10 research outputs found

    Adaptive Kalman Filter for Navigation Sensor Fusion

    Get PDF

    Experimental Validation Of An Integrated Guidance And Control System For Marine Surface Vessels

    Get PDF
    Autonomous operation of marine surface vessels is vital for minimizing human errors and providing efficient operations of ships under varying sea states and environmental conditions which is complicated by the highly nonlinear dynamics of marine surface vessels. To deal with modelling imprecision and unpredictable disturbances, the sliding mode methodology has been employed to devise a heading and a surge displacement controller. The implementation of such a controller necessitates the availability of all state variables of the vessel. However, the measured signals in the current study are limited to the global X and Y positioning coordinates of the boat that are generated by a GPS system. Thus, a nonlinear observer, based on the sliding mode methodology, has been implemented to yield accurate estimates of the state variables in the presence of both structured and unstructured uncertainties. Successful autonomous operation of a marine surface vessel requires a holistic approach encompassing a navigation system, robust nonlinear controllers and observers. Since the overwhelming majority of the experimental work on autonomous marine surface vessels was not conducted in truly uncontrolled real-world environments. The first goal of this work was to experimentally validate a fully-integrated LOS guidance system with a sliding mode controller and observer using a 16’ Tracker Pro Guide V-16 aluminium boat with a 60 hp. Mercury outboard motor operating in the uncontrolled open-water environment of Lake St. Clair, Michigan. The fully integrated guidance and controller-observer system was tested in a model-less configuration, whereby all information provided from the vessel’s nominal model have been ignored. The experimental data serves to demonstrate the robustness and good tracking characteristics of the fully-integrated guidance and controller/observer system by overcoming the large errors induced at the beginning of each segment and converging the boat to the desired trajectory in spite of the presence of environmental disturbances. The second focus of this work was to combine a collision avoidance method with the guidance system that accounted for “International Regulations for Prevention of Collisions at Sea” abbreviated as COLREGS. This new system then needed to be added into the existing architecture. The velocity obstacles method was selected as the base to build upon and additional restrictions were incorporated to account for these additional rules. This completed system was then validated with a software in the loop simulation

    State estimators in soft sensing and sensor fusion for sustainable manufacturing

    Get PDF
    State estimators, including observers and Bayesian filters, are a class of model-based algorithms for estimating variables in a dynamical system given sensor measurements of related system states. They can be used to derive fast and accurate estimates of system variables which cannot be measured directly (’soft sensing’) or for which only noisy, intermittent, delayed, indirect or unreliable measurements are available, perhaps from multiple sources (’sensor fusion’). In this paper we introduce the concepts and main methods of state estimation and review recent applications in improving the sustainability of manufacturing processes. It is shown that state estimation algorithms can play a key role in manufacturing systems to accurately monitor and control processes to improve efficiencies, lower environmental impact, enhance product quality, improve the feasibility of processing more sustainable raw materials, and ensure safer working environments for humans. We discuss current and emerging trends in using state estimation as a framework for combining physical knowledge with other sources of data for monitoring and control of distributed manufacturing systems

    Non-Linear Robust Observers For Systems With Non-Collocated Sensors And Actuators

    Get PDF
    Challenges in controlling highly nonlinear systems are not limited to the development of sophisticated control algorithms that are tolerant to significant modeling imprecision and external disturbances. Additional challenges stem from the implementation of the control algorithm such as the availability of the state variables needed for the computation of the control signals, and the adverse effects induced by non-collocated sensors and actuators. The present work investigates the adverse effects of non-collocated sensors and actuators on the phase characteristics of flexible structures and the ensuing implications on the performance of structural controllers. Two closed-loop systems are considered and their phase angle contours have been generated as functions of the normalized sensor location and the excitation frequency. These contours were instrumental in the development of remedial actions for rendering structural controllers immune to the detrimental effects of non-collocated sensors and actuators. Moreover, the current work has focused on providing experimental validation for the robust performances of a self-tuning observer and a sliding mode observer. The observers are designed based on the variable structure systems theory and the self-tuning fuzzy logic scheme. Their robustness and self-tuning characteristics allow one to use an imprecise model of the system and eliminate the need for the extensive tuning associated with a fixed rule-based expert fuzzy inference system. The first phase of the experimental work was conducted in a controlled environment on a flexible spherical robotic manipulator whose natural frequencies are configuration-dependent. Both controllers have yielded accurate estimates of the required state variables in spite of significant modeling imprecision. The observers were also tested under a completely uncontrolled environment, which involves a 16-ft boat operating in open-water under different sea states. Such an experimental work necessitates the development of a supervisory control algorithm to perform PTP tasks, prescribed throttle arm and steering tasks, surge speed and heading tracking tasks, or recovery maneuvers. This system has been implemented herein to perform prescribed throttle arm and steering control tasks based on estimated rather than measured state variables. These experiments served to validate the observers in a completely uncontrolled environment and proved their viability as reliable techniques for providing accurate estimates for the required state variables

    ARCHITECTURE OPTIMIZATION, TRAINING CONVERGENCE AND NETWORK ESTIMATION ROBUSTNESS OF A FULLY CONNECTED RECURRENT NEURAL NETWORK

    Get PDF
    Recurrent neural networks (RNN) have been rapidly developed in recent years. Applications of RNN can be found in system identification, optimization, image processing, pattern reorganization, classification, clustering, memory association, etc. In this study, an optimized RNN is proposed to model nonlinear dynamical systems. A fully connected RNN is developed first which is modified from a fully forward connected neural network (FFCNN) by accommodating recurrent connections among its hidden neurons. In addition, a destructive structure optimization algorithm is applied and the extended Kalman filter (EKF) is adopted as a network\u27s training algorithm. These two algorithms can seamlessly work together to generate the optimized RNN. The enhancement of the modeling performance of the optimized network comes from three parts: 1) its prototype - the FFCNN has advantages over multilayer perceptron network (MLP), the most widely used network, in terms of modeling accuracy and generalization ability; 2) the recurrency in RNN network make it more capable of modeling non-linear dynamical systems; and 3) the structure optimization algorithm further improves RNN\u27s modeling performance in generalization ability and robustness. Performance studies of the proposed network are highlighted in training convergence and robustness. For the training convergence study, the Lyapunov method is used to adapt some training parameters to guarantee the training convergence, while the maximum likelihood method is used to estimate some other parameters to accelerate the training process. In addition, robustness analysis is conducted to develop a robustness measure considering uncertainties propagation through RNN via unscented transform. Two case studies, the modeling of a benchmark non-linear dynamical system and a tool wear progression in hard turning, are carried out to testify the development in this dissertation. The work detailed in this dissertation focuses on the creation of: (1) a new method to prove/guarantee the training convergence of RNN, and (2) a new method to quantify the robustness of RNN using uncertainty propagation analysis. With the proposed study, RNN and related algorithms are developed to model nonlinear dynamical system which can benefit modeling applications such as the condition monitoring studies in terms of robustness and accuracy in the future

    Robust Observers And Controllers For Marine Surface Vessels Undergoing Maneuvering And Course-Keeping Tasks

    Get PDF
    The dynamic behavior of marine surface vessels is highly nonlinear. Moreover, it is significantly influenced by environmental disturbances induced by winds, random sea waves and currents. To yield a desired response of the ship, the guidance and control system of the ship should be robust to both modeling imprecision and significant environmental disturbances. The focus of the current work is threefold. First, a six degree-of-freedom nonlinear model for a marine surface vessel is developed. It accounts for the coriolis and centripetal acceleration terms, added mass and wave damping terms, wave excitation forces, so-called memory effect terms, nonlinear restoring forces, wind and current effects, and control forces and moments. In addition, the formulation accounts for the physical limitations of the rudder and the powertrain system of the ship. In the current work, the detailed model of the vessel is used as a test bed to assess the performances of the proposed guidance system, controllers, and observers under various environmental conditions. A robust sliding mode controller and a self-tuning fuzzy sliding mode controller have been designed in the current work and proven to yield the desired response of the ship through digital simulations. Furthermore, a new guidance system has also been designed based on the line-of-sight and the acceptance radius concepts. The integration of the guidance system with the controllers has led to the design of a fully-autonomous surface vessel that is capable of accurately tracking a specified trajectory without any interference from the person at the helm. Moreover, nonlinear robust observers are designed, based on the sliding mode methodology and the self-tuning fuzzy sliding mode, to yield accurate estimates of the state variables that are needed for the computation of the control actions. The observers play a central role in the integrated guidance and control system proposed for the ship

    Parameter Estimation of Complex Systems from Sparse and Noisy Data

    Get PDF
    Mathematical modeling is a key component of various disciplines in science and engineering. A mathematical model which represents important behavior of a real system can be used as a substitute for the real process for many analysis and synthesis tasks. The performance of model based techniques, e.g. system analysis, computer simulation, controller design, sensor development, state filtering, product monitoring, and process optimization, is highly dependent on the quality of the model used. Therefore, it is very important to be able to develop an accurate model from available experimental data. Parameter estimation is usually formulated as an optimization problem where the parameter estimate is computed by minimizing the discrepancy between the model prediction and the experimental data. If a simple model and a large amount of data are available then the estimation problem is frequently well-posed and a small error in data fitting automatically results in an accurate model. However, this is not always the case. If the model is complex and only sparse and noisy data are available, then the estimation problem is often ill-conditioned and good data fitting does not ensure accurate model predictions. Many challenges that can often be neglected for estimation involving simple models need to be carefully considered for estimation problems involving complex models. To obtain a reliable and accurate estimate from sparse and noisy data, a set of techniques is developed by addressing the challenges encountered in estimation of complex models, including (1) model analysis and simplification which identifies the important sources of uncertainty and reduces the model complexity; (2) experimental design for collecting information-rich data by setting optimal experimental conditions; (3) regularization of estimation problem which solves the ill-conditioned large-scale optimization problem by reducing the number of parameters; (4) nonlinear estimation and filtering which fits the data by various estimation and filtering algorithms; (5) model verification by applying statistical hypothesis test to the prediction error. The developed methods are applied to different types of models ranging from models found in the process industries to biochemical networks, some of which are described by ordinary differential equations with dozens of state variables and more than a hundred parameters

    Mejoras en el estudio y predicción de los campos de viento locales, especialmente en entornos aeroportuarios, con importante afectación a la seguridad del tráfico aéreo = Improvements in the study and prediction of local wind fields, particularly in airport surroundings, with implication in air traffic safety

    Get PDF
    197 p.El viento es un elemento esencial en la climatología. La predicción y la medición de los campos de vientos son los dos aspectos clave en torno a los cuales pivota nuestro conocimiento de los mismos, la predicción de vientos se realiza fundamentalmente mediante técnicas de cálculo numérico, con un modelo númerico modificado se han realizado nuevos ensayos de validación, pasando posteriormente a la realización de las simulaciones globales para el entorno del Aeropuerto de Leó
    corecore