bat counting using real-time infrared thermal video. Master’s

thesis, University of Tennessee.

Ramachandramurthi, S., Hallam, T. G., and Nichols, J. A. (1997). Parallel simulation of individual-

based, physiologically structured population models. Mathematical and Computer Modelling,

25(12):55–70.

Reinders, J. (2007). Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor

Parallelism. O’Reilly.

Reynolds, C. W. (2006). Big fast crowds on PS3. In ACM Sandbox Symposium 2006, Boston,

Massachusetts, July 29-30, 2006.

Rost, R. J. (January 25, 2006). OpenGL(R) Shading Language. Addison-Wesley Professional, 2nd

edition.

Sinko, J. W. and Streifer, W. (1967). A new model for age-size structure of a population. Ecology,

48(6):910–918.

200



Sinko, J. W. and Streifer, W. (1969). Applying models incorporating age-size structure of a popu-

lation to daphnia. Ecology, 50(4):608–615.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. (1998). MPI—The Complete

Reference, Volume 1, The MPI Core. The MIT Press.

Staples, D. J. and Nomura, M. (1976). Influence of body size and food ration on energy budget of

rainbow-trout salmo-gairdneri richardson. Journal Of Fish Biology, 9(1):29–43.

Stevens, W. R. (1993). Advanced Programming in the UNIX Environment. Addison-Wesley. 2nd

Edition, 2005. S. Rago is co-author.

Suter, I. G. W. (1993). Ecological Risk Assessment. Lewis, Boca Raton.

Sutter, H. (March 2005). The free lunch is over: A fundamental turn toward concurrency in software.

Dr. Dobb’s Journal, 30(3).

Sylvester, S. (1995). PVM parallelization of a mathematical ecology daphnia models. Master’s

thesis, University of Tennessee.

Tessier, A. J., Henry, L. L., Goulden, C. E., and Durand, M. W. (1983). Starvation in daphnia -

energy reserves and reproductive allocation. Limnology And Oceanography, 28(4):667–676.

van Kooten, T., Persson, L., and de Roos, A. M. (2007). Size-dependent mortality induces life-history

changes mediated through population dynamical feedbacks. American Naturalist, 170(2):258–270.

Wilson, K. (2007). Performance and Architecture Group, Apple, Inc., WWDC2007. Personal

Communication, Apple World Wide Developer’s Conference, 2007.

201



Appendix

202



Appendix A

Numerical Simulation of the

Individual-based Daphnia and Fish

Population Models

Contained in this Appendix are the derivations of the equations used in the numerical simulation

of both the fish and Daphnia population models. The Individual-based aquatic ecosystem models

developed at the University of Tennessee share a common numerical simulation scheme which has

previously not been well-documented, so it has either been ignored or passed down by folklore. This

paper is a collection of all of the information necessary to understand the numerics in the Daphnia,

fish, and predator-prey models. The general numerical formulae are first presented, followed by

sections on each separate model. Each significant equation involved in the numerical simulation

was confirmed using the Waterloo Maple symbolic mathematics system (MAPLE, 1996) in order

to provide assurance that the programs on which we base our results are executing the correct

mathematics.

A.1 General Numerical Formulae

The base for each of these models was originally coded by Bill McKinney. He originally included the

option to use two different Runga-Kutta-type numerical schemes for their simulation. A third scheme

has since been added for some of these models. The common names of the first two are Backward

Euler and Crank-Nicolson which are both implicit schemes. The other scheme is an one explicit one
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suggested by McKinney and implemented by Dina Lika for the fish model. It is termed Corrected

Euler, because it is basically a double application of Euler’s Method. Backward Euler is a common

implicit scheme used for ODEs. Crank-Nicolson is most often applied to the simulation of PDEs,

so it is in books on the numerical simulation of PDEs where one will most often find it described.

Corrected Euler is an explicit scheme based on Euler’s Method. It has several advantages over the

two implicit schemes: 1) partial derivatives are not needed; 2) it is much easier to implement; and

3) it is a two-step simulation which allows function updates in between the steps if desired. Each of

these schemes is described herein.

A.1.1 McKendrick-von Foerster Population Equations

The population and predator-prey models all share the same underlying mathematical description.

Individuals are incorporated into a population by a system of extended McKendrick-von Foerster

partial differential equations. A derivation from basic principles of the McKendrick-von Foerster

equation for age and size structured models, as well as its relationship with other standard models

of populations, can be found in Sinko and Streifer (1967, 1969). For a fixed individual model, its

McKendrick-von Foerster equation is:

ρt + ρa + (gLρ)mL + (gSρ)mS = −μ(t, a, mL, mS , ρ)ρ, (A.1)

where ρ(t, a, mL, mS) is a density function which gives the number (or density) per unit age per unit

mass of lipid per unit mass of structure of individuals which are age a, and have masses mL and mS

at time t. The functions gL and gS are functions expressing the growth of the variables mL and mS

with respect to time; these are given by the individual model equations. The mortality function μ

expresses the per capita rate of mortality for individuals of age a, and masses mL and mS ; several

expressions for this function are included in each code; it can depend on the population density. In

general, we assume that μ = μA + μS + μD where μA, μS , and μD are the age, size, and density

dependent mortality rates. Equation (A.1) requires initial and boundary conditions in order to be

well-posed. The initial population distribution is specified by

ρ(0, a, mL, mS) = φ(a, mL, mS). (A.2)
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The boundary condition is an expression for the newborn individuals:

ρ(t, 0, mL0, mS0) =∫ ∞

0

∫ ∞

0

∫ ∞

0

β(t, a, mL0, mS0, mL, mS , ρ)ρ(t, a, mL, mS)dadmLdmS , (A.3)

where mL0 and mS0 are the initial sizes of the newborn, and β is the birth rate at time t by individuals

of masses mL and mS for newborns of masses mL0 and mS0. Note that β can depend also depend on

ρ. Together equations (A.1), (A.2), and (A.3) form a well-posed model of a population of individuals

whose growth is described by equations of the individual model.

To solve this PDE, the method of characteristics is employed to reduce this PDE to a system of

ODE’s. The characteristic equations for equation (A.1) are

dt

ds
= 1 (A.4)

da

ds
= 1 (A.5)

dmL

ds
= gL(mL, mS) (A.6)

dmS

ds
= gS(mL, mS) (A.7)

dρ

ds
= −(μ + (gL)mL + (gS)mS )ρ. (A.8)

A small transformation of ρ is performed in order to get a density function n(t, a, mL, mS) such that

only mortality is acting on the characteristics. The equation which replaces equation (A.8) is

dn

dt
= −μ(t, a, mL, mS, n)n. (A.9)

See Hallam et al. (1992b) for an explanation of this transformation. The basic steps are to let

ρ̂ ≡ ρ(t, a, mL(t, a), mS(t, a)) and n(t, a) ≡ ρ̂(t, a)h(t, a) where h(t, a) solves the PDE ht + ha =

[(gL)mL + (gS)mS ]h. Applying this transformation to (A.8) will yield (A.9). Note in particular that

the same expression for μ is obtained. Throughout the models, wherever ρ is referred to, it is really

n.

Equations (A.4) through (A.7) and (A.9) are simulated numerically by the models. Equations

(A.4) and (A.5) are trivial to solve. Equations (A.6) and (A.7) are coupled through mL and mS

and are solved simultaneously using one of the Runge-Kutta methods. These updated values of mL

and mS are then used to evaluate μ, and the final equation is solved.
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In order to model diversity in the population, various values of the parameters in the individual

model’s equations are used to model the different growth characteristics of ecotypes. Each set of these

parameters determines a different McKendrick-von Foerster equation. These PDE’s are simulated

simultaneously by the population model and are coupled through density dependent mortality.

The numerical schemes used to simulate these equations are now described.

A.1.2 Backward Euler

Each of the following numerical schemes are applied to the general formulation of an ODE initial-

value problem:

y′ = f(t, y)

y(a) = b (A.10)

where y can be a vector or scalar.

For this problem, at simulation time tn, the Backward Euler method is described by

yn+1 − yn

τ
= f(tn+1, y

n+1)

so yn+1 = yn + τf(tn+1, y
n+1) (A.11)

where yn is the approximation to y(tn), yn+1 is the approximation to y(tn+1), tn+1 = tn + τ and τ

is the time step.

Applying this to equations (A.6) and (A.7) one gets the equations

⎛
⎜⎝ mn+1

L

mn+1
S

⎞
⎟⎠ =

⎛
⎜⎝ mn

L

mn
S

⎞
⎟⎠ + τ

⎛
⎜⎝ gL(tn+1, m

n+1
L , mn+1

S )

gS(tn+1, m
n+1
L , mn+1

S )

⎞
⎟⎠

Letting x = (x1, x2) = (mn+1
L , mn+1

S ) these transform to

⎛
⎜⎝ x1 −mn

L − τgL(tn+1, x
k
1 , xk

2))

x2 −mn
S − τgS(tn+1, x

k
1 , xk

2))

⎞
⎟⎠ = 0
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Applying Newton’s Method (iterated in k)

⎛
⎜⎝ xk+1

1

xk+1
2

⎞
⎟⎠ =

⎛
⎜⎝ xk

1

xk
2

⎞
⎟⎠ + (∇h)−1h

to solve these implicit equations, one ends up with the system

⎛
⎜⎝ xk+1

1

xk+1
2

⎞
⎟⎠ =

⎛
⎜⎝ xk

1

xk
2

⎞
⎟⎠ + (A.12)

⎛
⎜⎝ 1− τ ∂gL

∂x1
(tn+1, x

k
1 , xk

2) −τ ∂gL

∂x2

−τ ∂gS

∂x1
1− τ ∂gS

∂x2

⎞
⎟⎠

−1 ⎛
⎜⎝ x1 −mn

L − τgL(tn+1, x
k
1 , xk

2)

x2 −mn
S − τgS(tn+1, x

k
1 , xk

2)

⎞
⎟⎠

After iterating through Newton’s enough times, one has values the new approximations mn+1
L and

mn+1
S . Note that the seed values (x0

1, x
0
2) used to start Newton’s Method are the linear approxima-

tions for mn+1
L and mn+1

S based on the previous two values. Finally, these new values are used to

calculate the mortality function μ at time tn+1, so that the equation for ρ can be solved.

ρn+1 =
ρn

1 + τμ

A.1.3 Crank-Nicolson

Crank-Nicolson can be considered an average of Euler’s and Backward Euler’s methods. Its mathe-

matical statement is

yn+1 − yn

τ
= f(tn+1/2, y

n+1/2)

so yn+1 = yn + τf(tn+1/2, y
n+1/2)

where

yn+1/2 =
yn+1 + yn

2
.
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Applying this to equations (A.6) and (A.7) as before one gets the system

⎛
⎜⎝ xk+1

1

xk+1
2

⎞
⎟⎠ =

⎛
⎜⎝ xk

1

xk
2

⎞
⎟⎠+ (A.13)

⎛
⎜⎝ 1− τ ∂gL

∂x1
(tn+1/2,

xk
1+mn

L

2 ,
xk
2+mn

S

2 )1
2 −τ ∂gL

∂x2

1
2

−τ ∂gS

∂x1

1
2 1− τ ∂gS

∂x2

1
2

⎞
⎟⎠

−1 ⎛
⎜⎝ x1 −mn

L − τgL

x2 −mn
S − τgS

⎞
⎟⎠

The interesting twist with Crank-Nicolson is that it requires values at the “midpoint.” Thus in

order to solve the equation for ρ using Crank-Nicolson, the values for mL and mS at tn+1/2 must

be determined. The steps followed in the codes are

1. Compute mL and mS at tn+1/2 using C-N.

2. Store values of mL and mS for ρ-equation.

3. Linearly extrapolate mL and mS forward from tn+1/2 to t1.

4. Calculate μ at tn+1/2.

5. Calculate ρ using C-N.

ρn+1 =
ρn(1− (1/2)τμ)
(1 + (1/2)τμ)

Comparing the resulting approximations generated by these two schemes, one will find out that

Backward Euler will generally undershoot the value determined by Crank-Nicolson (increasing func-

tion).

A.1.4 Corrected Euler’s Method

Corrected Euler’s method is a direct method obtained by applying Euler’s Method to get estimates

for the future values, which are then used to calculate an average which is used to calculate the

values. The mathematical statement is:

ỹn+1 = yn + τf(tn, yn)

yn+1 = yn +
τ

2
(f(tn, yn + f(tn+1, ỹ

n+1).

Notice that no derivatives are required. Also, with it being two-stage, one can perform an update

in between. For instance, Dina Lika used this to perform an update of resource values for her fish

movement models.
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A.2 Daphnia Population Model

Since the Daphnia population model shares the same McKendrick-von Foerster equations as the other

models, it suffices to describe the equations for the growth of the lipid and structure compartments.

These expressions for gL and gS specify the right-hand side of equations (A.6) and (A.7). These are

components specified in the individual model.

The original paper describing the Daphnia model is Hallam et al. (1990b). It has since undergone

several changes and additions, including the addition of sublethal toxicant effects Hallam et al.

(1993), and environmental effects Koh et al. (1997). The original code was written by McKinney

when he was a graduate student. His program actually combined both the fish and Daphnia models

in one code using a global variable to indicate if the model being run was for fish or Daphnia. The

only function that had to be written special for the two models was the one were the numerical

equations and derivatives are calculated. The “driver” portion of the code was shared by both

models. It was written in Fortran 77. This code base was copied and duplicated to form the first

predator-prey model. Later additions to the Daphnia model have splintered off from the original

code. Graciella Canziani developed a whole separate line for the studies using WASP and sublethal

effects. She did so by pulling out only what she needed from the original code, basically scrapping

the fish code. This version is what the later additions were made to. Several important abilities were

removed in the Canziani translation, so several different codes had to be run in order to create and

tune a new population. To unite these codes and provide a GUI to the model was the purpose of

Smart-Alec written by Scott Sylvester and Mike Peek. I have since recombined the Daphnia and fish

models with all of the additions into one code written in C called fishdaph. There was a precursor

to all of these models which was written by Jia Li, using the family-tree concept directly. It was

written in Pascal for PCs.

A.2.1 Individual Model and Numerical Simulation

The basic expressions for gL and gS were originally developed in Hallam et al. (1990b). The reader

is referred to it for details of the derivations. A summary of these expressions is presented here:

Equations for Daphnia
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Juvenile Ages: 0 ≤ a ≤ P

gL = −A14mL

gS = −A15mS

mL(0) = mL0 (determined from parent)

mS(0) = mS0 (fixed amount)

Adult Ages: P ≤ a ≤ maximum age. (Assuming D ≤ E.)

gL =
A0LxLmS

A1m
1/3
S + A2x

−A3(mL − εmPS)
D

E

gS =
A0SxSmS

A1m
1/3
S + A2x

−A4(mS −mPS)
D

E

mL(P ) and mS(P ) = terminal values of juvenile stage

where

D = A5(mL + mS)1/3 + A6(mL + mS)2/3 + A7mL + A8mS

E = 37.68A3(mL − εmPS) + 16.75A4(mS −mPS)

An undocumented change in the expression for A2 was made by Shandelle Henson. The new

expression for it is

A2(mS) =
mS

kMg

where k is determined allometrically by k = k1(mPS)−k3 and Mg is the mass capacity of the gut

which is calculated by cg(mPS)BDP where cg gives the fraction of body volume devoted to the

gut and BDP is the (average) body density of the prey (Grove et al. (1978)). This expression is

derived in the same way as the gut clearance rate component is derived for fish (see below). The

inclusion of mS is merely a result of simplifying the uptake terms in gL and gS by multiplying top

and bottom by mS . The reason given for this change was “this modification keeps Daphnia from

growing arbitrarily large with increasing resource levels.” The inclusion of mS in the expression

for A2 both explicitly and implicitly through mPS makes the numerical expressions much more

complicated. Other additions such as sublethal effects and environmental effects are done as simple
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scaling multipliers on relevant parameters, so their effect on the numerics is minimal. The specific

necessary numerical equations are now derived.

In both Backward Euler and Crank-Nicolson the difficult expressions are those for the partial

derivatives involving gL and gS . In order to numerically simplify their computation, they are broken

down into a series of steps. These computations are now documented using Maple.

A.3 Maple Derivation of Daphnia Model

The main functions for the Daphnia model are calculated in the function dfterm c(). The formulas

are derived and correlated to the expressions in the Ecology paper (Hallam et al., 1990b). Table 1

in the Ecology paper describes the parameter values of the model. Table 2 lists the values and units

for the parameters that were used for the simulations. Table 2 also lists the sources for the values.

The order in which the formulas are presented here is the order of the simulation program, not

the order of the presentation in the paper.

A.3.1 Work Coefficients

The energy expended by Daphnia on locomotion and similar functions — termed generically as work

— is minimal. The expressions used to describe the energy requirements for locomotion are derived

from Gerritsen (1984, ref). As stated in the Ecology paper, the expression of work in units of power

is:

locomotionPower := (φ, μ, rS , ν, M, g) �→ (
6 π φμ rS ν2 + 3

32 Mν3
)
g

Here φ is a non-dimensional coefficient of form resistance; μ is viscosity; rS is the radius of an

equivalent spherical volume; ν is the velocity; M is the wetted surface area; and g is related to the

muscular swimming efficiency of the individual.

Assuming average density of 1.0 mg/mm3, then the equivalent radius, rS, is:

equivRadius := m �→ 1/4 3
√

342/3 3
√

m
π

rS := equivRadius (m)

locomotionPower (φ, μ, rS , ν, M, g)

0.000001432500000π 3
√

342/3 3
√

m
π ν2 + 0.00009375000000 Mν3

surfArea := (m, δ) �→ δ 3
√

432/3
(
π−1

)2/3
m2/3

lP := locomotionPower (φ, μ, rS , ν, surfArea (m, δ) , g)

1.270696287× 10−14 ν2 3
√

m (878819863.0+ 11357003710.0 δ 3
√

mν)
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paperA5 := coeff ( 3
√

m)

0.00001116713137 ν2

paperA6 := coeff
(
lP , m2/3

)
0.00009375000000 δ 3

√
432/3

(
π−1

)2/3
ν3

The two coefficients paperA5 and paperA6 are the two that appeared in the Ecology paper. We

now begin to correlate these to the c1d and c2d expressions used in the simulation codes.

c1d := (ν, φ, μ, g) �→ 3 3
√

2 3
√

3π2/3φμ ν2g

φ is a coefficient representing form resistance and has value 0.001. μ represents the viscosity of the

medium and is taken to be 0.955. g represents the animal’s muscular efficiency with value 0.001.

The value for δ, which represents proportion between length2 to surface area. It is calculated below

for c2d to be set to δ = 0.002. Substituting, then c1d simplifies to:

c1d(v, φ, μ, g)

0.000002865 3
√

3 3
√

2π2/3ν2

And now correlating c2d to paperA6. c2d := (ν, g, δ) �→ 3
32

32/322/3ν3gδ
π2/3

0.001539338926 v3δ

Which results in a value for δ of

δ = 0.001948888545

so the value of δ is confirmed.

Note: The units are ergs/sec which must be converted to our normal units of J/d. There are 10ˆ7

ergs/J and 86400 sec/day. The line of the code marked as changing from ergs/sec to J/d is to divide

by 0.2 and multiply by 86400 which seems incorrect. See the Appendix to Hallam et al. (2000) to

see how this is derived.

A.3.2 Growth Functions for Lipid and Structure

The expressions for the growth of lipid and structure, g L and g S, are broken down into several

components in order to be able to simplify the calculation of the derivatives. One thing to notice is

that the first term only involves ms, so it drops out of the derivatives involving ml.

The expression for protected structure is modeled as non-decreasing function. It represents the

structure that is unavailable to the organism for energy demands. It is calculated as a portion of

the total structure, but prevented from decreasing by comparing to its previous values. Because of

its non-decreasing value is used as an expression for length through an allometric relationship. It
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has the form mps(ms, tn) = max(A6ms, mps(tn−1)) for adults. If the adult is in a growth phase,

then the derivative of mps is A6 (w.r.t. ms); otherwise its derivative is zero.

The following equations are in terms of ml and ms, mass of lipid and mass of structure, respec-

tively.

Juvenile Phase

If the daphnid is still in the brood pouch, then only consumption of the stores in the egg are modeled.

Therefore, gl = 0.0, gpd = 0.0, work = 0.0, a3val = A3ZERO, a4val = A4ZERO. This models

simple consumption of egg stores.

Adult Phase

The function mps (zmpp1 is the variable) is the non-decreasing expression of protected structure. It

is left here as a function in order to make manifest its role in the numerics. Its derivative has to be

handled carefully, as mentioned above. There is a similar fraction taken of structure (zmps1 is the

variable) which represents the starvation level. It is a fraction just a little larger than the proportion

taken for protected structure. It represents the structure component level at which it is considered

that all available stores have been converted to energy and the organism dies from starvation.

The function A2 is the new expression for the ingestion rate. The coefficients k3 and k1 are the

allometric constants for the gut clearance expression, cg is the proportion of the body that is “gut”

and bdp is the body density of the prey. The derivation of the original ingestion rate described in

the Ecology paper is a lengthy section. The presumptions made in the paper were that the ingestion

rate Im should be proportional to volume and that the filtering rate, Fm, should be proportional

to surface area. This was updated later by Henson in the models in order to prevent the daphnids

from growing arbitrarily large.

A2 := (ms) �→ ms
k3 (mps(ms))−k1 cgmps(ms)bdp

The function gd is the denominator of the first term of both g L and g S.

gd := (ms) �→ A1 3
√

ms + A2 (ms)X

which expands to

A1 3
√

ms + ms X
k3 (massps(ms))−k1 cg massps(ms)bdp

The function gg is the basic component of the first term of both g L and g S, noting that they

differ only by a factor applied to X. Handling it this way allows one to compute the partials for both

equations by just applying different factors to the partial of gg. The coefficient A0 is the assimilation
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percentage for lipid. The A9 parameter which represents structure assimilation efficiency is relative

to A0. charinfo[PLX] is the individual’s percentage of lipid in the resource. The remaining peportions

considered structure. PLX is one of the structuring parameters.

gg := (ms) �→ A0 Xms
gd(ms)

The expression for work performed by the Daphnid forms the first two terms of the energy

demand. Note that the derivatives of work with respect to ml and ms are equal, so it can be handled

a little easier. The values for c1d and c2d calculated earlier are used for A5 and A6.

work := (ml ,ms) �→ A5 3
√

ml + ms + A6 (ml + ms)2/3

The function ed is the energy demand which is the work plus maintenance. Note that the

conversion factors for going from mg of lipid or structure to energy are used, but are not in the

published papers. These are 37.68 and 16.75, respectively, which are the same factors used in

ea. Note that these factors do not appear in the corresponding function for fish, because they are

included in the values used for A7 and A8.

ed := (ml ,ms) �→ work (ml ,ms) + A7 zjmgl ml + A8 zjmgp ms

The function ea is the energy available.

ed := (ml ,ms) �→ 37.68 A3 (ml − εmps (ms)) + 16.75 A4 (ms −mps (ms))

The function fctr is the ratio of energy demand versus energy available. According to the model,

this function is minimized against 1 at all points. ??? Work out to watch for derivatives?

fctr := (ml ,ms) �→ ed(ml,ms)
ea(ml,ms)

The function zl is the remainder of the energy loss term in g L.

zl := (ml ,ms) �→ A3 (ml − εmps (ms))

The function zs is the remainder of the energy loss term in g S.

zs := (ml ,ms) �→ A4 (ms −mps (ms))

If plx is the percent of lipid in the resource and A9 is the assimilation rate for structure divided

by A0, then the functions g L and g S are expressed in terms of the functions above as

gl := (ml ,ms) �→ plx gg (ms)− zl (ml ,ms) fctr (ml ,ms)

gs := (ml ,ms) �→ (1− plx )A9 gg (ms) − zs (ml ,ms) fctr (ml ,ms)

A.3.3 Derivatives

The derivatives for g L and g S are now calculated using the above functions. The derivatives may

be skipped if iterating Newton’s method more than once. We normally only iterate once, because

of the rapid convergence of Newton’s Method.
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Because several of the functions involve mps(ms), the first derivative that should be calculated

is its partial with respect to ms. Generally, this is simply A6, but in cases where it is being held

constant, it should have derivative zero. This has not been consistently performed, which is part of

the reason for the careful derivations in this paper. In the calculations below, this differentiation is

left open, so that its role is more obvious.

The first derivative to be calculated is the derivative of A2(ms) with respect to ms. As noted

above, the implicit inclusion of ms through mps greatly increases the complexity of the functions

used in the numerics.

da2dms := d
dms A2 (ms)

= (massps(ms))k1−1

k3 cg bdp +
ms (massps(ms))k1−2( d

dms massps(ms))(k1−1)

k3 cg bdp

Verifying against what was in the code originally. What was originally written is wrong at least

because it doesn’t take into account mps having zero derivative sometimes. Making the assumption

that mps := A6ms always, then the expression in the code was correct (in some versions) although

it was also much more complicated than it really had to be as the second line shows.

The derivative of gd is next performed, because it involves the derivative da2dms.

diff(gd(ms), ms) := 1/3 A1
ms2/3 +

(
d

dms A2 (ms)
)
X

The derivative of gg with respect to ms can now be calculated in terms of the derivative of gd.

The derivatives of the two uptake terms with respect to ms are easily determined from this, because

they are simple scaling of this function as noted before.

diff (gg(ms),ms) := A0 X
gd(ms) −

A0 Xms d
dms gd(ms)

(gd(ms))2

Moving on to the loss terms, the derivatives are calculated in two parts: the energy fraction

and the mobilization expression. The energy demand equation involves work(ml,ms). Note that the

derivatives of work with respect to ml and ms are the same, so it is calculated only once.

diff(work(ml, ms), ml) := 1/3 A5
(ml+ms)2/3 + 2/3 A6

3√ml+ms

The derivatives of the energy fraction with respect to ml and ms are now calculated. The

derivatives of ea with respect to ms includes mps, so it must be handled carefully. Two temporary

variables, z1 and z2, are used to hold these.

diff (ea(ml ,ms),ml) := 37.68 A3

diff (ea(ml ,ms),ms) := −37.68 A3 ε d
dms massps (ms) + 16.75 A4

(
1− d

dms massps (ms)
)

dfdml := diff (fctr(ml ,ms),ml)

=
∂

∂ml work(ml,ms)+A7 zjmgl

ea(ml,ms) − (work(ml,ms)+A7 zjmgl ml+A8 zjmgp ms) ∂
∂ml ea(ml,ms)

(ea(ml,ms))2

dfdms := diff (fctr(ml ,ms),ms)
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=
∂

∂ms work(ml,ms)+A8 zjmgp

ea(ml,ms) − (work(ml,ms)+A7 zjmgl ml+A8 zjmgp ms) ∂
∂ms ea(ml,ms)

(ea(ml,ms))2

Putting these derivatives together with the expressions for mobilization, zl and zs, one ends up

with the four partials

deldml := diff (zl(ml ,ms) ∗ fctr(ml ,ms),ml)

= A3 fctr (ml ,ms) + A3 (ml − εmassps (ms)) ∂
∂ml fctr (ml ,ms)

The first term is represented by z1 in the code

deldms := diff (zl(ml ,ms) ∗ fctr(ml ,ms),ms)

= −A3 ε
(

d
dms massps (ms)

)
fctr (ml ,ms) + A3 (ml − εmassps (ms)) ∂

∂ms fctr (ml ,ms)

desdml := diff (zs(ml ,ms) ∗ fctr(ml ,ms),ml)

= A4 (ms −massps (ms)) ∂
∂ml fctr (ml ,ms)

The first term of desdms is represented by z2 in the code

desdms := diff (zs(ml ,ms) ∗ fctr(ml ,ms),ms)

= A4
(
1− d

dms massps (ms)
)
fctr (ml ,ms) + A4 (ms −massps (ms)) ∂

∂ms fctr (ml ,ms)

This completes the subordinate derivatives. The four partials of g L and g S can now be easily

calculated from these components.

A.4 Fish Population Model

The population model for fish shares the same heritage as the Daphnia population model. In fact

most of the source code was identical originally when McKinney wrote the first versions. Because

they have undergone separate development paths since then under different people, the source codes

had diverged. They have been reunited (for the most part) in the program FishDaph. This program

is described in a following section.

Again, for this model it suffices to describe the equations for the growth of the lipid and structure

compartments. The original paper describing the fish model is Hallam et al. (2000). The discussion

of the fish model in this paper and its appendix is very complete. The reader is referred to it for a

description of the derivation of the fish model and the parameter values used.

Not as many changes have been made to the fish model. Dina Lika worked extensively with the

fish model developing a model for fish movement. Because she was making so many changes to the

fundamental equations, she eventually rewrote the numerical portion of the code to use the Corrected

Euler scheme, because it became too difficult to make sure that implicit schemes requiring derivatives

were implemented correctly (Lika, 1996). Cyndi Lovelock has developed for fish an analogue of the
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environmental effects models earlier done for Daphnia (Lovelock, 1996). She continued with a similar

individual-based fish model in her dissertation Krohn (2001).

A.4.1 Individual Model and Numerical Simulation

The basic expressions for gL and gS are presented for completeness. The reader is referred to the

original papers for details of the derivations. The notation has been changed slightly in order to

match that presented above for Daphnia.

Equations for Fish

Juvenile Ages: 0 ≤ a ≤ P

gL = −A14mL

gS = −A15mS

mL(0) = mL0 (determined from parent)

mS(0) = mS0 (fixed amount)

Adult Ages: P ≤ a ≤ maximum age. (Assuming D ≤ E.)

F =
x

[ad]−1 + [ sd

Mpδv + [kMg]−1]x

gL = A0L(PLX)F −A3(mL − εmPS)
D

E

gS = A0S(1 − PLX)F −A4(mS −mPS)
D

E

mL(P ) and mS(P ) = terminal values of juvenile stage

where

D = W (mL, mS) + A7mL + A8mS

W = 1.188 · 10−2L4
fβ2((blsh)5/2TeF + (blsc)5/2TcF )

E = 3.768 · 104A3(mL − εmPS) + 1.675 · 104A4(mS −mPS)

The Juvenile stage is described as before as decreasing exponentials and initial conditions set from

the parent. The fish model has a larger number of parameters, but for the most part their inclusion

does not complicate the numerical equations. The fact that F appears in the expression of work due

217



to swimming does add some complexity. The numerical equations are now derived as they appear

in the programs.

As described in the published fish model (Hallam et al. (2000)), the first simplification made for

the numerics is to rewrite F in terms of characteristic times for encounter, capture, and digestion,

Te, Tc, and Td, respectively. In terms of these,

F =
1

Te + Tc + Td

The computations are done separately for each of these functions, and the resulting expressions are

put together like what was done for the Daphnia model.

A.5 Maple Derivation of Fish Model

This worksheet describes the equations used in the numerical simulation of the fish population

models.The main functions for the fish model are calculated in the function ffterm c(). Note that

ffterm c() is not used for predator-prey, but only in the fish population models.

A.5.1 Functions

The expressions for g L and g S are broken down into several components in order to be able to

simplify the calculation of the derivatives.

The function mps is the non-decreasing expression of protected structure. It is left here as

a function in order to make manifest its role in the numerics. Its derivative has to be handled

carefully, as mentioned above. Note that I added the growth flag just as in dfterm c(), so that

growth detection is correct.

The structural mass of the prey is first determined, which is used to calculate the length of a

prey item, which is used in the calculation of the reactive distance of the fish and the velocity of

the prey. The average mass of prey (mp) is given as a parameter in this model. The fact that PLX

is a ecotypic parameter is the only variation that occurs in these expressions. These become true

functions in the predator-prey model.

lp := 3

√
(1−PLX )mp

daphbeta

vp := blsp lp

zlp := a lp + b
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The total mass (zmass), length (lc), and various velocities (vc, vh) of the fish are now calculated.

Note that the allometric beta is acoef in the code. I recorded it here as fishbeta to be consistent

with the Daphnia allometric constant naming scheme.

lf := ms �→ 3

√
mps(ms)
fishbeta

vc := ms �→ blsc lf (ms)

vh := ms �→ blsh lf (ms)

The reactive distance can now be calculated. This is a product of the linear function involving

length of prey and the square root of the length of the fish.

sd := (ms) �→ zlp
√

lf (ms)

The difference in the prey and pursuit velocities. This is converted from cm per second to cm

per day to be consistent (spd = seconds per day which is 8.64× 104).

dv := (ms) �→ spd |vc (ms)− vp|
The variable ad is the encounter rate coefficient.

ad := (ms) �→ 1/3
π (sd(ms))2spd (vp2+3 (vh(ms))2)

vh(ms)

Gut volume (volgut) is assumed to be a fraction of the protected structure. There used to be an

additional added constant called dg. It was always set to 0.0, so I deleted it. If dg is ever put back

in, then it needs to be added to volgut.

volgut := (ms) �→ cg mps (ms)

Gut clearance rate coefficient which is another allometric expression.

k := (ms) �→ k3
(mps(ms))k1

In terms of these functions, the three characteristic times for fish can be calculated. The three

times are for Capture, Encounter, and Digestion.

Capture Time:

tc := (ms) �→ sd(ms)
dv(ms)mp

Encounter Time:

te := (ms) �→ 1
ad(ms)X

Digestion Time: Note that volgut * density of the prey gives a mass capacity of the gut.

td := (ms) �→ 1
k(ms)volgut(ms)bdp

Filtering rate for fish, A1, is not constant, because K3 is used to define ecotypes. It is calculated

for reporting purposes, but it is not used in the calculations directly.

Now the core of the uptake rate can be calculated in terms of these times.

F := (ms) �→ (te (ms) + tc (ms) + td (ms))−1
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Finally, the growth of lipid and structure can be written as (splitting out of total components).

The total growth of both compartments is stored on the characteristic as GROWTH.

growthl := (ms) �→ F (ms)A0LPLX

growthp := (ms) �→ F (ms)A0P (1− PLX )

Now that we have calculated the rates, we can compute the work exerted by the individual fish

in the course of searching and feeding.

tca := (ms) �→ tc (ms)F (ms)

tea := (ms) �→ te (ms)F (ms)

c2 := (ms) �→ blsh5/2tca (ms) + blsc5/2tca (ms)

work := (ms) �→ 0.01188000000 (lf (ms))4 beta2 c2 (ms)

Now, in the same design as the Daphnia, the energy demands and energy available at this

moment are calculated. The function zl is the remainder of the energy loss term in g L. It is the

energy mobilizable from lipid. Note, repfat in the code equals epsilon.

zl := (ml ,ms) �→ A3 (ml − εmps (ms))

The function zs is the remainder of the energy loss term in g S. It is the energy mobilizable from

structure.

zs := (ml ,ms) �→ A4 (ms −mps (ms))

The function ed is the energy demand which is the work plus maintenance. This function does

not need energy conversion factors, because they are built into the values of the parameters.

ed := (ml ,ms) �→ work (ms) + A7 ml + A8 ms

The function ea is the energy available.

ea := (ml ,ms) �→ 37.68 zl (ml ,ms) + 16.75 zs (ml ,ms)

In the normal case that energy demand does not exceed energy available, this is the fraction

utilized. The function fctr is the ratio of energy demand versus energy available. According to the

model, this function is minimized against 1 at all points.

fctr := (ml ,ms) �→ ed(ml,ms)
ea(ml,ms)

Finally, we can put the growth and losses together for the total change in the lipid and structure

components. If plx is the percent of lipid in the resource and A9 is the assimilation rate for structure

divided by A0, then the functions g L and g S are expressed in terms of the functions above as

gl := (ml ,ms) �→ growthl (ms)− zl (ml ,ms) fctr (ml ,ms)

gs := (ml ,ms) �→ growthp (ms)− zs (ml ,ms) fctr (ml ,ms)
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A.5.2 Derivatives

The derivatives for g L and g S are now calculated using the above functions.

Because several of the functions involve mps(ms), the first derivative that should be calculated

is its partial with respect to ms. Generally, this is simply A6, but in cases where it is being held

constant, it should have derivative zero. This was consistently done for the fish model, mainly

because the numerics have not been tinkered with as much as those for Daphnia.

dlfdms := d
dms lf (ms)

= 1/3 d
dms mps (ms)

(
mps(ms)
fishbeta

)−2/3

fishbeta−1

dsddms := diff (sd(ms),ms)

= 1/2 (alp+b) d
dms lf (ms)

sqrt(lf (ms))

dvcdms := diff (vc(ms),ms)

= blsc d
dms lf (ms)

dvhdms := diff (vh(ms),ms)

= blsh d
dms lf (ms)

Note that the derivative of absolute value is the signum function or sign in F77. It is denoted by

Maple as abs(1,f(x)).

ddvdms := diff (dv(ms),ms)

= −spd abs (1,−blsc lf (ms) + blsp lp) blsc d
dms lf (ms)

Notice that Maple caught a lot of simplification that occurs because sd is squared in the top.

This produces an lf in the top that cancels against the one in vh in the bottom. This leaves only

one term with ms in it, so the derivative is simple.

daddms := diff (ad(ms),ms)

= 1/3
π (alp+b)2( d

dms lf (ms))spd(blsp2lp2+3 (vh(ms))2)
vh(ms)

+2 π (alp + b)2 lf (ms) spd d
dms vh (ms)

−1/3
π (alp+b)2lf (ms)spd (blsp2lp2+3 (vh(ms))2) d

dms vh(ms)

(vh(ms))2

Testing daddms against what is in the code. First, we have to prevent Maple from simplifying

ad too much. After differentiating the unsimplified ad(ms), then the coefficients qq1 and qq2 in the

code are from grouping on the derivative of sd and the derivative of vh. Dividing the bottom into

the top for both qq1 and qq2 yields exactly what is in the code.

udaddms := diff (ad(ms),ms)

2/3
π sd(ms)spd (vp2+3 (vh(ms))2) d

dms sd(ms)

vh(ms)
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+2 π (sd (ms))2 spd d
dms vh (ms)

−1/3
π (sd(ms))2spd (vp2+3 (vh(ms))2) d

dms vh(ms)

(vh(ms))2

qq1 := 1/3 vp2+3 (vh(ms))2

vh(ms)

qq2 := −1/3 −3 (vh(ms))2+vp2

(vh(ms))2

Computing the derivative of tc with respect to ms. To get what is in the code, divide out the

expression for tc.

dtcdms := diff (tc(ms),ms)

=
d

dms sd(ms)

dv(ms)mp −
sd(ms) d

dms dv(ms)

(dv(ms))2mp

dtedms := diff (te(ms),ms)

= − d
dms ad(ms)

(ad(ms))2X

dtddms := diff (td(ms),ms)

=
(massps(ms))k1−2( d

dms massps(ms))(k1−1)

k3 cg bdp

This expression for dtddms can be verified against what is in the code. Note that I use

diff(mps(ms),ms) in place of A6 in the code.

dFdms := diff (F (ms),ms)

= − d
dms te(ms)+ d

dms tc(ms)+ d
dms td(ms)

(te(ms)+tc(ms)+td(ms))2

Moving on to the loss terms, the derivatives are calculated in two parts: the energy fraction and

the mobilization expression. The energy demand equation involves work(ms). Since work(ms) is an

involved expression, it is calculated in several steps.

dtcadms := diff (tca(ms),ms)

=
(

d
dms tc (ms)

)
F (ms) + tc (ms) d

dms F (ms)

dteadms := diff (tea(ms),ms)

=
(

d
dms te (ms)

)
F (ms) + te (ms) d

dms F (ms)

dc2dms := diff (c2 (ms),ms)

= blsh5/2 d
dms tca (ms) + blsc5/2 d

dms tca (ms)

dwork := diff (work(ms),ms)

= 0.04752000000 (lf (ms))3 beta2 c2 (ms) d
dms lf (ms) + 0.01188000000 (lf (ms))4 beta2 d

dms c2 (ms)

This expression for dwork can be verified against what is in the code.

Derivatives of growth functions.

dgrowthldms := diff (growthl(ms),ms)

=
(

d
dms F (ms)

)
A0LPLX

dgrowthpdms := diff (growthp(ms),ms)
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=
(

d
dms F (ms)

)
A0P (1− PLX )

The derivatives with respect to structure of the mobilization expressions are done separately

because they involve mps(ms), which has derivative zero in non-growth conditions.

dzldms := diff (zl(ml ,ms),ms)

= −A3 ε d
dms massps (ms)

dzsdms := diff (zs(ml ,ms),ms)

= A4
(
1− d

dms massps (ms)
)

Derivatives of energy demand equation with respect to ms and ml are now simple.

deddml := diff (ed(ml ,ms),ml) = A7

deddms := diff (ed(ml ,ms),ms)

= d
dmswork (ms) + A8

The derivatives of the energy fraction with respect to ml and ms are now calculated. (Note:

Derivative of work with respect to ml is zero for fish.)

dfdml := diff (fctr(ml ,ms),ml)

= A7
37.68A3 (ml−ε massps(ms))+16.75 A4 (ms−massps(ms))

−37.68 (work(ms)+A7 ml+A8 ms)A3

(37.68 A3 (ml−ε massps(ms))+16.75A4 (ms−massps(ms)))2

dfdms := diff (fctr(ml ,ms),ms)

=
d

dms work(ms)+A8

37.68A3 (ml−ε massps(ms))+16.75 A4 (ms−massps(ms))

− (work(ms)+A7 ml+A8 ms)(−37.68A3 ε d
dms massps(ms)+16.75 A4 (1− d

dms massps(ms)))
(37.68A3 (ml−ε massps(ms))+16.75 A4 (ms−massps(ms)))2

Putting these derivatives together with the expressions for mobilization, zl and zs, one ends up

with the four partials.

deldml := diff (zl(ml ,ms) ∗ fctr(ml ,ms),ml)

A3 fctr (ml ,ms) + A3 (ml − εmassps (ms)) ∂
∂ml fctr (ml ,ms)

deldms := diff (zl(ml ,ms) ∗ fctr(ml ,ms),ms)

= −A3 ε
(

d
dms massps (ms)

)
fctr (ml ,ms) + A3 (ml − εmassps (ms)) ∂

∂ms fctr (ml ,ms)

desdml := diff (zs(ml ,ms) ∗ fctr(ml ,ms),ml)

= A4 (ms −massps (ms)) ∂
∂ml fctr (ml ,ms)

desdms := diff (zs(ml ,ms) ∗ fctr(ml ,ms),ms)

= A4
(
1− d

dms massps (ms)
)
fctr (ml ,ms) + A4 (ms −massps (ms)) ∂

∂ms fctr (ml ,ms)

This completes the subordinate derivatives. The four partials of g L and g S can now be easily

calculated from these components.
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