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1. Introduction 

As a form of optimal estimator characterized by recursive evaluation, the Kalman filter (KF) 
(Bar-Shalom, et al, 2001; Brown and Hwang, 1997, Gelb, 1974; Grewal & Andrews, 2001) has 
been shown to be the filter that minimizes the variance of the estimation mean square error 
(MSE) and has been widely applied to the navigation sensor fusion. Nevertheless, in 
Kalman filter designs, the divergence due to modeling errors is critical. Utilization of the KF 
requires that all the plant dynamics and noise processes are completely known, and the 
noise process is zero mean white noise. If the input data does not reflect the real model, the 
KF estimates may not be reliable. The case that theoretical behavior of a filter and its actual 
behavior do not agree may lead to divergence problems. For example, if the Kalman filter is 
provided with information that the process behaves a certain way, whereas, in fact, it 
behaves a different way, the filter will continually intend to fit an incorrect process signal. 
Furthermore, when the measurement situation does not provide sufficient information to 
estimate all the state variables of the system, in other words, the estimation error covariance 
matrix becomes unrealistically small and the filter disregards the measurement.  
In various circumstances where there are uncertainties in the system model and noise 
description, and the assumptions on the statistics of disturbances are violated since in a 
number of practical situations, the availability of a precisely known model is unrealistic due 
to the fact that in the modelling step, some phenomena are disregarded and a way to take 
them into account is to consider a nominal model affected by uncertainty. The fact that KF 
highly depends on predefined system and measurement models forms a major drawback. If 
the theoretical behavior of the filter and its actual behavior do not agree, divergence 
problems tend to occur. The adaptive algorithm has been one of the approaches to prevent 
divergence problem of the Kalman filter when precise knowledge on the models are not 
available.  
To fulfil the requirement of achieving the filter optimality or to preventing divergence 
problem of Kalman filter, the so-called adaptive Kalman filter (AKF) approach (Ding, et al, 
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2007; El-Mowafy & Mohamed, 2005; Mehra, 1970, 1971, 1972; Mohamed & Schwarz, 1999; 
Hide et al., 2003) has been one of the promising strategies for dynamically adjusting the 
parameters of the supposedly optimum filter based on the estimates of the unknown 
parameters for on-line estimation of motion as well as the signal and noise statistics 
available data. Two popular types of the adaptive Kalman filter algorithms include the 
innovation-based adaptive estimation (IAE) approach (El-Mowafy & Mohamed, 2005; 
Mehra, 1970, 1971, 1972; Mohamed & Schwarz, 1999; Hide et al., 2003) and the adaptive 
fading Kalman filter (AFKF) approach (Xia et al., 1994; Yang, et al, 1999, 2004;Yang & Xu, 
2003; Zhou & Frank, 1996), which is a type of covariance scaling method, for which 
suboptimal fading factors are incorporated. The AFKF incorporates suboptimal fading 
factors as a multiplier to enhance the influence of innovation information for improving the 
tracking capability in high dynamic maneuvering.  
The Global Positioning System (GPS) and inertial navigation systems (INS) (Farrell, 1998; 
Salychev, 1998) have complementary operational characteristics and the synergy of both 
systems has been widely explored. GPS is capable of providing accurate position 
information. Unfortunately, the data is prone to jamming or being lost due to the limitations 
of electromagnetic waves, which form the fundamental of their operation. The system is not 
able to work properly in the areas due to signal blockage and attenuation that may 
deteriorate the overall positioning accuracy. The INS is a self-contained system that 
integrates three acceleration components and three angular velocity components with 
respect to time and transforms them into the navigation frame to deliver position, velocity 
and attitude components. For short time intervals, the integration with respect to time of the 
linear acceleration and angular velocity monitored by the INS results in an accurate velocity, 
position and attitude. However, the error in position coordinates increase unboundedly as a 
function of time. The GPS/INS integration is the adequate solution to provide a navigation 
system that has superior performance in comparison with either a GPS or an INS stand-
alone system. The GPS/INS integration is typically carried out through the Kalman filter. 
Therefore, the design of GPS/INS integrated navigation system heavily depends on the 
design of sensor fusion method. Navigation sensor fusion using the AKF will be discussed. 
A hybrid approach will be presented and performance will be evaluated on the loosely-
coupled GPS/INS navigation applications. 
This chapter is organized as follows. In Section 2, preliminary background on adaptive 
Kalman filters is reviewed. An IAE/AFKF hybrid adaptation approach is introduced in 
Section 3. In Section 4, illustrative examples on navigation sensor fusion are given. 
Conclusions are given in Section 5. 

 
2. Adaptive Kalman Filters 

The process model and measurement model are represented as 
 kkkk wxΦx 1           (1a) 
 kkkk vxHz                     (1b) 
where the state vector  n

k x , process noise vector n
k w , measurement 

vector m
k z , and measurement noise vector m

k v . In Equation (1), both the vectors 
kw  and kv  are zero mean Gaussian white sequences having zero crosscorrelation with 

each other: 
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where kQ  is the process noise covariance matrix, kR  is the measurement noise covariance 

matrix, t
k e  FΦ  is the state transition matrix, and t  is the sampling interval, ][E  

represents expectation, and superscript “T” denotes matrix transpose.  
The discrete-time Kalman filter algorithm is summarized as follow: 

Prediction steps/time update equations: 
 kkk xΦx ˆˆ 1 


                 (3) 

 kkkkk QΦPΦP 


T
1                  (4) 

Correction steps/measurement update equations: 
 1TT ][   kkkkkkk RHPHHPK                 (5) 

 ]ˆ[ˆˆ   kkkkkk xHzKxx                  (6) 

  kkkk PHKIP ][                       (7) 
A limitation in applying Kalman filter to real-world problems is that the a priori statistics of 
the stochastic errors in both dynamic process and measurement models are assumed to be 
available, which is difficult in practical application due to the fact that the noise statistics 
may change with time. As a result, the set of unknown time-varying statistical parameters of 
noise, },{ kk RQ , needs to be simultaneously estimated with the system state and the error 
covariance. Two popular types of the adaptive Kalman filter algorithms include the 
innovation-based adaptive estimation (IAE) approach (El-Mowafy and Mohamed, 2005; 
Mehra, 1970, 1971, 1972; Mohamed and Schwarz, 1999; Hide et al., 2003; Caliskan & Hajiyev, 
2000) and the adaptive fading Kalman filter (AFKF) approach (Xia et al., 1994; Zhou & Frank, 
1996), which is a type of covariance scaling method, for which suboptimal fading factors are 
incorporated. 

 
2.1 The innovation-based adaptive estimation  
The innovation sequences have been utilized by the correlation and covariance-matching 
techniques to estimate the noise covariances. The basic idea behind the covariance-matching 
approach is to make the actual value of the covariance of the residual consistent with its 
theoretical value. The implementation of IAE based AKF to navigation designs has been 
widely explored (Hide et al, 2003, Mohamed and Schwarz 1999). Equations (3)-(4) are the 
time update equations of the algorithm from k  to step 1k , and Equations (5)-(7) are the 
measurement update equations. These equations incorporate a measurement value into a 
priori estimation to obtain an improved a posteriori estimation. In the above equations, kP  is 
the error covariance matrix defined by ])ˆ)(ˆ[( T

kkkkE xxxx  , in which kx̂  is an estimation 
of the system state vector kx , and the weighting matrix kK  is generally referred to as the 
Kalman gain matrix. The Kalman filter algorithm starts with an initial condition value, 

0x̂  
and 

0P . When new measurement kz  becomes available with the progression of time, the 
estimation of states and the corresponding error covariance would follow recursively ad 
infinity. Mehra (1970, 1971, 1972) classified the adaptive approaches into four categories: 
Bayesian, maximum likelihood, correlation and covariance matching. The innovation 
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2007; El-Mowafy & Mohamed, 2005; Mehra, 1970, 1971, 1972; Mohamed & Schwarz, 1999; 
Hide et al., 2003) has been one of the promising strategies for dynamically adjusting the 
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parameters for on-line estimation of motion as well as the signal and noise statistics 
available data. Two popular types of the adaptive Kalman filter algorithms include the 
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2003; Zhou & Frank, 1996), which is a type of covariance scaling method, for which 
suboptimal fading factors are incorporated. The AFKF incorporates suboptimal fading 
factors as a multiplier to enhance the influence of innovation information for improving the 
tracking capability in high dynamic maneuvering.  
The Global Positioning System (GPS) and inertial navigation systems (INS) (Farrell, 1998; 
Salychev, 1998) have complementary operational characteristics and the synergy of both 
systems has been widely explored. GPS is capable of providing accurate position 
information. Unfortunately, the data is prone to jamming or being lost due to the limitations 
of electromagnetic waves, which form the fundamental of their operation. The system is not 
able to work properly in the areas due to signal blockage and attenuation that may 
deteriorate the overall positioning accuracy. The INS is a self-contained system that 
integrates three acceleration components and three angular velocity components with 
respect to time and transforms them into the navigation frame to deliver position, velocity 
and attitude components. For short time intervals, the integration with respect to time of the 
linear acceleration and angular velocity monitored by the INS results in an accurate velocity, 
position and attitude. However, the error in position coordinates increase unboundedly as a 
function of time. The GPS/INS integration is the adequate solution to provide a navigation 
system that has superior performance in comparison with either a GPS or an INS stand-
alone system. The GPS/INS integration is typically carried out through the Kalman filter. 
Therefore, the design of GPS/INS integrated navigation system heavily depends on the 
design of sensor fusion method. Navigation sensor fusion using the AKF will be discussed. 
A hybrid approach will be presented and performance will be evaluated on the loosely-
coupled GPS/INS navigation applications. 
This chapter is organized as follows. In Section 2, preliminary background on adaptive 
Kalman filters is reviewed. An IAE/AFKF hybrid adaptation approach is introduced in 
Section 3. In Section 4, illustrative examples on navigation sensor fusion are given. 
Conclusions are given in Section 5. 
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where kQ  is the process noise covariance matrix, kR  is the measurement noise covariance 

matrix, t
k e  FΦ  is the state transition matrix, and t  is the sampling interval, ][E  

represents expectation, and superscript “T” denotes matrix transpose.  
The discrete-time Kalman filter algorithm is summarized as follow: 

Prediction steps/time update equations: 
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Correction steps/measurement update equations: 
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A limitation in applying Kalman filter to real-world problems is that the a priori statistics of 
the stochastic errors in both dynamic process and measurement models are assumed to be 
available, which is difficult in practical application due to the fact that the noise statistics 
may change with time. As a result, the set of unknown time-varying statistical parameters of 
noise, },{ kk RQ , needs to be simultaneously estimated with the system state and the error 
covariance. Two popular types of the adaptive Kalman filter algorithms include the 
innovation-based adaptive estimation (IAE) approach (El-Mowafy and Mohamed, 2005; 
Mehra, 1970, 1971, 1972; Mohamed and Schwarz, 1999; Hide et al., 2003; Caliskan & Hajiyev, 
2000) and the adaptive fading Kalman filter (AFKF) approach (Xia et al., 1994; Zhou & Frank, 
1996), which is a type of covariance scaling method, for which suboptimal fading factors are 
incorporated. 

 
2.1 The innovation-based adaptive estimation  
The innovation sequences have been utilized by the correlation and covariance-matching 
techniques to estimate the noise covariances. The basic idea behind the covariance-matching 
approach is to make the actual value of the covariance of the residual consistent with its 
theoretical value. The implementation of IAE based AKF to navigation designs has been 
widely explored (Hide et al, 2003, Mohamed and Schwarz 1999). Equations (3)-(4) are the 
time update equations of the algorithm from k  to step 1k , and Equations (5)-(7) are the 
measurement update equations. These equations incorporate a measurement value into a 
priori estimation to obtain an improved a posteriori estimation. In the above equations, kP  is 
the error covariance matrix defined by ])ˆ)(ˆ[( T

kkkkE xxxx  , in which kx̂  is an estimation 
of the system state vector kx , and the weighting matrix kK  is generally referred to as the 
Kalman gain matrix. The Kalman filter algorithm starts with an initial condition value, 

0x̂  
and 

0P . When new measurement kz  becomes available with the progression of time, the 
estimation of states and the corresponding error covariance would follow recursively ad 
infinity. Mehra (1970, 1971, 1972) classified the adaptive approaches into four categories: 
Bayesian, maximum likelihood, correlation and covariance matching. The innovation 
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sequences have been utilized by the correlation and covariance-matching techniques to 
estimate the noise covariances. The basic idea behind the covariance-matching approach is 
to make the actual value of the covariance of the residual consistent with its theoretical 
value.  
From the incoming measurement kz  and the optimal prediction 

kx̂  obtained in the 
previous step, the innovations sequence is defined as 
  kkk zzυ ˆ              (8) 

The innovation reflects the discrepancy between the predicted measurement 
kkxH ˆ  and the 

actual measurement kz . It represents the additional information available to the filter as a 

consequence of the new observation kz . The weighted innovation, )ˆ(  kkkk xHzK , acts as a 

correction to the predicted estimate 
kx̂  to form the estimation kx̂ . Substituting the 

measurement model Equation (1b) into Equation (8) gives 
 kkkkk vxxHυ   )ˆ(            (9) 
which is a zero-mean Gaussian white noise sequence. An innovation of zero means that the 
two are in complete agreement. The mean of the corresponding error of an unbiased 
estimator is zero. By taking variances on both sides, we have the theoretical covariance, the 
covariance matrix of the innovation sequence is given by  
 kkkkkkEk RHPHυυC   TT ][                (10a) 

which can be written as  
 kk

T
kkk

T
kkkkk RHΓQΓΦPΦHC  T)(          (10b) 

Defining kĈ  as the statistical sample variance estimate of 
kC , matrix kĈ can be 

computed through averaging inside a moving estimation window of size N  
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where N  is the number of samples (usually referred to the window size); 10  Nkj  is the 
first sample inside the estimation window. The window size N is chosen empirically (a good 
size for the moving window may vary from 10 to 30) to give some statistical smoothing. 
More detailed discussion can be referred to Gelb (1974), Brown & Hwang (1997), and 
Grewal & Andrews (2001). 
The benefit of the adaptive algorithm is that it keeps the covariance consistent with the real 
performance. The innovation sequences have been utilized by the correlation and 
covariance-matching techniques to estimate the noise covariances. The basic idea behind the 
covariance-matching approach is to make the actual value of the covariance of the residual 
consistent with its theoretical value. This leads to an estimate of kR : 

 Tˆˆ
kkkk k HPHCR                   (12) 

Based on the residual based estimate, the estimate of process noise kQ  is obtained: 
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where  kkk xxx ˆ . This equation can also be written in terms of the innovation sequence: 

 Tˆˆ
kkk k KCKQ                   (14) 

For more detailed information derivation for these equations, see Mohamed & Schwarz 
(1999). 

 
2.2 The adaptive fading Kalman filter  
The idea of fading memory is to apply a factor to the predicted covariance matrix to 
deliberately increase the variance of the predicted state vector. The main difference between 
different fading memory algorithms is on the calculation of the scale factor.  
 
A. Typical adaptive fading Kalman filter 
One of the approaches for adaptive processing is on the incorporation of fading factors. Xia 
et al. (1994) proposed a concept of adaptive fading Kalman filter (AFKF) and solved the state 
estimation problem. In the AFKF, suboptimal fading factors are introduced into the 
nonlinear smoother algorithm. The idea of fading Kalman filtering is to apply a factor 
matrix to the predicted covariance matrix to deliberately increase the variance of the 
predicted state vector. In the so called AFKF algorithm, suboptimal fading factors are 
introduced into the algorithm. 
The idea of fading Kalman filtering is to apply a factor matrix to the predicted covariance 
matrix to deliberately increase the variance of the predicted state vector:  
 k
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where ),,( 21 mk diag  λ . The main difference between various fading memory 
algorithms is on the calculation of scale factor kλ . One approach is to assign the scale factors 
as constants. When 1i ( mi ,,2,1  ), the filtering is in a steady state processing while 

1i  , the filtering may tend to be unstable. For the case 1i , it deteriorates to the 
standard Kalman filter. There are some drawbacks with constant factors, e.g., as the filtering 
proceeds, the precision of the filtering will decrease because the effects of old data tend to 
become less and less. The ideal way is to use time-varying factors that are determined 
according to the dynamic and observation model accuracy. 
To increase the tracking capability, the time-varying suboptimal scaling factor is 
incorporated, for on-line tuning the covariance of the predicted state, which adjusts the 
filter gain, and accordingly the improved version of AFKF is developed. The optimum 
fading factor is: 
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where ][tr  is the trace of matrix. The parameters are given by 
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sequences have been utilized by the correlation and covariance-matching techniques to 
estimate the noise covariances. The basic idea behind the covariance-matching approach is 
to make the actual value of the covariance of the residual consistent with its theoretical 
value.  
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Equation (18a) can be modified by multiplying an innovation enhancement weighting factor 
γ , and adding an additional term: 

 T
kkkkk HQHRγCN  0               (18b) 

In the AFKF, the key parameter is the fading factor matrix kλ . The factor γ  is introduced 
for increasing the tracking capability through the increased weighting of covariance matrix 
of the innovation. The value of weighting factor γ  is tuned to improve the smoothness of 
state estimation. A larger weighting factor γ  provides stronger tracking capability, which is 
usually selected empirically. The fading memory approach tries to estimate a scale factor to 
increase the predicted variance components of the state vector. The variance estimation 
method directly calculates the variance factor for the dynamic model. 
There are some drawbacks with a constant factor, e.g., as the filtering proceeds, the 
precision of the filtering will decrease because the effects of old data will become less and 
less. The ideal way is to use a variant scale factor that will be determined based on the 
dynamic and observation model accuracy. 
 

B. The strong tracking Kalman filter 
Zhou & Frank (1996) proposed a concept of strong tracking Kalman filter (STKF) (Zhou & 
Frank, 1996; Jwo & Wang, 2007) and solved the state estimation problem of a class of 
nonlinear systems with white noise. In the so called STKF algorithm, suboptimal fading 
factors are introduced into the nonlinear smoother algorithm. The STKF has several 
important merits, including (1) strong robustness against model uncertainties; (2) good real-
time state tracking capability even when a state jump occurs, no matter whether the system 
has reached steady state or not. Zhou et al proved that a filter is called the STKF only if the 
filter satisfies the orthogonal principle stated as follows: 
Orthogonal principle: The sufficient condition for a filter to be called the STKF only if the 
time-varying filter gain matrix be selected on-line such that the state estimation mean-
square error is minimized and the innovations remain orthogonal (Zhou & Frank, 1996): 

min]ˆ][ˆ[  T
kkkkE xxxx  

 0][ 
T
kjkE υυ , ...2,1,0k , ...2,1j            (20) 

Equation (20) is required for ensuring that the innovation sequence will be remained 
orthogonal. 
The time-varying suboptimal scaling factor is incorporated, for on-line tuning the 
covariance of the predicted state, which adjusts the filter gain, and accordingly the STKF is 
developed. The suboptimal scaling factor in the time-varying filter gain matrix is given by: 
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The key parameter in the STKF is the fading factor matrix kλ , which is dependent on three 
parameters, including (1) i ; (2) the forgetting factor (  ); (3) and the softening factor (  ). 
These parameters are usually selected empirically. mii ,,2,1,1  , which are a priori 
selected. If from a priori knowledge, we have the knowledge that x  will have a large 
change, then a large i  should be used so as to improve the tracking capability of the STKF. 
On the other hand, if no a priori knowledge about the plant dynamic, it is commonly 
select 121  m  . In such case, the STKF based on multiple fading factors 
deteriorates to a STKF based on a single fading factor. The range of the forgetting factor is 

10   , for which 0.95 is commonly used. The softening factor   is utilized to improve 
the smoothness of state estimation. A larger   (with value no less than 1) leads to better 
estimation accuracy; while a smaller   provides stronger tracking capability. The value is 
usually determined empirically through computer simulation and 5.4  is a commonly 
selected value.  
 
C. The algorithm proposed by Yang, et al.  
An adaptive factor depending on the discrepancy between predicted state from the dynamic 
model and the geometric estimated state by using measurements was proposed by Yang et 
al (1999, 2003, 2004), where they introduced an adaptive factor   incorporated into for 
regulating the error covariance 
 /)( T

1 kkkkk QΦPΦP 
                (26) 

where   is the single factor given by 
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It is seen that Equation (15a) with  /1k  results in Equation (26). In Equation (27), 10 c  
and 31 c  are commonly selected values, and 
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Equation (18a) can be modified by multiplying an innovation enhancement weighting factor 
γ , and adding an additional term: 

 T
kkkkk HQHRγCN  0               (18b) 

In the AFKF, the key parameter is the fading factor matrix kλ . The factor γ  is introduced 
for increasing the tracking capability through the increased weighting of covariance matrix 
of the innovation. The value of weighting factor γ  is tuned to improve the smoothness of 
state estimation. A larger weighting factor γ  provides stronger tracking capability, which is 
usually selected empirically. The fading memory approach tries to estimate a scale factor to 
increase the predicted variance components of the state vector. The variance estimation 
method directly calculates the variance factor for the dynamic model. 
There are some drawbacks with a constant factor, e.g., as the filtering proceeds, the 
precision of the filtering will decrease because the effects of old data will become less and 
less. The ideal way is to use a variant scale factor that will be determined based on the 
dynamic and observation model accuracy. 
 

B. The strong tracking Kalman filter 
Zhou & Frank (1996) proposed a concept of strong tracking Kalman filter (STKF) (Zhou & 
Frank, 1996; Jwo & Wang, 2007) and solved the state estimation problem of a class of 
nonlinear systems with white noise. In the so called STKF algorithm, suboptimal fading 
factors are introduced into the nonlinear smoother algorithm. The STKF has several 
important merits, including (1) strong robustness against model uncertainties; (2) good real-
time state tracking capability even when a state jump occurs, no matter whether the system 
has reached steady state or not. Zhou et al proved that a filter is called the STKF only if the 
filter satisfies the orthogonal principle stated as follows: 
Orthogonal principle: The sufficient condition for a filter to be called the STKF only if the 
time-varying filter gain matrix be selected on-line such that the state estimation mean-
square error is minimized and the innovations remain orthogonal (Zhou & Frank, 1996): 
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Equation (20) is required for ensuring that the innovation sequence will be remained 
orthogonal. 
The time-varying suboptimal scaling factor is incorporated, for on-line tuning the 
covariance of the predicted state, which adjusts the filter gain, and accordingly the STKF is 
developed. The suboptimal scaling factor in the time-varying filter gain matrix is given by: 
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The key parameter in the STKF is the fading factor matrix kλ , which is dependent on three 
parameters, including (1) i ; (2) the forgetting factor (  ); (3) and the softening factor (  ). 
These parameters are usually selected empirically. mii ,,2,1,1  , which are a priori 
selected. If from a priori knowledge, we have the knowledge that x  will have a large 
change, then a large i  should be used so as to improve the tracking capability of the STKF. 
On the other hand, if no a priori knowledge about the plant dynamic, it is commonly 
select 121  m  . In such case, the STKF based on multiple fading factors 
deteriorates to a STKF based on a single fading factor. The range of the forgetting factor is 

10   , for which 0.95 is commonly used. The softening factor   is utilized to improve 
the smoothness of state estimation. A larger   (with value no less than 1) leads to better 
estimation accuracy; while a smaller   provides stronger tracking capability. The value is 
usually determined empirically through computer simulation and 5.4  is a commonly 
selected value.  
 
C. The algorithm proposed by Yang, et al.  
An adaptive factor depending on the discrepancy between predicted state from the dynamic 
model and the geometric estimated state by using measurements was proposed by Yang et 
al (1999, 2003, 2004), where they introduced an adaptive factor   incorporated into for 
regulating the error covariance 
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where   is the single factor given by 
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It is seen that Equation (15a) with  /1k  results in Equation (26). In Equation (27), 10 c  
and 31 c  are commonly selected values, and 
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The a priori selected value   is usually selected empirically. If from a priori knowledge, we 
have the knowledge that x  will have a large change, then a small   should be used so as to 
improve the tracking capability. The range of the factor is 10  . The factor is utilized to 
improve the smoothness of state estimation. A larger   ( 1 ) leads to better estimation 
accuracy; while a smaller   provides stronger tracking capability. The value is usually 
determined empirically through personal experience or computer simulation using a 
heuristic searching scheme. In the case that 1 , it deteriorates to a standard Kalman filter. 
In Equation (29), the threshold 5.0c  is an average value commonly used. To increase the 
tracking capability, the time-varying suboptimal scaling factor need to be properly 
designed, for on-line tuning the covariance of the predicted state, which adjusts the filter 
gain, and accordingly the improved version of AFKF is able to provide better estimation 
accuracy.  

 
2.3 The tuning logic for parameter adaptation  
Another type of adaptation can be conducted by introducing a scaling factor directly to the 

kQ  and/or kR  matrices. To account for the greater uncertainty, the covariances need to be 
updated, through one of the following ways (Bakhache & Nikiforov, 2000; Jwo & Cho, 2007; 
Sasiadek, et al, 2000):  
(1) kkk QQQ  1 ; kkk RRR  1  

(2) )1(  k
kk QQ ; )1(  k

kk RR , 1 ; 1  
(3) kk QQ  ; kk RR   
For example, if (3) is utilized as an example, the filter equations can be augmented in the 
following way: 
 kkkkk QΦPΦP 


T

1          (30) 
1TT ][   kkkkkkk RHPHHPK   

In case that 1  , it deteriorates to the standard Kalman filter.  

To detect the discrepancy between kĈ and kC , we define the degree of mismatch (DOM)  

 kk  CC ˆDOM                              (31) 

Kalman filtering with motion detection is important in target tracking applications. The 
innovation information at the present epoch can be employed for timely reflect the change 
in vehicle dynamic. Selecting the degree of divergence (DOD) as the trace of innovation 
covariance matrix at present epoch (i.e., the window size is one), we have: 
 )( TT

kkkk tr υυυυ                         (32) 

 

This parameter can be utilized for detection of divergence/outliers or adaptation for 
adaptive filtering. If the discrepancy for the trace of innovation covariance matrix between 
the present (actual) and theoretical value is used, the DOD parameter can be of the form: 
   )(T

ktrkk  Cυυ              (33) 

The other DOD parameter commonly use as a simple test statistic for an occurrence of 
failure detection is based on the normalized innovation squared, defined as the ratio given 
by: 
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For each of the approaches, only one scalar value needs to be determined, and therefore the 
fuzzy rules can be simplified resulting in the decrease of computational efficiency.  
The logic of adaptation algorithm using covariance-matching technique is described as 
follows. When the actual covariance value kĈ is observed, if its value is within the range 

predicted by theory kC and the difference is very near to zero, this indicates that both 

covariances match almost perfectly. If the actual covariance is greater than its theoretical 
value, the value of the process noise should be decreased; if the actual covariance is less than 
its theoretical value, the value of the process noise should be increased. The fuzzy logic 
(Abdelnour,et al , 1993; Jwo & Chang, 2007; Loebis, et al, 2007; Mostov &  Soloviev, 1996; 
Sasiadek, et al, 2000) is popular mainly due to its simplicity even though some other 
approaches such as neural network and genetic algorithm may also be applicable. When the 
fuzzy logic approach based on rules of the kind: 

IF〈antecedent〉THEN〈consequent〉 
the following rules can be utilized to implement the idea of covariance matching:  
A. kĈ  is employed 

(1) IF〈 0ˆ kC 〉THEN〈 kQ  is unchanged〉 (This indicates that kĈ is near to zero, the 

process noise statistic should be remained.) 
(2) IF〈 0ˆ kC 〉THEN〈 kQ  is increased〉 (This indicates that kĈ is larger than zero, 

the process noise statistic is too small and should be increased.) 
(3) IF〈 0ˆ kC 〉THEN〈 kQ  is decreased〉 (This indicates that kĈ is less than zero, the 

process noise statistic is too large and should be decreased.) 
B. DOM  is employed 
(1) IF〈 0DOM  〉THEN〈 kQ  is unchanged〉 (This indicates that kĈ is about the same 

as kC , the process noise statistic should be remained.) 

(2) IF〈 0DOM  〉THEN〈 kQ  is decreased〉 (This indicates that kĈ is less than kC , the 

process noise statistic should be decreased.) 
(3) IF〈 0DOM  〉THEN〈 kQ  is increased〉 (This indicates that kĈ is larger than kC , 

the process noise statistic should be increased.) 
C. DOD (  ) is employed 
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The a priori selected value   is usually selected empirically. If from a priori knowledge, we 
have the knowledge that x  will have a large change, then a small   should be used so as to 
improve the tracking capability. The range of the factor is 10  . The factor is utilized to 
improve the smoothness of state estimation. A larger   ( 1 ) leads to better estimation 
accuracy; while a smaller   provides stronger tracking capability. The value is usually 
determined empirically through personal experience or computer simulation using a 
heuristic searching scheme. In the case that 1 , it deteriorates to a standard Kalman filter. 
In Equation (29), the threshold 5.0c  is an average value commonly used. To increase the 
tracking capability, the time-varying suboptimal scaling factor need to be properly 
designed, for on-line tuning the covariance of the predicted state, which adjusts the filter 
gain, and accordingly the improved version of AFKF is able to provide better estimation 
accuracy.  

 
2.3 The tuning logic for parameter adaptation  
Another type of adaptation can be conducted by introducing a scaling factor directly to the 

kQ  and/or kR  matrices. To account for the greater uncertainty, the covariances need to be 
updated, through one of the following ways (Bakhache & Nikiforov, 2000; Jwo & Cho, 2007; 
Sasiadek, et al, 2000):  
(1) kkk QQQ  1 ; kkk RRR  1  

(2) )1(  k
kk QQ ; )1(  k

kk RR , 1 ; 1  
(3) kk QQ  ; kk RR   
For example, if (3) is utilized as an example, the filter equations can be augmented in the 
following way: 
 kkkkk QΦPΦP 


T

1          (30) 
1TT ][   kkkkkkk RHPHHPK   

In case that 1  , it deteriorates to the standard Kalman filter.  

To detect the discrepancy between kĈ and kC , we define the degree of mismatch (DOM)  

 kk  CC ˆDOM                              (31) 

Kalman filtering with motion detection is important in target tracking applications. The 
innovation information at the present epoch can be employed for timely reflect the change 
in vehicle dynamic. Selecting the degree of divergence (DOD) as the trace of innovation 
covariance matrix at present epoch (i.e., the window size is one), we have: 
 )( TT
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This parameter can be utilized for detection of divergence/outliers or adaptation for 
adaptive filtering. If the discrepancy for the trace of innovation covariance matrix between 
the present (actual) and theoretical value is used, the DOD parameter can be of the form: 
   )(T
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The other DOD parameter commonly use as a simple test statistic for an occurrence of 
failure detection is based on the normalized innovation squared, defined as the ratio given 
by: 
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For each of the approaches, only one scalar value needs to be determined, and therefore the 
fuzzy rules can be simplified resulting in the decrease of computational efficiency.  
The logic of adaptation algorithm using covariance-matching technique is described as 
follows. When the actual covariance value kĈ is observed, if its value is within the range 

predicted by theory kC and the difference is very near to zero, this indicates that both 

covariances match almost perfectly. If the actual covariance is greater than its theoretical 
value, the value of the process noise should be decreased; if the actual covariance is less than 
its theoretical value, the value of the process noise should be increased. The fuzzy logic 
(Abdelnour,et al , 1993; Jwo & Chang, 2007; Loebis, et al, 2007; Mostov &  Soloviev, 1996; 
Sasiadek, et al, 2000) is popular mainly due to its simplicity even though some other 
approaches such as neural network and genetic algorithm may also be applicable. When the 
fuzzy logic approach based on rules of the kind: 

IF〈antecedent〉THEN〈consequent〉 
the following rules can be utilized to implement the idea of covariance matching:  
A. kĈ  is employed 

(1) IF〈 0ˆ kC 〉THEN〈 kQ  is unchanged〉 (This indicates that kĈ is near to zero, the 

process noise statistic should be remained.) 
(2) IF〈 0ˆ kC 〉THEN〈 kQ  is increased〉 (This indicates that kĈ is larger than zero, 

the process noise statistic is too small and should be increased.) 
(3) IF〈 0ˆ kC 〉THEN〈 kQ  is decreased〉 (This indicates that kĈ is less than zero, the 

process noise statistic is too large and should be decreased.) 
B. DOM  is employed 
(1) IF〈 0DOM  〉THEN〈 kQ  is unchanged〉 (This indicates that kĈ is about the same 

as kC , the process noise statistic should be remained.) 

(2) IF〈 0DOM  〉THEN〈 kQ  is decreased〉 (This indicates that kĈ is less than kC , the 

process noise statistic should be decreased.) 
(3) IF〈 0DOM  〉THEN〈 kQ  is increased〉 (This indicates that kĈ is larger than kC , 

the process noise statistic should be increased.) 
C. DOD (  ) is employed 
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Suppose that   is employed as the test statistic, and T  represents the chosen threshold. 
The following fuzzy rules can be utilized: 
(1) IF〈 T  〉THEN〈 kQ  is increased〉 (There is a failure or maneuvering reported; the 
process noise statistic is too small and needs to be increased) 
(2) IF〈 T  〉THEN〈 kQ  is decreased〉 (There is no failure or non maneuvering; the 
process noise statistic is too large and needs to be decreased) 

 
3. An IAE/AFKF Hybrid Approach 

In this section, a hybrid approach (Jwo & Weng, 2008) involving the concept of the two 
methods is presented. The proposed method is a hybrid version of the IAE and AFKF 
approaches. The ratio of the actual innovation covariance based on the sampled sequence to 
the theoretical innovation covariance will be employed for dynamically tuning two filter 
parameters - fading factors and measurement noise scaling factors. The method has the 
merits of good computational efficiency and numerical stability. The matrices in the KF loop 
are able to remain positive definitive. 
The conventional KF approach is coupled with the adaptive tuning system (ATS) for 
providing two system parameters: fading factor and noise covariance scaling factor. In the 
ATS mechanism, both adaptations on process noise covariance (also referred to P-
adaptation herein) and on measurement noise covariance (also referred to R-adaptation 
herein) are involved. The idea is based on the concept that when the filter achieves 
estimation optimality, the actual innovation covariance based on the sampled sequence and 
the theoretical innovation covariance should be equal. In other words, the ratio between the 
two should equal one. 
(1) Adaptation on process noise covariance.  

To account for the uncertainty, the covariance matrix needs to be updated, through 
the following way. The new 

kP  can be obtained by multiplying 
kP  by the factor Pλ :  

   kPk PλP                   (35) 
and the corresponding Kalman gain is given by 
 1TT ][   kkkkkkk RHPHHPK                 (36a) 

If representing the new variable kRk RλR  , we have  

 1TT ][   kRkkkkkk RλHPHHPK              (36b) 
From Equation (36b), it can be seen that the change of covariance is essentially governed by 
two of the parameters:  

kP  and kR . In addition, the covariance matrix at the measurement 
update stage, from Equation (7), can be written as 
  kkkk PHKIP ][                      (37a) 
and  
  kkkPk PHKIλP ][                    (37b) 
Furthermore, based on the relationship given by Equation (35), the covariance matrix at the 
prediction stage (i.e., Equation (4)) is given by 
 kkkkk QΦPΦP 


T

1                    (38) 

 

or, alternatively 
 kkkkPk QΦPΦλP 
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On the other hand, the covariance matrix can also be approximated by 
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where ),,( 21 mP diag  λ . The main difference between different adaptive fading 
algorithms is on the calculation of scale factor Pλ . One approach is to assign the scale 
factors as constants. When 1i  ( mi ,,2,1  ), the filtering is in a steady state processing 
while 1i  , the filtering may tend to be unstable. For the case 1i , it deteriorates to the 
standard Kalman filter. There are some drawbacks with constant factors, e.g., as the filtering 
proceeds, the precision of the filtering will decrease because the effects of old data tend to 
become less and less. The ideal way is to use time varying factors that are determined 
according to the dynamic and observation model accuracy.  
When there is deviation due to the changes of covariance and measurement noise, the 
corresponding innovation covariance matrix can be rewritten as: 

kkkkk RHPHC   T
  

and 
 kRkkkPk RλHPHλC   T

               (40) 

To enhance the tracking capability, the time-varying suboptimal scaling factor is 
incorporated, for on-line tuning the covariance of the predicted state, which adjusts the filter 
gain, and accordingly the improved version of AFKF is obtained. The optimum fading 
factors can be calculated through the single factor: 
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where ][tr  is the trace of matrix; 1i , is a scaling factor. Increasing i  will improve 
tracking performance.  
(2) Adaptation on measurement noise covariance. As the strength of measurement noise changes 
with the environment, incorporation of the fading factor only is not able to restrain the 
expected estimation accuracy. For resolving these problems, the ATS needs a mechanism for 
R-adaptation in addition to P-adaptation, to adjust the noise strengths and improve the filter 
estimation performance.  
A parameter which represents the ratio of the actual innovation covariance based on the 
sampled sequence to the theoretical innovation covariance matrices can be defined as one of 
the following methods: 
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Suppose that   is employed as the test statistic, and T  represents the chosen threshold. 
The following fuzzy rules can be utilized: 
(1) IF〈 T  〉THEN〈 kQ  is increased〉 (There is a failure or maneuvering reported; the 
process noise statistic is too small and needs to be increased) 
(2) IF〈 T  〉THEN〈 kQ  is decreased〉 (There is no failure or non maneuvering; the 
process noise statistic is too large and needs to be decreased) 

 
3. An IAE/AFKF Hybrid Approach 

In this section, a hybrid approach (Jwo & Weng, 2008) involving the concept of the two 
methods is presented. The proposed method is a hybrid version of the IAE and AFKF 
approaches. The ratio of the actual innovation covariance based on the sampled sequence to 
the theoretical innovation covariance will be employed for dynamically tuning two filter 
parameters - fading factors and measurement noise scaling factors. The method has the 
merits of good computational efficiency and numerical stability. The matrices in the KF loop 
are able to remain positive definitive. 
The conventional KF approach is coupled with the adaptive tuning system (ATS) for 
providing two system parameters: fading factor and noise covariance scaling factor. In the 
ATS mechanism, both adaptations on process noise covariance (also referred to P-
adaptation herein) and on measurement noise covariance (also referred to R-adaptation 
herein) are involved. The idea is based on the concept that when the filter achieves 
estimation optimality, the actual innovation covariance based on the sampled sequence and 
the theoretical innovation covariance should be equal. In other words, the ratio between the 
two should equal one. 
(1) Adaptation on process noise covariance.  

To account for the uncertainty, the covariance matrix needs to be updated, through 
the following way. The new 

kP  can be obtained by multiplying 
kP  by the factor Pλ :  
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and the corresponding Kalman gain is given by 
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If representing the new variable kRk RλR  , we have  
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From Equation (36b), it can be seen that the change of covariance is essentially governed by 
two of the parameters:  

kP  and kR . In addition, the covariance matrix at the measurement 
update stage, from Equation (7), can be written as 
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and  
  kkkPk PHKIλP ][                    (37b) 
Furthermore, based on the relationship given by Equation (35), the covariance matrix at the 
prediction stage (i.e., Equation (4)) is given by 
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or, alternatively 
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where ),,( 21 mP diag  λ . The main difference between different adaptive fading 
algorithms is on the calculation of scale factor Pλ . One approach is to assign the scale 
factors as constants. When 1i  ( mi ,,2,1  ), the filtering is in a steady state processing 
while 1i  , the filtering may tend to be unstable. For the case 1i , it deteriorates to the 
standard Kalman filter. There are some drawbacks with constant factors, e.g., as the filtering 
proceeds, the precision of the filtering will decrease because the effects of old data tend to 
become less and less. The ideal way is to use time varying factors that are determined 
according to the dynamic and observation model accuracy.  
When there is deviation due to the changes of covariance and measurement noise, the 
corresponding innovation covariance matrix can be rewritten as: 

kkkkk RHPHC   T
  

and 
 kRkkkPk RλHPHλC   T

               (40) 

To enhance the tracking capability, the time-varying suboptimal scaling factor is 
incorporated, for on-line tuning the covariance of the predicted state, which adjusts the filter 
gain, and accordingly the improved version of AFKF is obtained. The optimum fading 
factors can be calculated through the single factor: 
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where ][tr  is the trace of matrix; 1i , is a scaling factor. Increasing i  will improve 
tracking performance.  
(2) Adaptation on measurement noise covariance. As the strength of measurement noise changes 
with the environment, incorporation of the fading factor only is not able to restrain the 
expected estimation accuracy. For resolving these problems, the ATS needs a mechanism for 
R-adaptation in addition to P-adaptation, to adjust the noise strengths and improve the filter 
estimation performance.  
A parameter which represents the ratio of the actual innovation covariance based on the 
sampled sequence to the theoretical innovation covariance matrices can be defined as one of 
the following methods: 
(a) Single factor 
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It should be noted that from Equation (40) that increasing kR  will lead to increasing kC , 
and vice versa. This means that time-varying kR  leads to time-varying kC . The value of 

Rλ  is introduced in order to reduce the discrepancies between kC  and kR . The 
adaptation can be implemented through the simple relation: 
 kRk RλR                        (43) 
Further detail regarding the adaptive tuning loop is illustrated by the flow charts shown in 
Figs. 1 and 2, where two architectures are presented. Fig. 1 shows the system architecture #1 
and Fig. 2 shows the system architecture #2, respectively. In Fig. 1, the flow chart contains 
two portions, for which the block indicated by the dot lines is the adaptive tuning system 
(ATS) for tuning the values of both P and R parameters; in Fig. 2, the flow chart contains 
three portions, for which the two blocks indicated by the dot lines represent the R-
adaptation loop and P-adaptation loop, respectively.  
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Fig. 1. Flow chart of the IAE/AFKF hybrid AKF method - system architecture #1 

 

An important remark needs to be pointed out. When the system architecture #1 is employed, 
only one window size is needed. It can be seen that the measurement noise covariance of the 
innovation covariance matrix hasn’t been updated when performing the fading factor 
calculation. In the system architecture #2, the latest information of the measurement noise 
strength has already been available when performing the fading factor calculation. However, 
one should notice that utilization of the ‘old’ (i.e., before R-adaptation) information is 
required. Otherwise, unreliable result may occur since the deviation of the innovation 
covariance matrix due to the measurement noise cannot be correctly detected. One strategy 
for avoiding this problem can be done by using two different window sizes, one for R-
adaptation loop and the other for P-adaptation loop.  
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Fig. 2. Flow chart of the IAE/AFKF hybrid AKF method - system architecture #2 
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It should be noted that from Equation (40) that increasing kR  will lead to increasing kC , 
and vice versa. This means that time-varying kR  leads to time-varying kC . The value of 

Rλ  is introduced in order to reduce the discrepancies between kC  and kR . The 
adaptation can be implemented through the simple relation: 
 kRk RλR                        (43) 
Further detail regarding the adaptive tuning loop is illustrated by the flow charts shown in 
Figs. 1 and 2, where two architectures are presented. Fig. 1 shows the system architecture #1 
and Fig. 2 shows the system architecture #2, respectively. In Fig. 1, the flow chart contains 
two portions, for which the block indicated by the dot lines is the adaptive tuning system 
(ATS) for tuning the values of both P and R parameters; in Fig. 2, the flow chart contains 
three portions, for which the two blocks indicated by the dot lines represent the R-
adaptation loop and P-adaptation loop, respectively.  
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Fig. 1. Flow chart of the IAE/AFKF hybrid AKF method - system architecture #1 

 

An important remark needs to be pointed out. When the system architecture #1 is employed, 
only one window size is needed. It can be seen that the measurement noise covariance of the 
innovation covariance matrix hasn’t been updated when performing the fading factor 
calculation. In the system architecture #2, the latest information of the measurement noise 
strength has already been available when performing the fading factor calculation. However, 
one should notice that utilization of the ‘old’ (i.e., before R-adaptation) information is 
required. Otherwise, unreliable result may occur since the deviation of the innovation 
covariance matrix due to the measurement noise cannot be correctly detected. One strategy 
for avoiding this problem can be done by using two different window sizes, one for R-
adaptation loop and the other for P-adaptation loop.  
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4. Navigation Sensor Fusion Example 

In this section, two illustrative examples for GPS/INS navigation sensor fusion are 
provided. The loosely-coupled GPS/INS architecture is employed for demonstration. 
Simulation experiments were conducted using a personal computer. The computer codes 
were constructed using the Matlab software. The commercial software Satellite Navigation 
(SATNAV) Toolbox by GPSoft LLC was used for generating the satellite positions and 
pseudoranges. The satellite constellation was simulated and the error sources corrupting 
GPS measurements include ionospheric delay, tropospheric delay, receiver noise and 
multipath. Assume that the differential GPS mode is used and most of the errors can be 
corrected, but the multipath and receiver thermal noise cannot be eliminated. 
The differential equations describing the two-dimensional inertial navigation state are 
(Farrell, 1998): 
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where [ ua , va ] are the measured accelerations in the body frame, r  is the measured yaw 
rate in the body frame, as shown in Fig. 3. The error model for INS is augmented by some 
sensor error states such as accelerometer biases and gyroscope drifts. Actually, there are 
several random errors associated with each inertial sensor. It is usually difficult to set a 
certain stochastic model for each inertial sensor that works efficiently at all environments 
and reflects the long-term behavior of sensor errors. The difficulty of modeling the errors of 
INS raised the need for a model-less GPS/INS integration technique. The linearized 
equations for the process model can be selected as 
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which can be utilized in the integration Kalman filter as the inertial error model. In Equation 
(45), n  and e represent the east, and north position errors; nv  and ev represent the east, 
and north velocity errors;   represents yaw angle; ua , va , and r represent the 
accelerometer biases and gyroscope drift, respectively. The measurement model can be 
written as 
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Further simplification of the above two models leads to 
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and 
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respectively.  
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Fig. 3. Two-dimensional inertial navigation, Farrell & Barth (1999) 

 
(A) Example 1: utilization of the fuzzy adaptive fading Kalman filter (FAFKF) approach 
The first illustrative example is taken from Jwo & Huang (2009). Fig. 4 provides the strategy 
for the GPS/INS navigation processing based on the FAFKF mechanism. The GPS 
navigation solution based on the least-squares (LS) is solved at the first stage. The 
measurement is the residual between GPS LS and INS derived data, which is used as the 
measurement of the KF. 
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4. Navigation Sensor Fusion Example 

In this section, two illustrative examples for GPS/INS navigation sensor fusion are 
provided. The loosely-coupled GPS/INS architecture is employed for demonstration. 
Simulation experiments were conducted using a personal computer. The computer codes 
were constructed using the Matlab software. The commercial software Satellite Navigation 
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where [ ua , va ] are the measured accelerations in the body frame, r  is the measured yaw 
rate in the body frame, as shown in Fig. 3. The error model for INS is augmented by some 
sensor error states such as accelerometer biases and gyroscope drifts. Actually, there are 
several random errors associated with each inertial sensor. It is usually difficult to set a 
certain stochastic model for each inertial sensor that works efficiently at all environments 
and reflects the long-term behavior of sensor errors. The difficulty of modeling the errors of 
INS raised the need for a model-less GPS/INS integration technique. The linearized 
equations for the process model can be selected as 
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which can be utilized in the integration Kalman filter as the inertial error model. In Equation 
(45), n  and e represent the east, and north position errors; nv  and ev represent the east, 
and north velocity errors;   represents yaw angle; ua , va , and r represent the 
accelerometer biases and gyroscope drift, respectively. The measurement model can be 
written as 
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Further simplification of the above two models leads to 
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and 
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respectively.  
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Fig. 3. Two-dimensional inertial navigation, Farrell & Barth (1999) 

 
(A) Example 1: utilization of the fuzzy adaptive fading Kalman filter (FAFKF) approach 
The first illustrative example is taken from Jwo & Huang (2009). Fig. 4 provides the strategy 
for the GPS/INS navigation processing based on the FAFKF mechanism. The GPS 
navigation solution based on the least-squares (LS) is solved at the first stage. The 
measurement is the residual between GPS LS and INS derived data, which is used as the 
measurement of the KF. 
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Fig. 4. GPS/INS navigation processing using the FAFKF for the illustrative example 1. 
 
The experiment was conducted on a simulated vehicle trajectory originating from the (0, 0) 
m location. The simulated trajectory of the vehicle and the INS derived position are shown 
as in Fig. 5. The trajectory of the vehicle can be approximately divided into two categories 
according to the dynamic characteristics. The vehicle was simulated to conduct constant-
velocity straight-line during the three time intervals, 0-200, 601-1000 and 1401-1600s, all at a 
speed of 10 m/s. Furthermore, it conducted counterclockwise circular motion with radius 
2000 meters during 201-600 and 1001-1400s where high dynamic maneuvering is involved. 
The following parameters were used: window size N =10; the values of noise standard 
deviation are 2e-3 2/sm  for accelerometers and 5e-4 2/sm  for gyroscopes. 
The presented FLAS is the If-Then form and consists of 3 rules. The υ  and innovation 
covariance 

kĈ  as the inputs. The fuzzy rules are designed as follows: 

1. If υ  is zero and kĈ  is zero then c  is large 
2. If υ  is zero and kĈ  is small then c  is large 
3. If υ  is zero and kĈ  is large then c  is small 
4. If υ  is small and kĈ  is zero then c  is small 
5. If υ  is small and kĈ  is small then c  is small 
6. If υ  is small and kĈ  is large then c  is zero 
7. If υ  is large and kĈ  is zero then c  is zero 
8. If υ  is large and kĈ  is small then c  is zero 
9. If υ  is large and kĈ  is large then c  is zero 

The triangle membership functions for innovation mean value ( υ ), innovation covariance 
( kĈ ) and threshold ( c ) are shown in Fig. 6. The center of area approach was used for the 
defuzzification. Fig. 7 shows the East and North components of navigation errors and the 
corresponding 1-σ bounds based on the AFKF method and FAFKF method, respectively. 
Fig. 8 provides the navigation accuracy comparison for AFKF and FAFKF. Fig. 9 gives the 
trajectories of the threshold c  (the fuzzy logic output), and the corresponding fading factor 

k , respectively. 

 

 
Fig. 5. Trajectory for the simulated vehicle (solid) and the INS derived position (dashed) 
 

 
 (a) Innovation mean value ( υ ) 

 
 (b) Innovation covariance ( kĈ ) 

 
 (c) Threshold c   

Fig. 6. Membership functions for the inputs and output 
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Fig. 7. East and north components of navigation errors and the 1-σ bound based on the 
FAFKF method 
 

 
Fig. 8. Navigation accuracy comparison for AFKF and FAFKF 
 

 

 
Fig. 9. Trajectories of the threshold c (top) from the fuzzy logic output, and the 
corresponding fading factor k  (bottom) 
 
(B) Example 2: utilization of the IAE/AFKF Hybrid approach 
The second example is taken from Jwo & Weng (2008). Fig. 10 shows the GPS/INS 
navigation processing using the IAE/AFKF Hybrid AKF. Trajectory for the simulated 
vehicle (solid) and the unaided INS derived position (dashed) is shown in Fig. 11. The 
trajectory of the vehicle can be approximately divided into two categories according to the 
dynamic characteristics. The vehicle was simulated to conduct constant-velocity straight-
line during the three time intervals, 0-300, 901-1200 and 1501-1800s, all at a speed of 
10 m/s. Furthermore, it conducted counterclockwise circular motion with radius 3000 

meters during 301-900, and 1201-1500s where high dynamic maneuvering is involved. The 
following parameters were used: window size 15pN 20RN ; the values of noise 
standard deviation are 1e-3 2/sm  for accelerometers and gyroscopes. 
Fig. 12 provides the positioning solution from the integrated navigation system (without 
adaptation) as compared to the GPS navigation solutions by the LS approach, while Fig. 13 
gives the positioning results for the integrated navigation system with and without 
adaptation. Substantial improvement in navigation accuracy can be obtained.  
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Fig. 10. GPS/INS navigation processing using the IAE/AFKF Hybrid AKF for the 
illustrative example 2 

 

 
Fig. 11. Trajectory for the simulated vehicle (solid) and the INS derived position (dashed) 

 

 

 
Fig. 12. The solution from the integrated navigation system without adaptation as compared 
to the GPS navigation solutions by the LS approach 
 

 
Fig. 13. The solutions for the integrated navigation system with and without adaptation 
 
In the real world, the measurement will normally be changing in addition to the change of 
process noise or dynamic such as maneuvering. In such case, both P-adaptation and R-
adaptation tasks need to be implemented. In the following discussion, results will be 
provided for the case when measurement noise strength is changing in addition to the 
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illustrative example 2 

 

 
Fig. 11. Trajectory for the simulated vehicle (solid) and the INS derived position (dashed) 

 

 

 
Fig. 12. The solution from the integrated navigation system without adaptation as compared 
to the GPS navigation solutions by the LS approach 
 

 
Fig. 13. The solutions for the integrated navigation system with and without adaptation 
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provided for the case when measurement noise strength is changing in addition to the 
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change of process noise strength. The measurement noise strength is assumed to be 
changing with variances of the values 2222 38164 r , where the ‘arrows (→)’ is 
employed for indicating the time-varying trajectory of measurement noise statistics. That is, 
it is assumed that the measure noise strength is changing during the four time intervals: 0-
450s ( )4,0( 2N ), 451-900s ( )16,0( 2N ), 901-1350s ( )8,0( 2N ), and 1351-1800s ( )3,0( 2N ). 
However, the internal measurement noise covariance matrix kR  is set unchanged all the 

time in simulation, which uses )3,0(~ 2Nr j , nj ,2,1  , at all the time intervals.  
Fig. 14 shows the east and north components of navigation errors and the 1-σ bound based 
on the method without adaptation on measurement noise covariance matrix. It can be seen 
that the adaptation of P information without correct R information (referred to partial 
adaptation herein) seriously deteriorates the estimation result. Fig. 15 provides the east and 
north components of navigation errors and the 1-σ bound based on the proposed method 
(referred to full adaptation herein, i.e., adaptation on both estimation covariance and 
measurement noise covariance matrices are applied). It can be seen that the estimation 
accuracy has been substantially improved. The measurement noise strength has been 
accurately estimated, as shown in Fig. 16.  
 

 
Fig. 14. East and north components of navigation errors and the 1-σ bound based on the 
method without measurement noise adaptation 
 
It should also be mentioned that the requirement 1)( iiPλ  is critical. An illustrative 
example is given in Figs. 17 and 18. Fig. 17 gives the navigation errors and the 1-σ bound 
when the threshold setting is not incorporated. The corresponding reference (true) and 
calculated standard deviations when the threshold setting is not incorporated is provided in 
Fig. 18. It is not surprising that the navigation accuracy has been seriously degraded due to 
the inaccurate estimation of measurement noise statistics.  

Partial adaptation 

Partial adaptation 

 

 
Fig. 15. East and north components of navigation errors and the 1-σ bound based on the 
proposed method (with adaptation on both estimation covariance and measurement noise 
covariance matrices) 
 

 
Fig. 16. Reference (true) and calculated standard deviations for the east (top) and north 
(bottom) components of the measurement noise variance values 

Full adaptation  

Full adaptation  

Reference (dashed)  

Calculated (solid)  

Calculated (solid)  

Reference (dashed)  
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Fig. 17. East and north components of navigation errors and the 1-σ bound based on the 
proposed method when the threshold setting is not incorporated 

 
Fig. 18. Reference (true) and calculated standard deviations for the east and north 
components of the measurement noise variance values when the threshold setting is not 
incorporated 
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5. Conclusion 

This chapter presents the adaptive Kalman filter for navigation sensor fusion. Several types 
of adaptive Kalman filters has been reviewed, including the innovation-based adaptive 
estimation (IAE) approach and the adaptive fading Kalman filter (AFKF) approach. Various 
types of designs for the fading factors are discussed. A new strategy through the 
hybridization of IAE and AFKF is presented with an illustrative example for integrated 
navigation application. In the first example, the fuzzy logic is employed for assisting the 
AFKF. Through the use of fuzzy logic, the designed fuzzy logic adaptive system (FLAS) has 
been employed as a mechanism for timely detecting the dynamical changes and 
implementing the on-line tuning of threshold c , and accordingly the fading factor, by 
monitoring the innovation information so as to maintain good tracking capability. 
In the second example, the conventional KF approach is coupled by the adaptive tuning 
system (ATS), which gives two system parameters: the fading factor and measurement noise 
covariance scaling factor. The ATS has been employed as a mechanism for timely detecting the 
dynamical and environmental changes and implementing the on-line parameter tuning by 
monitoring the innovation information so as to maintain good tracking capability and 
estimation accuracy. Unlike some of the AKF methods, the proposed method has the merits of 
good computational efficiency and numerical stability. The matrices in the KF loop are able to 
remain positive definitive. Remarks to be noted for using the method is made, such as: (1) The 
window sizes can be set different, to avoid the filter degradation/divergence; (2) The fading 
factors iiP )(λ  should be always larger than one while jjR )(λ  does not have such limitation. 
Simulation experiments for navigation sensor fusion have been provided to illustrate the 
accessibility. The accuracy improvement based on the AKF method has demonstrated 
remarkable improvement in both navigational accuracy and tracking capability. 
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navigation application. In the first example, the fuzzy logic is employed for assisting the 
AFKF. Through the use of fuzzy logic, the designed fuzzy logic adaptive system (FLAS) has 
been employed as a mechanism for timely detecting the dynamical changes and 
implementing the on-line tuning of threshold c , and accordingly the fading factor, by 
monitoring the innovation information so as to maintain good tracking capability. 
In the second example, the conventional KF approach is coupled by the adaptive tuning 
system (ATS), which gives two system parameters: the fading factor and measurement noise 
covariance scaling factor. The ATS has been employed as a mechanism for timely detecting the 
dynamical and environmental changes and implementing the on-line parameter tuning by 
monitoring the innovation information so as to maintain good tracking capability and 
estimation accuracy. Unlike some of the AKF methods, the proposed method has the merits of 
good computational efficiency and numerical stability. The matrices in the KF loop are able to 
remain positive definitive. Remarks to be noted for using the method is made, such as: (1) The 
window sizes can be set different, to avoid the filter degradation/divergence; (2) The fading 
factors iiP )(λ  should be always larger than one while jjR )(λ  does not have such limitation. 
Simulation experiments for navigation sensor fusion have been provided to illustrate the 
accessibility. The accuracy improvement based on the AKF method has demonstrated 
remarkable improvement in both navigational accuracy and tracking capability. 
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