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Abstract 

 

SENSITIVITY AND STABILITY ANALYSIS OF NONLINEAR KALMAN 

FILTERS WITH APPLICATION TO AIRCRAFT ATTITUDE ESTIMATION 

 

by Matthew B. Rhudy 

 

 State estimation techniques are important tools for analyzing systems that contain 

states that are not directly measureable.  If the estimated states are used, for example, in 

place of the true states in a feedback controller, the accuracy and stability of the estimates 

becomes crucial for the safe and effective execution of the controller.  This is especially 

important in aircraft control applications, where safety is an essential concern.  Because 

of this, the stability characteristics of the state estimation are investigated.  Additionally, 

two different nonlinear Kalman filters are considered and compared with respect to 

various design parameters. 

This work considers the sensitivity and stability characteristics of nonlinear state 

estimation through the aircraft attitude estimation problem.  This problem is approached 

using sensor information from Global Positioning System (GPS) and Inertial Navigation 

System (INS) in order to obtain estimates of the aircraft attitude angles.  This case study 

uses experimentally collected flight data from subscale aircraft to derive estimation 

results.  The goal of this work is to obtain a better understanding of the properties of 

nonlinear Kalman filters in order to make more informed decisions regarding the 

selection and tuning of these filters for different real-world applications.    
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EKO Extended Kalman Observer
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1.0 INTRODUCTION 

 

In many engineering applications, it is common for the mathematical system 

model to contain states that are not directly measureable.  Because of this, state observers 

or state estimators become a necessary component of the system for applications such as 

full state feedback control [1], where it is essential for the estimation algorithm to be 

stable in order to achieve stable system response, although the system stability still may 

not be guaranteed.  The stability of a state estimator is typically defined in terms of the 

convergence of the state estimate to the true state, or, in other words, the state estimate 

error converges to zero, or becomes bounded within some region near zero.  This work 

investigates the stability of a nonlinear state estimator through the context of a particular 

application problem. 

The Linear Kalman Filter (LKF) [2] is a commonly used state estimator for linear 

systems.  This method has been proven to have exponentially stable state estimation error 

by various authors [3-7].  However, state estimators for nonlinear systems introduce 

additional difficulties, and therefore the stability is not as clearly defined.  The current 

industry standard for nonlinear state estimation is the Extended Kalman Filter (EKF) [8].  

As its name suggests, this method is an extension of the linear Kalman filtering 

framework, which utilizes a first order analytical linearization to handle the nonlinearities 

in the state.  In many applications, the accuracy and stability of the EKF is sufficient.  

However, in some cases, typically those involving strong nonlinearity, the first order 
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linearization of the EKF is insufficient [9].  Because of this issue, the Unscented Kalman 

Filter (UKF) [10] was introduced in order to handle the nonlinearity using a statistical 

linearization method.  Various simulation studies [10-13] establish the theoretical 

advantage of the UKF statistical linearization over the EKF analytical linearization for 

strong nonlinear equations.  However, for practical applications, the advantage is not as 

clear, due to mixed results from different research groups. 

Because of the inconsistencies in the existing research, a detailed comparison and 

sensitivity analysis was desired.  Various work was done by the Flight Control Systems 

Laboratory (FCSL) and the Interactive Robotics Laboratory (IRL) at West Virginia 

University (WVU) regarding the comparison [14], sensitivity [15-17], and other 

theoretical analyses [18,19] investigating the differences between the EKF and UKF.  

Some of these results are also presented in Chapter 5 of this dissertation.  While these 

results offered some insight into the differences in these two nonlinear filters, further 

work was necessary in order to analyze and evaluate the stability characteristics on the 

nonlinear state estimation problem. 

Early stability analysis work for recursive filtering started with the work of 

Kalman, who introduced a minimum-variance linear estimator, which later came to be 

referred to as the Kalman filter [2].  The first Kalman filter stability proof was provided 

by Kalman, who derived the conditions for stability of the homogeneous filter equations 

for continuous systems [3].  Additionally for continuous time systems, Fitzgerald 

investigated the different causes of divergence in the linear Kalman filter [20].  Following 

the effort by Kalman for continuous time systems, Sorenson derived lower and upper 

bounds on the error covariance matrix for discrete-time systems, but did not present any 
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stability analysis [21].  Deyst and Price derived the sufficient conditions for uniform 

asymptotic stability of the discrete homogeneous linear minimum-variance estimation 

[4].  Jazwinski also presented a proof of the asymptotic stability of the discrete-time 

minimum variance linear estimator if certain controllability and observability conditions 

are met [6].  Following the work of Hitz et al. [22] who pointed out an error in the effort 

in [4,6] to establish estimation error covariance bounds, and Tse [23] who questioned the 

stability results, Deyst proposed a correction paper to address these issues [5].  Crassidis 

and Junkins provided a Lyapunov-based stability proof of the linear discrete-time 

Kalman filter [7]. 

Some other authors have also considered the stability and related issues for the 

linear Kalman filter.  Guo established the convergence and stability properties of the 

linear stochastic time-varying parameter identification problem using a Kalman filter 

based technique [24].  Chan et al. discussed the convergence properties of solutions to the 

algebraic Riccati equation and the Riccati difference equation [25]. Costa and Astolfi 

provide the conditions for stability of the discrete-time Kalman filter for linear time-

invariant (LTI) systems with respect to perturbations in the initial error covariance [26].  

Moore and Anderson demonstrated techniques for handling singular state transition 

matrices for linear time-varying estimation and control stability analyses [27].   

 Using the linear Kalman filter stability work as a basis, various work has been 

done on the topic of Extended Kalman Filter (EKF) stability.  Ljung analyzed, using 

techniques derived in [28], the asymptotic behavior of the EKF for continuous-time 

parameter identification of a linear system [29].  Baras et al. presented a method to derive 

dynamic observers as asymptotic limits of recursive filters for both linear and nonlinear 
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systems with no inputs and linear observations in continuous time [30].  Song and Grizzle 

provided a proof that the Kalman filter is a global observer for discrete-time linear time-

varying systems, and expanded this result to show that the EKF is a quasi-local 

asymptotic observer [31] for deterministic discrete-time nonlinear systems with no inputs 

[32].  La Scala et al. expanded upon the work of Song and Grizzle [32], giving sufficient 

conditions for stability of the discrete-time EKF for a no input nonlinear system with 

linear observation equations.  The frequency tracking problem was used as an example to 

demonstrate the bounds on the tracking error [33].  Boutayeb et al. presented a 

convergence analysis of the EKF for deterministic discrete-time nonlinear systems with 

inputs [34].  In [34], the deterministic case was considered, i.e., no process or 

measurement noise, and therefore presented results in terms of an arbitrary „R‟ matrix, 

and introduced two additional matrices that are used to control the stability and 

convergence of the EKF.  Xiong et al. presented a stability analysis of the UKF [35], 

which was later pointed out by Wu et al. [36] to apply to a more general set of filters, 

including the EKF.  These results were extended by Xu et al. to handle correlated noise 

[37]. 

Several influential works on EKF stability were published in the late 1990‟s by 

Konrad Reif with various co-authors [38-42].  First, Reif et al. proposed a modification to 

the continuous-time EKF that introduced an additive term of instability which is used to 

assign the degree of stability and effectively treat the nonlinearity [38].  Reif et al. later 

expanded this work and added a proof to show that the proposed observer was in fact an 

exponential observer using Lyapunov‟s direct method [39].  In 1999, Reif et al. provided 

a detailed stability proof of the discrete-time EKF.  This paper also provides a method for 
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calculating the required bounds on the initial state error and noise terms in order to 

maintain stability.  It was shown and stated in this work that these bounds are very 

conservative, and may not be practical in application [40].  Reif and Unbehauen also 

presented a proof using the Lyapunov direct method that the EKF is an exponential 

observer for deterministic systems [41].  Reif et al. also provided a companion paper to 

[40] which offered similar stochastic stability discussion, however pertaining to the 

continuous-time EKF [42].  In a more recent paper, Kluge, Reif and Brokate reanalyzed 

the discrete-time EKF stochastic stability using the same principles as [40], but now 

consider the effect of intermittent observations, non-additive noise, and singular system 

Jacobian matrix [43]. 

 Other authors have also considered the stability of the EKF with certain 

modifications [38,39].  Song and Speyer designed the modified gain EKF, which was 

shown to be globally stable.  This filter was developed assuming a system with linear 

stochastic system dynamics, but a nonlinear stochastic measurement equation.  Results 

were presented for this new filter as applied to the bearings only measurement problem 

[44].  Babacan et al. showed that under certain conditions the projection-based discrete-

time EKF with equality constrained states is an exponential observer for deterministic 

systems, and also presented a modification to the EKF that increases the degree of 

stability and convergence speed [45].  Boutayeb and Aubry analyzed the stability of a 

strong tracking Extended Kalman Observer (EKO), where the deterministic case was 

considered, and the importance of the „Q‟ and „R‟ matrices as design parameters was 

emphasized [46].   
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1.1 OBJECTIVE 

 

 The objective of this study is to analyze the sensitivity and stability of nonlinear 

state estimation using the EKF through the example of attitude estimation using GPS/INS 

sensor fusion.  First, the sensitivity of different design parameters is considered to obtain 

a better understanding of the problem.  This analysis is then extended to investigate the 

convergence and stability characteristics of the algorithms.  This work utilizes previous 

stability work of other authors as well as existing stability theory, in particular 

Lyapunov‟s direct method, in order to develop a new set of conditional requirements to 

ensure the stability of the state estimation.  The primary goal of this work is to obtain a 

realistic set of stability requirements for the system that can be achieved with a real 

measurement system for practical application.  This produces a confidence in the 

accuracy of the estimated states so that they can safely and reliably be used for various 

purposes including feedback control.  This work aims to derive techniques for stability 

analysis that can be applied to any nonlinear state estimation problem using the EKF, 

with results presented in the context of the particular example application of attitude 

estimation. 

 

1.2 ORGANIZATION 

 

The rest of this dissertation is organized as follows.  Chapter 2 presents the 

necessary background information for this work including a thorough review of stability 

theory and definitions, as well as an introduction to state estimation and the existing 
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corresponding stability analyses for both linear and nonlinear Kalman filtering.  Chapter 

3 introduces the studied application of nonlinear state estimation, attitude estimation 

using GPS/INS sensor fusion.  Chapter 4 describes the details of the considered 

experimental flight testing platform, including an analysis and summary of the selected 

flight data.  Chapter 5 presents a comparison and sensitivity analysis which studies the 

different effects of the Extended Kalman Filter (EKF) and Unscented Kalman Filter 

(UKF).  Chapter 6 represents the core work of this dissertation, with a detailed analysis of 

the stability of the considered application of nonlinear state estimation.  Finally, Chapter 

7 summarizes and concludes this work, with some additional discussion regarding future 

directions of this research topic. 
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2.0 BACKGROUND INFORMATION 

 

 This chapter presents an outline of the necessary background information for this 

research study.  First, the basic definitions of stability for continuous-time systems are 

discussed, followed by discussion of both linear and nonlinear continuous-time stability 

theory, including both of Lyapunov‟s methods:  linearization and direct.  Next, the 

corresponding theory is presented for linear and non-linear discrete-time systems.  Then, 

the problem of nonlinear state estimation is presented, followed by sections detailing the 

linear discrete-time Kalman filter, Extended Kalman Filter (EKF), and Unscented 

Kalman Filter (UKF), including a detailed description of the current stability theory for 

these recursive filters.   

 

2.1 STABILITY OF CONTINUOUS-TIME SYSTEMS 

 

A simple but general form of a nonlinear dynamic system can be described by 

 ( ) ( ),t t tx f x  (1) 
  

where x is the (nx × 1) state vector and f is an (nx × 1) vector valued function.  The 

explicit dependence on the continuous time variable, t, defines this system in general as a 

non-autonomous or time-varying system.  Conversely, if the system is not an explicit 

function of time, it is called an autonomous or time-invariant system.   Thus, the 

autonomous form of (1) is given by 
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 ( ) ( )t tx f x  (2) 
  

Although this form of system does not include a dependence on a control input, u, if this 

control input is determined through a set of control laws such that 

 ( ) ( ),t t tu g x  (3) 
  

then the system can be rewritten in the form of (1).  In the following paragraphs, the 

stability of the autonomous system (2) is discussed [47]. 

A state of the system, x*, is defined as an equilibrium state or point if it satisfies 

the equation 

 *( )t f x 0
 (4) 

  
where 0 is an (nx × 1) vector of zeros.  A given system can have multiple equilibrium 

points.  In fact certain systems, such as the system defining the motion of a simple 

pendulum, have an infinite number of equilibrium points [47].   

The zero solution of the system, ( )t x 0 , is a commonly considered equilibrium 

point for many systems, and is used as a basis for the discussion of stability.  The zero 

solution is said to be Lyapunov stable if the state trajectory stays bounded within an nx 

dimensional hypersphere of radius δ, i.e., 2
( )t x , given that the initial state is 

bounded within an nx dimensional hypersphere of radius ε, i.e., 2
(0) x , where 2

  is 

the L2 norm of the vector [48], as calculated using 

 2
1 22

1
, ...

n
T

i n

i

v v v v


 v v

 
(5) 

  
In other words, the zero solution is considered Lyapunov stable if starting from a point 

sufficiently close to the origin, the state trajectory stays arbitrarily close to the origin.  
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Lyapunov stability is also sometimes referred to as “stable in the sense of Lyapunov” or 

“marginally stable” [49].  A further classification of stability that extends this concept is 

asymptotic stability.  In addition to the requirement of Lyapunov stability, asymptotic 

stability requires that the state trajectory approaches the origin as time goes to infinity.  A 

2-dimensional qualitative example of these different types of stability is shown in Figure 

1. 

 

 

Figure 1.  2-D Illustration of Types of Local Stability 
 

An even further classification of stability was defined for applications to systems where 

the rate of the state trajectory approaching the origin is important.  This type of stability 

is called exponential stability, and exists for systems which satisfy 

2 2
( ) (0) , 0, 0tt e     x x  (6) 

  
This means that in order to have exponential stability, the state trajectory of the system 

must converge to the origin at a rate faster than that of an exponential function.  A 1-

dimensional example showing exponential stability is given in Figure 2.  The 

classifications of stability up to this point describe local stability, i.e., the behavior of the 

(0)x





Unstable 
Asymptotically stable 

Lyapunov stable 
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system starting from an initial state close to the origin.  Additionally, if a system is 

asymptotically or exponentially stable for any initial state, then this system is said to be 

globally asymptotically or exponentially stable [47,50,51]. 

   

 

Figure 2.  1-D Illustration of Types of Local Stability 
 

2.1.1 Stability of Continuous-Time Linear Systems 

 

The standard format for a continuous-time linear state space system is given by 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
t t t t t

t t t t t

 

 

x A x B u

y C x D u
 (7) 

  
where x is the state vector, y is the output vector, u is the input vector, and A, B, C, and 

D are matrices describing the system.  Although the A, B, C, and D matrices can in 

general be time varying, for linear time-invariant (LTI) systems they are constant.  The 

stability of LTI systems is often separated into two components.  The first consideration 

-d

x(0)

0

d

 

 
Unstable

Marginally Stable

Expontentially stable
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is sometimes referred to as internal stability [49], and is defined by stability of the zero-

input response of the system, i.e., the response of 

( ) ( )t tx Ax  (8) 
  

to a nonzero initial condition x(0), whose solution is given by 

( ) (0)tt e A
x x  (9) 

  
where eAt is the matrix exponential, which is defined through its infinite series as 

2 2 3 3

1
...

! 2! 3!

n n
t

n

t t t
e t

n





      A A A A
I I A  (10) 

  
where I is the identity matrix [52].  It is clear from (9) that for single state systems (or 

scalar systems) the solution will be exponentially stable if Re(A) < 0, and Lyapunov 

stable for Re(A) = 0, where Re(.) denotes the real part of a generally complex number.  

To extend this result to higher state dimensions, the matrix A is diagonalized using a 

similarity transformation [48].  To do this, the eigenvalues and eigenvectors of the matrix 

are calculated, then the matrix can be written as 

1A XΛX  (11) 
  

where X is the matrix of eigenvectors of A, and Λ is a diagonal matrix of the 

corresponding eigenvalues of A.  Using (11), it can be shown that any polynomial of A, 

p(A), can be expressed as 

    1p p A X Λ X  (12) 
  

given that 



13 

    1 1 1 1

1

... ...
k

k k

i

   



       A A AA A X X X X X X X X  (13) 

  
Therefore, since eAt can be expressed as a polynomial of A, as in (10), using (12) it is 

clear that  

1t te e A Λ
X X  (14) 

  
A useful property of the matrix exponential is that diagonal matrix, Λ, the matrix 

exponential is simply a diagonal matrix of exponentials of the terms of Λ as in 

1

2

1

2

0 ... 0 0 ... 0
0 0 ... 0 0 ...

,
0 0 ... 0 0 0 ... 0
0 ... 0 0 ... 0 n

t

n

e

e
e

e













  
  
   
  
  

      

Λ
Λ  (15) 

  
Using this property, (8) can be shown to be marginally stable if all of the eigenvalues of 

A have zero or negative real part, and exponentially stable if all of the eigenvalues of A 

have strictly negative real part [49].  This type of matrix is called negative definite.  The 

definiteness properties of matrices are discussed next. 

 An (n × n) matrix A is said to be positive definite if [48] 

0,T  x Ax x 0  (16) 
  

The positive definiteness of a matrix is also guaranteed if all of its eigenvalues are 

positive [49].  Similar matrix properties can be defined, and for simplicity are 

summarized in Table 1. 
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Table 1.  Matrix Definiteness Properties 

Matrix Property Definition Eigenvalues 

Positive Definite 0,T  x Ax x 0  Positive 
Positive Semi-Definite 0,T  x Ax x 0  Non-Negative 

Negative Definite 0,T  x Ax x 0  Negative 
Negative Semi-Definite 0,T  x Ax x 0  Non-Positive 

Indefinite  
? 0,T  x Ax x 0  Some Positive 

Some Negative 
 

The definitions in Table 1 are given in the quadratic form [53].  A similar form is given 

by T
B AB , where B is some (n × m) matrix with n m .  If B has rank n and A is positive 

definite, then T
B AB  is also a positive definite matrix [49].  This property is an important 

tool for determining positive definiteness of various matrix operations. 

An alternative approach to analyzing the zero-input stability of an LTI system 

uses the Lyapunov equation 

T   A M MA N  (17) 
  

where N is any given positive definite symmetric matrix.  All eigenvalues of A have 

negative real part if and only if (17) has a unique symmetric solution M, and M is also 

positive definite.  If all of the eigenvalues of A have negative real parts, then the solution 

of (17) can be given by  

0

T t te e dt


 
A A

M N  (18) 

  
which is shown to be positive definite using 

   
2

20 0 0
0

T T
T T t T t t t te e dt e e dt e dt

  

     
A A A A A

x Mx x N N x N x N x N x  (19) 

  
where N was decomposed into 
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TN N N  (20) 
  

which is valid since N is given as positive definite.  Although (18) is a solution to the 

equation, (17) is more commonly solved by rearranging into a standard linear algebraic 

equation [49]. 

 Another important consideration for LTI systems is the bounded-input bounded-

output (BIBO) stability of the system, which is given by the zero-state response of (7).  

This form of stability is often analyzed through the input-output transfer matrix of the 

system, G(s), given by 

1( ) ( )s s   G C I A B D  (21) 
  

where s is the complex variable defined by the Laplace transform [54] 

 
0

( ) ( ) ( ) stF s f t f t e dt


  L  (22) 

  
If all of the poles of G(s) have negative real part, then the zero-state response of (7) is 

BIBO stable.  Since every pole of G(s) is an eigenvalue of A, if the system is 

asymptotically stable, it is also BIBO stable, although the opposite is not necessarily true 

due to possible pole-zero cancellations in G(s) [49]. 

 

2.1.2 Lyapunov’s Linearization Method for Continuous-Time Systems 

 

When discussing nonlinear system stability, an important result from Lyapunov is 

the linearization method, which is useful because it uses the existing linear system theory 

in order to derive conclusions about a nonlinear system.  Considering the general 

autonomous nonlinear system given by (2), and additionally assuming that f is 
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continuously differentiable and that 0 is an equilibrium point of the system, the system 

can be linearized about this equilibrium point by calculating the Jacobian matrix [49] 





 x 0

f
A

x
 (23) 

  
Using this Jacobian matrix, the linearized system is written as 

( ) ( )t tx Ax  (24) 
  

Note that this equation represents a linear system, and therefore the analysis of this 

system follows the same linear system theory as previously discussed [55].   

When analyzing the stability of an equilibrium point of a nonlinear system using 

the linearization method, first the stability of the linearized system must be determined.  

This is typically done by determining the eigenvalues of the Jacobian matrix, A.  Some 

useful conclusions can be drawn about the nonlinear system stability using this 

information about the linear system.  If the linearized system about a given equilibrium 

point is asymptotically (or exponentially) stable, then this equilibrium point is also 

asymptotically (or exponentially) stable for the nonlinear system.  Conversely, if the 

linearized system is unstable, the equilibrium point is unstable for the nonlinear system.  

However, if the linearized system is marginally stable, then no conclusion can be drawn 

about the nonlinear system (i.e. the system could be asymptotically stable, marginally 

stable, or unstable) [47]. 

 Although the linearization method is relatively simple to use, it only provides 

information about the local stability of the equilibrium point.  It is often desired to 

understand the global stability of the system.  In order to discuss this form of stability, 

Lyapunov‟s direct method can be used. 
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2.1.3 Lyapunov’s Direct Method for Continuous-Time Systems 

 

The basic premise behind Lyapunov‟s direct method is defining a generalized 

energy function of the system that is zero at the equilibrium point and positive elsewhere 

[55].  If this energy function is dissipated continuously, it can be shown that the response 

must eventually converge to an equilibrium point [47].  An advantage of this method is 

that the stability can be discussed without any knowledge or calculation of the solution of 

the system equation [56].  Lyapunov‟s direct method is sometimes referred to as the 

second method of Lyapunov.   

 To discuss the stability of an autonomous nonlinear system of the form (2), a 

generalized energy function, V, which is referred to as a Lyapunov function, must be 

defined.  The properties of this function are used to determine the stability characteristics 

of the system.  In particular, if there exists a Lyapunov function, V, such that the 

following characteristics are met 

( ) 0
( ) 0

( ) ( ) 0

V

V for

V
V



 


 


0

x x 0

x f x
x

 
(25) 

  
then the origin is a Lyapunov stable equilibrium point of the system.  Additionally, if  

( ) ( ) 0V
V


 


x f x
x

 (26) 

  
then the origin is an asymptotically stable equilibrium point.  In other words, the origin 

will be a Lyapunov stable equilibrium point if the Lyapunov function is positive definite 

and its time derivative is negative semi-definite, and asymptotically stable if the 

Lyapunov function is positive definite and its time derivative is negative definite [47].  
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For systems with negative semi-definite time derivative of the Lyapunov function, using 

invariant set theorems [47,50] it is possible to prove asymptotic stability of the system if 

certain additional conditions are met.  To prove exponential stability, an additional set of 

inequalities must be satisfied [50] 

2 2

, , ,
0 1

( )

( ) ( ) ( )

p p

p

p

V

V
V V

  



 





 

 


  


x x x

x f x x
x

 (27) 

  
A detailed proof is not shown here, but can be found in [50].   

 If the previous discussed properties of the Lyapunov function hold within a 

bounded hypersphere in the state space, the discussed stability refers to the local stability 

of the equilibrium point.  In order to determine the global stability of the system, the 

properties of the Lyapunov function must hold for all possible values of x in the state 

space.  Also, an additional property must hold for the Lyapunov function in order to 

claim global stability of the equilibrium point 

( )V as x x  (28) 
  

If the Lyapunov function, V, satisfies (28), it is said to be proper or radially unbounded 

[47,50]. 

When considering non-autonomous systems as in (1), an additional classification 

of stability is defined.  Uniform stability is defined if the system is stable for any initial 

time.  This is guaranteed if the Lyapunov function is decrescent [47,57].  In order to 

define a decrescent function, a definition of a class of functions is required.  A continuous 
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function α is said to be of class K if the function is non-decreasing and additionally 

[47,50] 

(0) 0
( ) 0, 0x x







 
 (29) 

  
A non-autonomous system is said to be uniformly Lyapunov stable if there exists a scalar 

function, V, and class K functions α, β, and γ such that 

   

 
2 2

2

0 ( , )

( , )

V t

V t

 



  

 

x x x

x x
 (30) 

  
Similar definitions of uniform asymptotic, exponential, global, etc. stability can be 

defined [47].  Unlike for autonomous systems, the invariant set theorems cannot be 

applied to non-autonomous systems.  However, using Barbalat‟s lemma [58] it is possible 

to prove the asymptotic stability of non-autonomous systems that do not strictly satisfy 

the time derivative inequality in (30) [47,50].  The stability of non-autonomous nonlinear 

systems (sometimes using Barbalat‟s lemma) is a fundamental component of adaptive 

control theory [59,60]. 

 

2.2 STABILITY OF DISCRETE-TIME SYSTEMS 

 

Discrete-time stability theory closely parallels the theory of continuous-time 

stability, and is therefore not presented in as much detail.  The general form of an 

autonomous discrete-time system is given by 
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 ( 1) ( )k k x f x  (31) 
  

where k is the discrete time index, and f is an (nx × 1) vector valued function.  The 

definitions of Lyapunov, asymptotic, and global stability are the same as continuous-time 

systems.  A parallel to exponential stability for discrete-time systems is geometric 

stability, which is defined for the zero solution if there exist positive constants α, β, and ε 

such that if 2
(0) x , then 

2 2
( ) (0) , 0, 1kk      x x  (32) 

  
First, the stability of discrete-time linear systems is discussed, followed by the application 

of Lyapunov‟s direct method to nonlinear discrete-time systems [50]. 

 

2.2.1 Stability of Discrete-Time Linear Systems 

 

The standard format for a discrete-time linear time-invariant state space system is 

given by 

( 1) ( ) ( )
( ) ( ) ( )
k k k

k k k

  

 

x Ax Bu

y Cx Du
 (33) 

  
where x is the state vector, y is the output vector, u is the input vector, and A, B, C, and 

D are matrices describing the system.  The internal or zero-input response of this system 

is given by the solution to 

( 1) ( )k k x Ax  (34) 
  

which is given by 
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( ) (0)kk x A x  (35) 
  

Therefore, (34) is considered marginally stable if the magnitudes of all eigenvalues of A 

are less than or equal to 1, and asymptotically stable if the magnitudes of all eigenvalues 

of A are strictly less than 1.  Similar to continuous-time systems, the BIBO stability is   

defined for discrete-time system by analyzing the poles of the input-output transfer 

matrix, which is defined using the z-transform instead of the Laplace transform [49].   

 

2.2.2 Lyapunov’s Direct Method for Discrete-Time Systems 

 

For nonlinear systems of the form (31), if there exists a continuous function, V, 

such that 

 

( ) 0
( ) 0,

( ) ( ) 0

V

V

V V



 

 

0

x x 0

f x x

 (36) 

  
then the zero solution of (31) is Lyapunov stable.  Additionally, if 

   ( ) 0V V f x x  (37) 
  

then the zero solution is asymptotically stable.  As for continuous time systems, there are 

invariant set theorems which can be used to prove asymptotic stability of autonomous 

discrete-time systems without satisfying (37) [50].  If the following conditions are met 
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 
2 2

, , ,
0 1 1

( )

( ) ( )

p p

p

p

V

V V

  

 

 





  

 



x x x

f x x

 (38) 

  
then the zero solution is geometrically stable.  If (28) is satisfied in addition to (37) or 

(38), then the zero solution is globally asymptotically stable or globally geometrically 

stable [50]. 

 Consider non-autonomous systems of the form 

 ( 1) ( ),k k k x f x  (39) 
  

Lyapunov stability is defined for the system if there exist a continuous function V and a 

class K function α such that 

 2

( , ) 0

( , )

( , ) 0

V k

V k

V k







 

0

x x

x

 (40) 

  
If additionally there exist a class K function β such that  

 2
( , )V k x x  (41) 

  
then the system is uniformly Lyapunov stable.  Uniform asymptotic stability is defined if 

additionally there exist a class K function γ such that 

 2
( , )V k   x x  (42) 

  
Uniform geometric stability is defined if there exists a continuous function V such that 

2 2

2

( , )

( , )

p p

p

V k

V k

 



 

  

x x x

x x
 (43) 

  
for some positive constants α, β, γ, and p, with 1p   [50]. 
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2.3 NONLINEAR STATE ESTIMATION 

 

A general discrete nonlinear system is described as follows: 

1( , , )
( , , )

k k k k

k k k k





x f x u w

y h x d v
 (44) 

  
where f is the vector valued discrete state prediction function, h is the vector valued 

discrete observation function, x is the state vector, y is the output vector, u and d are 

input vectors, w is the process noise vector, v is the measurement noise vector, and k is 

the discrete time index. The dimensions of x, u, w, y, d, and v, are nx, nu, nw, ny, nd, and 

nv, respectively.  In general, f and h are nonlinear multivariate vector valued functions of 

dimension nx and ny respectively.  A diagram illustrating the state estimation process of 

this general nonlinear system with a Kalman filter is shown in Figure 3. 

 

 

 
Figure 3.  Conceptual Representation of Nonlinear State Estimation 
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
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In Figure 3, K is the Kalman gain matrix which is calculated from the equations of a 

nonlinear Kalman filter.  First a solution of the linear state estimation problem is 

presented, followed by the nonlinear extension of this theory. 

 

2.4 DISCRETE-TIME LINEAR KALMAN FILTER 

 

In 1960, Kalman introduced a recursive solution to the discrete-time linear 

filtering problem [2].  This technique has since been named the Kalman filter, and is the 

basis of much of the current work in recursive estimation problems.  This discrete-time 

linear Kalman filter considers a system with the following properties 

1 1 1 1 1k k k k k k

k k k k

      

 

x A x B u w

y H x v
 (45) 

  
where w and v are the process and measurement noise processes, which are assumed 

white, uncorrelated, and zero-mean with known covariance matrices Q and R 

respectively 

 

 

~ 0, ,

~ 0, ,

0

T

k k k j k kj

T

k k k j k kj

T

k j

E

E

E





   

   

   

w Q w w Q

v R v v R

v w

 (46) 

  
where δ is the Kronecker delta function [61] 

1
0kj

k j

k j



 


 (47) 

  
 The initial conditions for the filter are 
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 

  

0 0

0 0 0 0 0

ˆ

ˆ ˆ T

E

E



   
 

x x

P x x x x
 (48) 

  
The first step in the Kalman filter is to obtain predictions of the current state and 

covariance matrix based on information from the previous time step 

| 1 1 1 1 1

| 1 1 1 1 1

ˆ ˆ
k k k k k k

T

k k k k k k

    

    

 

 

x A x B u

P A P A Q
 (49) 

  
Next, the Kalman gain matrix, K, is calculated 

 
1

| 1 | 1
T T

k k k k k k k k k



  K P H H P H R  (50) 

  
Finally, the Kalman gain matrix is used to update the predicted state and covariance 

matrix using information from the measurement 

 

   

| 1 | 1

11 1
| 1 | 1

ˆ ˆ ˆ
k k k k k k k k

T

k k k k k k k k k k

 


 

 

  

   

x x K z H x

P I K H P P H R H
 (51) 

  
where z is the measurement of the output, y, and I is an identity matrix [62,63]. 
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2.4.1 Discrete-Time Linear Kalman Filter Stability 

 

Deyst [4,5] and Price [4] provided a proof of the stability of the discrete-time 

linear Kalman filter.  For this stability proof, the following no input stochastic system is 

considered 

   

( 1) ( 1, ) ( ) ( )
( ) ( ) ( ) ( )
( ) ~ 0, ( ) , ( ) ~ 0, ( )

k k k k k

k k k k

k k k k

   

 

x Φ x w

z H x v

w Q v R

 (52) 

  
It is assumed that this system meets the following definition of stochastic controllability 

and observability 

1

2 1

1
1 2

1 2 1 2

2 1

1 2

( , 1) ( ) ( , 1)

( , ) ( ) ( ) ( ) ( , )

, , , ,
0
0

k
T

i k N

k
T T

i k N

k i i k i

i k i i i i k

N

 

 

   

 

 



 



 

   

 



   

   





I Φ Q Φ I

I Φ H R H Φ I

 
(53) 

  
where N is some fixed finite nonnegative integer, and the state transition matrix, Φ, 

satisfies the following properties 

1 2
1

( , ) ( , 1) ( 1, 2)... ( 1, ) ...

( , ) ( , )
( , )

k k ik i k k k k i i

i k k i

k k

 



     





Φ Φ Φ Φ A A A

Φ Φ

Φ I

 (54) 

  
If the stochastic controllability and observability conditions are met, then the error 

covariance matrix is bounded as follows 
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2
2 1

2
2 2 1 1

1 1
1/ k N

 

   

 
   

  
I P I  (55) 

  
It is shown in [4] that these are sufficient conditions for uniform asymptotic stability in 

the large for the homogeneous system [57]. 

 Crassidis and Junkins also provided a stability proof of the linear discrete-time 

Kalman filter using Lyapunov‟s direct method [7].  The details of this proof are briefly 

presented.  Consider a Lyapunov candidate function of the form 

1( ) T

k k kV ξ ξ P ξ  (56) 
  

where | 1ˆ
k k k k ξ x x represents the error in the a priori state estimate, although this is not 

explicitly stated in [7].  Since the covariance, Pk, is a positive definite matrix, its inverse 

exists and is also positive definite, and therefore by definition ( ) 0V ξ .    From (45), 

(49), and (51), the error dynamics can be defined by  

 1k k k k k k k k k    ξ A I K H ξ A K v w  (57) 
  

For stability, only the homogeneous part of (57) is considered 

 1k k k k k  ξ A I K H ξ  (58) 
  

To prove stability, the increment of the Lyapunov function must be negative, as in (37).  

For the considered Lyapunov candidate function, this increment is given by 

1 1
1 1 1( ) T T

k k k k k kV  

    ξ ξ P ξ ξ P ξ  (59) 
  

Substituting (58) in (59) gives the following necessary condition for stability 

   1 1
1 0TT T

k k k k k k k k k k

 


    
 

ξ I K H A P A I K H P ξ  (60) 

  
This condition reduces to showing that the bracketed matrix is negative definite.  Using 

(49) and (51), the condition can be simplified to the following form 
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     
11 1 0TT T T

k k k k k k k k k k k k k

        
 

A K R K A Q A I K H P I K H A  (61) 

  
Again, since 1

k


P is a positive definite matrix, so is the entire bracketed matrix, therefore 

reducing the condition to 

0T T

k k k k k k A K R K A Q  (62) 
  

If Rk is positive definite and Qk is positive semi-definite, this condition is satisfied [7].  

This proof shows the asymptotic stability of the a priori state error of a deterministic 

linear discrete-time Kalman filter.  However, since this system is in general non-

autonomous, without showing that the Lyapunov function is a decrescent function, 

uniform stability is not guaranteed [47].  This proof also does not consider the stochastic 

stability of the filter [64,65], therefore only the stability of the deterministic system has 

been shown.  These stability issues for the linear discrete-time Kalman filter are 

discussed further in Section 6.2. 

 

2.5 EXTENDED KALMAN FILTER 

 

In order to apply the previously derived linear recursive filtering tools to 

nonlinear systems, Kalman and Bucy introduced the Extended Kalman Filter (EKF) [8].   

This has since become a standard method for nonlinear filtering problems.  The EKF 

considers nonlinear systems of the form (44).  The process and measurement noise terms 

are considered to be uncorrelated, white, and Gaussian with zero mean and known 

covariance matrices Q and R respectively 
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~ ( , )
~ ( , )

0

k k

k k

T

k j

N

N

E    

w 0 Q

v 0 R

w v
 

 

(63) 

The EKF utilizes an analytical linearization method to handle the nonlinearity in the 

equations.  This analytical linearization involves the calculation of Jacobian matrices of 

the nonlinear prediction and observation functions with respect to both the state and the 

corresponding noise terms 

1 1

| 1 | 1

ˆ ˆ

ˆ ˆ

,

,

k k

k k k k

k k

k k

 

 

 
 
 

 
 
 

x x

x x

f f
A L

x w

h h
H M

x v

 (64) 

  
Using these Jacobian matrices, the EKF algorithm is given by [62] 

 

 

 

 

| 1 1 1

| 1 1 1 1 1 1 1

1

| 1 | 1

| 1 | 1

| 1

ˆ ˆ , ,

ˆ ˆ ˆ , ,

k k k k

T T

k k k k k k k k

T T T

k k k k k k k k k k k

k k k k k k k k

k k k k k

  

      



 

 





 

 

    

 

x f x u 0

P A P A L Q L

K P H H P H M R M

x x K z h x d 0

P I K H P

 (65) 

  
Note that these equations include Jacobian matrices L and M which are taken with 

respect to the process and measurement noise terms respectively.  For additive noise, 

which is commonly assumed in many situations, these matrices become identity matrices. 

 

2.5.1 Extended Kalman Filter Stability 

 

Various authors have approached the stability issues of the EKF [32-34,38-

41,44,45], sometimes discussing a modified version of the EKF [38,39,44,45], or by 
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reducing the most general nonlinear estimation problem by assuming a deterministic 

system [34,41,45], no inputs [32,33], linear dynamics [44], or a linear observation [33].  

Reif et al., however, presented a thorough stability analysis which considered a general 

formulation of the EKF.  This is an important work because it derives the necessary 

conditions for stability in terms of calculable bounds on the initial state error and noise 

disturbances.  Some of the details of this work are presented [40]. 

 Consider the following nonlinear discrete-time system 

1 ( , )
( )

k k k k k

k k k k

  

 

x f x u G w

y h x D v
 (66) 

  
where w and v are uncorrelated zero-mean white noise processes with identity 

covariance.  Applying the EKF to this problem, the errors due to linearization are 

determined from 

ˆ ˆ ˆ( , ) ( , ) ( ) ( , , )
ˆ ˆ ˆ( ) ( ) ( ) ( , )

k k k k k k k k k k

k k k k k k k

   

   

f x u f x u A x x φ x x u

h x h x H x x χ x x
 (67) 

  
where φ and χ are the prediction and observation linearization errors respectively.  Thus, 

the estimation error and its dynamics can be written in the following form 

1

ˆ
( )

ˆ ˆ( , , ) ( , )

k k k

k k k k k k k

k k k k k k k

k k k k k k



 

   

 

 

x x x

x A K H x r s

r φ x x u K χ x x

s G w K D v

 (68) 

  
The matrix Ak must be nonsingular for all k, and the following bounds are assumed on 

various matrices 
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2

2
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1

1
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



 





A

H

I P I

I Q

I R

 (69) 

  
for some positive real numbers a2, h2, p1, p2, q1, r1 > 0.  The norm of a matrix in this 

context is defined as the spectral norm, or the largest singular value of the matrix, as in 

 *
maxA A A  (70) 

  
where A* is the complex conjugate transpose of the matrix A.  Lastly, it is assumed that 

the linearization errors are bounded by 

2

2 2
2

2 2

ˆ ˆ ˆ( , , ) ,

ˆ ˆ ˆ( , ) ,

k k k k k k k

k k k k k k

 

 

 

 

   

   

φ x x u x x x x

χ x x x x x x
 (71) 

  
for some positive real numbers , , , 0        .  If these conditions are satisfied, then 

the estimation error is exponentially stable as long as the initial estimation error and noise 

are bounded as follows 

0 2
T

k k

T

k k













x

G G I

D D I

 (72) 

  
where the positive constants , 0   , are determined from the following series of 

calculations 
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

 

  
    

  

 

 
  

 

 

 

(73) 

  
where q and m are the number of rows in G and D respectively [40].   

 Another interesting work is that of La Scala et al. [33], in which the stability of 

the EKF is analyzed using the Total Stability Theorem [66].  A difference between this 

work and other works is that the stochastic terms are bounded absolutely, as opposed to 

the more common bounding of covariance.  The specific case of a linear observation was 

assumed.  A summary of the application of this work is provided here.  This work 

considers estimation error in the following form 

 
1 1

1 1

ˆ
( )
( ) ,

( )

k k k

k k k k k k k

k k k f k k

k k k k k k

 

 

 

   

 

  

x x x

x I K H A x r s

r I K H κ x x

s I K H w K v

 (74) 

  
where κf is the linearization error term given by 

       1 1 1 1 1 1 1,f k k k k k k k      


   



f
κ x x f x x f x x x

x
 (75) 

  
Assume that the following assumptions hold for the system 
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 (76) 

  
Additionally, it is assumed that N and εr can be found such that the stochastic 

controllability and observability conditions (53) are satisfied for the linearized system for 

all ζk, k rζ , evaluated along the trajectory xk – ζk.  Due to the assumption that 

 3 ,n nCf , the following derivative terms exist, and can be bounded by positive 

constants ρi as in 

 

      
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2
1 2 2 1 2 4 1 22

, 1,2,3

1
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 



  
    
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f
x

x

f f f
x x x x x x x

x x x

 (77) 

  
From the assumed bounds, a set of constants are defined for notational convenience 
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(78) 

  
With these assumed and calculated bounds, if the following condition is satisfied 

 

 
1/ 2

0

1
1z

z pq

   

 




  

 

x

 (79) 

  
then the estimation error of the EKF is bounded by 
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 
 

 
0 0 1

k x zk

k r

r 
    

 


    

 
x x x  (80) 

  
[33]. 

While the work of Reif et al. [40] and La Scala et al. [33] consider additive 

linearization error as in (67) and (75), the work of Boutayeb et al. [34,46] as well as 

Xiong et al. [35] formulate the linearization error using an unknown diagonal matrix, β, 

as in 

ˆ ˆ( , ) ( , ) ( )k k k k k k k k  f x u f x u β A x x  (81) 
  

This matrix is then assumed bounded with some upper and lower limits, which are then 

used to derive the conditions for stability. 

 

2.6 UNSCENTED KALMAN FILTER 

 

The Unscented Kalman Filter (UKF) uses the unscented transformation [10] to 

obtain the a posteriori estimates of mean and covariance.  The first step of the UKF 

implementation is to calculate 2l+1 sigma points based on the square-root of the state 

covariance matrix: 

1 1 1 1 1 1ˆ ˆ ˆ
k k k k k k      

   
 

χ x x P x P  (82) 

  
where l is the dimension of the state vector, χ is a matrix of state sigma points, and η is 

the sigma point spread parameter, given by [11]: 
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l    (83) 
  
 2 1l    (84) 

  
where λ is the compound sigma point parameter, and α is the primary sigma point scaling 

parameter, which is suggested to vary between 0.001 and 1 [11].   

The prediction step for the UKF consists of passing each sigma point through the 

state prediction equations: 

| 1 1( , ), 0,1,...,2i x i

k k k k i l  χ f χ u  (85) 
  

where the superscript i denotes the (i+1)th column of the matrix.  Then, the state mean 

and covariance are predicted using a weighted average of the transformed sigma points 

using: 

2

| 1 | 1
0

ˆ
l

i i

k k m k k

i

 



x w χ  (86) 

  

  
2

| 1 | 1 | 1 | 1 | 1
0

ˆ ˆ
l

T
i i i

k k k c k k k k k k k k

i

    



   P Q w χ x χ x  (87) 

  
where wm and wc are weight vectors [11], and Q is the process noise covariance matrix.   

For the update step of the UKF, first the output sigma points, Y, are calculated 

using the current state sigma points in the observation equations: 

 | 1 | 1, , 0,1,...,2i i x

k k k k k i l  Y h χ u  (88) 
  

Next, the output and output covariance matrix are estimated using: 
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 



y w Y  (89) 

  

  | 1

2

ˆ | 1 | 1 | 1 | 1
0

ˆ ˆ
k k

l
T

i i i

k c k k k k k k k k

i
    



   yP R w Y y Y y  (90) 

  
where R is the measurement noise covariance matrix.  Next, the covariance matrix 

between the state prediction and output estimate is calculated using: 

  | 1 | 1

2

ˆ ˆ | 1 | 1 | 1 | 1
0

k k k k

l
T

i i x i

c k k k k k k k k

i
     



  x yP w χ x Y y  (91) 

  
leading to the Kalman gain matrix: 

| 1 | 1

| 1

ˆ ˆ

ˆ

k k k k

k k

k

 




x y

y

P
K

P
 (92) 

  
Finally, using the Kalman gain matrix, the state and state covariance predictions are 

updated using the GPS measurement vector, z: 

 | 1 | 1ˆ ˆ ˆ
k k k k k k k   x x K z y  (93) 

  

| 1ˆ| 1 k k

T

k k k k k  yP P K P K  (94) 
  

 

2.6.1 Linearization of the UKF for Non-Additive Noise  

 

The assumptions on the noise characteristics of the system are important aspects 

of the nonlinear state estimation problem.  For a general nonlinear system of the form 

(44), modifications can be made to the linearization technique employed by the UKF to 

accommodate non-additive noise processes.  The UKF handles non-additive noise 

assumptions for process noise through the augmentation of the state vector with the 

process noise vector, and correspondingly for covariance: 
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where the superscript a denotes augmentation.  Using this augmented system, the sigma 

points used in the unscented transformation have components corresponding to the state 

and process noise: 

x

a k

k w

k

 
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 





 (97) 

  
Therefore, these sigma points can be used in (44) directly, as in: 

1 1( , , )x x w

k k k k χ f χ u χ  (98) 
  

Similar modifications for the UKF can be made to handle non-additive noise in the output 

equations.   

 

2.6.2 Unscented Kalman Filter Stability 

 

 The stability of the UKF was analyzed in [35] by building upon the previous 

estimation stability work for the EKF [40].  This analysis used a similar method to [40], 

with a distinct difference in the linearization error model.  Instead of using the additive 

noise model from (67), the linearization error is described using an unknown instrumental 

diagonal matrix, βk, as in (81).  This diagonal matrix provides a multiplicative 

representation of the linearization error, where the identity matrix indicates perfect 

linearization.  Bounds on this term are considered such that 



39 

2 2
min max

T

k k  I β β I  (99) 
  

Using this instrumental matrix, a similar analysis as [40] is used to demonstrate the 

stability of the UKF under certain conditions using the stochastic stability lemma.  For 

full details of the stability proof, see [35].  For this stability analysis, modifications were 

considered to the standard UKF to incorporate an extra positive definite matrix in the 

assumed process noise.  This matrix serves to improve the stability characteristics of the 

system, but introduces a tradeoff between stability and accuracy of the estimation.  It was 

stated in [36] that these results apply to a more general class of filters, including the EKF.  

Further work by Xu et al. extended this analysis to incorporate correlated noise terms 

[37].  
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3.0 AIRCRAFT ATTITUDE ESTIMATION 

 

This work analyzes nonlinear state estimation in the context of a particular 

application problem, aircraft attitude estimation.  This particular application was selected 

as it is an important nonlinear estimation problem in the aerospace community, especially 

because of the increased interests in subscale flight testing.  Many uses of subscale 

aircraft require a method of accurately estimating the attitude of the aircraft [67,68].  For 

example, remote sensing is a popular application that requires accurate attitude estimates.  

Some example remote sensing applications include 3-D mapping with direct geo-

referencing [69] and constructing large mosaics [70].  Because of cost and weight 

restrictions which are typical for subscale aircraft applications [71,72], high quality 

military grade inertial navigation systems may not be practical [72,73].  Therefore, 

attitude estimation using low-cost sensors is an important consideration for civilian 

applications of subscale aircraft.  A common approach to this problem is now discussed. 

 

3.1 GPS/INS SENSOR FUSION 

 

A common approach to the attitude estimation problem involves the fusing of 

information from an onboard Inertial Navigation System (INS) with Global Positioning 

System (GPS) [74,75].  This process is referred to as GPS/INS sensor fusion.  The 

motivation for this method is that inertial sensors tend to produce results that drift with 

time when integrated for navigation purposes.  GPS, however, does not provide any 
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direct attitude information, but can be used to regulate the error growth of the INS 

estimates by providing non-drifting measurements.   

There are two different classifications of GPS/INS sensor fusion, which is based 

on the type of information provided by the GPS to the estimation algorithm:  “tightly-

coupled” and “loosely-coupled” [74].  A tightly-coupled GPS/INS sensor fusion 

algorithm uses pseudorange and carrier phase data from each satellite individually in the 

algorithm.  This allows for the use of information from any number of satellites, 

including situations where the GPS cannot obtain a “fix” in order to calculate a position 

and velocity solution.  On the other hand, a loosely-coupled GPS/INS sensor fusion 

algorithm uses only position and velocity solutions provided by the GPS receiver.  This is 

limited to situations where the GPS has a fix, but is easier to implement and understand.  

Only loosely-coupled GPS/INS sensor fusion algorithms are considered in this 

dissertation. 

For both tightly-coupled and loosely-coupled GPS/INS sensor fusion algorithms, 

different state estimation filters can be used.  Kalman-based filters are a commonly used 

technique due to their optimal observer gains and reasonable computational requirements 

[62].  Particle filters [76,77] are also a powerful tool for nonlinear state estimation 

problems, including GPS/INS sensor fusion.  The statistical approach used for particle 

filters involves the generation and propagation of a large number of particles.  This 

allows for very good approximations on nonlinearities and non-Gaussian noise 

assumptions.  However, due to the nature of this method, a large computational load is 

required, thus making it currently impractical for on-line implementation in real-world 
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engineering systems.  Because of this, only Kalman-based filters are considered in this 

dissertation. 

 

3.2 LOOSELY-COUPLED GPS/INS SENSOR FUSION FORMULATIONS 

 

There are multiple ways to formulate the loosely-coupled GPS/INS sensor fusion 

problem, e.g. [14,16,78,79], and a few of these formulations are presented in the 

following sections.  Each of these formulations uses the state space framework necessary 

for Kalman-based filters.  First, the necessary inertial navigation equations are presented 

followed by descriptions of the considered GPS/INS sensor fusion formulations.  Then, a 

few alternative methods of attitude estimation are discussed. 

 

3.2.1 Inertial Navigation Equations 

 

An important consideration for inertial navigation is the necessary coordinate 

frames.  In general, there are two coordinate frames of interest.  The first coordinate 

frame is the aircraft body coordinate (ABC) frame which is fixed to the aircraft body.  

This coordinate system is useful, because strap-down sensors such as an inertial 

measurement unit (IMU) are fixed to the aircraft, and therefore record measurements 

with respect to the aircraft body.  Standard aircraft convention designates the origin of 

this frame at the center of gravity (CG) of the aircraft, with x-axis pointing toward the 

nose, y-axis pointing toward the right wing, and the z-axis pointing down.  Since GPS 

information is utilized, it is also important to consider a local Earth-fixed frame with a 
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specified origin, e.g., a North-East-Down (NED) coordinate frame.  Since this problem 

involves two different coordinate frames, the relationship between the two becomes 

important.  This relationship is determined using the Direction Cosine Matrix (DCM) 

[80] 
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where ϕ, θ, ψ, are the Euler (roll, pitch, and yaw) angles of the aircraft.  Therefore, this 

coordinate frame rotation can be used to establish the relationship between the ABC 

accelerations as measured by the IMU, and the acceleration in the fixed frame 
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where the tilde (~) superscript is used to denote the ABC frame.  The acceleration due to 

gravity, g, is included since the accelerometers measure the absolute acceleration of the 

object, i.e., relative to free fall.  A similar coordinate transformation must be used in 

order to relate the aircraft body angular rates (p, q, r) to the Euler angular rates [81] 
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Since digital measurement systems can only record discrete-time measurements, these 

theoretical continuous-time relationships must be discretized.  This is done using a first 

order approximation [1].  The resulting discrete-time form of (101) and (102) using this 

approximation is given below 
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3.2.2 Acceleration Vector Attitude Estimation 

 

 An Acceleration Vector Attitude Estimation (AVAE) algorithm was developed 

for direct attitude estimation following the dynamic tilt sensor concept [14]. The AVAE 

algorithm uses GPS acceleration in a local NED frame obtained through numerical 

differentiation of GPS velocity measurements, and accelerometer measurements obtained 

in the ABC frame. The aircraft Euler angles, roll, pitch, and yaw (ϕ, θ, ψ), relate the 

velocity in the two coordinate frames through the DCM defined by (100) 
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where a is acceleration and g is the acceleration due to gravity. Note that the NED 

coordinates are represented by x, y, z, while the ABC coordinates are distinguished using 

(~).  With measurements from both GPS and accelerometers, the projection of the local 

gravity vector on the three aircraft body-axes in terms of the three Euler angles can then 

be solved, as demonstrated by Kingston and Beard [82]. 

To reduce the matrix relationship shown in (105),  the yaw angle, ψ, is 

approximated by the aircraft heading angle which is obtained using the instantaneous 
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four-quadrant inverse tangent (i.e. atan2) to the aircraft trajectory using GPS velocity 

measurements in the x and y axes within the local NED coordinate frame: 
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The two remaining aircraft Euler angles are then estimated by considering sequential 

Euler rotations.  Specifically, by considering the rotation through the heading angle, an 

intermediate acceleration vector, denoted with subscript ψ, is defined as 
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which leads to the following algebraic equations:  
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The first equation of the above set can be solved to obtain an estimate of the pitch angle: 
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By again rotating the acceleration vector by the newly obtained pitch estimate, a second 

intermediate acceleration vector, denoted with subscript ψθ, is defined by 

, , ,

, ,

, , ,

ˆ ˆcos sin

ˆ ˆsin cos

x x z

y y

z x z

a a a

a a

a a a

  

 

  

 

 

   
  

   
       

 (110) 

  
This leaves the roll angle as the only unknown variable: 
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which can be solved algebraically to obtain an estimate of the roll angle: 
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Within the AVAE algorithm, the GPS acceleration vector is calculated using a numerical 

backward-difference derivative of the GPS velocity measurement vector. To reduce the 

noise associated with the numerical derivative, the pitch and roll estimates obtained with 

the AVAE formulation are smoothed with a first order low-pass Butterworth filter.  This 

section presented a direct calculation method of obtaining an estimate of the aircraft 

attitude from GPS and IMU accelerations.  In the following sections, recursive methods 

through nonlinear state space formulations are described. 

 

3.2.3 3-State GPS/INS Sensor Fusion Formulation 

 

 Since attitude estimation is the primary goal, the simplest state vector that can be 

considered for this problem consists of the three Euler angles,  
T

  x .  With these 

states, the dynamics are determined by (104), with an input vector consisting of the 

aircraft body angular rates,  
T

p q ru .  The deterministic formulation of these 

dynamics can be written as 
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Since the IMU is subject to noise uncertainties, the stochastic problem must be 

considered, and is formulated as follows 
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where w is the process noise vector, which is considered to be additive to the inputs.  

This assumes that all of the uncertainty in the state equations is in the inputs, i.e., the 

model equation is perfect.  Although (102) should not contain any uncertainty since it is 

derived from kinematics, the discretization process does introduce some error in (104).  

To compensate for this uncertainty, an additional process noise term can be added to the 

state vector, as in 
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where x

kw  is the process noise due to discretization.  For this analysis, the discretization 

error is neglected due to the high sampling rate of the system, and the process noise due 

to the inputs is assumed constant, and is calculated from static sensor measurements 

2 2 2
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 The output or observation equations are formulated as follows.  The output is 

considered as the change in velocity between successive time steps, determined by 

rearranging (103) 
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This equation follows a standard nonlinear form of the deterministic observation 

equations 
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where the observation equation input is defined from the IMU accelerations, 

T

x y za a a   d .  Since again the relationships are derived from kinematics, there are 

only two primary sources of uncertainty in these equations:  uncertainty in the IMU 

acceleration measurements and uncertainty in the measurement of the output, which is 

obtained from GPS velocity measurements 

, , 1

, , 1

, , 1

x k x k

y k y k

z k z k GPS

V V

V V

V V







 
 

  
  

z  (119) 

  
To incorporate these uncertainties into the stochastic system, two measurement noise 

terms are included 
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where the measurement covariance matrices are determined from static sensor 

measurements, as in 
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To write these uncertainties in the standard form of a nonlinear stochastic equation (44), 

the measurement noise vectors are combined, such that 
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To implement the presented 3-state GPS/INS sensor fusion formulation using an 

EKF, the following Jacobian matrices must be calculated using (64) 
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where sϕ and cϕ are used to abbreviate sin ϕ and cos ϕ respectively, and the states and 

inputs are evaluated at time step k.  
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3.2.4 6-State GPS/INS Sensor Fusion Formulation 

 

For this 6-state sensor fusion formulation, in addition to the attitude of the 

aircraft, the local Cartesian components of velocity are included as states:  

T

x y zV V V      x .  The state prediction equations for these states are defined 

by (103) and (104), with the input vector given by all six IMU measurements: 
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x y za a a p q r   u . The output for this formulation is given by extracting the 

measured states of the system: 
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where the observation function h due to linearity can be written using the observation 

matrix,  3 3 3 3x xH I 0 , where I is an identity matrix and 0 is a matrix of zeros with 

given dimensions.  Note that for this formulation, there is no input to the output 

equations, i.e., d = 0; therefore there is no component of R corresponding to d.  The 

measurement vector z consists of the velocity measurements provided by GPS:  

T

x y z
GPS

V V V   z .  The process and measurement noise covariance matrices can be 

calculated in a similar fashion as the 3-state formulation: 

2 2 2 2 2 2
x y zk a a a p q rdiag        

 
Q Q  (129) 

  
2 2 2

x y z

y y

k V V Vdiag     
 

R R  (130) 
  

 



51 

3.2.5 9-State GPS/INS Sensor Fusion Formulation 

 

The 9-state formulation expands upon the 6-state formulation to include position 

states in the filter, thus defining a state vector of 

T

x y z x y zr r r V V V      x , where rx, ry, and rz are the position of the 

aircraft in local Cartesian components.  The state prediction equations for the velocity 

and attitude states remain the same as for the 6-state formulation, while the position 

dynamics are defined using first order numerical integration of the velocity states, as in: 

, , 1 , 1

, , 1 , 1

, , 1 , 1

x k x k x k

y k y k s y k

z k z k z k

r r V

r r T V

r r V

 

 

 

     
     

      
     
     

 (131) 

  
The position states are also added to the output vector, since they can be directly 

measured by GPS, thus leading to the output equations: 

( , )
T

y y y

k k k k k x y z x y z kr r r V V V       y h x d v Hx v v  (132) 
  

where h is the observation function, which for this formulation due to linearity can be 

written using the observation matrix,  6 6 6 3x xH I 0 , where I is an identity matrix and 

0 is a matrix of zeros with given dimensions.   

 

3.2.6 12-State GPS/INS Sensor Fusion Formulation 

 

The 12-state sensor fusion formulation is an extension of the 6-state formulation 

that includes six additional states that represent time-varying biases associated with the 

IMU measurements: 
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x y z

T

x y z a a a p q rV V V b b b b b b   
 

x  (133) 

  
where the b terms denote a sensor bias on each of the 6 IMU measurements, and is 

represented collectively by  
x y z

T

a a a p q rb b b b b b 
 

b , which has associated 

random walk noise, given by ~ (0, )b b

k kNw Q . With this state vector, the state prediction 

equations are equivalent to the 6-state formulation for the first six states, and the biases 

are predicted using:  

1
b

k k k b b w  (134) 
  

This noise model is a random walk noise model, however other noise models can be used 

for the bias states such as a Gauss-Markov noise model [83-85].  The components of the 

process noise covariance matrix corresponding to the biases are obtained using the noise 

characteristics of each corresponding sensor.  Since this formulation is equivalent to the 

6-state formulation with the exception of the biases, the same noise covariance matrices 

are used, with the bias covariance matrix components appended.  The measurement 

update for this formulation is given by extracting the measured states of the system with 

 3 3 3 9x xH I 0 , and measurement vector 
T

x y z GPS
V V V   z . 

 

3.2.7 15-State GPS/INS Sensor Fusion Formulation 

 

The 15-state sensor fusion formulation is an extension of the 9-state formulation 

that includes six additional states that represent time-varying biases associated with the 

IMU measurements: 
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x y z

T

x y z x y z a a a p q rr r r V V V b b b b b b   
 

x  (135) 

  
where the b terms denote a sensor bias on each of the 6 IMU measurements in the same 

fashion as the 12-state formulation.  The measurement update for the 15-state formulation 

is the same as for the 9-state formulation, except with additional zeros added to the 

observation matrix, as in  3 3 3 12x xH I 0 . 

 

3.3 ALTERNATIVE ATTITUDE ESTIMATION METHODS 

 

 While GPS/INS is the most common method for low-cost attitude estimation, 

other alternative methods were considered during this work.  Typical GPS/INS uses a 

single IMU; however methods for using multiple IMUs for attitude estimation were 

analyzed.  Most Kalman filter based multi-sensor fusion work assumes redundancy only 

in the measurement update, which can be handled using an information filter [62], or its 

nonlinear variants such as the Extended Information Filter (EIF) [86] or Unscented 

Information Filter (UIF) [87].  This work, however, approaches the problem of multi-

sensor fusion where the sensor information is used in the prediction stage of a nonlinear 

estimator.  Since the redundancy is in the prediction, the current information filtering 

tools cannot directly be used, because these methods are formulated only for multiple 

measurements used in the measurement update stage of the filter.  Using previous multi-

sensor fusion work as inspiration, three different fusion methods were developed for 

handling redundant prediction information.  Further details and results can be found in 

[88]. 



54 

 The effectiveness of using multiple Global Positioning System (GPS) antennas for 

attitude estimation has been well established in the technical community, typically 

through the use of pseudorange and carrier phase signals.  Different applications have 

been studied for multiple GPS attitude estimation including general aviation aircraft [89-

93], ships [94-99], subscale aircraft [100,101], off-road land vehicles [102], micro-

satellites [103,104], general test setups [105,106], and simulation studies [107-110].    

Loosely-coupled GPS position and velocity calculations can also be effective in 

extracting attitude information, especially for small low-cost subscale aircraft 

applications that have limited on-board computational resources.  The reduced 

computational requirements allow for a higher update rate.  Various combinations of 

sensor measurements containing information regarding the attitude of the aircraft were 

considered.  In particular, three sources of attitude information are considered:  rate 

gyroscopes, gravity vector, and the longitudinal axis vector, as illustrated in Figure 4.  

More details regarding this topic can be found in [111]. 

 

 

Figure 4.  Attitude Information Sources 
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One problem with the existing work in GPS/INS sensor fusion for attitude 

estimation is that it implicitly assumes that the angle of attack and sideslip angles of the 

aircraft are zero, i.e. the aircraft is always pointing in the direction of its total velocity.  

The INS can be used to predict the attitude angles of the aircraft effectively through time 

integration of the rate gyroscope measurements from an IMU.  Since these estimates tend 

to drift with time due to sensor biases, GPS position and velocity measurements are then 

used to regulate this drifting phenomenon.  However, when using GPS velocity to 

regulate the attitude angles, current work implicitly makes a simplifying assumption that 

the orientation of the aircraft is equivalent to the direction of the velocity of the aircraft.  

While under many operating conditions this approximation can lead to reasonable results, 

a more theoretically justifiable formulation should consider relative wind information in 

order to properly relate the INS predicted attitude with the GPS velocity calculations.  A 

new formulation of attitude estimation that includes relative wind information can be 

found in [112]. 

Another method of attitude estimation can be provided by the complementary 

filter [113].  This filter does not require GPS information, and relies solely on 

measurements from an IMU.  Unlike a Kalman-based filter, this technique uses a 

constant gain to update the states, thus providing a much more computationally efficient 

algorithm.  The basic idea of the complementary filter is to combine low frequency 

information from the accelerometers with high frequency information from the rate 

gyroscopes.  This is motivated by the idea that the accelerometers provide a good 

indication of the attitude under static conditions, while the rate gyroscopes provide a 
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better indication of the attitude under dynamic conditions.  This method is relatively 

simple both in terms of implementation and understanding, but it suffers from some 

difficulties.  If the system dynamics become too significant, such as in a situation where 

the aircraft is constantly turning, the filter will have trouble providing a stable low-pass 

estimate of the direction of gravity. 
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4.0 EXPERIMENTAL PLATFORM 

 

 The primary subscale aircraft platform that is studied in this work is the West 

Virginia University (WVU) YF-22, shown in Figure 5.  This platform was designed and 

built by researchers from WVU.  The YF-22 has been used for various projects, such as 

formation flight [114-116] and fault-tolerant flight control [117].   

 

 
Figure 5.  WVU YF-22 Research Platform 

 
 
Flight data were collected on the three WVU YF-22 aircraft (Green, Blue, and Red) using 

two different avionics system configurations and four different sensor payloads.  

Avionics system #1 [114], shown in Figure 6, features a Novatel OEM4® GPS receiver, 

which reports a 1.8 m  Circular Error Probable (CEP) for position measurements and 0.03 

m/s root mean square (RMS) accuracy for velocity, and a Crossbow® IMU.  A copy of 
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avionics system #1 was implemented in each of the three aircraft, each with a slightly 

different version of IMU, as outlined in Table 2.  Avionics system #2, shown in Figure 7, 

was a newer system [118] and was used in the retrofitted „Blue‟ YF-22 (Blue*).  This 

system also includes a Novatel OEM4® GPS receiver; however, an Analog Devices 

ADIS-16405® IMU was used.  The specifications for the four different IMUs are shown 

in Table 2. 

Table 2.  Inertial Measurement Unit (IMU) Specifications 

IMU 

WVU 

YF-22 

Aircraft 

Accelerometer 

Dynamic 

Range (g) 

Accelerometer 

Resolution  

(mg) 

Rate 

Gyroscope 

Dynamic 

Range 

(deg/sec) 

Rate 

Gyroscope 

Resolution 

(deg/sec) 

VG400CA-200 Green ± 10 1.25 ± 200 0.05 
DMU(VG400)-

100 Red ± 8 0.25 ± 100 0.05 

IMU400CC-
200 Blue ± 10 1.25 ± 200 0.05 

ADIS-16405® Blue* ± 18 3.33 ± 150 0.025 
 

In addition to the IMU and GPS measurements, measurements of the roll and pitch angles 

were independently recorded using a Goodrich VG34® mechanical vertical gyroscope, 

which is sampled with 16-bit resolution and has ±90° roll measurement range and ±60° 

pitch range. The VG34® has a self-erection system, and reported accuracy within 0.25° 

of true vertical.  The mounting plate that holds both the IMU and the vertical gyro is 

manually leveled before each flight, in order to provide a reference for the pitch and roll 

angles as close to zero as possible. The mechanical vertical gyroscope measurements are 

used to establish a baseline „true data‟ for the sensor fusion study. 
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Figure 6.  Avionics System #1 

 

 
Figure 7.  Avionics System #2 
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4.1 FLIGHT DATA SELECTION 

 

Many sets of data were collected from the WVU YF-22 platform.  Each data set 

includes measurements from the IMU, GPS, and vertical gyroscope.  For this analysis, 23 

flights were selected to obtain data with a variety of sensors and flight conditions.  The 

23 flights were selected from each aircraft (8 Green, 5 Red, 8 Blue, 2 Blue*), and piloting 

method (11 mixed manual/autonomous, 12 manual only).  The atmospheric temperature 

and wind speed during the flight were also considered, and the distribution of these 

conditions is shown in Figure 8.   

 

 
Figure 8.  Distribution of Flight Conditions 
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between the aircraft z-axis and the local z-axis, and is calculated from the roll and pitch 

measurements from the vertical gyroscope as in: 

 1cos cos costilt    (136) 
  

High values of the tilt angle introduce stronger nonlinearity into the attitude estimation.  

The statistical diversity of the flight data measurements is summarized in Table 3.  

 

 
Figure 9.  Distribution of Flight Envelope 
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Table 3.  Summary of Flight Envelope Statistics 

Variable Units Minimum Maximum Mean 
Standard 

Deviation 

Velocity m/s 0.00 53.5 31.1 11.5 
ax m/s2 -26.8 25.8 0.878 1.35 
ay m/s2 -26.3 42.0 -0.145 1.04 
az m/s2 -70.9 25.5 -11.4 3.34 

Roll Angle, ϕ deg -85.0 56.6 -19.4 20.7 
Pitch Angle, θ deg -48.5 38.8 5.33 6.73 

p deg/s -205 206 0.586 15.6 
q deg/s -100 83.1 4.90 7.17 
r deg/s -79.0 65.0 -5.32 7.14 

 

 For the use in a sensor fusion algorithm, the stochastic properties of the different 

sensors also needed to be considered.  In order to estimate the random noise properties of 

the different sensors, the variance was calculated of the measurements from the sensors in 

a static setting, i.e., when the plane was stationary on the runway prior to flight.  These 

stochastic properties are summarized in Table 4. 

Table 4.  Stochastic Properties of Sensors 

Component Sensor  Variance Units 

ax IMU 0.2205 (m/s2)2 

ay IMU 0.2592 (m/s2)2 

az IMU 0.3102 (m/s2)2 

p IMU 1.510 • 10-4 (rad/s)2 

q IMU 1.450 • 10-4 (rad/s)2 

r IMU 1.410 • 10-4 (rad/s)2 

ΔVx GPS 0.7024 • 10-3 (m/s)2 
ΔVy GPS 0.4744 • 10-3 (m/s)2 
ΔVz GPS 2.981 • 10-3 (m/s)2 
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5.0 SENSITIVITY ANALYSIS 

 

 The Unscented Kalman Filter (UKF) [10] is emerging as a popular nonlinear state 

estimation approach as compared to the commonly used Extended Kalman Filter (EKF) 

[8].  The theoretical advantage of using an unscented transformation in the UKF instead 

of analytical linearization in the EKF for recovering statistics after propagating through 

strong nonlinear equations is documented in a number of simulation based studies [10-

13].  However, the advantage of the UKF over the EKF within practical applications is 

not as obvious, with mixed conclusions reported by different research groups.    

 VanDyke et al. [12], Sadhu et al. [13], Orderud [119], Wang et al. [120], Won et 

al. [121], and Nick et al. [122], reported that the UKF performs significantly and 

consistently better than the EKF in applications of dual estimation [123] for spacecraft 

attitude state and parameter estimation, bearing-only tracking, again bearing-only 

tracking, radar tracking, monocular vision based INS, and localization of Radio 

Frequency Identification (RFID) tags, respectively.  Kandepu et al. [124] presented the 

same conclusions through four different simulation studies of the following problems: 

Van der Pol oscillator, estimation in an induction machine, state estimation of a 

reversible reaction, and a solid oxide fuel cell combined gas turbine hybrid system.  

Stastny et al. [125], Akin et al. [126], Chowdhary and Jategaonkar [127], Giannitrapani et 

al.
 [128], and Kim et al.

 [129] concluded that the UKF achieves slightly better 

performance than the EKF within applications of angles based navigation, state 

estimation of induction motors, aerodynamic parameter estimation, spacecraft 
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localization using angle measurements, and spiraling ballistic missile state estimation, 

respectively.  Saulson and Chang [130], and LaViola [131] found insignificant differences 

in the performance between the EKF and UKF for the ballistic missile tracking problem 

and for estimation of quaternion motion for human tracking, respectively. 

 The nonlinear GPS/INS sensor fusion problem was first solved with the EKF and 

was later replaced with the UKF by several authors, and their performances were 

compared.  The UKF was stated to perform better than the EKF by van der Merwe et al.
 

[11].  Although a real flight data example was shown, only simulation results were used 

to quantify this conclusion [11].  Crassidis [78], Fiorenzani et al. [79], and Wendell et al. 

[132], concluded using simulation studies that the UKF performance exceeds that of the 

EKF only under large initialization errors.  El-Sheimy et al. reached this same conclusion 

through experimental tests of the attitude estimation problem for land vehicles [133].  El-

Sheimy et al. also found that the EKF and UKF performed similarly in terms of position 

error under GPS outages [133].   St. Pierre and Ing determined from simulation that the 

UKF performance is slightly better than the EKF for estimating position [134].   

 The large variance of conclusions on the performance of the EKF against the 

UKF, especially within similar applications, highlights the need for a systematic 

evaluation method. Current comparison studies are limited in the consideration of 

multiple design parameters.  Several factors could lead to difficulties in evaluating and 

assessing state estimation performances for a given problem.  First, different nonlinear 

state-space formulations exist for the same problem; second, the assumptions on the 

input, process, and measurement noise characteristics might not be realistic; third, the 

change of operating conditions in the physical world introduces randomness in the 
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estimation performance.  A filtering algorithm may perform well with a particular 

formulation and a set of particular assumptions under a particular operating environment, 

but not otherwise. Therefore, the objective of this chapter is to investigate the sensitivity 

and robustness of EKF and UKF with respect to design parameters and operating 

conditions.   

The GPS/INS attitude estimation problem described in Chapter 3 is used as a case 

study with the goal of gaining a better understanding of more general properties of 

nonlinear state estimation algorithms.  This analysis uses flight data from the 

experimental platform described in Chapter 4.  First, the metrics that were used to 

analyze the performance of the attitude estimation are discussed.  Next, experimental 

sensitivity analysis results are provided using flight data.  Then, a comparison of matrix 

square root techniques used in the UKF are explored, followed by an analytical 

comparison of initialization error and linearization techniques used in the EKF and UKF.  

Finally, a summary and conclusions of the sensitivity analyses are provided.  This chapter 

consists of a combination of previously published or submitted works [14-19]. 

 

5.1 PERFORMANCE EVALUATION METRICS 

 

 From the flight data, an independent measurement of the roll and pitch angles of 

the aircraft are provided by the onboard mechanical vertical gyroscope.  This sensor 

provides a fairly accurate measurement of these quantities; therefore these measurements 

are used as a „truth‟ reference to evaluate the performance of the GPS/INS attitude 

estimation algorithms.  After executing a sensor fusion algorithm, the roll and pitch 
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estimation results were compared with the corresponding vertical gyroscope 

measurements over the entire flight from take-off to landing.  The mean of the absolute 

value and standard deviation of the errors were calculated.  A scalar cost function, J, was 

defined by a weighted average as in: 

       ˆ ˆ ˆ ˆ0.3 0.2VG VG VG VGJ mean mean                  
    

 (137) 

  
The weights for this performance metric were selected such that their sum is unity, equal 

importance is given to the roll and pitch errors, and less importance is placed on the mean 

errors because of potential alignment errors between the IMU and vertical gyroscope.  

Smaller values of J represent better performance of the attitude estimation. 

 

5.2 EXPERIMENTAL SENSITIVITY ANALYSIS RESULTS 

 

 Some of the results from this section were originally published in [15,16].  Pitch 

and roll angles were estimated for each of the 23 flights using two different assumptions 

of noise characteristics.  The same process and measurement noise matrices were used for 

the EKF and UKF within each formulation, i.e., the filters were equivalently tuned.  The 

mean of the performance cost function, J, over all flights is shown in Figure 10.  For 

comparison purposes, the mean performance of AVAE was approximately 3.7 degrees, 

which is significantly worse performance than the EKF and UKF formulations. 
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Figure 10.  Summary of Mean Performance Cost 
 
 
 Within each formulation and estimator, the differences in performance between additive 

and non-additive noise is small.  For the 3, 12, and 15 state formulations, the non-additive 

noise case presents better performance results, while the 6 and 9 state formulations show 

a slight advantage in the additive noise case.  It can also be seen in Figure 10 that the 

EKF and UKF obtain very similar performance results for each formulation, especially 

for the non-additive case.  The non-additive method was selected for further analyses 

because it involves more correct assumptions about the noise characteristics of the 

system, and it is more intuitive to implement.   
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sensor fusion algorithms, the number of floating point operations (FLOPs) required to 
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codes were streamlined to minimize the number of computations fundamentally required 

by the algorithm. The sampling rates of the IMU and GPS were considered, since they 

correspond to the execution of the prediction and update stages respectively.  The 

resulting FLOP counts are illustrated in Figure 11.  In addition to these theoretical 

estimates, experimental results were collected for each formulation of the required 

execution time of the sensor fusion algorithm for the duration of each of the 23 flights.  

This execution time was measured over the entire length of flight for each data set.  Then, 

the mean of these 23 execution times were calculated, and the results are shown in Table 

5.  In general similar trends are observed for the FLOP estimates and mean execution 

times.  Note that these estimates are coarse approximations, which were intended only to 

give a general idea about computational cost. 

 

 

Figure 11.  Theoretical Computational Expense of Different Sensor Fusion Algorithms 
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Table 5.  Summary of Computational Expense 

Estimator 
Noise 

Assumption 

# 

States 
MFLOPs/sec Exec. Time (sec) 

AVAE N/A N/A 0.012 0.21 
EKF Additive 3 0.095 1.30 
EKF Non-Additive 3 0.101 1.35 
UKF Additive 3 0.371 8.27 
UKF Non-Additive 3 1.371 16.07 
EKF Additive 6 0.088 1.56 
EKF Non-Additive 6 0.104 1.64 
UKF Additive 6 0.628 3.97 
UKF Non-Additive 6 1.557 7.04 
EKF Additive 9 0.253 2.81 
EKF Non-Additive 9 0.321 1.80 
UKF Additive 9 1.161 7.58 
UKF Non-Additive 9 2.971 7.67 
EKF Additive 12 0.468 2.13 
EKF Non-Additive 12 0.799 2.25 
UKF Additive 12 1.750 27.18 
UKF Non-Additive 12 3.015 59.38 
EKF Additive 15 0.901 3.51 
EKF Non-Additive 15 1.232 4.31 
UKF Additive 15 2.533 37.61 
UKF Non-Additive 15 5.060 77.06 

 

 

5.2.1 Comparison of Baseline Results for Individual Data Sets 

 

 Baseline results were calculated for the non-additive noise case of each 

formulation for each individual data set.  The performance results are summarized in 

Figure 12 and Figure 13. 
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Figure 12.  Individual Data Set Performance Summary 

 

Figure 13.  Individual Data Set Performance Comparison 
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multiple sets of diverse data for analysis in order to capture the overall performance of 

each estimator.  

 

5.2.2 Sensitivity to Tuning of Assumed Noise Covariance Matrices 

 

 The sensitivity of the assumed process and measurement noise covariance 

matrices, Q and R can be evaluated using methods similar to those described in 

[135,136].  To analyze the effects of changes in these values, two tuning parameters were 

used.  The first tuning parameter, γ1, adjusts the ratio of the reliance of the estimation 

between the prediction and update stages of the nonlinear estimator.  Increasing γ1 causes 

the estimation to rely more on the prediction and less on the update, and vice versa.  This 

form of tuning is achieved by: 

0 1 0 1 0, ,d d y y   Q Q R R R R  (138) 
  

where the „0‟ subscripts indicate the baseline covariance matrices.  The second tuning 

parameter, γ2, adjusts the ratio of the reliance of the estimation between the IMU and 

GPS measurements, where increasing γ2 causes the estimation to rely more on the IMU 

measurements and less on the GPS measurements.  This tuning parameter is implemented 

using: 

0 0 2 0, ,d d y y  Q Q R R R R  (139) 
  

Note that for the 6, 9, 12, and 15-state formulations, these two forms of tuning are 

equivalent, since Rd = 0.  The tuning parameters were implemented for each formulation 

on all 23 flights for EKF and UKF.  The performance cost, J, was normalized by the case 

of no tuning for each flight and then averaged over all flights.  The mean normalized 
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results are shown for the 3-State formulation in Figure 14, 6 and 9-State formulations in 

Figure 15, and 12 and 15-State formulations in Figure 16. 

 

 
Figure 14.  Sensitivity of 3-State Formulation to Noise Covariance Tuning 

 

 
Figure 15.  Sensitivity of 6-State (left) and 9-State (right) Formulation to Noise Covariance Tuning 

 

 
Figure 16.  Sensitivity of 12-State (left) and 15-State (right) Formulation to Noise Covariance Tuning 
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curves (i.e. the performance curves do not go much below 1), the Q and R matrices are 

reasonably tuned at baseline for both the EKF and UKF.  It is also interesting to notice 

the flattening trend for decreasing values of γ2 for the 3, 6, and 12-state formulations, 

which is representative of modeling no uncertainty in the GPS velocity measurements.  

Since the normalized performance levels off at just over 1, the case of “perfect” GPS 

velocity yields very reasonable estimation performance.   

 

5.2.3 Sensitivity to Sampling Rate 

 

 The sampling rates of the IMU and GPS affect the time resolution of the sensor 

fusion algorithm; in turn, this also affects the quality of the linearization.  The prediction 

step is executed at the sampling rate of the IMU, and the measurement update occurs at 

the sampling rate of the GPS.  In order for the measurement updates to correspond with a 

prediction, the IMU sampling rate should be a multiple of the GPS sampling rate.  

Starting with the baseline sampling rates of 50 Hz for the IMU and 20 Hz for the GPS, 

each signal was down-sampled to appropriate rates in order to analyze the performance 

effects of using lower sampling rate hardware (i.e., lower cost systems).  Estimation 

results were obtained, normalized by the baseline case of 50 Hz IMU and 10 Hz GPS, 

and averaged over all 23 flights.  To illustrate the results of this analysis, contour plots 

were generated for each of the formulations for both EKF and UKF, and are shown in 

Figure 17, Figure 18, Figure 19, Figure 20, and Figure 21.   
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Figure 17.  3-State Sampling Rate Sensitivity of EKF (left) and UKF (right) 

 

Figure 18.  6-State Sampling Rate Sensitivity of EKF (left) and UKF (right) 

 

Figure 19.  9-State Sampling Rate Sensitivity of EKF (left) and UKF (right) 
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Figure 20.  12-State Sampling Rate Sensitivity of EKF (left) and UKF (right) 

 

Figure 21.  15-State Sampling Rate Sensitivity of EKF (left) and UKF (right) 
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5.2.4 Sensitivity to Initialization Error 

 

 Significant differences between the assumed initial state and the actual initial state 

could occur in certain applications.  Some comparisons have been made for large 

initialization errors for sensor fusion [78,79,132,133] and tracking [119] problems and 

found faster convergence in the UKF.  To observe this phenomenon for this specific 

problem, small (5°) and large (60°) initial errors were imposed on the pitch state for each 

of the 23 flights.  The estimation results of these cases were compared to the baseline 

case of no imposed initialization error.  To illustrate the responses of the EKF and UKF 

in each formulation, the mean over all flights was calculated of the differences of the 

pitch angle, and the results are shown in Figure 22, Figure 23, Figure 24, Figure 25, and 

Figure 26. 

 

 

Figure 22.  3-State Response to Small (left) and Large (right) Initialization Error 

 

Figure 23.  6-State Response to Small (left) and Large (right) Initialization Error 
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Figure 24.  9-State Response to Small (left) and Large (right) Initialization Error 

 

Figure 25.  12-State Response to Small (left) and Large (right) Initialization Error 

 

Figure 26.  15-State Response to Small (left) and Large (right) Initialization Error 
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estimation.  To simulate this phenomenon, 30 second GPS outages were artificially 

imposed on the real flight data at 1, 3, and 5 minutes after take-off.  Although these times 

were selected arbitrarily, the state of the aircraft at these times differs from flight to 

flight.  The roll and pitch angles as measured from the vertical gyroscope at the start of 

each GPS outage for all of the flights is shown in Figure 27. 

 

 
Figure 27.  Attitude Envelope at Start of GPS Outages 

 

As done for the initialization error analysis of the previous section, the estimation results 

of each sensor fusion algorithm with imposed GPS outages was compared with the 

baseline estimation results.  The mean of the differences of the pitch angle for all 23 

flights was calculated, and the results are shown in Figure 28, Figure 29, Figure 30, 

Figure 31, and Figure 32. 

 

 

Figure 28.  Response of the 3-State Formulation to GPS Outages 
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Figure 29.  Response of the 6-State Formulation to GPS Outages 

 

Figure 30.  Response of the 9-State Formulation to GPS Outages 

 

Figure 31.  Response of the 12-State Formulation to GPS Outages 

 

Figure 32.  Response of the 15-State Formulation to GPS Outages 
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time period immediately following a GPS outage.  It is shown in these figures that in 

general the EKF and UKF respond similarly during GPS outages.  This is an indication 

that the prediction stages of the EKF and UKF have very similar performance.  

Immediately following GPS outages, it is shown that for the 6-state and 12-state 

formulations, the EKF and UKF converge at comparable rates.  However, the 3-state 

formulation shows some difference between the EKF and UKF. 

 

5.2.6 Robustness to Uncertainty in IMU Measurements 

 

 

 In order to analyze the robustness of the different formulations for EKF and UKF, 

a 250 point Monte Carlo simulation was conducted.  In particular, artificial bias and scale 

factor terms were generated from a uniform distribution across a specified range of 

values.  These terms were applied to a single component of the IMU measurements, and 

then attitude estimation performance results were calculated for each formulation on a 

single set of flight data.  This process was repeated using different Monte Carlo sampling 

for each component of the IMU measurements:  , , ,x y za a a p, q, r.  The performance cost, 

J, was calculated for each Monte Carlo point, and was then normalized by the baseline 

case of no artificial bias or scale factor terms.  An example illustration is shown in Figure 

33 of the 6-state formulation normalized cost corresponding to artificial bias and scale 

factor terms on the p measurement. 

 



81 

 

Figure 33.  Performance Response to Bias and Scale Factor on Roll Rate for EKF (left) and UKF (right) 
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between the EKF and UKF values was evaluated, and the results are summarized in 

Figure 34.  Only three of the cases (marked with „o‟) showed slightly better performance 

of the EKF, while the remaining cases showed varying degrees of performance advantage 

for the UKF.  This demonstrates that in general, the UKF is more robust to bias and 

scaling of the IMU measurements in this application.  
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Figure 34.  Comparison of Performance of EKF and UKF for IMU Bias and Scaling 
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illustrative example to demonstrate the differences in the linearization techniques of the 
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Figure 35, the values (left) and distribution (right) of this sum are shown. 
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Figure 35.  Quantification of Nonlinearity in Attitude States using Hessian Norms 
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Table 6.  Comparison of Nonlinearity of Prediction 

Prediction 

Estimator 


 
(deg) 

  
(deg) 


 

(deg) 
P

 
(deg2) 

P
 

(deg2) 
P

 
(deg2) 

P
 

(deg2) 
P

 
(deg2) 

P
 

(deg2) 

Prior Conditions -43.18 29.51 181.75 0.0567 0.0263 0.1767 0.0024 0.0365 0.0006 

EKF -43.75 29.23 181.44 0.0564 0.0263 0.1463 0.0024 0.0360 0.0006 

UKF -43.75 29.23 181.44 0.0564 0.0263 0.1463 0.0024 0.0360 0.0006 

Monte Carlo -43.75 29.23 181.44 0.0564 0.0263 0.1460 0.0024 0.0359 0.0006 

 

5.2.8 Sensitivity to GPS Time Offset 

 

 In GPS/INS sensor fusion, it is common for the GPS measurements to lag behind 

the IMU measurements [143-146].  To compensate for this latency in off-line 

applications, a time offset can be imposed on the GPS measurement in order to properly 

align the GPS and IMU signals.  To analyze the sensitivity of the EKF and UKF to this 

form of GPS latency compensation, results were calculated for GPS time offset ranging 

from 0 to 500 ms by 20 ms increments for all of the 23 flights.  Only the 9-state 

formulation was considered for this analysis.  The results for each flight were normalized 

by the baseline case of no latency compensation (GPS time offset is 0).  A mean over the 

23 flights of the normalized results was taken to establish a generalized result.  The 

results of this analysis are shown in Figure 36. 
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Figure 36.  Sensitivity to GPS Time Offset 
 

Figure 36 shows the mean normalized cost function, J, standard deviation of roll error, ζϕ, 
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until 160 ms and then starts to increase.  The overall performance cost decreases with 

GPS time offset until 60 ms and starts to increase above 60 ms.  From this analysis, it was 

discovered that for this formulation of EKF and UKF, compensating for the GPS latency 

can improve the pitch performance; however, doing so increases the roll error.  

Depending on the application, this might be an acceptable effect, since it is possible to 

decrease the overall cost.  For all other sections of this chapter, no GPS latency 

compensation was introduced. 
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5.2.9 Sensitivity to Acceleration due to Gravity 

 

 

 Acceleration due to gravity, g, is often assumed to be constant in many 

applications.  Although this is a reasonable approximation in most cases, the acceleration 

due to gravity can be derived as a function of various effects.  In particular, for this study, 

acceleration due to gravity can be calculated as a function of the latitude and altitude.  

The formula used for this calculation is the 1967 Geodetic Reference System Formula 

[147] using the free air correction (FAC) [148]: 

 2 2 69.780327 1 0.0053024sin 0.0000058sin 2 3.086 10lat lat altg h         (140) 
  

where ϕlat represents the latitude angle, and halt represents the height above sea level in 

meters.  In addition to obtaining the latitude and altitude values for the flight testing 

location for this study, the altitude of the plane is estimated in flight from the nonlinear 

estimator.  Only the 9-state formulation was considered for this analysis.  Results were 

calculated for all 23 flights using a constant nominal g value of 9.80665 m/s2, and a time-

varying g value using (140) with flight altitude correction.  The results from the time-

varying g were normalized by the results from the nominal case and plotted for both the 

EKF and UKF in Figure 37. 
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Figure 37.  Sensitivity to Acceleration due to Gravity (g) 
 

It is shown in Figure 37 that the EKF and UKF show similar responses to a time-varying 

value of g.  The response over the 23 flights from the time-varying case differs only 

slightly from the constant case, with percent changes in cost function ranging from 

negative 0.20% (performance improvement) to 0.26% (performance degradation).  A 

mean of these changes over all 23 flights shows that the EKF yields an average cost 

increase of 0.0058%, while the UKF yields an average cost increase of 0.0050%.  Due to 

the small magnitude of these changes, a time-varying g is not necessary for this 

formulation.  For all other sections of this chapter, a constant g value was used. 

 

5.2.10 Experimental Sensitivity Analysis Conclusions 

 

 

 This section presented a sensitivity analysis of the nonlinear state estimation 

problem using three different GPS/INS sensor fusion attitude estimation formulations 

with both the EKF and UKF.  Two different noise assumptions, additive and non-additive 
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noise, were considered and compared.  Although little differences were found in the 

baseline case, the non-additive noise assumptions were used because they provide a more 

intuitive model of the noise in the system.  The tuning of the process and measurement 

noise covariance matrices showed a similar impact on the performance for both the EKF 

and UKF, which indicated similar requirements on tuning for problem, which does not 

contain strong nonlinearity, and also demonstrated that the baseline case was well-tuned 

for all formulations.  Additionally, the EKF and UKF showed similar responses to 

changes in sampling rate.  The EKF showed slightly faster convergence than the UKF in 

response to large initialization error, and similar response to the UKF for small 

initialization error.  Only small differences were found in response to convergence after 

GPS outages, which were most apparent in the 3-state formulation.  Through Monte 

Carlo simulations, the UKF demonstrated greater robustness to bias and scale factors on 

the IMU measurements than the EKF.  Using the Hessian to locate the time of greatest 

nonlinearity of the attitude states, the linearization of the prediction stage of the EKF and 

UKF were both found to be similarly close to their corresponding Monte Carlo estimation 

of predicted mean and covariance.  Overall, in most cases, the EKF and UKF had similar 

levels of performance for all three considered formulations.  The EKF is recommended 

for use in real-time applications when computation requirement is important, while the 

UKF is recommended for off-line applications, due to its ease of implementation and lack 

of Jacobian calculations. 
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5.3 MATRIX SQUARE ROOT OPERATIONS FOR UKF 

 

 The results from this section were originally published in [17].  One primary 

difference between the EKF and UKF is that the UKF requires the calculation of a matrix 

square root, which is a computationally demanding operation [149].  In particular, 

computation is an important consideration for small aircraft systems, due to resource 

limitations onboard the aircraft, e.g., power, weight, and cost [71,72].  The matrix square 

root computation is also an important consideration when designing a UKF algorithm 

because there are many different ways to compute the square root of a matrix, potentially 

with different accuracy and computational requirements [150].   

 The selection of matrix square root operation in the UKF differs among authors.  

Julier and Uhlmann state that “the sigma points capture the same mean and covariance 

irrespective of the choice of matrix square root which is used. Numerically efficient and 

stable methods such as the Cholesky decomposition can be used
 [10].”  Crassidis [78] and 

Wendel [132] et al. also recommended the use of Cholesky decomposition.  These 

claims, however, are provided without any theoretical or empirical justification.  Stastny 

et al. found that using the Cholesky decomposition method caused divergence; therefore, 

they used the Schur method instead [125].  Some authors using the UKF do not explicitly 

state which matrix square root operation was used [151-153].  A different means of 

handling the square root operation was developed by van der Merwe and Wan called the 

“square-root UKF (SR-UKF)” method [149].  This method provides a prediction and 

update of the square root of the covariance matrix directly at each time-step, which 

reduces computational requirements of the algorithm [149].  A simulated example was 
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used to show that the SR-UKF and UKF performances were the same [149].  Since there 

are inconsistencies in the selected matrix square root method for UKF applications, a 

detailed comparison of available approaches is necessary.  Although some matrix square 

root comparison studies exist, e.g. by Higham [150] and Meini [154], these studies are 

mostly theoretical, with a few examples using known matrices, such as the Moler, 

Chebyshev-Vandermonde, and Frobenius matrices.  These comparison studies, therefore, 

do not consider the potential error propagation effects that are introduced by application 

in a recursive filter such as the UKF. 

This analysis aims to expand upon the existing matrix square root comparison 

studies through an example application of the matrix square root within a UKF-based 

GPS/INS sensor fusion algorithm for attitude estimation that relies on experimentally 

collected flight data.  By analyzing different matrix square root methods in the context of 

the UKF, a matrix square root is required at each discrete time step in the algorithm, 

allowing for a more general comparison since many different matrices are considered.  In 

addition this recursive filtering application introduces the effects of the propagation of 

uncertainties in the matrix square root computation.  Furthermore, the flight data used for 

this study was selected from a large library of data in order to obtain diversity with 

respect to different flight conditions, thus providing an additional level of generalization.   

 

5.3.1 Matrix Square Root Algorithms 

 

 

An important requirement of the UKF algorithm is the calculation of the square 

root of the state covariance matrix, P.  A covariance matrix by definition is both 
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symmetric and positive semi-definite.  To calculate the square root of a positive semi-

definite n × n matrix, A, various methods can be used.  The matrix principal square root, 

A
1/2, exists only for positive semi-definite matrices, and is defined by [150]: 

1/ 2 1/ 2 A A A  (141) 
  

If A is symmetric, it can be diagonalized using a similarity transformation [48], and the 

principal square root can be calculated using the diagonalization method: 

1/ 2 1/ 2 1A XΛ X  (142) 
  

where Λ1/2 is a diagonal matrix with the square roots of the eigenvalues of A along the 

main diagonal, and X is a matrix containing a corresponding set of eigenvectors of A.   

Another common matrix square root method is the Schur method, which uses the Schur 

decomposition: 

*A UTU  (143) 
  

where T is an upper triangular matrix and U is a unitary matrix whose columns form the 

Schur basis of A [155], and the (*) denotes the complex conjugate transpose of a matrix.  

Once in this form, the matrix square root can be calculated from: 

1/ 2 1/ 2 *A UT U  (144) 
  

where T
1/2 can be calculated algebraically since T, and therefore also T

1/2, are upper 

triangular matrices.  Let S = T1/2.  The diagonal elements of S are calculated directly from 

the diagonal elements of T such that [150]: 

, 1,...,ii iis t i n   (145) 
  

The strictly upper triangular elements are then calculated using [150]: 

1
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ij ik kj
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ij

ii jj
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In addition to analytical methods for calculating a matrix square root, various 

iterative methods have been derived.  One of the most common iterative methods is 

Newton‟s method, which can be written as: 

 1
1 0

1 ,
2k k k



   X X X A X A  (147) 

  
where the matrix X converges quadratically to A1/2 under certain conditions [156].  One 

variant of Newton‟s method is known as Denman Beavers (DB) iteration, given by [150]: 

 

 

1
1 0

1
1 0

1 ,
2
1 ,
2

k k k

k k k









  

  

X X Y X A

Y Y X Y I

 (148) 

  
where the matrix X converges to A1/2, and the matrix Y converges to A-1/2.  A product 

form of the Denman-Beavers iteration was identified by Cheng et al., which is a more 

efficient version of the Denman-Beavers iteration [157]: 

 
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1
1 0

1
1 0

1 ,
2 2
1 ,
2
1 ,
2

k k
k

k k k

k k k













 
   

 
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M I M A

X X I M X A

Y Y I M Y I

 (149) 

  
where M converges to the identity matrix, I, X converges to A1/2, while Y converges to 

A
-1/2.  Another iterative method is the cyclic reduction (CR) iteration [154]: 

1
1 0

1 1 0

,
2 , 2( )

k k k k

k k k





 

   

   

Y Y Z Y Y I A

Z Z Y Z I A
 (150) 

  
where Y converges to 0 and Z converges to 4A

1/2.   A variant of the cyclic reduction 

iteration is the IN iteration given by [150]: 
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1 0

1
1 1 0

,
1 1, ( )
2 2

k k k

k k k k





 

  

   

X X E X A

E E X E E I A
 (151) 

  
where X converges to A1/2, and E converges to 0. 

All of the matrix square root algorithms discussed up to this point are methods of 

calculating the principle square root of a matrix.  Another form of the matrix square root 

is found using the Cholesky decomposition [158]: 

TA LL  (152) 
  

where L is a lower triangular matrix which can be considered as a form of the matrix 

square root.  Although most numerical methods of calculating the Cholesky 

decomposition of a matrix require positive definiteness, there are ways to calculate this 

decomposition for positive semi-definite matrices [159,160], although in general this 

result is not unique.  For this application, the state covariance matrix, P, was positive 

definite at each time step.  In general, however, it is possible in a given application for the 

state covariance matrix to be positive semi-definite, in particular this can occur if some 

linear combinations of the states are known perfectly, i.e., zero uncertainty in that 

combination of states. 

The computational complexity of the matrix square root operation is important for 

use in the UKF because it is a significantly expensive part of the UKF algorithm [149].  

To analyze the computational complexity of the different matrix square root algorithms, 

the number of floating point operations (FLOPs) as a function of the matrix dimension, n, 

was determined from various sources [150,158,161]. These results were derived 

theoretically based on the fundamental requirements of the algorithm, and are 

summarized in Table 7.  Note that number of FLOPs listed for the iterative methods is the 
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number of FLOPs required for one iteration of the algorithm.  It is shown in Table 7 that 

each of the matrix square root algorithms require computations on the order of n
3, but 

scaled by different factors.      

 

Table 7.  Matrix Square Root Algorithm Computational Requirement Summary 
Algorithm FLOPs 

Diagonalization 49n
3/3 – n2/2 + 43n/6 

Schur 85n
3/3 

Newton‟s Iteration 8n
3/3 (per iteration) 

Denman-Beavers (DB) Iteration 4n
3 (per iteration) 

Product DB Iteration 4n
3 (per iteration) 

Cyclic Reduction (CR) Iteration 14n
3/3 (per iteration) 

IN Iteration 14n
3/3 (per iteration) 

Cholesky n
3/3 

 

 

5.3.3 Sensitivity to UKF Matrix Square Root Calculation 

 

 

To analyze the sensitivity of this formulation of GPS/INS sensor fusion to the 

matrix square root operation, the UKF algorithm was executed for each set of flight data 

using different methods of calculating the matrix square root.  In particular, the 

diagonalization method, Schur method, Cholesky method, and five different iterative 

methods were implemented.  For each of the iterative methods, the UKF was executed for 

each set of flight data using a set number of iterations throughout the entire flight.  This 

process was repeated for the number of iterations ranging from 5 to 20 by unit 

increments.  For each individual case, results were evaluated based on performance cost, 

J, total execution time of the UKF, and the accuracy of the matrix square root calculation.  
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A mean was taken of each of these values over all of the 23 flights in order to establish a 

generalized result. All of the matrix square root operations executed without error, except 

for certain cases of Newton‟s iteration which incurred matrix square root divergence 

errors on some flights when the number of iterations exceeded 16.  In order to fairly 

compare the results, these cases of Newton‟s iteration are omitted from the data set.  The 

performance cost of the different algorithms is shown in Figure 38. 

 

 

Figure 38.  Performance Cost of UKF for Different Matrix Square Root Operations 
 

In Figure 38, the performance curves were combined for some of the algorithms for 

clarity since those methods yielded nearly identical performance results.  The 

performance of the non-iterative methods is also included in Figure 38 to compare with 

the iterative methods.  The plot on the right in Figure 38 shows a zoomed-in section to 

show the convergence of the algorithms.  In terms of performance, the Cyclic Reduction 

(CR) algorithm showed the fastest convergence with respect to number of iterations out 

of the five considered iterative methods.  Another interesting observation from these 
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performance curves is the number of iterations required for each of the iterative 

algorithms to converge to the same performance as the non-iterative methods.  For this 

application, the CR iteration requires 12 iterations and the other four iterative methods 

require 13 iterations to achieve similar performance as the non-iterative methods to four 

significant figures.  However, a smaller number of iterations can be used to reduce 

computations and still achieve reasonable performance.  The CR method with 8 iterations 

could be used, e.g., if performance cost of 2 degrees is acceptable for the application.   

Since computational requirements are also important for a matrix square root algorithm, 

the actual execution time of the entire UKF algorithm was calculated for each of the 

different methods.  These execution times are intended to provide an approximate 

empirical verification of the theoretical FLOP estimates in order to compare the 

computational requirements of the different algorithms.  All execution time analyses were 

conducted using the same computer under approximately the same operating conditions.  

A mean of these execution times over each of the 23 flights is shown in Figure 39 (left).  

Also shown in Figure 39 (right) are the corresponding estimated number of FLOPs using 

Table 7. 
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Figure 39.  UKF Computational Requirements for Different Matrix Square Root Operations 
 

It is important to note that the number of FLOPs estimate is for the matrix square root 

operation only, while the execution times represent the run times of the entire sensor 

fusion algorithm.  However, this is representative of the overall trend since the only 

difference between the curves is the matrix square root operation used.  Because the 

diagonalization, Schur, and Cholesky methods do not require iterations, these algorithms 

are represented in Figure 39 by horizontal lines.  Also, in Figure 39 (right), the Denman-

Beavers (DB) and Product DB are represented by a single line, since the estimated 

FLOPs for these algorithms are the same as listed in Table 7.  The CR and IN iterations 

are similarly combined in Figure 39 (right).  Similar trends are observed between the 

estimated number of FLOPs and the UKF execution time with a few observations.  First, 

the Denman-Beavers (DB) method demonstrates a longer execution time that grows at a 

steeper rate with the number of iterations than the product DB method, even though the 

FLOP estimations were the same.  Another difference between the FLOP estimates and 

the UKF execution time is the location of the non-iterative methods with respect to the 

iterative methods.  With respect to the empirical execution time results, the iterative 
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methods are all found to be more efficient in execution time than the Schur method for 

cases up to 15 iterations, with the exception of the DB iteration.  This is an important 

result because previously, in Figure 38 it was shown that the iterative methods all achieve 

performance accuracy to four significant figures by using at most 13 iterations.  This 

indicates the potential value of using iterative methods over the Schur method.  It is also 

shown in Figure 39 that the Cholesky method has the fastest execution time with respect 

to any of the tested cases.   

In order to compare accuracy of the actual matrix square root calculation itself, 

the L1 norm [53] of the matrix 1/ 2 1/ 2

1
 P P P  was calculated as a measure of the 

accuracy of the matrix square root operation.  This norm, which is equal to the maximum 

of the absolute column sums of the matrix, was calculated at each time step of the UKF 

algorithm.  To analyze the overall accuracy of the matrix square root operation over an 

entire flight, only the maximum of this norm over all discrete time was considered for 

each flight.  This maximum represents the worst matrix square root estimate that occurred 

over the entire flight.  A mean was taken of each of these maximum norms over all 23 

flights, and the results are shown in Figure 40. 
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Figure 40.  Matrix Square Root Operation Accuracy 
 

Figure 40 shows the convergence of the iterative methods in terms of the matrix square 

root accuracy.  For smaller numbers of iterations, all of the iterative methods except for 

CR are very close in accuracy.  These curves start to separate only at higher numbers of 

iterations, as shown in the right side plot of Figure 40.  All of these algorithms converge 

to very high matrix square root accuracy after a sufficient number of iterations, with the 

exception of Newton‟s iteration.  Figure 40 demonstrates the divergence of the Newton‟s 

iteration.  After 13 iterations, the matrix square root accuracy starts to degrade and 

eventually reaches a point where the matrix square root accuracy is too poor to use within 

the UKF algorithm.  Because of the divergence issues associated with Newton‟s iteration, 

it is not recommended for UKF applications, even though it is the most computationally 

efficient iterative matrix square root method with respect to both FLOP estimate and 

execution time.  Because the accuracy of the matrix square root operation has a direct 

effect on the accuracy of the prediction stage of the UKF, the relationship between the 
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matrix square root accuracy and UKF performance accuracy for all considered matrix 

square root operations is shown in Figure 41. 

 

 

Figure 41.  Relationship between Matrix Square Root Accuracy and UKF Performance 
 

As shown in Figure 41, there is a clear nonlinear relationship between the matrix square 

root accuracy and the UKF performance for this application.  This demonstrates the 

significant effect of the matrix square root accuracy on the performance of the UKF. 

 

5.3.3 Comparison of Direct Matrix Square Root Methods to SR-UKF 

 

 

A different method of handling the square root requirement of the UKF, named 

the “square-root UKF (SR-UKF)” was suggested by van der Merwe and Wan [149]. In 

this method, the square root of the state covariance matrix is estimated directly.  This 

eliminates the need to re-factorize the state covariance matrix at each time step, and 

instead it is updated using Cholesky updates.  A significant advantage of this method is a 

decrease in computational complexity, which leads to a faster run time of the UKF.  For 

comparison purposes, the Cholesky method was selected as a representative case of 

calculating the matrix square root at each time step from the state covariance estimate.  
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Performance results were calculated using each of these two methods for each of the 23 

flights, and the performance cost is plotted in Figure 42. 

 

 

Figure 42.  Comparison of UKF and SR-UKF Performance 
 

The mean performance costs of the two different methods are shown in Table 8.  

To determine if there is a statistically significant performance advantage of the UKF over 

the SR-UKF, a one-tailed paired samples hypothesis test [53] was done using the t-

statistic to determine the probability that the SR-UKF has better performance than the 

UKF.  Using this null hypothesis, the probability was calculated to be 1.49%, which is 

less than the commonly considered 5% null hypothesis rejection criterion.  Therefore, the 

UKF achieves statistically significant better performance than the SR-UKF for this 

application, at the cost of additional computational complexity.  To compare the 

computational complexity of the two different algorithms, the mean execution time of the 

algorithms was calculated and is also shown in Table 8. 

Table 8.  Comparison of UKF and SR-UKF 
Matrix Square Root 

Method 

Mean Performance Cost J 

(deg) 

Mean Execution Time 

(sec) 

UKF (Cholesky) 1.795 8.16 
SR-UKF 1.996 5.73 
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 It is also interesting to note from Figure 42 that there are some cases where the 

SR-UKF method has better performance than the Cholesky method, e.g., flight #16.  If 

this single flight alone was used to analyze results, the opposite conclusion could be 

drawn about the accuracy of this method.  This demonstrates the value of using multiple 

data sets for comparison. 

 

5.3.4 Matrix Square Root Operations for UKF Conclusions 

 

 

This section presented a comparison of different matrix square root calculations 

within the UKF.  The GPS/INS sensor fusion attitude estimation problem for subscale 

aircraft applications was used as an example to evaluate the performance with respect to 

matrix square root accuracy, computational cost, and attitude estimation performance.  In 

terms of attitude estimation performance, the Cholesky, diagonalization and Schur 

methods yielded the highest accuracy, however this same performance can be reached 

using a sufficient number of iterations in any of the iterative methods.  Newton‟s iteration 

was found to diverge in certain instances, and is therefore not recommended for UKF 

applications.  The cyclic reduction (CR) iteration demonstrated the fastest performance 

convergence of the iterative methods.  In terms of execution time, the SR-UKF is 

computationally efficient, but at the cost of performance.  Overall, the Cholesky method 

was found to provide the best compromise in terms of both performance and execution 

time. 
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For real-time applications of the UKF, such as attitude estimation for small 

aircraft, computation is an important consideration factor.  For most cases, the Cholesky 

method is the best suited matrix square root method due to its fast execution and high 

accuracy.  If computational cost is even more important than the accuracy of the filter, 

the SR-UKF could be considered.  The diagonalization and Schur methods are acceptable 

approaches for off-line applications, because the accuracy is similar to the Cholesky 

method, although they require more computation time.  These methods also might be 

more desirable than the Cholesky method because they provide a more intuitive 

representation of the matrix square root, i.e. the principle square root.  Any of the 

iterative methods, except for Newton‟s iteration, could also be used with a sufficient 

number of iterations, though these methods are a bit less intuitive. 

 

5.4 ANALYTICAL COMPARISON OF INITIALIZATION ERROR 

 

 The analysis in this section was submitted for publication in [19].  Initialization 

error is an important consideration for nonlinear stochastic filters, such as the EKF and 

UKF, especially because too large of initial error can lead to divergence of the filter 

[40,162].  These two nonlinear filters implement different linearization techniques – 

analytical linearization in the EKF and statistical linearization in the UKF [10] – which 

lead to differences in the convergence of the initial error, which significantly impacts the 

estimation performance.  Because of this, it is important to understand the initial error 

convergence rates of the EKF and UKF. 
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Some authors have commented on the initialization error convergence of the EKF 

and UKF.  Crassidis [78], Fiorenzani et al. [79], and Wendell et al. [132], concluded 

using simulation studies that the UKF performance exceeds that of the EKF only under 

large initialization errors.  El-Sheimy et al. reached this same conclusion through 

experimental tests of the attitude estimation problem for land vehicles [133].  It was also 

shown that the EKF actually performed better in response to large initial errors for a 

Global Positioning System/Inertial Navigation System (GPS/INS) attitude estimation 

application [16].  Due to the inconsistency in conclusions regarding the effects of 

initialization error for EKF and UKF, an analysis of these filters is necessary in order to 

determine the different conditions under which each filter is advantageous over the other. 

This section considers the differences between EKF and UKF in response to 

initialization error through analysis of an example nonlinear system.  This case study 

thoroughly investigates the initialization error convergence for EKF and UKF of this 

example system using both theoretical analysis and simulation results.  The purpose of 

this work is to provide a counter example to the general perception of previous work 

[78,79,132,133] that the UKF is better than the EKF at handling large initialization errors 

in the system.   

Consider a scalar nonlinear system of the form 

 1k k

k k k

x f x

y x v



 
 (153) 

  
where x is the state, y is the output, f is the nonlinear state transition function, and v is the 

measurement noise, which is assumed to be zero-mean Gaussian with variance, Rk.  Note 

that this system does not include any input or process noise, and the output equation is 
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linear.  The state of this system can be estimated using either EKF or UKF, which are 

described in the following sections. 

The EKF equations can be found in various sources [62,15], and are presented 

here for the system described in (153).  First, the a priori state, xk|k-1, and variance, Pk|k-1, 

are predicted using 

 

  
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2
| 1 1 1 1

ˆ ˆ

ˆ

k k k

k k k k k

x f x

P f x x P

 

   



  
 (154) 

  
Then, the a priori estimates are updated to obtain the a posteriori estimates using the 

Kalman gain, Kk, with 

 

 
 

| 1 | 1

| 1 | 1

| 1

ˆ ˆ ˆ

1

k k k k k k
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K P P R

x x K y x

P K P
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

 

  

 

 (155) 

 The UKF equations are simplified here for the system described in (153).  Note 

that because there is no process noise and the measurement noise is additive, no 

augmentation is required for the state [16].  The primary, secondary, and tertiary scaling 

parameters for this study are assumed to be α=1, β=2, and κ=0, respectively [11].  This 

leads to the spread parameter η=1, and mean, wm, and covariance, wc, weight vectors 

given by 

 

 

0 0.5 0.5

2 0.5 0.5

T

m

T

c





w

w
 (156) 

  
For the scalar UKF with assumed scaling parameters, first, a vector of 3 sigma points is 

constructed 

1 1 1 1 1 1ˆ ˆ ˆ
k k k k k kx x P x P      

   
 

χ  (157) 
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These sigma points are then each propagated through the nonlinear function to obtain 

     | 1 1 1 1 1 1ˆ ˆ ˆ
k k k k k k kf x f x P f x P      

   
 

χ  (158) 

  
Next, the a priori state and variance are predicted through weighted averages, as in 

 
| 1 | 1

| 1 | 1 | 1

ˆ

ˆ
k k k k m

k k k k k k c

x

P x

 

  



 

χ w

χ w
 (159) 

  
Since the output equation is linear, the linear Kalman Filter (KF) measurement update 

equations in (155) can also be used here. 

 For this initialization error analysis, the scalar nonlinear system in (153) is used 

with the nonlinear function, f, defined as 

  2
1 1k kf x x   (160) 
  

Using this simple example system allows for the analytical derivation of the EKF and 

UKF estimation errors, which leads to the theoretical conditions under which one filter 

outperforms the other. 

 The a priori state and variance for (160) are calculated for the EKF using (154) 

2
| 1 1

2
| 1 1 1

ˆ ˆ

ˆ4

E

k k k

E

k k k k

x x

P x P

 

  




 (161) 

  
For the UKF, the a priori state and variance for (160) are given by 

2
| 1 1 1

2 2
| 1 1 1 1

ˆ ˆ

ˆ4 2

U

k k k k

U

k k k k k

x x P

P x P P

  

   

 

 
 (162) 

  
By comparing (161) and (162), it is shown that the UKF contains additional terms that 

the EKF does not.  Next, the measurement update is applied in order to determine the 

differences in the a posteriori state for the EKF, as in 
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
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 (163) 

  
and for the UKF, as in 

   2 2 2
1 1 1 1 1
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The a posteriori estimation errors are then defined by 

2
1

2
1

ˆ ˆ

ˆ ˆ

E E E

k k k k k

U U U

k k k k k

x x x x x

x x x x x


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   
 (165) 

  
and the output is given by  

2
1k k k k ky x v x v     (166) 

  
which after some simplification leads to the a posteriori estimation errors of the EKF and 

UKF 
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 (167) 

  
Now, assuming that the a posteriori estimation error terms for EKF and UKF have the 

same sign, consider the following ratio 

E U

k k kE x E x          (168) 
  

where E is the expectation operator.  Note that because of this expectation operator, the 

following results represent the expected result of the filters, which may differ from the 

actual results depending on the measurement noise.  The ratio Γk indicates whether the 

EKF or UKF has better estimation performance, i.e., Γk greater than 1 means better UKF 
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performance, while Γk less than 1 means better EKF performance.  Using the definitions 

of the a posteriori errors from (167), Γk can be calculated 

  
  

2 2 2 2
1 1 1 1 1

2 2 2
1 1 1 1 1
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 

  
 (169) 

  
This ratio can be reorganized, giving 

    
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   
 

   
 (170) 

  
Then, dividing by the common term in the numerator and denominator gives 
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1 1
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 (171) 

  
where γk and δk are parameters of interest for this analysis.  It is clear from its definition 

that γk is always positive.  The sign of δk however is dependent on the relative magnitude 

of the true state and the estimated state at time k-1.  If 2 2
1 1ˆ

k kx x  , δk will be negative, 

therefore the ratio Γk will be greater than 1, indicating better performance of the UKF.  

However, if 2 2
1 1ˆ

k kx x  , δk will be positive, and therefore it must be determined whether 

γk or δk is greater, i.e. 

2
1 1

2 2 2
1 1 1 1

2
ˆ ˆ4

k k

k k k k k

P P
or

x P R x x

 

   

 
 

 (172) 

  
Simplifying this relationship gives 

 2 2
1 1 1ˆ2 k k k kP x x or R       (173) 

  
Since the left hand side is always negative while the right hand side is always positive, 

the term γk is always less than δk, therefore the ratio Γk will be less than 1 for 2 2
1 1ˆ

k kx x  , 
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indicating better performance of the EKF.  It is also interesting to note that larger 

measurement variance leads to larger performance advantage of the EKF over the UKF 

for this case.  The relative performance characteristics are summarized in Table 9. 

Table 9.  Theoretical Relative Initial Error Performance 

System Condition Expected Initial Error Performance 

2 2
1 1ˆ

k kx x   UKF Better 
2 2

1 1ˆ
k kx x   EKF Better 

 

 The EKF and UKF were implemented for the considered system and compared 

with a simulated truth obtained directly from (153).  Examples of cases where the EKF 

performed better in response to the initial error are shown in Figure 43, while examples 

of cases where the UKF performed better in response to the initial error are shown in 

Figure 44.  These figures show the simulated estimation errors for EKF and UKF, with 

reported Mean-Square Error (MSE) values taken over 10 discrete time steps.  Figure 43 

uses an assumed initial state that meets the condition 2 2
1 1ˆ

k kx x  , while Figure 44 assumes 

an initial state satisfying 2 2
1 1ˆ

k kx x  .  Both figures show three different cases of 

measurement noise variance:  0.01, 1, and 100. 

 



110 

 

Figure 43.  Cases for Better EKF Convergence 

 

Figure 44.  Cases for Better UKF Convergence 
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The relative performance advantage of the EKF over the UKF displayed in Figure 43 is 

shown to become more significant as the measurement noise variance is increased.  This 

is especially apparent for the case of R = 100, which shows very poor UKF performance.  

However, for the cases of better UKF performance shown in Figure 44, the different 

cases of measurement noise variance do not have much of an effect.  These simulation 

results agree with the previous theoretical analysis. 

 Expanding upon the few selected examples from Figure 43 and Figure 44, various 

cases of assumed and true initial states were also simulated.  The difference in MSE 

values for EKF and UKF was calculated for each case in order to show which filter 

performed better.  Color scale plots were generated to illustrate these results for R = 0.01 

in Figure 45, R = 1 in Figure 46, and R = 100 in Figure 47, where bluer shades indicate 

better EKF performance while redder shades indicate better UKF performance. 

It is interesting to note in Figure 45, Figure 46, and Figure 47 that although it was 

expected that the UKF should outperform the EKF anywhere that the true initial state was 

larger than the assumed initial state, the simulation results show that sometimes the EKF 

still outperforms the UKF in this region, especially for larger measurement noise 

variance.  This identifies the weakness in the theoretical analysis using the expectation 

operator to remove the stochastic terms, but further justifies the conclusion that larger 

measurement noise leads to better EKF relative performance. 

This section presented a case study that investigated the effects of initialization 

error for the EKF and UKF.  Through a theoretical analysis of an example problem, it 

was determined that for this particular example, the EKF performs better than the UKF 
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for cases when the magnitude of the assumed initial state is greater than the actual initial 

state, i.e., the filter overestimated the initial state.  On the contrary, if the filter 

underestimated the initial state, the UKF was found to have better initial error 

convergence for the considered example problem.  Also, simulation results were used to 

justify the theoretical conclusions.  These results are tied to the example system; however 

this work demonstrates the possibility of the EKF containing better initial error 

convergence.  Additionally, the EKF performance advantage was found to become more 

significant as the measurement noise variance increased.   

 

 

Figure 45.  Difference in EKF and UKF Performance for R = 0.01 
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Figure 46.  Difference in EKF and UKF Performance for R = 1 

 

 

Figure 47.  Difference in EKF and UKF Performance for R = 100 
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some positive integer.  Only Gaussian random variables are considered here, but other 

nonlinear estimators such as particle filters can be used to approximate other distributions 

if necessary [163].  The true mean and variance of the random variable after these 

transformations is theoretically derived and verified with respect to Monte Carlo 

experiments.  These statistics are used as a reference in order to compare the accuracy of 

two different linearization techniques:  analytical linearization used in EKF and statistical 

linearization used in UKF.  First, the statistics for nonlinear transformations of a zero 

mean Gaussian variable are discussed, and then this derivation is expanded to include 

non-zero mean variables.  Next, the linearization techniques used in EKF and UKF are 

compared, followed by a nonlinear filtering example to demonstrate the usefulness of the 

theoretically derived results.  

 

5.5.1 Transformations of a Zero Mean Gaussian Variable 

 

 

Consider a normally distributed random variable, x, with zero mean and variance, 

ζ
2, i.e.,  2~ 0,x N  .  Let f(x) be the probability density function of x, and M(t) be the 

moment generating function of x, given by [164]: 

2

22
2

1( )
2

x

f x e 





  (174) 

2 21
2( )

t

M t e


  (175) 

Let y be some nonlinear function of x, y = g(x).  For each of these nonlinear functions, the 

mean and variance after the nonlinear transformation can be determined using the 

expectation operator [164]: 
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 ( ) ( ) ( )E g x g x f x dx   (176) 

   The nonlinear function y = x
k is considered as a general case to capture the effects 

of polynomials, where k is some positive integer.  For this function, the expectation 

integral does not need to be evaluated; instead, the moment generating function, M(t), can 

be used to derive the moments of this function [164]: 

0

( )k
k

k

t

M t
E x

t



    

 (177) 

Thus, the mean of y is given by: 

 
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 (178) 

where !! is the double factorial operator [165].  To calculate the variance of y, the 

following equation is used [164]: 

 
22 2

y E y E y      (179) 

Using (178) and (179), the variance of y = x
k is calculated using: 

 
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 (180) 

Now, consider the nonlinear function y = sin(x).  Solving (176) directly for this 

function is not a trivial matter.  However, if the sine function is expanded using its Taylor 

series, the expectation becomes: 
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Using (178), (181) gives  sin 0E x  .   

For y = cos(x), a similar procedure is used to calculate the mean of y: 
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Using (178), (182) simplifies to: 
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Next, the variances for the sine and cosine functions are calculated using (179).  The 

variance of the sine function is given by: 
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 (184) 

The variance of the cosine function is given by: 
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The results of this analysis are summarized in Table 10. 

Table 10.  Statistics for Transformations of a Zero Mean Gaussian Variable 
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5.5.2 Transformations of a Non-Zero Mean Gaussian Variable 

 

 

Consider a normally distributed random variable, z, with mean, μ, and variance, 

ζ
2, i.e.,  2~ ,z N   .  Note that z is equivalently distributed to x, except for a shift in the 

mean from 0 to μ, i.e., z x   .  To take advantage of the relationships from Table 10, 

this change of variables from z to x will be utilized.  Now, let y be some nonlinear 

function of z, y = g(z).  Again, the same three different nonlinear functions are 

considered:  g(z) = sin(z), g(z) = cos(z), and g(z) = z
k, where k is some positive integer.   
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First the nonlinear function y = z
k is considered.  The expected value of y can be 

obtained using the binomial expansion [164]: 
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where the expectations of x are given by (178): 
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The variance is then determined using (179) and (187) to be: 
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Next the nonlinear function y = sin(z) is considered.  The expected value of y can 

be obtained by taking advantage of the relationship of z to x, as well as trigonometric 

identities: 
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Using the previously determined expectations of the sine and cosine functions with 

respect to x in Table 10, the expected value of y is determined as: 
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The variance is then derived from (179) and (190), as well as Table 10: 
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For the nonlinear function y = cos(z), similar procedures can be used as for the sine 

function, and the expected value and variance after the transformation has been found as: 
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The results of this analysis are summarized in Table 11. 

Table 11.  Statistics for Transformations of a Non-Zero Mean Gaussian Variable 
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5.5.3 Comparison of Linearization Techniques in Nonlinear Filters 

 

 

Consider a nonlinear transformation of the form y = g(z), where  2~ ,z N   .  

The Analytical Linearization (AL) method as implemented in the EKF estimates the 

mean and variance after the transformation as: 
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These values were calculated using (194) and (195) for each of the three considered 

nonlinear transformations and the results are summarized in Table 12. 

Table 12.  Mean and Variance Estimates from Analytical Linearization 

( )y g z   E y  2
y  

kz  
1,2,3,...k   

k  2 2 2 2kk    

sin z  sin  2 2cos   
cos z  cos  2 2sin   

 

The Unscented Transformation (UT) is a statistical linearization technique used by the 

UKF.  For the considered scalar case, the UT consists of the calculation of three sigma 

points: 

 ( ) ( ) ( )g g g         (196) 

where α is the primary sigma point scaling parameter, which is suggested to vary between 

0.001 and 1 [11].  Weighted averages are taken to recover the mean and variance of these 

sigma points, as in: 
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where y  is the mean estimate from (197) and β is the secondary sigma point scaling 

parameter.  For Gaussian distributions, β = 2 is optimal [11]; therefore β = 2 was used for 

this study.  Unlike the AL, the UT does not yield simple explicit form solutions for the 

transformed mean and variance of the considered nonlinear functions; therefore these 

explicit solutions are not presented. 

Since the linearization process is a function of the prior mean and variance, plots 

were generated to illustrate the differences between the analytical and statistical 

linearization techniques.  Additionally, the Monte Carlo method was included to verify 

the theoretically derived results, i.e., 105 points were generated from the prior 

distribution, propagated through the nonlinear function, and then the mean and variance 

statistics were calculated.  The differences between the Monte Carlo and theoretical 

estimates for the mean and variance are negligible for all of the considered cases, thus 

demonstrating the validity of the theoretically derived equations.  For the unscented 

transformation, four different cases of α were considered:  0.25, 0.5, 0.75, and 1.0.   

These values were selected to represent a few cases in the range of possible values for α.  

Each presented figure shows the error in the transformed mean or variance estimate from 

the linearization process as compared to the theoretically derived truth from Table 11.  

These errors are plotted with respect to the prior standard deviation, ζ. 

First, two cases of the nonlinear function y = zk are considered:  k = 2 and k = 3.  

For both cases, E[z] = 0.1. Alternatively, due to the relationship between z and x, this 
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function can be considered as y = (x+0.1)k.  For k = 2, the mean and variance estimates 

for each case of α were the same, and therefore only one line is plotted for the UT, as 

shown in Figure 48.   

 

 

Figure 48.  Mean and Variance Estimate Errors for y = (x + 0.1)2 

 

It is shown in Figure 48 that the AL error increases as the prior variance increases, while 

the UT provides perfect estimation of both the mean and variance.  As expected, the 

Monte Carlo method provides near perfect estimation of the statistics.  For k = 3, the 

mean estimate again is not a function of α; however, the variance estimate is function of 

α.  The results for this case are shown in Figure 49. 
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Figure 49.  Mean and Variance Estimate Errors for y = (x + 0.1)3 

 

For the case shown in Figure 49, the AL again shows an increasing error trend with prior 

variance.  The UT provides perfect mean estimation, but the variance estimate is now 

only slightly more accurate than the AL, with α = 1.0 giving the greatest accuracy.  For 

this case, errors in the Monte Carlo method become more apparent as the prior variance 

increases.  This indicates that a larger number of points would be required to accurately 

estimate the statistics.  This particular case demonstrates the usefulness of the 

theoretically derived statistics in Table 11, as the Monte Carlo method can become 

inaccurate even for a reasonably large number of points.  Therefore, using Monte Carlo 

as a truth reference may be invalid under certain conditions.  The derived statistics in 
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however, shown in Figure 50, shows that the UT contains greater accuracy than the AL 

for all cases of α, with α = 1.0 giving the best variance estimate.   

 

 

Figure 50.  Variance Estimate Error for y = sin(x) 

 

Next, two non-zero mean cases are considered for the sine function.  The mean 

and variance estimates for y = sin(z) with E[z] = π/4 are shown in Figure 51, and 

similarly for y = sin(z) with E[z] = π/2 in Figure 52.   

 

 

Figure 51.  Mean and Variance Estimate Errors for y = sin(x+π/4) 
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Figure 52.  Mean and Variance Estimate Errors for y = sin(x+π/2) 
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cases for the cosine function were generated, and yielded equivalent results as for the sine 

function as expected, following the co-function identities, i.e., cos(x) = sin(π/2–x).  For 
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of α = 1.0 gave the most accurate mean and variance estimates for the UT.  Also, the 

Monte Carlo method provides near perfect estimation of the statistics, as expected. 
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contours.  In these figures, the darker areas indicate higher linearization errors with 

respect to the analytical truth.   

 

 

Figure 53.  Analytical Linearization Error for y = sin(z) 

 

Figure 54.  Unscented Transformation Error for y = sin(z) 
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There are two important observations to recognize in Figure 53 and Figure 54.  First, for 

all cases of prior mean and standard deviation, the UT yields more accurate estimation of 

the mean.  Second, the variance estimate errors of the AL are sometimes better than the 

UT, and vice versa.  This is demonstrated by the different shapes of the contour graphs, 

with AL having higher errors for smaller means and the UT having higher errors for 

larger means.  Because of this observation, neither the AL nor UT can claim better 

estimation of the variance for all cases. 

 

5.5.4 Nonlinear Filtering Example 

 

 

In order to demonstrate the usefulness of the derived analytical relationships, an 

example of a nonlinear filtering problem is considered.  Consider the following discrete-

time nonlinear system: 

1sin

~ (0, )

k k

k k k

k

x x

y x v

v N R



   (199) 

where k is the discrete time index, x is the state, y is the output, and v is the measurement 

noise with known variance, R.  This problem is approached with EKF, UKF, a theoretical 

filter which uses the relationships summarized in Table 11, a Monte Carlo based filter, 

and a particle filter. For this implementation of the UKF, the scaling parameters were set 

to α = 1.0 and β = 2.  The Monte Carlo filter generated 106 points at each time step from 

the prior distribution to recover the statistics after the nonlinear transformation.  Note that 

this Monte Carlo filter is not a particle filter, but is instead a Kalman filter that uses the 

Monte Carlo method to determine the a priori statistics at each time step.  This Monte 
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Carlo filter is a statistical means of approximating the theoretical filter.  A linear Kalman 

filter measurement update  is used for the EKF, UKF, theoretical, and Monte Carlo 

filters, since the output equation is linear.  To provide additional comparison, a simple 

Sampling Importance Resampling (SIR) particle filter [163] was implemented using 106 

particles.   

First, the true state trajectory is determined for an initial state, 0 4x  .  This 

trajectory is used to simulate the measurement, with added measurement noise with 

variance, R = 0.25.  This measurement is shown with the true state trajectory in Figure 

55.   

 

 

Figure 55.  Nonlinear Filtering Example:  State and Measurement 
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where P is the variance of the state.  These initial conditions were selected to capture the 

effects of a reasonably large initialization error.  Note that the initial error was selected as 
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one standard deviation from the assumed initial variance.  The state estimation error 

results of this simulation are shown in Figure 56. 

 

 

Figure 56.  Nonlinear Filtering Example:  Estimation Error 

 

Negligible differences are shown in Figure 56 between the Monte Carlo and theoretical 

filters.  To quantify the performance of each filter, the root mean square error (RMSE) 

was calculated, and is shown in Table 13.   

 

Table 13.  Nonlinear Filtering Example:  Root Mean Square Error 
Nonlinear Filter RMSE 

EKF 0.048597 
UKF 0.044619 
Monte Carlo 0.029997 
Theoretical 0.029989 
Particle (SIR) 0.019786 
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removal of the linearization errors that are incurred by EKF and UKF.  The particle filter 

was able to achieve the highest accuracy, due to the removal of the Gaussian noise 

assumption that is required by the other methods.  This indicates that even with perfect 

linearization, Kalman-based filtering techniques may not be as effective as particle 

filtering. 

 

5.5.5 Analytical Comparison of Linearization Methods Conclusions 

 

 

This section presented the results of a comparison of analytical linearization and 

unscented transformation techniques to recover the mean and variance after three 

different nonlinear transformations.  The true statistics were theoretically derived for each 

of the considered functions in order to compare the errors of the different methods.  

These theoretical results were verified with respect to Monte Carlo simulations.  For all 

of the considered cases, the unscented transformation yielded equal or greater accuracy in 

the estimation of the mean.  However, mixed conclusions were reached about the 

accuracy of the variance.  For some cases the analytical linearization obtained greater 

accuracy than the unscented transformation, while for other cases the opposite was 

noticed.  Another interesting observation is that for each function, increasing α in the 

unscented transformation gave equal or better accuracy.  Additionally, a nonlinear 

filtering example was given to demonstrate the effectiveness of the theoretical estimates 

in practice, either as a validation tool or for implementation.  This example showed that 

there is room for improvement for both EKF and UKF in terms of linearization errors for 
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certain applications, and that a particle filter is still able to outperform a Kalman-based 

filter even with no linearization error. 
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6.0 NONLINEAR KALMAN FILTER STABILITY ANALYSIS 

 

 In this chapter, stability is investigated of the considered nonlinear state 

estimation problem presented in Chapter 3 using experimental data collected with the 

research platform described in Chapter 4.  First, the necessary mathematical and 

statistical properties are defined.  Then, a stochastic stability proof of the linear discrete-

time Kalman filter is provided.  Next, a preliminary stability analysis is conducted using 

the existing prior work of other authors [40] directly to derive the required bounds on the 

system.  Then, a method of relaxing these preliminary bounds is presented in detail with 

results from the considered application of attitude estimation using empirical flight data 

[162].  Additionally, some analysis is presented for the use of a multiplicative 

linearization error model.  Finally, discussion of the stability analysis is provided. 

 

6.1 MATHEMATICAL DEFINITIONS 

 

 In order to analyze the stability of the EKF, various mathematical definitions need 

to be utilized.  This section outlines the important mathematical tools that are necessary 

in the following sections.  First, due to the extensive use of matrices for multivariate 

systems, some linear algebra characteristics are necessary.   

 An important linear algebra definition is the trace of a matrix, which is defined as 

the sum of its diagonal elements.  This is also equal to the sum of the eigenvalues of the 
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matrix.  The trace operator is denoted by Tr(.).  An important and useful property of the 

trace operator is that the order of matrix multiplication can be changed, as in [53] 

( ) ( )Tr TrAB BA  (201) 
  

This property is easily derived using the fact that the trace of a matrix is equal to the trace 

of its transpose [166]. 

Another important linear algebra property is the matrix inversion lemma [167], 

which is given by the following formula 

   
11 1 1 1 1 1        A UCV A A U C VA U VA  (202) 

  
where A, U, C, and V are matrices with dimensions (n × n), (n × m), (m × m), and (m × n) 

respectively.  If U and V are taken to be (n × n) identity matrices, the formula simplifies 

to: 

   
11 1 1 1 1 1        A C A A C A A  (203) 

  
This simplified form is useful for simplifying various equations in the process of deriving 

stability.  

For stability of the EKF for a stochastic estimation problem, the boundedness of 

the stochastic process is important.  The properties of stochastic boundedness are 

discussed in the following lemma [64,65].   

Stochastic Stability Lemma:  Assume there is a stochastic process Vk(ζk) such that 

the following properties are satisfied 

 

     

1 2
2 2

1 22 2

1 1

, , 0, 0 1

|
k k k k

k k k k k k k

v v

v V v

E V V V

 

  

  

 

     

ζ ζ ζ

ζ ζ ζ ζ

 (204) 

  
then the stochastic process is exponentially bounded in mean square with probability one 
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   
1

2 22
02 2

01 1

1 1
k

k i

k

i

v
E E

v v


 





      
    ζ ζ  (205) 

  
It can be seen from this lemma that the value α is related to the convergence of the 

estimation error, with greater α corresponding to faster convergence.  The summation 

term of this inequality can be simplified using the property that 

   
1

0 0

11 1
k

i i

i i

 


 

 

      (206) 

  
therefore the stochastic process bound can more conservatively be written as 

 
2 22

02 2
1 1

1 k

k

v
E E

v v





     
   
ζ ζ  (207) 

  
 Proof:  The proof for the stochastic stability lemma is presented in [65].  Next, 

modifications are presented to the stochastic stability lemma which use time-varying 

parameters. 

Modified Stochastic Stability Lemma:  Assume that there is a stochastic process 

V(ζk)  and parameters 0, , 0k kb v    and 0 1k   such that the following inequalities are 

satisfied for all k  

 
2

0 0 0V vζ ζ  (208) 

 
2

k k kb Vζ ζ  (209) 

     1 1 1 1 1|k k k k k kE V V V          ζ ζ ζ ζ  (210) 
  

then the random variable ζk is bounded in mean square with probability one by the 

following inequality 
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   
1 1

2 20
0 1

00 1

11 1
k ik

k i k i k j

ii jk k

v
E E

b b
  

 

  

 

 
          

 
 ζ ζ  (211) 

  
Proof:  First, it is important to note the difference between the stochastic stability 

lemma and the modified stochastic stability lemma.  In the modified stochastic stability 

lemma, the terms μ and α are time varying quantities, whereas for the stochastic stability 

lemma, these terms were both considered as constants with respect to the discrete time, k.  

An important property of expectations from statistics is central to this proof [164] 

   |E E X Y E X     (212) 
  

which can be extended for conditional expectations, as in 

   | | |E E X Y Z E X Z     (213) 
  

Rearranging (210) gives 

     1 1 | 1k k k k k k kE V V       ζ ζ ζ  (214) 
  

Taking the conditional expectation of this inequality with respect to ζk-1  

     1 1 1 1| | 1 |k k k k k k k k kE E V E V    
          ζ ζ ζ ζ ζ  (215) 

  
which using (213) simplifies to 

     1 1 1| 1 |k k k k k kE V E V           ζ ζ ζ ζ  (216) 
  

This recursive inequality can be applied repeatedly for k-2, k-3, …, 0, thus giving 

        

      

1 0 1 1 1 0

1 0 0

| 1 ... 1 1 ... 1

1 1 ... 1
k k k k k k

k k

E V

V

      

  

  



          

   

ζ ζ

ζ
 (217) 

  
This inequality is rewritten for the discrete time step k as 
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        

      

0 1 1 2 1 2 1 0

1 2 0 0

| 1 ... 1 1 ... 1

1 1 ... 1
k k k k k k

k k

E V

V

      

  

    

 

          

   

ζ ζ

ζ
 (218) 

  
which can be written more formally as 

       
1 1

0 0 1
00 1

| 1 1
k ik

k i k i k j

ii j

E V V   
 

  

 

 
       

 
 ζ ζ ζ  (219) 

  
Taking the expectation and applying (212) gives 

       
1 1

0 1
00 1

1 1
k ik

k i k i k j

ii j

E V E V   
 

  

 

 
          

 
 ζ ζ  (220) 

  
Using (209) and taking the expectation yields the following useful inequalities 

 

 

2
1 2

2
0 2 0 2

k kv E E V

E V v E

      

      

ζ ζ

ζ ζ

 (221) 

  
Substituting these inequalities into (220) gives the final result of (211), thus completing 

the proof. 

 Remarks:  The modified stochastic stability lemma presents a general case where 

both the constant term, μ, and the convergence rate, α, can be time varying.  It is also 

interesting to note the following two cases, where just one of those two values is time 

varying 

   
1 1

2 22
02 2

00 11 1

1 1
k ik

k i k j

ii j

v
E E

v v


 

 



 

 
          

 
 ζ ζ  (222) 

  

   
1

2 22
0 12 2

01 1

11 1
k

k i

k k i

i

v
E E

v v
  



 



       
     ζ ζ  (223) 

  
Note that if both quantities are considered constant, the modified stochastic stability 

lemma reduces to the stochastic stability lemma.  Another difference is that the bounds 
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for the stochastic process are treated differently.  The upper bound of the process is 

considered only for the initial time step, while the lower bound is considered as a time-

varying quantity.  The usefulness of the modified stochastic stability lemma is not for 

stability analysis, but for the on-line monitoring of convergence and estimation error 

bounds.  The consideration of time-varying parameters is the key to the on-line 

convergence and error analysis of the Kalman filter presented in Section 6.3.   

 

6.2 LINEAR KALMAN FILTER STABILITY ANALYSIS 

 

Before considering the stability of the Extended Kalman Filter (EKF), some 

stability analysis is done for the linear discrete-time Kalman filter.  This stability analysis 

follows a similar analysis as for the EKF, except that there are no linearization errors in 

the system, therefore the nonlinear part of the problem does not need to be considered.  

Here, however, the stochastic effects are considered, and therefore the stochastic stability 

lemma (204) is utilized.  First, the error dynamics are derived, followed by a stability 

analysis of the deterministic system, then the stochastic error is considered. 

 

6.2.1 Derivation of Linear Kalman Filter Error Dynamics 

 

 The necessary equations for this derivation are recalled from Section 2.4 of this 

dissertation.  Again, the system is assumed to be of the form (45) with noise assumptions 

given by (46).  For this system, the linear Kalman filter can be implemented by using (49) 

to predict the state and covariance (a priori), calculating the Kalman gain matrix with 
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(50), then updating the predicted state and covariance (a posteriori) with (51).  This two-

step method can be reduced to a one-step method by combining (45), (49), and (51) in 

order to obtain the dynamics of both the a priori and a posteriori state and covariance.  

First, the a priori error dynamics are defined, followed by the a posteriori error 

dynamics. 

To obtain the a priori state dynamics, first insert (51) into (49) 

 1| | 1ˆ ˆ
k k k k k k k k k k k 

     x A I K H x K y B u  (224) 
  

Substituting the definition of yk from (45) gives 

 1| | 1ˆ ˆ
k k k k k k k k k k k k k k 

      x A I K H x K H x K v B u  (225) 
  

Defining the a priori state error as | 1ˆ
k k k k ξ x x , its dynamics can now be defined using 

 

 

1 1 1|

1 | 1

1

ˆ

ˆ
k k k k

k k k k k k k k k k k k k k k k k k

k k k k k k k k k

  

 



 

         

   

ξ x x

ξ A x B u w A I K H x K H x K v B u

ξ A I K H ξ w A K v

 (226) 

  
To define the a priori covariance as a one-step equation, the covariance expressions from 

(49) and (51) are combined as in 

 1| | 1
T

k k k k k k k k k 
    P A I K H P A Q  (227) 

  
Using the definition of the Kalman gain matrix from (50), this expression can be 

rewritten as 

 
1

1| | 1 | 1 | 1 | 1
T T T T

k k k k k k k k k k k k k k k k k k k k



       P A P A A P H H P H R H P A Q  (228) 

  
which is a discrete Riccati equation [62].  Using the matrix inversion lemma (202), the a 

priori covariance dynamics can be rewritten more compactly as 
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 
11 1

1| | 1
T T

k k k k k k k k k k


 

   P A P H R H A Q  (229) 

  
Thus, the error dynamics and covariance have been derived for the a priori state vector.   

 Next, the same procedure is used to derive the error dynamics and covariance of 

the a posteriori state vector.  The a posteriori state error is defined by ˆ
k k k x x x .  

Reorganizing (51) gives 

  | 1ˆ ˆ
k k k k k k k  x I K H x K y  (230) 

  
Substituting in the definition of yk from (45) gives 

  | 1ˆ ˆ
k k k k k k k k k k   x I K H x K H x K v  (231) 

  
Now, the a posteriori state error can be defined 

 

  
| 1

| 1

ˆ ˆ

ˆ
k k k k k k k k k k k k k

k k k k k k k k





      

   

x x x x I K H x K H x K v

x I K H x x K v
 (232) 

  
Inserting the state definition from (45) and predicted state estimate from (49) yields 

     

  

1 1 1 1 1 1 1 1 1

1 1 1

ˆ
k k k k k k k k k k k k k k

k k k k k k k k

        

  

        

   

x I K H A x B u w A x B u K v

x I K H A x w K v
 (233) 

  
For the a posteriori covariance, substitute the definition of the a priori covariance from 

(49) into (51), giving 

  1 1 1 1
T

k k k k k k k     P I K H A P A Q  (234) 
  

Thus, the a posteriori state estimate error dynamics and covariance have each been 

defined using a single recursive relationship.  These equations are important tools that are 

used to derive different stability characteristics of the system as shown in the following 

sections. 
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6.2.2 Deterministic Linear Kalman Filter Stability Analysis 

 

 As a starting point for the stability analysis, the error dynamics defined by (233) 

are considered for the deterministic or homogeneous problem, i.e., the stochastic terms 

are zero, as in 

  1 1k k k k k  x I K H A x  (235) 
  

Consider a candidate Lyapunov function of the form 

  1T

k k k k kV x x P x  (236) 
  

This function is in quadratic form, and is therefore strictly positive since the covariance 

matrix and also its inverse is positive definite.  Substituting in the definition for the error 

dynamics gives 

     1
1 1 1 1

TT T

k k k k k k k k k k kV 

     x x A I K H P I K H A x  (237) 
  

Using (49) and (51), the covariance matrix can be rewritten in the following form 

      1 1 1 1 1 1 1 1
T TT T

k k k k k k k k k k k k k k k k k             P I K H A P A Q I K H K H A P A Q I K H  (238) 
  

It can be shown that each of these two terms is positive definite, therefore the following 

inequality can be written 

   1 1 1 1
TT

k k k k k k k k k      P I K H A P A Q I K H  (239) 
  

Since the covariance matrix is a positive definite matrix by definition, it is invertible.  It 

can also be shown that the matrix k kI K H  is invertible, and therefore the following 

inequality can be written 
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     
11

1 1 1 1
T T

k k k k k k k k k




      I K H P I K H A P A Q  (240) 

  
Using this inequality, the Lyapunov function can be written as 

     

 

1
1 1 1 1

1

1 1 1 1 1 1 1 1

TT T

k k k k k k k k k k k

T T T

k k k k k k k k

V 

   



       

  

 

x x A I K H P I K H A x

x A A P A Q A x
 (241) 

  
Since the matrix A is nonsingular, its inverse exists, and therefore the following 

modification is valid 

   
11

1 1 1 1 1 1
T T

k k k k k k k kV


 

      x x P A Q A x  (242) 

  
Applying the matrix inversion lemma (203) 

   
11 1 1 1 1

1 1 1 1 1 1 1 1 1
T T

k k k k k k k k k k kV


    

        
   
  

x x P P P A Q A P x  (243) 

  
Recognizing the candidate Lyapunov function on the right hand side 

     
11 1 1 1

1 1 1 1 1 1 1 1 1 1
T T

k k k k k k k k k k k kV V


   

         
    
  

x x x P P A Q A P x  (244) 

  
Since the matrices P and Q are both positive definite, the matrix in square brackets is 

negative definite, therefore the right hand side of the equation is negative.  This proves 

the asymptotic stability of the deterministic problem.  Additionally, information about the 

convergence rate of the estimation can be determined by analyzing the bound on the 

following matrix 

 
11 1 1

1 1 1 1 1
T

k k k k k 


  

     P P A Q A I  (245) 

  
where α is the convergence rate and 0 < α ≤ 1.  By rearranging this inequality, the 

following matrix bound can alternatively be used to calculate the convergence rate 
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1
1 1 1 1

1 T

k k k k







   

 
 

 
I A Q A P  (246) 

  
Using this bound, the Lyapunov difference equation can be rewritten as 

     1 1 1 1k k k k k kV V V     x x x  (247) 
  

This equation can be recognized as taking the form of (204), where no stochastic terms 

are considered, and with μ = 0.  The effect of the stochastic terms is considered separately 

in the following section. 

Before considering the stochastic terms, the uniform stability characteristics of the 

deterministic system are considered.  Since this is a non-autonomous system, the uniform 

asymptotic stability of the system can be shown by demonstrating that the Lyapunov 

function is decrescent.  From (239), it is shown that there exists a lower bound on the 

covariance matrix.  By definition the covariance matrix is positive definite and the 

process noise covariance matrix is positive semi-definite for any time k, therefore the 

following inequality is satisfied 

   1 1 1 1 0TT

k k k k k k k k k         P I K H A P A Q I K H I  (248) 
  

where β is some positive constant.  Taking the inverse of this relationship, the inverse of 

the covariance matrix is bounded as in 

1 1
k



 P I  (249) 

  
Thus, the Lyapunov function is bounded as follows 
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 

 

21
2

2

2

1 1

1

T T

k k k k k k k k

k k k

V

V

 



  



x x P x x x x

x x

 (250) 

  
Since the Lyapunov function is upper bounded by a class K function, it is a decrescent 

function, and therefore the system is uniformly asymptotically stable. 

 

6.2.3 Stochastic Linear Kalman Filter Stability Analysis 

 

 Building upon the work of the previous section for the deterministic problem, the 

stochastic terms are now considered.  Using the same Lyapunov function with the 

stochastic error dynamics, the Lyapunov function can be written as 

    

  

1
1 1 1

1 1 1

T

k k k k k k k k k k

k k k k k k k

V 

  

  

     

     

x I K H A x w K v P

I K H A x w K v
 (251) 

  
Since the process and measurement noise vectors are zero mean and independent from 

the other terms, when taking the expectation, terms containing only w or v are zero, thus 

simplifying the equation to 

     

     

1
1 1 1 1 1

1
1 1

| TT T

k k k k k k k k k k k k k

T

k k k k k k k k k k k k

E V

E



    



 

      

      
  

x x x A I K H P I K H A x

I K H w K v P I K H w K v
 (252) 

  
where Γ is defined to represent the stochastic terms in the Lyapunov equation.  The other 

term in the equation can be recognized as the term corresponding to the deterministic 

problem.  Using the assumption that w and v are uncorrelated, i.e., 

1 1 0T T

k k k kE E 
       w v v w  (253) 

  
the process and measurement noise terms can be separated 
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   1
1 1

1

w v

k k k

Tw T

k k k k k k k k

v T T

k k k k k k

E

E



 



   

    
 

    

w I K H P I K H w

v K P K v

 (254) 

  
First the process noise term is considered.  Since this equation is scalar, the trace 

can be taken without affecting the equality, as in 

      1
1 1

Tw w T

k k k k k k k k kTr Tr E 

 
      
 
w I K H P I K H w  (255) 

  
Using the trace property (201), the terms are reordered, and the deterministic terms are 

removed from the expectation 

    1
1 1

Tw T

k k k k k k k kTr E

 
      I K H P I K H w w  (256) 

  
Using (239), the following inequality can be established 

  
1

1 1 1 1 1 1
w T T

k k k k k k kTr E


     
     A P A Q w w  (257) 

  
Since both terms inside of the matrix inverse are positive definite, the following 

inequality is also satisfied 

 
1 1

1 1 1 1 1
T

k k k k k




     A P A Q Q  (258) 

  
Using this relationship as well as the definition of the covariance of the process noise, 

this term can be simplified 

   1 1
1 1 1 1 1

w T

k k k k k k wTr E Tr n 

    
     Q w w Q Q  (259) 

  
where nw is the size of the process noise vector, w.  Next, the measurement noise term is 

considered. 

 Similarly to the process noise term, the trace is considered in order to utilize the 

reordering property (201), thus giving 
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 1v T T

k k k k k kTr E     K P K v v  (260) 
  

To simplify the measurement noise term, an alternative definition of the Kalman gain 

matrix is considered [62] 

1T

k k k k

K P H R  (261) 
  

Inserting this into the measurement noise term yields 

 

 

1 1 1

1 1

v T T

k k k k k k k k k k

v T T

k k k k k k k k

Tr E

Tr E

  

 

    

    

R H P P P H R v v

R H P H R v v
 (262) 

  
Considering the definition of the measurement noise covariance 

 1v T

k k k k kTr   R H P H  (263) 
  

Using the trace property (201) again to reorder the matrix multiplication 

 1v T

k k k k kTr   H R H P  (264) 
  

From the information filtering form of the covariance update equation [62] 

1 1 1
| 1

T

k k k k k k

  

 P P H R H  (265) 
  

Substituting this relationship in for the 1T

k k k


H R H  term yields 

    1 1 1
| 1 | 1

v

k k k k k k k kTr Tr  

     P P P I P P  (266) 
  

Since both the a priori and a posteriori covariance matrices are positive definite, the 

following inequality is satisfied 

1
| 1

1
| 1

0k k k

k k k











 

P P

I P P I
 (267) 

  
This effectively establishes a bound for the measurement noise covariance term as in 
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 v

k vTr n  I  (268) 
  

where nv is the size of the measurement noise vector. 

 Combining the results of the previous section with this one, the following bound 

can be written for the stochastic system 

     1 1 1 1 1|k k k k k k k w vE V V V n n           x x x x  (269) 
  

which follows the form of (204) with μ = nw + nv.   

 

6.3 LINEAR KALMAN FILTER ON-LINE CONVERGENCE ANALYSIS 

 

When the Linear Kalman Filter (LKF) is implemented in real-time applications, it 

is often difficult to quantify the performance of the filter without access to some 

reference „truth‟.  Off-line simulations can provide some indication of the filter 

performance; however accurate mathematical models are not always available.  There is a 

need to analyze the performance of the LKF on-line by quantifying the convergence rate 

and steady state error bounds of the real system.  Such a tool could benefit many safety or 

performance critical systems, such as the aircraft health management system.  Existing 

techniques for on-line performance analysis of the LKF include outlier detection [168], 

performance reliability prediction [169], and confidence bounds from the covariance 

matrix, e.g. see [170].  Confidence bounds can also be established through use of the 

Chebyshev inequality [171], although these bounds tend to be too large for practical use 

[172].  Some other investigations for confidence bounds on the Kalman filter consider the 

non-Gaussian case using enhancements to the Chebyshev inequality [172] or the 

Kantorovich inequality [173].  The work presented herein offers a novel on-line method 
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for monitoring the performance of the LKF by providing an upper bound on the 

estimation error.   

An important and useful tool for analyzing the stochastic stability of a system is 

the stochastic stability lemma which was described in Section 6.1.  This lemma has been 

used to approach the stability of the Extended Kalman Filter (EKF) [40] and later for a 

general class of nonlinear filters including EKF and UKF [35,36].  A common problem 

with existing convergence analysis techniques for nonlinear state estimators is extremely 

loose bounds on the system and noise matrices, leading to very conservative and 

unrealistic requirements on the initial error and noise of the system [40].  A method for 

the relaxation of these conditions for EKF was considered in a related work [162], and is 

also discussed further in Section 6.4.  Using the stochastic stability lemma, these works 

[40,162] perform an off-line prediction of the stability of the state estimation.  This 

process involves the calculation of a convergence rate and steady state error which 

establish an upper bound on the estimation error.   

In addition to its previous uses for nonlinear systems, the stochastic stability 

lemma can also be used to establish important results for the LKF.  Since the LKF is an 

adaptive process even for Linear Time-Invariant (LTI) systems, it becomes useful to 

analyze the convergence rate and steady state error as a function of time.  Using the 

modified stochastic stability lemma, the convergence properties of the LKF are 

evaluated, thus providing a more realistic bound on the estimation error.  Determining a 

bound on the estimation error is useful for applications where a reference „truth‟ value is 

not available for validation.  This technique provides an upper bound on the filter 
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performance, which can be used to represent the worst case scenario for the LKF 

estimation results.   

Using the modified stochastic stability lemma, the main result of this section can 

be stated. 

Kalman Filter Convergence Theorem:  Consider a linear stochastic system of the 

form (45) with no input using the standard LKF equations.  Let the following 

assumptions hold. 

1) The system matrix, Fk, is nonsingular (invertible) for all k. 

2) The assumed initial covariance is bounded by: 

21
0 0 0 0 0
T v x P x x  (270) 

  
3) The state error covariance matrix is bounded by the following inequality 

for all k: 

21T

k k k k kb x P x x  (271) 
  

4) The assumed process and measurement noise covariance matrices are 

conservative, i.e.: 

1 1 1
T

k k kE  
   Q w w

 (272) 
  

T

k k kE    R v v
 

(273) 

  
Then the expected value of the estimation error is bounded in mean square with 

probability one by 

   
1 1

2 20
0 1

00 1

11 1
k ik

k i k i k j

ii jk k

v
E E

b b
  

 

  

 

 
          

 
 x x

 
(274) 

  
where the time varying parameters αk-1, μk-1, and bk are given by 



149 

   
11 1

1 min | 1 | 1 | 1 1 | 1 | 1
T T

k k k k k k k k k k k k k k k k k k 


 

      
   
  

P P H R H P Q P H R H P
 

(275) 

  

    
11 1

1 | 1 | 1 | 1 1 | 1 | 1
T T

k k k k k k k k k k k k k k k k k kTr


 

        P P H R H P Q P H R H P
 

(276) 

  
 1

mink kb   P
 

(277) 

  
Proof:  The proof of this theorem is detailed in the following sections.   

Remarks: 

1) The bound in (270) only matters for the assumed initial covariance matrix.  

Since this has a known value, the constant v0 should be selected as the 

minimum eigenvalue of the inverse of the assumed initial covariance 

matrix and this bound will be automatically satisfied. 

2) It is worth noting in (271) that if the error covariance approaches infinity 

(divergence) then the term bk will approach zero, which would lead to an 

infinite bound on the estimation error, thus indicating divergence of the 

filter as expected.  For a stable system however, the error covariance 

matrix has an upper bound, which can be determined from the stochastic 

controllability and observability properties of the system [4,5]. 

3) The parameters α and μ are both functions of the same matrix, where α is 

the minimum eigenvalue and μ is the trace of the matrix.  Since the 

eigenvalues of this matrix lie between 0 and 1 (the a priori covariance is 

always greater than or equal to the process noise covariance matrix) and 

recalling that the trace of a matrix is equal to the sum of its eigenvalues 

[53], the parameter μ will satisfy 0 < αk-1 < μk-1 < n for all k, where n is the 

number of states in the filter.  From here, it is interesting to note that 
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increasing the parameter α, which corresponds to the convergence of the 

stochastic process, will in turn also increase the parameter μ, which 

corresponds to the steady state error bound due to noise.  This introduces a 

trade-off in convergence and steady state error, which can be tuned 

through the selection of the process and measurement noise covariance 

matrices. 

4) Using the modified stochastic stability lemma for analysis of the LKF 

convergence leads to three important time-varying parameters:  αk, μk, and 

bk.  The parameter αk represents the convergence of the stochastic process, 

as defined in the following section by (278), while the parameter bk 

represents the convergence of the error covariance.  The parameter μk 

corresponds to the steady state error bound on the filter due to the process 

and measurement noise.  I.e., in (274) it is shown that the initial error term 

will vanish as k increases, thus leaving the term containing μk in the steady 

state.  This makes sense because as a LKF progresses in time, eventually 

the performance will converge within a region determined from the 

process and measurement noise, since these phenomena do not disappear 

with time.   Together, these three parameters determine a bound on the 

convergence and steady state error of the filter using (274).  Due to the 

time-varying nature of these parameters, the bound must be determined 

on-line, and therefore cannot provide an off-line prediction of the filter 

convergence as in [40,162].   
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The proof of the Kalman Filter Convergence Theorem is provided in the following 

sections. 

 

6.3.1 Defining and Decomposing the Estimation Error Analysis 

 

 As recommended in other works, e.g. [7,40], a candidate Lyapunov function is 

selected to define the stochastic process using a quadratic form of the estimation error 

and inverse error covariance matrix, as in 

  1T

k k k kV x x P x  (278) 
  

Note that this function is used in the context of the modified stochastic stability lemma, 

not using traditional Lyapunov stability theorems; therefore it is only being used as a tool 

for analyzing the convergence, not to prove the stability of the filter.  Inserting the error 

dynamics from (233) into this function gives 

       1
1 1 1 1 1 1

T

k k k k k k k k k k k k k k k kV 

     
            x I K H F x w K v P I K H F x w K v

 
(279) 

  
Taking the conditional expectation with respect to 1kx  and using the assumption that the 

process and measurement noise are uncorrelated gives 
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  1| x w v

k k k k kE V       x x  (280) 
  

   1
1 1 1 1

Tx T T

k k k k k k k k k k



     x F I K H P I K H F x  
(281) 

  

   1
1 1

Tw T

k k k k k k k kE 

 
   
 
w I K H P I K H w

 
(282) 

  
1v T T

k k k k k kE    v K P K v
 

(283) 

  
Now the problem of analyzing the LKF estimation error has been divided into three parts:  

the homogeneous problem in (281), the process noise problem in (282), and the 

measurement noise problem in (283).  The homogeneous problem considers the 

deterministic part of the filter, i.e. no noise.  The process and measurement noise 

problems consider the effects of the stochastic uncertainty in the prediction and 

measurement equations respectively.  Each of these three parts is considered separately in 

the following sections.   

 

6.3.2 The Homogeneous Problem 

 

 The homogeneous part of the problem is defined by (281).  This part of the 

problem is related to the convergence rate of the filter.  For this part of the analysis, a 

bound is desired in the form 

   1 11x

k k kV     x  (284) 
  

This inequality is desired as it is the assumption given by (210) ignoring for now the 

noise terms and assuming that μk = 0 for all k.  Substituting in for (278) and (281) gives 

     1 1
1 1 1 1 1 1 1 11TT T T

k k k k k k k k k k k k k 

          x F I K H P I K H F x x P x  (285) 
  

This scalar inequality is equivalent to the matrix inequality  
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     1 1
1 1 1 11TT

k k k k k k k k k 

      F I K H P I K H F P  (286) 
  

The following relationship can be derived from (51) 

1
| 1k k k k k



 I K H P P  (287) 
  

Substituting this into the matrix inequality 

 1 1 1
1 | 1 | 1 1 1 11T

k k k k k k k k k  

      F P P P F P  (288) 
  

Taking the inverse of this inequality gives 

 
11 1

1 | 1 | 1 1 1 11T

k k k k k k k k k
  

      F P P P F P  (289) 
  

Note that this operation requires that the system matrix, F, be nonsingular for all k 

(Assumption 1).  The covariance matrices are invertible because they are positive definite 

by definition.  Starting from the covariance prediction equation in (49) and rearranging 

gives 

 1
1 1 | 1 1 1

T

k k k k k k

 

     P F P Q F
 (290) 

  
Substituting this equation into the matrix inequality yields 

   
11 1 1

1 | 1 | 1 1 1 1 | 1 1 11T T

k k k k k k k k k k k k k
    

          F P P P F F P Q F  (291) 
  

Now, the system matrix can be removed from the inequality 

   
11

| 1 | 1 1 | 1 11k k k k k k k k k


      P P P P Q  (292) 
  

The covariance update equation from (51) is used to relate the a posteriori covariance 

and a priori covariance, as in 

     
11 1

| 1 | 1 | 1 1 | 1 11T

k k k k k k k k k k k k k
 

        P P H R H P P Q  (293) 
  

Rearranging this inequality results in the following simplifications 
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  

 

 

 

1
1 | 1 | 1 | 1 | 1 1

1 1
| 1 | 1 1 | 1 | 1 | 1 1

1 1
1 | 1 | 1 | 1 1 | 1 | 1

1
1 | 1 | 1 | 1

1 T

k k k k k k k k k k k k k

T T

k k k k k k k k k k k k k k k k k k

T T

k k k k k k k k k k k k k k k k k k

T

k k k k k k k k k k











     

 

      

 

      




   

   

   

  

 

P P H R H P P Q

P H R H P P P H R H P Q

P P H R H P Q P H R H P

I P P H R H P  
1 1

1 | 1 | 1
T

k k k k k k k k



  Q P H R H P
 

(294) 

  
Therefore the time-varying parameter, α, can be determined as the minimum eigenvalue 

of the matrix, as in (275).  From the covariance prediction equation in (49), it is clear that 

the a priori covariance is greater than the process noise covariance matrix, therefore α is 

always between 0 and 1.  Note that increasing Q will increase α.  Alternatively, 

increasing R will decrease α.  If the parameter α, is selected as in (275), the desired 

inequality (284) is satisfied, thus satisfying the homogeneous part of the problem.  Next, 

the process noise is considered. 

 

6.3.3 The Process Noise Problem 

 

 For the process noise problem, the quantity of interest is given by (282).  Since 

this is a scalar equation, the trace can be taken without changing the value 

      1
1 1

Tw w T

k k k k k k k k kTr Tr E 

 
      
 
w I K H P I K H w

 
(295) 

  
Using the trace property (201) and removing the deterministic terms from the expectation 

yields 

    1
1 1

Tw T

k k k k k k k kTr E

 
      I K H P I K H w w

 
(296) 

  
Using (287) simplifies the equation to 
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 1 1
| 1 | 1 1 1

w T

k k k k k k k kTr E 

   
    P P P w w

 
(297) 

  
Inserting the covariance update equation from (51) gives 

  
11 1 1 1

| 1 | 1 | 1 1 1
w T T

k k k k k k k k k k k kTr E


   

    
     P P H R H P w w

 
(298) 

  
which simplifies to 

  
11

| 1 | 1 | 1 1 1
w T T

k k k k k k k k k k k kTr E




    
     P P H R H P w w

 
(299) 

  
Since the process noise covariance matrix can be chosen freely for the LKF, it is assumed 

that the assumed process noise covariance matrix is greater than the actual covariance of 

the process noise, as in (272).  This bound is motivated by the idea that it is better to 

assume greater rather than less noise than there actually is in the system.  This leads to 

the bound on the process noise term 

  
11

| 1 | 1 | 1 1
w T

k k k k k k k k k k kTr




     P P H R H P Q
 

(300) 

  
While increasing Q was shown to increase the convergence rate in the previous section, it 

is clear here that this increase in convergence comes at the expense of a larger bound on 

the process noise term.  This selection of Q becomes a trade-off between the convergence 

and the accuracy of the estimate, i.e. assuming an unnecessarily large Q will lead to faster 

convergence but larger steady state errors of the filter due to process noise.  Next, the 

measurement noise problem is considered. 
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6.3.4 The Measurement Noise Problem 

 

 For the measurement noise problem, the quantity of interest is given by (283).  

Since this is a scalar equation, the trace can be taken without changing the value 

   1v v T T

k k k k k k kTr Tr E       v K P K v
 

(301) 
  

Using the trace property (201) and removing the deterministic terms from the expectation 

yields 

 1v T T

k k k k k kTr E     K P K v v
 

(302) 
  

Using the second equation for the Kalman gain yields 

 1 1v T T

k k k k k k k kTr E      R H P H R v v
 

(303) 
  

Inserting the covariance update equation from (51) gives the relationship in terms of the a 

priori covariance 

  
11 1 1 1

| 1
v T T T

k k k k k k k k k k k kTr E


   


     R H P H R H H R v v

 
(304) 

  
Using the matrix inversion lemma (202), this term can be rewritten as 

  11
| 1

v T T

k k k k k k k k kTr E





          
R R H P H v v

 
(305) 

  
Similarly as for the process noise, the assumed measurement noise covariance matrix is 

selected as an upper bound on the actual measurement noise covariance, as in (273), 

which determines the bound for the measurement noise term 

  11
| 1

v T

k k k k k k k kTr





    
  
R R H P H R

 
(306) 

  
This inequality can be simplified to the following form 
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  
1

| 1 | 1
v T T

k k k k k k k k k kTr


   R H P H H P H
 

(307) 

  
From here, it is shown that increasing the assumed measurement noise covariance matrix, 

R, will in fact lead to a smaller bound on the estimation error due to measurement noise.  

Now that each part of the problem has been considered separately, the results are 

combined and the modified stochastic stability lemma is applied. 

 

6.3.5 Final Result from the Modified Stochastic Stability Lemma 

 

 Combining the results from the previous sections gives the following inequality 

        
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x x x P P H R H P Q
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(308) 

  
which is equivalent to (210) with  

     
1 11

1 | 1 | 1 | 1 1 | 1 | 1
T T T

k k k k k k k k k k k k k k k k k k k kTr Tr
 



         P P H R H P Q R H P H H P H
 

(309) 

  
This term can be simplified further.  First, the trace property (201) is used to obtain  

    
1 11

1 | 1 | 1 | 1 1 | 1 | 1
T T T

k k k k k k k k k k k k k k k k k k k kTr
 



         P P H R H P Q H R H P H H P
 

(310) 

  
Then, applying the matrix inversion lemma (202) gives 

    1 11 1 1 1 1 1
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k k k k k k k k k k k k k k k k k k k k k k k kTr
 

     

         
     
  

P P H R H P Q P P P H R H P P
 

(311) 

  
Further simplification yields 

    
1 11 1

1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1
T T

k k k k k k k k k k k k k k k k k k k k k kTr
 

 

            P P H R H P Q I P P H R H P P
 

(312) 

  
Then, combining the terms gives (276).  Thus, the inequality in (210) has been satisfied. 
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In order to apply the modified stochastic stability lemma, the inequalities (208) and (209) 

also need to be satisfied.  These inequalities are guaranteed by the assumptions (270) and 

(271) in the Kalman Filter Convergence Theorem.  Thus, the necessary conditions for the 

modified stochastic stability lemma have been satisfied, therefore the estimation error of 

the LKF is bounded in mean square with probability one, and the bound is given by 

(274).  This completes the proof of the Kalman Filter Convergence Theorem.  In the 

following section, a LKF example is provided to illustrate the usefulness of the Kalman 

Filter Convergence Theorem for LKF convergence analysis. 

 

6.3.6 Illustrative Example of the Kalman Filter Convergence Theorem 

 

 To demonstrate the use of Kalman Filter Convergence Theorem, a simple LKF 

example is presented.  This example problem was adapted from Example 5.1 in [62] to 

include process noise.  The system equations are defined in the form of (45) with no input 

and system matrices defined by 

 

21 / 2
0 1
0 0 1

1 0 0

k

k

T T

T

 
 

   
 
 

 

F F

H H  

(313) 

  
and the true process and measurement noise covariance matrices are given by 

8

8

10

10

T

k k

T

k k

E

E





   

   

w w I

v v
 

(314) 

  
where T is the sampling time, which for this example is considered to be 0.02.  The initial 

conditions are assumed to be 
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 0

0

ˆ 1.5 1.5 0.3 T
 



x

P I  
(315) 

  
while the true initial state for the system is actually 

 0 1 0.5 0.2 T
x  (316) 

  
Note that this considers a case of reasonably large initialization error. 

 In order to apply the Kalman Filter Convergence Theorem, certain assumptions 

need to be satisfied.  From the definition of F, it is clear that this matrix is invertible.  

Four different cases of assumed process and measurement covariance matrices were 

considered, as summarized in Table 14. 

Table 14.  Cases of Assumed Covariance Matrices 

Case # Q R 

1 T

k kE   w w
 

T

k kE   v v
 

2 100 T

k kE   w w  T

k kE   v v
 

3 T

k kE   w w
 

100 T

k kE   v v  

4 100 T

k kE   w w  100 T

k kE   v v  
 

It is clear from Table 14 that (272) and (273) are satisfied.  Note that these cases vary the 

assumed noise properties, not the actual noise.  The true nose covariance matrices are 

given by (314) for all cases.  The value for the initial Lyapunov function upper bound, v0, 

is calculated from the assumed initial covariance matrix with (270).  Additionally, the 

values for the time-varying convergence rate, αk, noise parameter, μk, and Lyapunov 

function bound bk are defined using (275), (276), and (271) respectively.  These values 

are calculated on-line at each time step of the filter.  Using these equations, the 

convergence properties can be calculated on-line with (274). 
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 For the given example, the presented convergence analysis technique is applied, 

and the results are given as follows.  Since the initial covariance is the identity matrix, v0 

= 1.  The time-varying convergence and error parameters are shown in Figure 57 for each 

of the considered cases of assumed process and measurement noise covariance. 

 

 

Figure 57.  LKF Example:  Time-Varying Convergence and Error Parameters 

 

The parameter αk represents the convergence rate of the stochastic process, μk represents 

the steady state error of the stochastic process, and bk represents the convergence of the 

error covariance.  From these time-varying parameters, the bound on the expected value 
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of the norm of the estimation error squared can be determined from (274).  This bound is 

verified with respect to the actual estimation error which was determined from simulation 

as shown in Figure 58. 

 

 

Figure 58.  LKF Example:  Estimation Error with Bounds 

 

It is shown in Figure 58 that the estimation error does not exceed the theoretical bounds.  

The on-line bounds are relatively close to the estimation error, thus providing a 

reasonable guide to the convergence and steady-state error of the filter performance.  This 

is useful because a reference truth is not available to evaluate the performance of a filter 

in most practical applications.  This method provides a means of calculating an upper 

bound on the performance of the filter using only known values from the filtering 

process. 
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 There are some interesting observations to make from Figure 57 and Figure 58 

regarding the different noise covariance assumptions.  Case 1, which represents perfect 

knowledge of the simulated noise properties, offers a very good approximation to the 

convergence and steady state error of the example filter.  Increasing the assumption on 

the process noise (Case 2) leads to an increase in αk, but also an increase in μk, as 

predicted.  However, this increase in assumed process noise significantly increased the 

parameter bk, thus leading to a slowly converging, loose bound on the estimation error.  A 

similar performance bound was seen for Case 4 due to the dominant effect of the 

parameter bk, however the parameters αk and μk were similar to Case 1.  This makes sense 

because the ratio between the assumed Q and R remained the same for Cases 1 and 4.  

For Case 3, increasing the assumed measurement noise decreased the parameters αk and 

μk as expected, but the parameter bk also decreased, further decreasing the convergence of 

the estimation error.  This lead to a slower converging bound, but a tighter bound on the 

steady state error.  This demonstrates a trade-off in the selection of the measurement 

noise covariance, which could be used for filter tuning depending on the application and 

desired convergence properties. 

The predicted estimation error bound from off-line analysis [40,162] using the 

stochastic stability lemma is also provided as a reference to demonstrate the effectiveness 

of using this new on-line method.  To relate the time-varying parameters to previous off-

line work using the stochastic stability lemma [40,162], the following relations are used 

 

 

 1

min

max

min

k

k

kv b

 

 





  

(317) 

  
The bound from Case 1 is used for this comparison, as shown in Figure 59.   
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Figure 59.  LKF Example:  On-line vs. Off-line Estimation Error Bounds 

 

While the off-line estimation error bound is valid, it is extremely loose, and does 

not provide a realistic portrayal of the convergence of the estimation error.  This shows 

that the presented on-line method is useful for more closely determining the convergence 

and steady state error of the LKF, but is limited in that it cannot predict these bounds 

prior to the filtering process and it cannot be used for off-line stability analysis. 

 

6.4 PRELIMINARY EKF STABILITY ANALYSIS 

 

The work from this section was previously published in [162].  As a starting point 

for the stability analysis, the methodology of Reif et al. [40] is used directly for the 3-

state GPS/INS attitude estimation formulation.  In order to use this method, the bounds in 

(69) must be determined.  Before this is done, however, certain bounds must be 

considered for the states and inputs.  These bounds were selected based on observations 

from flight data, as in Table 3 
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2
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   
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 (318) 

  
Additionally, the sampling rate of the prediction, 50 Hz ( 0.02x

sT s ), and measurement 

update, 10 Hz ( 0.1y

sT s ), are required.  Using this information, the upper bounds of the 

matrices A and H are determined by calculating the values of the matrix spectral norm, as 

in (70), for (124) and (125) over the range of all possible values defined by (318) 

2

2

1.0676
11.4192

a

h




 (319) 

  
Since Reif et al. [40] formulate the EKF using additive noise, the additive Q and 

R matrices are defined by including the appropriate sampling time and the static sensor 

variances defined in Table 4 [15]. 
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 (320) 

  
Using these Q and R matrices, the lower bounds are given by 

8
1

2
1

5.64 10

0.2907 10

q

r





 

 
 (321) 

  
Determining the bounds of the state covariance matrix, P, is not as simple, since the 

dynamics of the filter are complex, and the difference equation for P is coupled with 

difference equation for the state estimate.  To determine an estimate for the upper and 

lower bounds of this matrix, the 3-state GPS/INS sensor fusion formulation was 

implemented for each of the 23 sets of flight data.  The maximum and minimum 

eigenvalues of this matrix over all 23 flights were then selected as the upper and lower 

bounds 

5
1

4
2

1.3554 10

3.9031 10

p

p





 
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 (322) 

  
In order to determine the linearization error bounds, as in (71), the Hessian [1] can 

be calculated for the nonlinear prediction and observation functions with respect to the 
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state vector.  The Hessian is defined as the second derivative of a (nx × 1) vector valued 

function, f, by 

 2

2xx






f x
F

x
 (323) 

  
where Fxx is the Hessian, which is a third order tensor (nx × nx × nx), which can be 

considered as a set of nx matrices with dimensions (nx × nx).  When calculated for a 

nonlinear prediction or observation function, these matrices can be used to quantify the 

nonlinearity of the corresponding state or observation [16].  As remarked in [40], the 

maximums of the spectral norms of the Hessian matrices for the prediction and 

observation functions are equal to the constants ,    respectively, in (71).  For the 3-

state GPS/INS sensor fusion formulation prediction, the Hessian was calculated to be 

   
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F  (326) 

  
where the superscripts ϕ, θ, and ψ denote the Hessian matrix corresponding to the roll, 

pitch, and yaw states respectively, and the discrete time dependence is implied for all 

variables, i.e., q = qk, ϕ = ϕk, etc.  Similarly for the 3-state GPS/INS sensor fusion 

formulation observation function, the Hessian is given by 
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where sϕ and cϕ are used to abbreviate sin ϕ and cos ϕ respectively, and the states and 

inputs are evaluated at time step k.  
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Using these equations in conjunction with the bounds defined in (318), the 

maximum value of the Hessian for the prediction and observation was determined, thus 

defining the linearization error bounds 

0.4256
8.6787












 (330) 

  
The assumed bounds from (319), (321), (322), and (330) establish the necessary 

conditions in order to calculate the initialization error and noise bounds as determined by 

Reif et al. [40] in (73) 
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









 

 

 

 

 

 (331) 

  
Clearly, these bounds are too strict for the given problem, and further analysis needs to be 

done in order to demonstrate the stability of the system under more practical initialization 

error and noise bound requirements.   

 

6.5 RELAXATION OF STABILITY BOUNDS 

 

The work from this section was previously published in [162].  With the goal of 

relaxing the bounds derived using the methodology of Reif et al. [40], the stability 

problem is reconsidered here with respect to the specific 3-state GPS/INS attitude 

estimation problem.  One primary difference between Reif et al. [40] and the work 

presented here is that Reif et al. presented an analysis of the one-step EKF, while here the 

two-step EKF is considered.  It is remarked in [29] that while performance and transient 
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behavior may differ, the convergence properties are the same.  For the two-step 

formulation, the estimation error and its dynamics are derived as follows.  Assume a 

nonlinear discrete-time system 

1 ( , )
( , )

k k k k

k k k k

  

 

x f x u w

y h x u v
 (332) 

  
where f and h are the nonlinear prediction and observation functions respectively, and w 

and v are zero-mean, uncorrelated, white, Gaussian noise processes with assumed 

covariance matrices Q and R respectively.  Note that the true covariance of these 

processes is typically unknown, and for stochastic stability of this system these 

covariance matrices will need to be bounded.  This noise bounding is discussed later in 

this dissertation.  Using the EKF, the state estimate can be obtained using 

 1ˆ ˆ ˆ( , ) ( , ),k k k k k k k k     x f x u K y h f x u u  (333) 
  

where K is the Kalman gain matrix, and the ^ indicates that the corresponding value is an 

estimate.  The state estimate error, denoted by ~, can now be defined using (332) and 

(333) 

 

 

1

1

ˆ

ˆ ˆ( , ) ( , ) ( , ),

ˆ ˆ( , ) ( , ) ( , ) ( , ),

k k k

k k k k k k k k k k k

k k k k k k k k k k k k k





 

      

       

x x x

x f x u w f x u K y h f x u u

x f x u w f x u K h x u v h f x u u

 (334) 

  
Next, the linearization errors are defined using 

   

     

ˆ ˆ ˆ( , ) ( , ) , ,

ˆ ˆ ˆ( , ) ( , ), , ,
k k k k k k k k k k

k k k k k k k k k k k k

   

   

f x u f x u A x x x x u

h x u h f x u u H A x x χ x x u


 (335) 

  
where φ and χ are the unknown prediction and observation linearization error functions 

respectively.  Using these definitions, the error dynamics can be rewritten as 
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   1 ˆ ˆ, , , ,k k k k k k k k k k k k k k k        x A x x x u w K H A x χ x x u v  (336) 
  

These dynamics can be separated into three parts, the homogeneous or linearized 

problem, the nonlinearity problem, and the stochastic problem.  A summary of the error 

dynamics is given by 

1

ˆ
( )

ˆ ˆ( , , ) ( , , )

k k k

k k k k k k k

k k k k k k k k

k k k k



 

   

 

 

x x x

x I K H A x r s

r φ x x u K χ x x u

s w K v

 (337) 

  
where the r term corresponds to linearization error, the s term corresponds to stochastic 

error, and the remaining term represents the homogeneous problem (linearized 

deterministic system).  With this error definition, the following function is considered as 

the candidate Lyapunov function 

  1T

k k k k kV x x P x  (338) 
  

In order to analyze the stability of the EKF using these definitions, the problem can be 

decomposed into three components:  homogeneous problem, linearization error problem, 

and noise problem.  These individual components are considered separately in the 

following sections. 

 

6.5.1 Analysis of Homogenous Problem 

 

 To consider the homogeneous part of the stability problem, we set the 

linearization error term, rk, and noise term, sk, to zero.  Then the candidate Lyapunov 

function at time k+1 can be written as 
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     1 1
1 1 1 1 1 1

TT T T

k k k k k k k k k k k k k kV  

        x x P x x A I K H P I K H A x  (339) 
  

Starting from (65), the covariance difference equation is given by 

  1
T

k k k k k k k   P I K H A P A Q  (340) 
  

Then, the inverse is taken, leading to 

   
1 11

1
T

k k k k k k k

 

   P A P A Q I K H  (341) 
  

Rearranging, multiplying on the left by  
TT

k k kA I K H  and on the right by kA  gives 

       
11

1
T TT T T

k k k k k k k k k k k k k k k




    A I K H P I K H A A I K H A P A Q A  (342) 
  

Next, the inverse term on the right hand side is reorganized 

       
11 1 1 1

1
T TT T T T

k k k k k k k k k k k k k k k k


     

    A I K H P I K H A A I K H A I P A Q A P  (343) 
  

Following the work of Reif et al. [40], the following bound is desired 

     1 1
1 1TT

k k k k k k k k 

   A I K H P I K H A P  (344) 
  

where α is some constant between 0 and 1.  Therefore the following upper bound is 

desired 

     
11 1 1TT T T

k k k k k k k k 


      A I K H A I P A Q A I  (345) 
  

Using the definition of K from (65), the following is written 

 
1

| 1 | 1 0T T

k k k k k k k k k k k



   K H P H H P H R H  (346) 

  
This matrix is positive definite by definition, since the predicted covariance and 

measurement noise covariance are both positive definite.  Since a similarity 

transformation does not change the eigenvalues of a matrix [48], it will also not change 

the positive definiteness of the matrix, therefore 
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1 0k k k k

 A K H A  (347) 
  

Because of this property, the following bound is written 

   1 TTT T

k k k k k k k k

    A I K H A I A K H A I  (348) 

  
Now, the desired bound is reduced to the following condition 

   
11 1 1T

k k k k 


    I P A Q A I  (349) 
  

To simplify the calculation of this bound, the following steps are used 
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 (350) 

  
where α1 is an intermediate bound, which can be calculated as the minimum eigenvalue 

of 1 T

k k k

 
A Q A  over all possible values in (318) using (124) and (320) 

8
1 5.1729 10    (351) 

  
From this intermediate bound, the desired bound, α, can be calculated using 
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

 
   

 

 

 (352) 

  
This larger value indicates a faster convergence of the estimation error than the 

preliminary analysis.  Using this new value for α but keeping the same nonlinearity and 

noise assumptions, the bounds on the initialization error and noise are recalculated.  

These results are compared with the original preliminary analysis in Table 15. 
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Table 15.  Comparison of Preliminary Analysis and Relaxed Homogeneous Problem 

Value Variable 
Preliminary 

Analysis 

Relaxed Homogeneous 

Problem 

Convergence Rate α 73.7011 10  33.8020 10  
Initialization Error Bound ε 128.1112 10  88.3322 10  

Noise Bound δ 322.2164 10  202.4026 10  
 

A clear improvement in the convergence rate and bounds is shown in Table 15.  The 

relaxation of the homogeneous problem shown here also provides potential reduction in 

the noise and nonlinearity problems as well.  These problems are considered in the 

following sections. 

 

6.5.2 Analysis of Noise Problem 

 

 When considering the noise problem, the important corresponding term in the 

candidate Lyapunov function is defined by 

   1 1
1 1

TT

k k k k k k k k k k

 

   s P s w K v P w K v  (353) 
  

Since this represents the stochastic part of the problem, the expectation operator is 

applied to the equation.  Since the process noise and measurement noise are uncorrelated, 

terms in the expectation containing both wk and vk are zero.  Thus, the noise term is 

simplified 

1 1 1
1 1 1

T T T T

k k k k k k k k k k kE E E  

  
           s P s w P w v K P K v  (354) 

  
Now, the process and measurement noise components can be handled separately.   

The process noise term is considered first 
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  
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w P w w A P A Q H R H w  (355) 

  
Since this is a scalar equation, the trace operator can be applied to both sides 

     11 1
1

T T T T

k k k k k k k k k k k kTr E Tr E

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w P w w A P A Q H R H w  (356) 

  
Using the well-known trace property (201), the equation is reordered, and the expectation 

is simplified by pulling out the non-random terms 

  
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T T T T

k k k k k k k k k k k kE Tr E


 
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w P w A P A Q H R H w w  (357) 

  
Next, it is assumed that there exists a constant upper bound, δw>0, on the stochastic term 

such that 

T

k k wE    w w I  (358) 
  

Therefore the process noise term is bounded as in 
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
     w P w A P A Q H R H  (359) 

  
The trace term is calculated for all possible values in (318), and the maximum value is 

taken to determine the following upper bound 
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 Now, the measurement noise term is considered.  First, some simplifications are 

made to the following term 
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(361) 

  
Using this simplification, the expectation of the measurement noise is given by 

  
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Applying the trace operator to both sides of this scalar equation 
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Reordering with the trace property (201), and moving the non-random terms outside of 

the expectation operator 

  
111 1

1
T T T T T

k k k k k k k k k k k k k k k kE Tr E

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Next, it is assumed that there exists a constant upper bound, δv>0, on the stochastic term 

such that 
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T

k k vE    v v I  (365) 
  

Therefore the measurement noise term is bounded as in 
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1
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The trace term is calculated for all possible values in (318), and the maximum value is 

taken to determine the following upper bound 
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 Following the framework of Reif et al. [40], the following bound is desired 
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   s P s  (368) 

  
This bound assumes the same restriction on process and measurement noise.  However, 

from this analysis it is seen that the bounds on process and measurement noise differ 

greatly.  Based on the assumptions (358) and (365), the bound in (368) is modified to be 
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Using these new definitions, the process and measurement noise bounds are given by 

20
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5.7565 10

1.4383 10
w
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
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



 

 
 (370) 

  
Comparing to the previous value from the relaxed homogeneous problem of 

202.4026 10   , a small improvement is seen in the process noise restriction; however a 
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significant improvement is achieved in the measurement noise restriction.  Although 

these restrictions may still be too strict for application, they can be improved further by 

relaxing the conditions on the linearization error, which is discussed next. 

 

6.5.3 Analysis of Linearization Error Problem 

 

 The linearization error problem introduces a great amount of difficulty into the 

stability analysis.  In fact, it is this part of the problem that separates EKF stability 

analysis from the well-established linear KF stability.  A major issue surrounding this 

problem is that the true state is not known, and therefore it becomes difficult to quantify 

the linearization error.  Instead, the linearization error is analyzed by investigating 

theoretical bounds on the linearization error.  This error is a function of the considered 

nonlinear function as well as the estimation error, which is also unknown since the true 

state is unknown.  Currently, there are two primary methods of modeling the linearization 

error.  Reif et al. [40] consider an additive linearization error term as in (67), while the 

work of Boutayeb et al. [34,46] and Xiong et al. [35] formulate the linearization error 

using a multiplicative linearization error term as in (81).  Each of these methods then 

places bounds on the additive or multiplicative linearization error, although it is not clear 

how these bounds are determined.  The estimation of these bounds is a critical part of the 

stability analysis.   

 Following the additive linearization error model of (67) as considered by Reif et 

al. [40], the bounds on the linearization error are determined using calculations of the 

Hessian, as described in the preliminary analysis in Section 6.4.  In an effort to relax 
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these linearization error bounds, an alternative method was considered.  This method is 

first described through a simple scalar nonlinear function for illustrative purposes, and 

then it is extended to the attitude estimation problem. 

 Consider the nonlinear function f(x) = sin(x).  The additive linearization error can 

be written for this function as 

ˆ ˆ ˆ( , ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( , ) sin( ) sin( ) cos( )( )

k k k k k k k

k k k k k k k

x x f x f x A x x

x x x x x x x





   

   
 (371) 

  
To approach this problem, a set of cases for both the true and estimated states are 

evaluated over a set interval, and the linearization error is calculated for each of these 

cases.  In doing so, a two-dimensional grid on linearization error was constructed over the 

interval –π to π for both the true and estimated states, as shown in Figure 60. 

 

Figure 60.  Linearization Error Map for f(x) = sin(x) 
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In order to fit the linearization error bound structure of Reif et al. [40], the linearization 

error must be represented as a function of the estimation error only.  Towards this end, 

each case of estimation error from the linearization error map in Figure 60 is calculated, 

and is shown in Figure 61. 

 

Figure 61.  Linearization Error as Function of Estimation Error for f(x) = sin(x) 

 

Figure 61 shows the region of possible values of linearization error given the estimation 

error.  The reason this is a region and not a single curve is due to the fact that the 

curvature of the function will lead to different values of linearization error based on the 

point of linearization.  When considering a bound for linearization error as a function of 

the estimation error, the worst case of linearization error must be considered to ensure 

that the bound is always valid.  For this purpose, the absolute value of the linearization 

error is considered.  Additionally, it is desired to obtain a bound for the linearization error 

which is a function of the estimation error norm squared, as in (71).  Therefore, the 

linearization error bound can be determined by selecting the smallest possible value of κθ 
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such that the linearization error remains bounded by (71).  A visual representation of this 

procedure is shown in Figure 62. 

 

Figure 62.  Linearization Error Bound Determination for f(x) = sin(x) 

 

From this method, the value of κθ was determined to be 0.5.  For comparison, the method 

of using the Hessian to determine the linearization error bound is also considered for this 

example.  The Hessian for the sine function is given by the negative of the sine function, 

which is bounded in absolute value by 1, thus giving a value of κθ of 1.  Therefore, this 

new method of obtaining the linearization error bound was found to be less restrictive 

than using the Hessian for this example.   

 This new method can also be applied to higher order systems.  In order to 

consider the relaxation of the linearization error bounds for the attitude estimation 

problem, this new method is applied to evaluate the linearization error over a set of 

possible cases of the true and estimated attitude states.  First, the linearization error in the 

prediction is considered, using 
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ˆ ˆ ˆ( , , ) ( , ) ( , ) ( )   φ x x u f x u f x u A x x  (372) 
  

Inserting the definition of the state prediction function and Jacobian matrix leads to 
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After some simplification, the linearization error can be written as 
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where  
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 (375) 

  
From this relationship, it is shown that the linearization error is only a function of the true 

and estimated roll and pitch angles and the pitch and yaw rate inputs.  The linearization 

error is not a function of the roll rate or the yaw angle.  The possible cases of 

linearization error are plotted with respect to the estimation error norm in Figure 63. 
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Figure 63.  Prediction Linearization Error Bound Determination for Attitude Estimation 

 

Figure 63 also shows the bound determined from using the Hessian as in the preliminary 

analysis in Section 6.4, as well as a new bound which was empirically fitted to the 

linearization error data set.  When determining this new bound, the curvature of the 

linearization error was recognized to follow a slower rate than a quadratic function of the 

estimation error.  This led to the new exponent for the estimation error norm of 1.3.  As 

noted in [40], the stability proof can be modified for estimation error norm exponents that 

are greater than 1 and less than or equal to 2.   

 Next, the linearization error in the observation equations is considered, using the 

form 



184 

   ˆ ˆ ˆ( , , ) , , ( )   χ x x u h x u h x u H x x  (376) 
  

Inserting the definition of the observation function and Jacobian matrix leads to 
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where „s‟ and „c‟ denote the sine and cosine functions respectively.  Similarly as for the 

prediction linearization error, the linearization error for the observation is shown in 

Figure 64. 
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Figure 64.  Observation Linearization Error Bound Determination for Attitude Estimation 

 

Figure 64 also shows the bound determined from using the Hessian as in the preliminary 

analysis in Section 6.4, as well as two new bounds which were empirically fitted to the 

linearization error data set.  The first new bound is given as a quadratic function of the 

linearization error with a reduced value of κχ from the Hessian method.  The second new 

bound was determined using a smaller exponent of 1.7 in order to more closely match the 

trend of the linearization error.  For the analysis, it is necessary for both exponents to 

match.  Therefore, the larger exponent of 1.7 was selected, and the prediction 

linearization error was reconsidered, as shown in Figure 65. 
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Figure 65.  Modified Prediction Linearization Error Bound Determination for Attitude Estimation 

 

Using this modified version, the linearization error is now represented by the following 
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This leads to the following modifications to (73) 
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Using the new bounds for the linearization error, the initial error and noise bounds are 

reduced to  



187 

5

15

8

1.2057 10
2.4108 10

6.0235 10
w

v













 

 

 

 (380) 

  
This completes the relaxation of bounds for EKF stability.  The results from this analysis 

are summarized in Figure 66 and Table 16.  Note that Figure 66 uses a logarithmic scale 

to represent the bounds, which are all less than 1.  Therefore, for this figure, smaller 

bounds are represented by longer bars, i.e., the shorter the bar, the less conservative the 

bound. 

 

Figure 66.  Summary of Relaxation of Stability Bounds 
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Table 16.  Summary of Relaxation of Stability Bounds 

Analysis ε δw δv 

Preliminary Analysis 128.1112 10  322.2164 10  322.2164 10  
Relaxed Homogeneous 88.3322 10  322.2164 10  322.2164 10  

Relaxed Homogenous and Noise 88.3322 10  191.1513 10  
122.8765 10  

Relaxed Homogeneous, Noise, 
and Linearization Error 

51.2057 10  152.4108 10  86.0235 10  

 

This analysis presented a means of reducing the bounds on the initial error and noise 

terms required in order to guarantee the stability of an EKF.  An example problem of 

attitude estimation was considered, which demonstrated significant reduction in the initial 

error and noise bounds over the existing methods.  Unfortunately, even these greatly 

reduced bounds are not large enough for realistic application of the problem.  However, 

this work has made significant improvement on the existing work in order to get closer to 

realistic application of EKF stability. 

 

6.6 MULTIPLICATIVE LINEARIZATION ERROR ANALYSIS 

 

 Due to the overly strict bounds for stability using the additive linearization error 

model, the multiplicative linearization error model was also considered.  Additionally, a 

linear measurement model was considered to help simplify the equations.  Following the 

previous analyses using the stochastic stability lemma but using a multiplicative 

linearization model leads to the following Lyapunov difference equation 

     1 1
1 1 1 1 1 1 1 1 1 11TT T T T

k k k k k k k k k k k k k k k 

            x F β I K H P I K H β F x x P x  (381) 
  

This inequality can be simplified using the following steps 
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Now, from this form, the requirement that the convergence rate be between 0 and 1, and 

the positive definiteness of various terms in the inequality leads to the following reduced 

inequality 

 1
| 1 | 1 | 1 1 | 1 1 1

T T

k k k k k k k k k k k k k k



        P P H R H P β P Q β  (383) 
  

This inequality is a function of the unknown diagonal matrix β and other matrices which 

are known for the system at any given time step.  Therefore, at any given time step, this 

inequality can be evaluated in order to determine acceptable values for β.  Additionally, 

for each acceptable value of β, the convergence rate α can be calculated by taking the 

minimum eigenvalue of the right hand side matrix in the last inequality of (382). 

 As a starting point, consider the first time step of the filter, i.e. k = 1.  At this time 

step, the assumed initial state and covariance are known, the noise covariance matrices 

are known, and the other matrices of interest can be calculated from these terms with the 

exception of β, as in 
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Since β is the only unknown in the inequality, it can be evaluated for a given problem in 

order to determine the acceptable values of β to guarantee the Lyapunov difference 

equation, thus demonstrating the stability of the estimation.  Once the acceptable values 

of β have been determined, using the definition of the multiplicative linearization error, 

various cases of initial error can be used to calculate the actual value of β for that level of 

error.  I.e., the following equation is solved for β over many different cases of initial error 

   1 1 1 1 1 1ˆ ˆ
k k k k k k       f x x f x β F x  (385) 

  
This vector valued equation is easy to solve for β, since β is a diagonal matrix, as in 
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β
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where the superscript (i) denotes the ith element of the vector or diagonal component of 

the matrix.  This calculation represents the true value of the multiplicative linearization 

error term, β, as a function of the initial error.  This function is then compared with the 

allowable values of β from the Lyapunov difference equation in order to select the largest 

allowable case of initial error in order for the estimation to be stable.  To help illustrate 

this method an example problem is used. 

 The considered example problem is taken from Reif et al. [40].  The example 

problem is summarized as follows 
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where η = 0.001, and the assumed noise and initial conditions are given by 
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First, the inequality in (383) is evaluated over a range of possible values for β.  This leads 

to cases where the inequality is satisfied (acceptable β for stability) or cases when the 

inequality is not satisfied (unacceptable β for stability).  To provide a visual 

representation of this result for this example problem, a color map is provided in Figure 

67, where white indicates the region of acceptable values for β, while the black region 

represents the unacceptable values for β. 
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Figure 67.  Acceptable Values of Multiplicative Linearization Error, β 

 

An additional color map was generated in Figure 68 in order to illustrate the 

corresponding convergence rate, α, for each case of β.   
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Figure 68.  Convergence Rate as a Function of Multiplicative Linearization Error 

  

In Figure 68, it is shown that smaller values of β lead to a larger (better) convergence rate 

of the estimation, as expected.  Next, β is calculated as a function of possible cases of 

initial error using (386).  From this calculation, and the observation that the dynamics of 

the first state are linear, the first component of β is always 1 for any case of initial error.  

This value lies in the acceptable region of β from the Lyapunov difference equation, as 

long as the second component of β is less than 1.004 (obtained from Figure 67).  This 

simplifies the problem to examining the second component of β as a function of initial 

error, which is shown in Figure 69. 
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Figure 69.  Multiplicative Linearization Error as a Function of Initial Error 

 

From Figure 69 it is shown that in order for the multiplicative linearization error term, β, 

to be acceptable for stability, the norm of the initial error must be less than or equal to 

0.0004.  This value is very small, even smaller than the reported value from Reif et al. 

[40] of 0.005.  Some other limitations of this method are that: 

1. Knowledge of the error covariance and Jacobian matrices at the current time step 

are required, thus limiting this analysis to a step-wise approach; 

2. This analysis could be repeated at each time step, but it is computationally 

expensive, and therefore not practical for real-time application; 

3. Linear measurement equations are required. 

Because of these problems, this method is not practical for use in proving the stability of 

the EKF.  However, this analysis is useful in that it reveals some analytical justification 

using (383) for the following observations regarding the conditions for stability: 

1. Smaller assumed measurement noise covariance, R, tends to improve stability; 

2. Larger assumed process noise covariance, Q, tends to improve stability; 

3. Larger assumed initial error covariance, P0, tends to improve stability. 
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It is important to note that these observations are for the assumed noise characteristics, 

not necessarily the true noise characteristics.  Each of these observations makes intuitive 

sense and agrees with results seen in practice. 

 

6.7 STABILITY ANALYSIS DISCUSSION 

 

 This chapter presented a detailed stability analysis of the EKF through the context 

of the attitude estimation problem and other simulated example problems.  First, the state 

of the art stability analysis techniques were applied, yielding unrealistically strict bounds 

on the initial error and noise terms in order to prove the stability of the estimation.  

Significant effort was put into relaxing these strict bounds with reasonable success.  

However, even the significantly relaxed bounds were still too strict for practical use.  

Based on this analysis, it seems that the considered stability framework using the 

stochastic stability lemma and a quadratic form Lyapunov function may not be sufficient 

in order to analyze the estimation stability of the EKF for practical application.  Further 

effort should be placed on the determination of other possible Lyapunov functions as well 

as other stochastic stability analysis techniques to apply to this problem. 

 One of the major difficulties with the current EKF stability framework is the 

requirement of constant bounds on the covariance and Jacobian matrices of the system.  

Because the EKF is a dynamic system, these bounds are forced to represent the worst 

possible case of each quantity, rather than the typical values.  For example, the upper 

bound on the state error covariance matrix is typically given by the assumed initial error 

covariance matrix, which is often selected to be unnecessarily large in order to obtain 
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reasonable convergence of the filter.  This large estimate tends to decrease in magnitude 

very quickly in order to converge to a more reasonable estimate of the expected errors at 

that time.  Since this typical operating condition is much lower than the absolute 

maximum, the bound for the quantity is unnecessarily large, which effectively leads to 

unnecessarily strict bounds on other conditions for the system.  While constant bounds 

have these issues, a time-varying bound suffers from other problems.  Particularly, it 

becomes very difficult to demonstrate that quantities will remain bounded absolutely if 

this bound is allowed to change with time.  This is a possible approach for on-line 

stability and performance monitoring, as discussed in Section 6.3, but does not offer a 

robust off-line approach for guaranteeing the stability of an estimation algorithm. 

 Another major difficulty regarding the current EKF stability analysis is the 

stochastic stability lemma framework, which is similar to Lyapunov stability analysis.  

For discrete-time, these techniques require a difference equation, which relates the 

stochastic process or Lyapunov function between two successive time steps.  While it is 

relatively simple to relate these terms for linear systems, when considering a nonlinear 

estimation algorithm like the EKF, the error dynamics are given as a nonlinear function 

of the previous error.  Because of this nonlinearity, it is difficult to relate the values 

between the two time steps.  This issue could potentially be alleviated through the 

selection of an alternative Lyapunov function.  Also, a new theoretical stability 

framework that could evaluate the error dynamics without using a standard difference 

equation is highly desired, and would greatly benefit this analysis. 
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7.0 CONCLUSIONS 

 

This dissertation presented a thorough analysis of the nonlinear state estimation 

problem using the Kalman filtering framework.  Most of the work was considered 

through an example application problem of low-cost aircraft attitude estimation for 

subscale aircraft.  This example problem was considered due to the vast availability of 

experimental flight data within the research group.  The experimental results were 

supported with simulation studies when necessary.  There are two major topics within 

this dissertation.  The first topic is comparison and sensitivity analysis, which offered a 

detailed analysis of two nonlinear Kalman filters (EKF and UKF) with respect to various 

design parameters.  This study allowed for a comprehensive comparison of these two 

filters in order to determine their differences and relative advantages.  The primary 

conclusion of this sensitivity analysis was that there are little differences between the 

EKF and UKF when the nonlinearities are small, which is the case for the considered 

attitude estimation problem.  For this application problem, either filter could be used with 

similar results.  The EKF has less computational load, so it is better suited for online 

applications, while the UKF is easier to implement for offline applications since no 

Jacobian matrices need to be calculated. 

This sensitivity analysis led the research direction towards the topic of estimation 

stability, which is the second major topic of this dissertation.  The stability and 

convergence properties of both the linear Kalman Filter and the EKF were considered 

from both theoretical and practical perspectives.  The existing stability research concepts 
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were first applied to our example problem and experimental data, thus yielding 

unrealistic requirements on the system in order to guarantee the stability of the 

estimation.  This prompted an effort to relax these strict conditions in order to 

demonstrate the stability under more realistic situations.  This effort allowed for 

significant reduction in the required bounds on the initial error and noise disturbances; 

however these values were still too strict for realistic application.  This stability analysis 

utilized the stochastic stability lemma and a quadratic Lyapunov function of the 

estimation error and the inverse covariance matrix with an additive linearization error 

model.  A multiplicative linearization error model was also considered, thus providing an 

alternative method to analyzing the stability of an EKF.  This method, however, did not 

provide any additional benefit in terms of required stability conditions.   

This work provided an initial study of nonlinear state estimation stability and 

convergence, thus discovering more knowledge about the intricacies of this problem.  

This research, however, requires further effort in order to satisfy the desired goal of 

understanding the theoretical stability requirements for real engineering applications.  

The work in this dissertation is limited to the use of the stochastic stability lemma in 

conjunction with the quadratic form Lyapunov function that is commonly considered for 

estimation stability analysis.  Based on the conclusions of this work, it seems that in order 

to gain significant ground regarding realistic conditions for nonlinear estimation stability, 

other Lyapunov functions should be considered.  Additionally, different stability analysis 

techniques should be considered, since the stochastic stability lemma may also be 

limiting the analysis. 
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