236 research outputs found

    Fault-tolerant computer study

    Get PDF
    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed

    A Multifunctional Integrated Circuit Router for Body Area Network Wearable Systems

    Get PDF
    A multifunctional router IC to be included in the nodes of a wearable body sensor network is described and evaluated. The router targets different application scenarios, especially those including tens of sensors, embedded into textile materials and with high data-rate communication demands. The router IC supports two different functionality sets, one for sensor nodes and another for the base node, both based on the same circuit module. The nodes are connected to each other by means of woven thick conductive yarns forming a mesh topology with the base node at the center. From the standpoint of the network, each sensor node is a four port router capable of handling packets from destination nodes to the base node, with sufficient redundant paths. The adopted hybrid circuit and packet switching scheme significantly improve network performance in terms of end-to-end delay, throughput and power consumption. The IC also implements a highly precise, sub-microsecond one-way time synchronization protocol which is used for time stamping the acquired data. The communication module was implemented in a 4-metal, 0.35 μm CMOS technology. The maximum data rate of the system is 35 Mbps while supporting up to 250 sensors, which exceeds current BAN applications scenarios.This work was supported in part by the Fundação para a Ciéncia e a Tecnologia (FCT) (Portuguese Foundation for Science and Technology) under Project PROLIMB PTDC/EEAELC/103683/2008 and through the Ph.D. Grant SFRH/BD/75324/2010, and in part by the CREaTION, FCT/MEC through national funds and co-funded by the FEDER-PT2020 partnership agreement under Project UIDB/EEA/50008/2020, Project CONQUEST (CMU/ECE/030/2017), Project COST CA15104, and ORCIP. (Corresponding author: Fardin Derogarian Miyandoab.)info:eu-repo/semantics/publishedVersio

    Design of a New High Bandwidth Network for Agricultural Machines

    Get PDF
    Ethernet is by now the most adopted bus for fast digital communications in many environments, from household entertainment to PLC robotics in industrial assembly lines. Even in automotive industry, the interest in this technology is increasingly growing, pushed forward by research and by the need of high throughput that high dynamics distributed control demands. Although 100base-TX physical layer (PHY) does not seem to meet EMC requirements for vehicular and heavy-duty environments, OPEN Alliance BroadR Reach (soon becoming IEEE standard as IEEE 802.3bw) technology is the most promising and already adopted Ethernet-compatible PHY, reaching 100Mbps over an unshielded twisted pair. An agricultural machine is usually a system including tractor and one or more implements attached to it, to the back or to the front. Nowadays, a specific CAN-based distributed control network support treatments and applications, namely ISOBUS, defined by ISO 11783. This work deals with architectural and technological aspects of advanced Ethernet networks in order to provide a high-throughput deterministic network for in-vehicle distributed control for agricultural machinery. Two main paths of investigation will be presented: one concerning the prioritization of standard Ethernet taking advantage of standard ways of prioritization in well-established technologies; the other changing the channel access method of Ethernet using an industrial fieldbus, chosen after careful investigation. The prioritization of standard Ethernet is performed at two, non-mutual exclusive layers of the ISO OSI stack: one at L3, using the diffserv (former TOS) Ip field; one at L2, using the priorities defined in IEEE 802.1p, used in IEEE 802.1q (VLAN). These choices have several implications in the specific field of application of the agricultural machines. The change of the access method, instead, focused on the adoption of a specific fieldbus, in order to grant deterministic access to the medium and reliability of communications for safety-relevant applications. After a survey, that will be reported, the Powerlink fieldbus was chosen and some modifications will be discussed in order to suit the scope of the research

    Investigating Performance and Reliability of Process Bus Networks for Digital Protective Relaying

    Get PDF
    To reduce the cost of complex and long copper wiring, as well as to achieve flexibility in signal communications, IEC 61850 part 9-2 proposes a process bus communication network between process level switchyard equipments, and bay level protection and control (P&C) Intelligent Electronic Devices (IEDs). After successful implementation of Ethernet networks for IEC 61850 standard part 8-1 (station bus) at several substations worldwide, major manufacturers are currently working on the development of interoperable products for the IEC 61850-9-2 based process bus. The major technical challenges for applying Ethernet networks at process level include: 1) the performance of time critical messages for protection applications; 2) impacts of process bus Ethernet networks on the reliability of substation protection systems. This work starts with the performance analysis in terms of time critical Sampled Value (SV) messages loss and/or delay over the IEC 61850-9-2 process bus networks of a typical substation. Unlike GOOSE, the SV message is not repeated several times, and therefore, there is no assurance that each SV message will be received from the process bus network at protection IEDs. Therefore, the detailed modeling of IEC 61850 based substation protection devices, communication protocols, and packet format is carried out using an industry-trusted simulation tool OPNET, to study and quantify number of SV loss and delay over the process bus. The impact of SV loss/delay on digital substation protection systems is evident, and recognized by several manufacturers. Therefore, a sample value estimation algorithm is developed in order to enhance the performance of digital substation protection functions by estimating the lost and delayed sampled values. The error of estimation is evaluated in detail considering several scenarios of power system relaying. The work is further carried out to investigate the possible impact of SV loss/delay on protection functions, and test the proposed SV estimation algorithm using the hardware setup. Therefore, a state-of-the-art process bus laboratory with the protection IEDs and merging unit playback simulator using industrial computers on the QNX hard-real-time platform, is developed for a typical IEC 61850-9-2 based process bus network. Moreover, the proposed SV estimation algorithm is implemented as a part of bus differential and transmission line distance protection IEDs, and it is tested using the developed experimental setup for various SV loss/delay scenarios and power system fault conditions. In addition to the performance analysis, this work also focuses on the reliability aspects of protection systems with process bus communication network. To study the impact of process bus communication on reliability indices of a substation protection function, the detailed reliability modeling and analysis is carried out for a typical substation layout. First of all, reliability analysis is done using Reliability Block Diagrams (RBD) considering various practical process bus architectures, as well as, time synchronization techniques. After obtaining important failure rates from the RBD, an extended Markov model is proposed to analyze the reliability indices of protection systems, such as, protection unavailability, abnormal unavailability, and loss of security. It is shown with the proposed Markov model that the implementation of sampled value estimation improves the reliability indices of a protection system

    Content addressable memory: design and usage for general purpose computing

    Get PDF

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    corecore