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Abstract 

This thesis considers a Content Addressable Memory (CAM), from its MOS 

VLSI circuit design and successful fabrication, to its inclusion in a novel 

computer architecture. The design has a bit-serial, word-parallel 

configuration, implemented by semi-static shift registers, with multiple tags 

which also provide for freespace designation and retrieval. The contention 

through multiple responders is resolved using novel dynamic circuitry. The 

basic CAM design is enhanced with a natural fault tolerance and a scheme 

for hierarchical decomposition leading to a practical proposal for wafer scale 

expansion. The potential impact of Content Addressability, both in 

software engineering and in system design, is discussed in terms of its 

affinity to common abstract data types. After examining previous attempts 

to render innovative hardware accessible to the general programmer, the 

thesis develops a full programming environment for the CAM component 

within a novel variation to the von Neumann architecture which can be 

programmed through a tractable set of extensions to conventional high level 

language syntax. 
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Chapter 1 

BACKGROUND AND MOTIVATION 

This is a project on Content Addressable Memory (CAM). It considers a minimal 

component for the storage and retrieval of data according to the results of a masked 

comparison, and in this context examines Content Addressability across a wide spectrum 

of computing: from transistor level hardware, through computer architectures, to 

programming language development. It details a development of the question: what if 

we alter the computer's mode of addressing? 

1.1 To begin at the beginning 

In the "First Draft of a Report on the FDVAC"[l] in 1945, von Neumann delimited 

five parts of "the functioning of the contemplated device": central arithmetical, central 

control, memory, and input and output with the outside recording medium. Of the 

"memory part" he wrote: "While it appeared, that various parts of this memory have to 

perform functions which differ somewhat in their nature and considerably in their 

purpose, it is nevertheless tempting to treat the entire memory as one organ, and to have 

its parts even as interchangeable as possible". Subsequently, developers have indeed 

yielded to this temptation. The successors of EDVAC have all realized memory as fixed 

length binary storage locations which are addressed by their physical position; despite 

von Neumann's early flirtation with the neural studies of Pitts and MacCulloch. By 1946 

the idea of a memory hierarchy was established[2], in 1949 the Manchester University 

group conceived of the index modification of addresses which lead to the virtual memory 
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concept, and in 1958 the stack was invented by Barton. These contributions are early 

examples of software abstractions over the memory realization: abstractions which have 

lead to the "conventional" programming languages of today. They have ensured, by their 

successful development on the EDVAC model, that the singular nature of the "memory 

part" has remained unchallenged within the von Neumann architecture. 

The architecture itself, however, is much criticized. With the potential offered by 

the increasing complexity of Integrated Circuits, Computer Architects have used 

distributed processing to distance themselves from the von Neuman model - however, 

little consideration has been given to modest changes in architectural design. Specific 

problems have quite rightly received specific architectural solutions, but the 

development of general computing machines is still dominated by refinements to von 

Neumann's EDVAC. Alternatives such as dataflow and reduction machines are 

promising but as yet unproven, and these too retain the established addressing mode for 

the "memory part". Separate processors were developed in the 1950's to handle input 

and output so freeing the "central control part" from the most fundamental operations, 

co-processors, pipelined and finally hardwired special purpose arithmetic units have 

enhanced the "central arithmetical part' (culminating in "super computers" such as the 

Cray series) - but the model remains the same. 

From EDVAC onwards, memory has been addressed by a "memory location 

number". An alternative is to address memory by content: to direct words according to 

what they have become, rather than where they were placed. This project investigates 

that alternative. 

The motivation for this topic stems from the observation that Content 

Addressability would: 



mm 

• 	assist software development by providing a new medium for the design of data 

structures and algorithms 

and through its affinity with certain data types 

• 	provide a general component to facilitate system design for innovative computer 

architectures and programming languages. 

To corroborate this observation, this thesis sets out to describe the design of a suitable 

CAM component and to prescribe its inclusion in an example, full programming 

language environment. This approach was adopted because it is the author's belief that 

a component can only be correctly designed in the context of a parallel development of 

its projected environment. In this case, that philosophy dictates the development of a full 

programming environment which provides access to the CAM component in its role as a 

medium for software engineering. 

The example considers the CAM in an enhancement to the von Neumann model: 

the "memory part" is altered. We could consider replacing the RAM with a CAM, and 

simulating the desirable RAM features using the CAM; however, we will consider 

instead an architecture which includes both modes of addressing implemented by their 

respective memory components. We will consider a general purpose computer 

architecture in which the central control interacts with both a RAM and a CAM, and we 

will call it the CAM-CPU-RAM Triplet model. With both types of memory available, 

the software engineer can choose the more efficient medium for the implementation of a 

data type. The questions we will consider are: the design of a CAM, the 

characterization of a CAM, the Triplet architectural organization, and the development 

of programming languages which render the CAM accessible to the general 

programmer. 
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This chapter continues with an historical survey of CAMs and an examination of 

the application of content addressability to basic computer programming. Chapters 2 

and 3 consider the development of a VLSI design from a minimal specification, through 

the design, fabrication and testing of two prototype components, to a proposal for a 

natural extension into a wafer scale design. Chapter 4 considers the characteristics and 

possible role of the resulting component. In chapter 5, we look at the relationship 

between innovations in hardware and software in general, to discern how each has 

developed to accommodate the other, and so seek to establish guide lines to facilitate the 

development the full programming environment for the CAM component. We attempt, 

in chapter 6, to characterize the CAM in the context of the Triplet architecture and then 

as a computational abstraction - so that chapter 7 can demonstrate that these 

perspectives may be practically combined by a high level programming language. 

1.2 Content Addressable Memory History 

This section presents a brief review of content addressable memories and current 

MOS realizations; more comprehensive reviews can be found in Parhami[3] and 

ICohonen[4]. 

1.2.1 What is CAM? 

Content Addressable Memory consists of storage locations divided into words 

which are addressed, and so directed, according to the results of a masked comparison. 

This operation is performed by a comparison between a specified corn parand and each 

word in memory over those bits which correspond to the masked bits in a specified mask 

word. Thus an address is defined by a corn parand and a mask word, and an address 

defines zero of more words in memory. In general the comparison may be made 
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according to a variety of relations: equality, inequality, greater-than, less-than, etc.. 

Elsewhere the term Content Addressable Memory is used to include a variety of 

SIMD processors and even neural" networks: this thesis restricts itself to the design and 

use of a memory device. The stage at which a memory with distributed logic becomes a 

processor is, however, difficult to specify. This stems from the development of CAM in 

the context of logic distribution among the memory elements, in which comparison is 

seen as the simplest logic in a scheme which can include word specific ALU functions 

and inter-word communications - this has lead to a variety of Content Addressable 

Parallel Processors[S], including Batcher's Massive Parallel Processor[6] which was 

designed for image processing at NASA. We will consider only the hardware design 

and usage which is necessary to the address operation itself and exclude devices with 

additional local processing and communications; this rules out the various array 

processors with CAM capability, and also content driven special purpose hardware such 

as hardwired concurrent bubble sorts[7]. 

The only established use of CAM in commercial computing systems is in the 

implementation of virtual memory, first developed in the IBM system 360 mainframe 

series. The technique is to maintain a memory hierarchy whereby the sections (or pages) 

of memory which are currently being used by the programme are loaded into a faster 

(more expensive) forward memory device (or cache), and the words are accessed there 

rather than in the slowet (cheaper) secondary storage. To provide a mapping to the 

memory locations in the cache, a content addressable store is maintained which maps the 

page address to a cache offset if that page is already present. This CAM realization was 

possible since the required component need perform only a limited set of operations, 

and need not be large since the cache address space is limited by the cost of the cache 

itself. 
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1.2.2 Categories and distinctive features 

Even restricted to purely memory devices, CAMs offer a wide variety of possible 

architectures and operations. The fundamental categorization reflects the degree of 

parallelism inherent in the logic distribution within the memory store; other distinctions 

arise from the different solutions to common problems. 

Parallelism 

Content Addressable Memory requires that a comparison operation be performed on 

every stored word in memory, and the various CAM designs may be usefully 

categorized by the degree of parallelism used in this operation. The first examples can 

be found in multi-track disc access systems such as CASSM[8] and RAP[9]. These 

systems were seen as data base subsystems to the main computer and were generally 

supported by considerable local data base processing. The idea is that comparison and 

access logic is associated with long serial tracks of memory, and the design is geared to 

fast serial processing of specific operations. The parallelism stems from the simultaneous 

use of several disc tracks, and the cost of serial processing is offset by the 'tuned' design 

of hardware logic and choice of technology. Modern proposals include memories in 

CCD shift registers, bubble memories, magneto-optics, and holographs. 

Integrated circuit CAMs differ in that the comparison and memory logic are both 

implemented in the same technology, and thus are designed with one of the four possible 

degrees of parallelism according to whether the words and/or bits are compared serially 

or in parallel. The complexity of the matching logic can vary from the implementation 

of a simple masked comparison to a range of boolean operations. 

Full parallelism is the extreme view achieved by distributing processing logic to 

each memory bit cell. In these systems the comparison is performed simultaneously at 

each bit with the mask, comparand and control signals being distributed to each word. 
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The use of a bit-serial word-parallel configuration has the advantage that the cell size 

can be reduced to a storage element, with the comparison logic removed to one location 

for each word. A bit-parallel word-serial configuration similarly allows for a reduced 

bit cell size but, with a sequential processing of the memory words, it is severely limited 

in its access time by the size of memory. A fully serial configuration is even less 

attractive for the same reason. 

Location addressing 

Some CAM designs include the concept of location address producing a hybrid 

memory[10] where the portion of memory over which a comparison is to be performed 

is limited by the degree to which the physical location has been specified. This allows 

the memory to function in either location or content address mode. One advantage is 

with pointer driven programming systems, such as LISP, where the dual address mode 

allows the existence of pointers to a specific cell location to be deduced from a 

comparison over the pointer fields[11]. 

There are three consequences of the hybrid architecture: 

S 	The memory space may be divided into different regions by the software. This 

allows different search spaces to be defined by the physical division of the 

memory rather than by a conceptual division through the dedication of a CAM 

field (thus saving memory space). 

S 	The result of a comparison may be given as a physical address by which the 

word is subsequently directed, rather than using controlled access according to a 

tag store. 



• 	The word-length of CAM may be increased if the comparison can be performed 

with reference to the result of the previous comparison on a physically adjacent 

word[12]. 

As an example of the latter, consider doubling the word length: firstly set all the result 

tags on each of the even addressed words in memory and compare with the first half of 

the new virtual word resetting the tag on a mismatch, then transfer that result into the 

next physically adjacent result store and perform the comparison on each odd addressed 

word with the second half of the virtual word - the tags which remain set indicate the 

address of the second half of each matching virtual word.. 

Multiple Responders 

The main difference between addressing by content rather than by location is that in 

CAM the number of responders to any address is not fixed but rather is a function of 

the state of the computation. Thus there may be zero, one, or many words which are 

addressed as a result of a comparison. For some operations, such as write and remove, 

this can be used to advantage by performing the operation on all responders in parallel. 

With the read operation in word parallel architectures, however, this raises the problem 

of contention on the output data bus. 

The problem is avoided in some CAM designs which are targeted at a specific 

system whose operation ensures that there is no more than one match for any valid 

address. For example, when using CAM as a fast lookup of cache memory addresses, 

an entry is only made if that page address was not found by the proceeding comparison. 

In such systems there is no multiple response, and therefore no contention. In general, 

however, some logic must be devoted to resolving this conflict. There are essentially 

two options: access one responder only, or access each responder in turn. 
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In the former case, some system must be devised whereby other responders can be 

accessed as the result of performing the search again. This can be implemented by 

setting a marker either in the word or in the hardware which prevents the already 

accessed word from responding again. 

In the latter case, the scheme requires some form of local storage of the results of 

the comparison, and signal switching so that the 'first' responder is affected by 

subsequent memory operations. There must also be a mechanism whereby the 'first' 

responder can be passed to allow the next responder to be directed. A major problem is 

the delay in the propagation of the addressing signal through the memory. With a large 

number of words, this becomes prohibitive. There are two approached to this problem: 

the use of look ahead circuitry on the same principles as the Manchester Carry Chain 

Adder, or the use of a modular hierarchy with logic to prevent the addressing signal 

from descending along paths which lead to modules without a responding word. 

Garbage collection 

Free locations pose two problems: how is free space addressed, and how is assigned 

space returned to free space? The identification of empty words has received scant 

attention in previous designs. There are two approaches: unused words are identified by 

a bit field in the memory word by which they can be addressed (by its content), or 

alternatively some systems keep all the assigned words together. A recent scheme[13] 

was designed in which the (one if any) matching word is immediately read and removed. 

The memory system maintains a "depth of memory" pointer to which new words are 

written, and when a word is removed, the word at the bottom of memory is rewritten 

into the space vacated, and the pointer is reset accordingly. A similar design has been 

implemented[14] in which the memory is constructed as a bit parallel stack. Words are 

entered by pushing them onto the stack, and vacated space is filled by shifting upwards 

those words further down. 
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1.2.3 Previous MOS Designs 

The majority of proposals for MOS CAMs have been fully parallel so as to take full 

advantage of the processing potential of the technology, despite the restriction on 

component capacity imposed by the large resulting bit size. Bit-serial word-parallel 

designs have been proposed mostly for the implementation of more complicated 

functions such as ordered rctrieval[15]. 

The standard CAM cell design for a fully parallel system is based on a static RAM 

latch with additional circuitry for performing the masked comparison (for example, see 

Lea[16]). Commonly the comparison is performed by discharging a precharged word 

reference line through transistors associated with the mismatching bits. This design leads 

to a large cell size which was quickly recognized as a severe limitation. The use of 

dynamic storage nodes was seen as a partial solution to this problem. A four transistor 

bit cell was proposed by Mundy[17] which is based upon two storage nodes for each bit 

cell, and which allows for the storage of a "don't care" state in the actual memory cell as 

well as the normal use of an external mask. The design requires three distinct voltage 

levels, and the use of current flow is suggested as an analogue counter of the number of 

responding words. A half cell of the same design was proposed by Lea[18] as a memory 

which matches against only one logical value. A recent paper by Wade and Sodini[19] 

modified the Mundy cell by cross-coupling the bit lines to preserve better noise margins. 
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1.3 CAM as a Software tool 

Let us now return to the observation that CAM will provide a new medium for 

software engineering. Conventional software techniques have evolved to counter the 

difficulties which have been found in computing with the von Neumann model. We will 

apply the topics from a standard text on computer algorithms and data structures, to a 

memory system which is addressable by its content; and so present CAM alternatives to 

techniques which "underpin much of today's computer programming" [201. The CAM is 

used to implement common abstract data types in a manner which is usually simpler, 

more efficient, and often more powerful than the RAM equivalent. 

We will leave the development of a precise terminology of CAM programming until 

chapter 6, and use instead the model of a number of fixed length words which are each 

conceptually subdivided into named fields. We will assume that the memory is 

'sufficiently' large for the following abstract overview of CAM applications, and that the 

configuration is word-parallel so that the timing of a comparison operation is 

independent of the number of words in memory. The 'value' of a memory field may be 

considered as data or as address or as both. The use of field identifiers is similar to that 

in record structures of conventional RAM programming except that CAM words are 

addressed by the values of (some of) its fields rather than by the pointer identifiers 

which address records. 

In the following, the CAM word will be referred to in terms of the field names 

associated with a particular problem. Thus 

[ fieldi I fieldz I field3 

depicts the CAM word as having three fields. However, this does not imply that only 

one convention may be extant in memory, since 
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convention-field I fieldi I field2 I field3 

could be a software convention for supporting several sub-conventions simultaneously. 

This flexibility is, of course, bought only by smaller virtual word sizes since some bits 

must be dedicated to the convention -field. 

1.3.1 RAM simulation 

We start with the trivial observation that a CAM may simulate a RAM. by the 

convention: 

address I data] 

RAM is normally accessed by passing the address through hardware decoders; CAM 

distributes the 'address', and 'decoding' is achieved by a comparison over the address 

field. The obvious disadvantage is the use of storage area to describe the address, but 

this inefficiency is in no way daunting since we should not expect CAM to surpass RAM 

direct through mimicry; the virtues of CAM will be found in exploiting its own 

characteristics. 

A RAM may simulate a CAM, but the free specification of the mask word 

necessitates that the simulation is performed by a sequential search through all the 

memory words. Thus, although the CAM-CPU model is "computationally equivalent" to 

the RAM-CPU model, the RAM's simulation of CAM is of a higher time complexity - 

this disparity is due to the parallel processing inherent in the CAM model. 

The value of the address field need not, however, be equivalent to a RAM memory 

location number. Instead it could be a representation of the variable's identifier from 

the high level programming language. To allocate storage in RAM, a compiler must 

translate a programme's variable names into numerical location addresses. A Fortran 

compiler makes all allocations before run time, while that of a recursive language must 
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specify storage in terms of an offset from a 'data frame base' address. If the memory 

were a CAM, the compiler could use the variable names from the high level language to 

generate symbolic addresses whose uniqueness, in any one procedure, is ensured by the 

programme semantics. By adding a procedure identifier to each symbolic address, a 

Fortran compiler could perform all allocation without counting storage cells. If a 

recursion level field were also included: 

unique_identifier I level I data 

the compiler of a recursive language could perform allocation without stack 

maintenance. 

This is a possible approach for implementing the conventional languages on a 

Triplet machine, but the use of CAM alters some of the basic features of the 

programming environment which have directed their evolution. For instance, block 

structured scope rules reflect the attributes of the stack which provides structure to 

RAM usage; but with CAM the access to 'non-local" variables can be no more expensive 

than to local ones. It thus seems likely that new 'CAM orientated' languages would 

evolve to reflect the new features which CAM provides. 

So far we have seen that anything RAM can do, CAM can do also, and that CAM 

can do certain things better than RAM. We proceed by considering CAM-specific 

implementations of some basic abstract data types. In general, the point is not that 

CAM surpasses RAM, but rather that CAM provides a comparable implementation with 

distinctive features which a software programmer might wish to exploit; however, in 

some cases the data type's correspondence to the CAM itself affords a superior 

implementation in CAM than in RAM. 
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1.3.2 Vectors 

Vectors do not fit into the unique naming scheme since the word to be addressed is 

normally determined during run time and so the compiler can not assign a unique name 

before hand. However, the same calculation of an 'offset' value, as found with RAM, 

could be employed in a CAM implementation. The scheme: 

[identifier I offset I data 

implements the vector data type, with slightly different features from the RAM 

implementation. For instance, this representation would accommodate the storage of 

large 'sparse' matrices, where only the (few) significant entries are stored. A RAM 

implementation of this technique requires the overheads of a pointer mesh, the CAM 

implementation is the same as for 'full' matrices, 

A vector has two basic properties: an ordering of its elements (implicit in an order 

relation on the offset domain), and also an association under the common vector name. 

If order is required it can be provided explicitly: in the offset field. The number of 

elements so ordered is limited not by the vector size but only by the range of the 

assigned field - repeat entries are also possible. An ordering in CAM can be found in 

the necessarily sequential storage and reading of addressed words, but this is a feature 

of the hardware and not of the CAM model - any use made of this ordering must be 

described in terms of the specific design and thus is not valid testimony in support the 

general CAM. 

However, vectors are sometimes used in programming for association alone, and 

the offset only assists in programmer maintained RAM allocation - in such cases the 

offset field is redundant in CAM: association follows directly under a common 

identifier. 
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1.3.3 Lists, Trees and Queues 

Lists and trees are traditionally built out of pointer structures where the pointer is 

the 'address' of a topologically adjacent word, and like vectors they too provide both 

order and association. By replacing the address with a CAM word identifier, these 

structures may be realized with a CAM through mimicry of the RAM technique. An 

implementation of lists could use the fields 

[identifier I next—identifier I data 

and this idea can easily be developed into tree building. A significant advantage of the 

CAM implementation is that 'backward chaining' is immediate without the need for 

extra storage space and maintenance of reverse pointers. 

However, CAM has distinctive features which allow different concepts to be used in 

algorithmic design: the free choice of address 'names' allows the programmer to develop 

naming conventions so that the 'name' itself contains information. For instance, a binary 

tree can be specified by a binary code where the root is 1, its two branches are 10 and 

11, the next level is 100, 101, 110, and 111, and so on. Similarly, queuing may be 

supported through a circular buffer by the data structure 

counter I data] 

where the counter field is an integer maintained with addition modulo the field's range. 

1.3.4 Hash tables 

Deep in the folk-lore of RAM programming lurks the hash table. Even before 

FORTRAN, programmers needed a large table which could be quickly updated or 

searched for a specific entry, to assist the translation of symbolic names from assembler 

code; and so they devised the hash table. The implementation of the hash table in RAM 
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requires the permanent allocation of a large array (necessarily larger than the maximum 

possible number of entries), a judicious choice of 'key' calculating algorithms, and the 

choice of strategies to accommodate collisions involving heap storage maintenance or 

key recalculation. Despite these difficulties, hash tables are so widespread that some 

even advocate their inclusion in machine code instruction sets[21]. 

CAM is a hardware solution to the problem. Lookup is performed by addressing 

the word directly (according to any field), and update is lookup followed by writing. 

There is full utilization of memory with constant access times, no complicated hashing 

function, and no lists or incrementing of the index to handle collisions. 

1.3.5 Graphs 

A natural way to store graphs using fixed fields is according to the edges defined 

by their end nodes: 

tail—node I head_node I (cost) 

This is ideal for a (possibly coated) digraph, and non-directed graphs can be 

implemented by either recording an edge in both directions or searching both fields in 

the software. The most significant feature here is the closeness of this representation to 

its mathematical specification: there are no supporting data structures beyond the graphs 

actual definition. 

1.3.6 Sets 

We will consider the implementation of sets in some detail to provide a heuristic 

appraisal of CAM features necessary to support an efficient implementation of this data 

type. With RAM memory, sets and set functions are supported using hash tables, lists, 
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or complex tree structures, yet a set is simply an association of its members under a 

common identifier. A CAM could use the data structure: 

set—identifier I item 

to provide this association, allowing a set to be addressed directly by its identifier 

without any supporting data structures. In considering the implementation of set 

functions, however, we immediately encounter memory design issues. 

Consider how to implement a copy function: create a set B with the sane elements 

as set A. This requires that the set A be addressed by a comparison operation over the 

set—identifier field and each responder read (non-destructively) in turn and written to 

free space in memory with an updated set —identifier. If the comparison logic is involved 

in designating the free space, the write can not be performed without either destroying 

the results of the previous comparison, or using different comparison logic. One 

solution would be to place the result of the first comparison (the words addressed as set 

A) into an external buffer, and then to write the buffer to free space after a further use 

of the comparison logic - this is unattractive since it requires a large amount of mostly 

redundant circuitry. An alternative is to make the addressing of free space independent 

of the comparison logic used to address set A. 

Consider now the Union of two sets: create set C which contains all the members of 

sets A and B, but without repetition. This can be performed by copying set A to C and 

then copying to C those members of B which are not in C already (or A). To do this, 

there must be some method for performing a comparison on each element of B against 

the elements in A without affecting the comparison which is addressing B. Again one 

solution would be to buffer the elements of B, and the alternative is to provide logic to 

interrogate the members of set A which is independent of the comparison addressing B. 



Assuming the second solution in both cases, the standard set functions may be 

implemented as follows: 

UNION(A,B,C):: copy A to C; while reading B, test each word for occurrence in A; if 

not in A, write that word to C. Timing is O( 1 AI+JBI). 

INTERSECTION (A,B,C):: while reading A, test each word for occurrence in B; if 

present in B, write word to C. Timing is O(IAI). 

DIFFERENCE(A,B,C):: while reading A, test each word for occurrence in B; if not 

present in B, write word to C. Timing is O(IAI). 

MEMBER(x,A), MAKENULL(A), INSERT(x,A), DELETE(x,A), and FIND(x) 

are all obvious and performed with one addressing of memory. 

The boolean EOUAL(A,B) is achieved by performing DIFFERENCE(A,B,$) and 

DIFFERENCE(B,A,$) until an assignment is made to $, or both functions are finished. 

Timing is O(IAI+ 181). 

The function MIN(A) returns the least member of a set where there is some ordering 

defined on its members. The simple CAM implementation is to address the set A and 

then cycle through its members performing a comparison with a 'currently minimum' 

value: timing is O(JAI). However, if the values are non-negative integers, the 

techniques mentioned in the next paragraph lead to an 0(m) algorithm where m is the 

number of bits in the order field. 
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1.3.7 Sorting 

As we have already seen, if is possible to impose an ordering on the elements of a 

CAM through the inclusion of an order field - however, this is effecting (through 

software) a property which is implicit in RAM and so is not evidence of CAM's claims 

over RAM for data structures which do not derive other benefits from CAM 

implementation. Sorting relies entirely on order and will, generally, be better 

implemented in RAM. However, there is a special case when the memory bits are 

interpreted as non-negative integers. The algorithms were described originally by 

Falkoff[221, and depend upon the partitioning of the binary tree inherent in the bit 

representation itself, through the manipulation of the comparand and the mask word. 

With these techniques, a sort of N values specified in a field of m bits requires time of 

O(Nm) - a fuller explanation appears in chapter 4. 

1.3.8 Algorithms 

The above is an example of a CAM specific algorithm, relying on subtle 

manipulation of the addressing mechanism. However, we might expect algorithmic 

design to be affected more generally by the use of CAM. 

Consider the following algorithm for the traversal of a digraph, using the edge 

representation above and two sets ('visited' and 'to_do') with the associated set 

operations. 
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Procedure Traversal(start node) 

{INSERT(start_node, visited) 

INSERT(start_node, to_do) 

while 'to —do' is not empty 

{select node from 'to —do' 

DELETE(selected_node, to_do) 

foreach edge with tail_node = selected _node 

{if NOT MEMBER(head_node, visited) 

{INSERT(head_node, visited) 

INSERT(head_node, to_do)}}}} 

Each node of the graph is visisted once by this procedure. The set 'to —do' is an 

unordered set of visited nodes adjacent to those which might not yet have been visited. 

The order in which the graph is traversed is unspecified. The algorithm is trivial - but, 

in CAM, so too is its implementation since the implicit data types map directly onto the 

memory architecture. 

An order may be imposed on the traversal by including an index field with the node 

entries in the 'to —do' set to store the value of an incremented counter, thus numbering 

the members of that set to form a queue. The search is then breadth —first or depth—first 

according to whether the queue is FIFO or LIFO respectively. The same queues can be 

found in the least time programming in RAM where depth —first search is performed 

using the stack as a LIFO queue, and breadth —first search requires explicit FIFO queue 

construction - but in RAM this symmetry is obscured. The CAM version hides no 

complex structure and needs no implicit system (stack) maintenance; the mapping from 

the abstract algorithm to physical memory component is more direct with CAM than 

with RAM. 
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1.3.9 Assessment 

CAM is a useful memory design. It is capable not only of mimicking RAM but also 

of surpassing it in some of RAM's most popular uses. Further since current techniques 

assume and accommodate a RAM architecture, a CAM based programming system can 

be expected to promote a new approach to programming which exploits the distinctive 

features. 



Chapter 2 

COMPONENT DESIGN 

This chapter considers the design of a suitable Content Addressable Memory 

component. After stating the design criteria, we develop from an abstract definition of 

the CAM component into a description of its features; this construction being sufficient 

rather than necessary. A circuit level realization is then advanced from a general 

overview to the details of a specific chip's organization. This is followed by two 

modifications, providing fault tolerance and an increase in operating speed, and a 

projection of methods by which small CAMs may be configured into a large memory 

component. 

2.1 Design Criteria 

From the history of previous designs and the observed requirements of common 

abstract data types, we now consider the criteria with which a suitable CAM component 

may be designed. 

2.1.1 Minimality 

In the EDVAC report[1], von Neumann exhorted that: "The device should be as 

simple as possible, that is, contain as few elements as possible" and this emphasis on 

minimal hardware is perhaps the best explanation of the model's continuing success: a 

simple framework allowing diverse development. The effectiveness of minimality in 

VLSI systems is most forcefully advocated by the RISC school of designers who 
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originally set out "to obtain as much performance for as little complexity as 

possible"[23] and produced "a single-chip CPU that rivals board level designs"[24]. 

With this in mind, the CAM design was kept as simple as possible - whilst remaining 

useful. 

The aim is to produce a general purpose memory component. The approach is to 

refrain from including complex processing and to use only those features which are 

necessary to that aim. The reasoning is that the simple design is likely to be both 

realizable and broadly applicable, and that by proving the kernel of possible 

components, we will implicitly approve them all. As will be seen however, once the 

basic design was fixed, the resulting component was both flexible and easily ramified. 

2.1.2 Utility 

The utility criterion will be interpreted as an efficient implementation of the data 

structures and algorithms described in chapter 1 since these cover the fundamental 

aspects of software engineering practice. In section 1.3.6, we found that an efficient 

implementation of sets requires: 

• 	a write—new —word operation. 

• 	a boolean test which determines whether or not there is a word in memory 

addressed by a specified content, 

• 	a search and queue operation such that the queue of results is maintained whilst 

either of the other two operations are executed. 

This is also sufficient for the other data types considered. These are the minimal 

functional requirements to implement sets, but 'design' minimality is approached by 

reducing the number of distinct functions to be implemented. The boolean test 
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operation requires the same search to be made of memory as in the search_and_queue 

operation and so may be implemented by a second independent search_and_queue 

operation. These two operations must maintain their respective queues independently 

from each other and also from the execution of the write_new_word operation. The 

boolean test can be resolved according to the existence of words on a queue. 

Having decided to include a second search_and_queue operation, we could proceed 

to include even more since the design effort involved in two may trivially be extended in 

more than two. However, two such operations (and an independent write —new) are 

sufficient to implement sets, and also the other data structures which we have 

considered, and so, invoking minima lity, we will settle on two as a basis for the 

prototype design. 

2.2 The Abstraction 

With these criteria in mind, let us develop a specification of the component's 

organization; the resulting floor plan is shown in figure 2.1. 

• 	Content Addressable Memory is storage addressed according to a subset of its 

contents. 

• 	To realize this concept in physical storage space, there must be a comparison 

between the relevant bits of each memory word and the corresponding bits of an 

addressing comparand, according to which the addressed (matching) words may 

be accessed. 
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Figure 2.1: the structural floor plan 
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• 	To designate which bits of a word are relevant to the address, there is a mask 

word whose ONE bits denote relevance, and whose ZERO bits denote 

irrelevance, to the comparison of the corresponding bits in the comparand and 

memory words. 

• 	The results of a comparison may be stored to avoid contention from multiple 

responders, and to allow controlled access. This storage must be associated with 

the corresponding word. The storage location with each word is known as a tag. 

A tag is said to be active if the word is addressed by the comparand, or passive 

otherwise. 

• 	If the results of n (> 1) comparisons are required together there must be n 

independent groups of tags: n tags associated with each word. A word is said to 

have a set of tags associated with it. 

• 	A word is manipulated by addressing a tag group and thereby addressing one of 

the words whose tag in that group is active. Such a word is said to be currently 

addressed. If there is no active tag in the group, a signal is output when the 

group is addressed. 

• 	Further words with active tags in the group may only be addressed by making 

passive the active tag, in that group, of the currently addressed word. 

• 	A currently addressed word may be written or read. 

• 	The concept of a tag group is extended to address empty words: those whose 

contents are undefined or no longer desired to be addressed by a comparison. 

This tag group is not available to store the results of a comparison. It is known 

as the empty tag group, while the other groups are comparison tag groups. 
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• 	A word which is empty can not have active tags in its comparison tag set: in any 

set, an active empty tag implies that all the comparison tags are passive. 

• 	The CAM is initialized, or emptied (re-initialized), by making all tags in the 

empty group active. The content of empty CAM words is undefined. 

• 	When a word in memory is written, its contents are defined and the empty tag in 

its tag set becomes passive. 

• 	A currently addressed word may be made undefined by making its empty tag 

active - this necessarily makes its comparand tags passive. 

2.3 Fundamental Organization 

This section presents the overall design decisions which determined the general 

organization of the hardware component. 

23.1 Bit-serial Word-parallel Architecture 

The operations described above occur only at word level: the addressing mechanism 

defines words, and so the addressing logic need only be distributed to the word level. 

With the comparison logic at word (rather than at bit) level, the bits of a word must be 

fed through the comparison logic sequentially and the operation may be performed in 

parallel on all words in memory. 

By moving the logic from the bit to the word level, a smaller memory cell design is 

possible but the comparison can only be performed one bit at a time. This is a trade-off 

between the speed of operations and the size of the associated circuitry. Other 

advantages in making the chip bit-serial are that the data may be distributed to the words 



as it arrives at the chip without local buffering, and that the (potentially large) number 

of pins is reduced. 

2.3.2 Rotating Word Model 

The comparison operation occurs at all words simultaneously as the whole of 

memory is rotated through a word cycle. I/O operations require the rotation of only one 

word, but by using the addressing mechanism as a communication switch between the 

data buses and the addressed memory word, the bulk memory rotation may still occur. 

This leads to the design model of circulating memory words which may be 

implemented either as actually rotating storage locations: using shift registers, or by 

cyclically addressing a static configuration: using, for instance, bit slice addressing with 

standard RAM-like circuitry. The latter may eventually lead to higher bit densities with 

dynamic storage but this is not necessarily advantageous because the word pitch is also 

limited by the word dense addressing and comparison mechanism which requires static 

logic and so seems to set the lower limit. 

For a practical realization, semi-static shift registers were used (see figure 2.2). 

With clock H off, clocks A and B form a dynamic shift register configuration and allow 

the memory word to rotate; with clocks A and H on and clock B off, the bits are 

statically held. This has a speed advantage over RAM in that there is no delay 

associated with charging a word line since the current bit is always in the cell adjacent to 

the switching logic. Also the shift registers lead to a very compact layout. 
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2.4 The Addressing Circuitry 

We now consider specific circuitry for the realization of the abstract model. The 

major feature is the addressing mechanism which is to be based upon the value of tags 

associated with each word of memory; the problem is how to cope with multiple words 

matching on a comparison operation. 

2.4.1 The Tag 

The tag storage of a comparison's result is realized as a reset latch (figure 2.3). 

The value of the latch corresponds to Q: the latch is active if 0  is high, and passive if Q 

is high. The value is switched by pulling the high arm to ground through the 

corresponding pass transistors: R or S. The value is changed either by commands acting 

on a single addressed word, or by the comparison and CAM initialization operations. 

2.4.2 The Comparison 

The primary function of the tag is to record the result of a comparison: the tag is 

active after a comparison if the corresponding word matches the comparand at all the 

masked bits. This may be translated into a practical algorithm as the tag becomes passive 

after a masked mismatch. 

The bit-serial comparison operation begins by making all the tags in a group active. 

The masking of the comparison is performed by clocking the reset circuitry with a signal 

which occurs if and only if the corresponding mask bit is set. The reset signal at each 

memory word is generated from the comparand and word bits according to the logic in 

figure 2.4. The signal is high for a mismatch and low for a match, for instance: if m is 

high, the node x is connected to the arm with the value of c making x high if c matches 
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m and low if not. To perform the comparison, the comparand bits and their 

compliments are broadcast sequentially as the memory words are rotated and the reset 

signal is clocked in the selected comparison tag group for those bits which are masked. 

The tag becomes passive on the first masked mismatch; that is, the tag is active at the 

end of the sequence if and only if there was no masked mismatch to reset it to passive. 

2.4.3 Addressing Logic 

A tag group consists of active and passive tags. When a tag group is addressed, one 

word with an active tag in that group is currently addressed. This is realized by using 

the latch values to pass a signal through the latches until the first active tag is reached. 

The circuitry at each word is shown in figure 2.5. The tag group is addressed by raising 

the group address signal line. If the tag is passive, 0  is high and the pass transistor is 

on allowing the signal to propagate down the line. If the tag is active, this pass transistor 

is off and the isolated lower section of the group address line is pulled low since 0 is 

high. 

The word associated with the first active tag is then currently addressed as the word 

address line is pulled low through the two transistors giféd by the latch value 0 and the 

group address signal line. The word address line may be pulled low by any of the tag 

groups. Some operations on the word are performed by signals which affect only a 

word whose word address line is low: by design there is only one such word for each 

addressed tag group, and in normal usage only one tag group will be addressed at a 

time. 

Addressing another word in that group is achieved by making the selected tag 

passive and then allowing the group address signal to propagate to the next active tag. 

This operation is initiated by a signal rather than automatically since there are various 
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operations which may be performed on the addressed word. This scheme is effectively 

daisy-chain addressing where each site is polled in succession until one responds, and the 

polling continues when the responding site has finished the required operations. 

If there are no active tags in the group, the signal emerges at the end of the 

addressing line and is output from the chip. 

2.4.4 Non-cascading signals 

If the tag, by which a word is currently addressed, is made passive the group 

addressing signal propagates to the next active tag. There is here a potential race hazard 

since the signal to make the tag passive must be removed before the next word becomes 

currently addressed or its tag also will be made passive. The dynamic circuitry shown in 

figure 2.6 prevents this cascading. It was verified both by SPICE simulation and by 

fabrication as a small test structure before inclusion in the full design. 

The control signal is generally high. If the word is not currently addressed the word 

address line is also high, making node x low, and connecting node y to Vss. A pulse on 

the control signal does not effect the node values. If the word address line then becomes 

low, y is isolated and discharged. If the control signal is subsequently lowered, node x 

rises and node y is connected to Vdd. The pass transistor beyond the buffer is off, 

since the control signal is low, and so the reset signal still remains low. When the 

control signal is raised, this pass transistor becomes on and the reset signal rises. Also 

the node x becomes low and node y is isolated but charged, dynamically maintaining the 

high input to the buffer. The circuit is self timing in that the reset signal remains high 

until the tag is made passive which in turn raises the word address line so discharging 

node y and lowering the reset signal. Thus, the system returns to the initial 

configuration. 
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2.4.5 The empty tag group 

The idea of addressing the words in memory according to the setting of an 

associated tag is extended to overcome the problems of identifying free-space and garbRgc 

collection. A solution with similar features has been published independently by 

Ogura[25]. 

The empty tag operates without reference to a comparison operation. The whole 

group is made active by a signal to initialize the memory and an empty tag must be made 

passive when a word is written to its associated memory word. Thus the write operation 

is used to make passive the empty tag of the currently addressed word. An empty tag 

may be made active again to allow a word to be made unaddressable and so effectively 

erased, thus allowing explicit garbage collection to be performed through the control 

signals. 

If a word's empty tag is active, the memory bits contain undefined data. To ensure 

that this does not lead to an undefined word being addressed through a (random) 

matching comparison, the comparison tags are constantly reset by the value of the empty 

tag. Thus the comparison tags of an empty word are never active. 

2.5 Control Circuitry 

To design an actual component requires the specification of the overall control 

logic. The following is one possible realization: the design is built using standard digital 

circuits and the two phase non-overlapping clock normally associated with NMOS shift 

registers. Other technologies or other realizations of the rotating word model might 

require different control techniques. 
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2.5.1 Internal Control Summary 

Each comparison tag group has the control lines: 

Reset: making all the tags active as the first part of the comparison operation. 

Mask: clocks the reset of all the tags according to the value of the mask word during 

the comparison. 

Next: resets the tag of the currently addressed word to passive using the non-cascading 

control unit. 

Address: addresses the tag group. 

The empty tag group has the control lines: 

Empty: making all the empty tags active. 

Defined: a non-cascading unit signal which is completed at the end of a write 

operation. 

Remove: making the empty tag of the currently addressed word active and so 

undefining that word. 

Address: addresses the tag group. 

And the remaining general functions are: 

Read: to output the contents of the currently addressed word. 



Write: to input data into the currently addressed word. 

2.5.2 Clock and input organization 

The chip is driven by a two phase non-overlapping clock: clkl and clk2. The 

memory word is held static until an operation on the memory bits is initiated so avoiding 

a word synchronization delay and (with some technologies) also saving power. The 

three clock, signals for the memory cells (cikA, clkB and clkH) are controlled according 

to the value of an ES flip-flop (see figure 2.7). After start operation, clkA and clkB 

follow elki and clk2 respectively and clkH is low thus driving the shift register memory 

words; after stop operation, clkA and clkH are high and clkB is low to hold the data 

values in static latch configuration. 

The timing of an operation is achieved by a special shift register driven by the same 

clocks as the memory cells. When the memory is static, this register is initialized to zero 

on all its cells; when the memory is rotated, a one is propagated through the register and 

becomes the stop operation signal when the word cycle is complete. The logic is self 

timing in that the signal causes the clock control RS flipflop to reset and the clocks to 

alter accordingly which thus initializes the special shift register and so removes the stop 

operation signal.  

All input signals to the chip, including the data buses, are passed through D-

flipflops clocked by ciki. Whatever the appropriate value of the internal signal, the 

input signal is designed to be significant on being raised to high. The start operation 

signals is designed to allow the longest possible time for the resetting of the clock 

control logic and the discharging of the clock lines which are held high in the static 

phase, before the remaining internal clock (cikU) rises. Thus the stop operation signal is 

generated on the falling edge of clk2 - figure 2.8 shows the logic design. As an input 
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signal is latched on clkl, the latch signal which is correspondingly raised is used to 

discharge a signal line whose value is subsequently clocked into a D-flipflop according to 

clk2. The value of this delay element can not be used directly as the start operation 

signal since this would cause clkB to begin to charge while cikA and clkH were still 

high; thus the signal is input, with clk2, into a NOR gate so that the resulting start 

operation signal is only raised when clk2 is lowered. This scheme implies that the 

memory rotation commences on the clock cycle following the initiating control signal. 

The read and write operations are performed by switching the data buses into the 

addressed memory word through pass transistors activated by a control signal gated with 

the word address line. Figures 2.9 and 2.10 show the read and write interfaces 

respectively. The control signal is sent by lowering the control line which is combined 

with the word address line through a NOR gate, and so only the currently addressed 

word is affected. The signal must be held throughout the operation, and this is achieved 

by driving the internal read or write control signal from an RS-flipflop which is set at 

the beginning of the operation and reset by the stop operation signal. Recall that the 

transfer of data from one cell to the next occurs on the clk2/B signal. The input data 

signal thus has from the beginning of elki to (nearly) the ending of clkB to become fully 

established. The output signal is not clocked on the chip and therefore has a full clock 

period to establish itself on the output bus, starting at clkB or at the setting of the RS-

flipflop after clkA on the first bit. 

The comparison operation is initialized through the mask data input, by the setting 

of an internal RS-flipflop - subsequent inputs represent the mask which is gated with 

cikS to form the clock signal for the comparison latch reset logic. The RS.flipflop is 

again reset by the stop operation signal. 
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The defined signal is taken from the write signal together with a non-cascading unit. 

Since the effect of the non-cascading unit occurs when the signal returns to high, the 

compliment of the internal write signal is used in making passive the empty tag of the 

currently addressed word. Thus the word remains addressed throughout the operation 

and becomes defined at the end, as is required. 

There is also an empty memory signal which ensures that the RS—flipflops are 

initialized appropriately, by sending the stop operation signal, and that all the empty tags 

are active. 

2.6 Resultant Structure 

This completes the basic design of the minimal CAM component and the remainder 

of the chapter considers some practical enhancements which render it a viable computing 

component. The basic design leads to a simple but powerful configuration (see figure 

2.11). On each word operation, all memory words rotate together. The details such as 

the number of tag groups and the memory word realization are independent from each 

other and so can be easily changed within the design. 

At each word the current bit is boosted and so available to the output bus and the 

word specific comparison logic. The comparison operation is effectively a conditioned 

reset in a tag group and this occurs by sequentially providing the comparand on the 

comparison bus and the mask data on the selected tag group(s). The word address line 

spans the addressing logic of each word and may be lowered by any of the tag groups, 

to gate the word addressed operations. Input and Output are achieved by listening to or 

breaking into the rotating bits on the addressed word. 
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2.7 Fault Tolerance 

The size of an Intergrated Circuit is a compromise between the designers desire to 

fit as much logic as possible onto a contiguous area of silicon and the manufactures 

inability to prevent defects. The system designer seeks to minimize the delay in 

propagating signals, which is smaller within an IC than between them. On the other 

hand, the manufacturer is constrained by the yield of his product: a circuit is defective if 

it overlaps with a defective region on the wafer and the probability of this occurring 

increases exponentially with the size of the circuit. 

2.7.1 Memory Defects 

Defects in the wafer are of two major types: regional and point defects. The former 

results from processing effects where either the variation of the functional parameters 

has gone beyond the tolerance limits, or there are misalignments due to shrinkage or 

expansion of the wafer during fabrication. These global effects can only be minimized 

by either improved fabrication techniques or by more tolerant layout design rules. 

Point defects are small localized faults which commonly are caused either by dust or 

other particles reaching the wafer or the lithography masks, or by isolated spikes or 

pinholes in the deposited films. These defects may be countered if the effected logic can 

be isolated from the operation of the IC. This is achieved in RAMs by incorporating 

redundancy[26]: extra word and bit lines are included into the design to replace lines 

which are found to be defective. The replacement of good for bad lines is achieved by 

blowing fuses in the addressing circuitry either by using lasers or by applying a high 

voltage across a high resistance. This post-manufacturing yield enhancement has made 

large RAM chips more feasible. 
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2.7.2 CAM Fault Tolerance 

The possibility of including fault tolerance into CAM has often been mentioned in 

the literature, but little has been written concerning actual implementation. In RAM the 

addressing logic has to be changed so that the entire address space corresponds to 

functioning memory; in CAM the problem is more simply to eliminate defective words. 

This may be done by making the words unaddressable. In the same way that an active 

empty tag renders the comparison tags unaddressable by a hardwired reset, the signal 

from a further latch can be used to make the address tags passive. 

The testing of a memory word is performed by checking that the word recalled is 

the same as the word stored. CAM already has the distributed logic for performing this 

test. If the same word is stored at every memory location and a comparison performed 

on the entire word, the comparison tag of each correctly recalled word will be active. 

Thus the value of the comparison latches may be used to set a latch which will eliminate 

defective words. 

The fault recording logic at each word is shown in figure 2.12: the corresponding 

word is eliminated when the line y is high. The input to the D.flipflop is taken from the 

setting of the tag in one of the comparison groups: high if the tag is active, and low if 

the tag is passive implying that the comparison had failed. When x is high, the word is 

addressable as normal since the output y of the NOR gate is low. When x becomes low, 

the D-flipflop retains the value of its current input and y is subsequently held at that 

value's compliment. 

The test pattern depends upon the realization of the memory. For shift registers it 

is sufficient to show that any sequence of bits with at least one 0 and one 1 can be stored 

and recalled. The test sequence is thus: 
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Figure 2.12: the fault tolerance logic 



raise x line 

empty memory 

address empty tag group 

while memory not full write pattern 

perform comparison pattern 

lower x line. 

Only correctly functioning shift register words will be addressable so long as the x line 

is maintained low. 

If the memory is realized using bit-sliced RAM cells, it is necessary to show that 

each cell can store and recall both 1 and 0. The test sequence is performed as above 

with an arbitrary pattern and then followed by: 

empty memory 

address empty tag group 

while memory not full write compliment of pattern 

perform comparison compliment of pattern 

raise line x 

lower line x. 

Words which failed the second comparison will be removed as the D-flipflop is 

"clocked" by the x line. Words which failed the first part of the test will remain 

unaddressable since their comparison tags will necessarily be passive at the end of the 

second comparison. 

This method of fault elimination has the advantage that it is effective against faults 

which develop after the component has been released by the manufacturer, it has the 

disadvantage that the test must be performed each time the component is powered up. 

However if the component is deemed to be fully functional, the test does not have to be 

performed when the component is used; an input may be tied to maintain the x line high 

and the component will operate as if there were no fault tolerance logic. 
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2.8 Look Ahead 

The main limitation on operating speed is the time delay associated with the purely 

sequential nature of daisy-chain addressing. The signal is delayed both by the pass 

transistors and by the necessary booster gates. The system using the component is 

delayed for the time it takes for the signal to pass completely around the chain, which is 

proportional to the number of words. To allow for system growth, there must be a 

mechanism for avoiding some of this delay. 

A simple circuit enhancement allows a lookahead signal which provides the output 

of the daisy-chain address signal without the inherent delay: it is high if and only if there 

are no active tags. The modification is to include a single metal line running parallel to 

the addressing line, which is pulled high by a depletion transistor unless pulled low by 

the output of one of the tags (see figure 2.13). Thus it can be determined if all the tags 

are passive without charging up the group addressing line. 

This enhancement is very significant in the context of the functional operation of 

the CAM. Any addressed operation on memory must be performed by charging the 

address line and proceeding if, and only if, there is a word addressed. With lookahead, 

this decision may be taken without the addressing delay which, therefore, does not affect 

cases where there are no active tags (no words addressed by the comparison). In cases 

where there are active tags, the delay is reduced since the addressing may be initiated 

while the lookahead output is being interrogated by the controlling processor. 
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2.9 Expansion 

The limitations on IC size necessitate that large CAMs are built from modules of 

small CAMs. This applies both to bread-boarding and to producing large ICs containing 

small units which may be isolated if defective. 

2.9.1 Monolithic 

The first approach is to combine several components in a series forming a single 

extended address bus by connecting the address outputs of each component to the 

corresponding inputs of the next. The address signal thus travels along the extended 

daisy-chain with the same organization as that of a single component, with more words 

than are practically possible due to the IC size constraints, but with additional off-chip 

delays. 

The disadvantages of this scheme are that lookahead (and the associated delay 

savings) involves two extra ports and a ripple delay, and that the addressing delay is 

directly proportional to the number of words in the monolith which could seriously 

impede the performance of large memory systems. 

2.9.2 Hierarchical 

A better approach can be designed with a hierarchical address bus by using the 

lookahead output to bypass subtrees with no active tags. The CAM has three categories 

of signals: 

• 	All but one type of input signals can be broadcast to the whole system. Those 

which affect all words can obviously be broadcast. Those which affect only the 

currently addressed word can also be broadcast since the signal is gated with the 
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word address line and the daisy-chain group addressing ensures that there is only 

one such word per group. 

• 	The group address signals follow a sequential path through the memory words. 

• 	The output from a memory word when it is read. 

The approach is to broadcast all the signals for which it is possible, use lookahead 

to minimize the actual path of the daisy-chain address signal, and to use the address 

signal to switch the output of a memory word along a path of the same minimized 

length. The logic for the addressing and switching is shown in figure 2.14. When the 

addressing signal reaches x, it enters the module. If the look ahead signal is high 

(implying that there are no active tags), the signal continues through the pass transistor 

without delay; if the lookahead is low, the address signal is stopped and the address line 

beyond the pass transistor is pulled low. The output switch uses the fact that output can 

only occur if there is a currently addressed word within the module, which would imply 

that x is high and y is low; otherwise the module is isolated from the output line. 

By including a lookahead line with this level of the addressing logic, it is possible 

to build modules of modules. Worst case delays are then a function of the sum of the 

path lengths for each level of the hierarchy, and not of the full size of memory. 

2.9.3 Bread Boarding 

The hierarchical approach may be applied to bread board assembly by designing a 

switching chip using the above logic. For each memory module attached to it, there are 

two pads for each group: address input and lookaheaci, a further pad for each 

comparison group: mask input, and one pad for the output signal. If any of these 

modules are unattached, the switch will continue to function correctly if the lookahead 
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Figure 2.14: the switching logic. 
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pad is tied high. The remaining pads on the switching chip form the address input, and 

data and lookahead output, of the resultant memory module which therefore has the 

same interface as its own submodules. Thus modules composed by a switching chip may 

themselves be connected into larger modules by the same switching chip design. 

2.9.4 Wafer Scale Integration 

Rather than bread boarding small packages, let us now consider the production of a 

large memory system on a contiguous wafer. The main advantages of wafer scale 

integration are the higher speeds, reliability and packing densities which are achieved by 

eliminating the need for packaging chip size components individually. The problem is 

that the defects arising in the manufacturing process limit the size of integrated circuits 

which could be produced with any reasonable yield. The solution is to design wafer 

scale components with small independent and testable sub-circuits which can be 

configured into a working system after testing. The configuration can be effected by 

either eliminating or establishing interconnections, by the use of lasers, fuses, further 

fabrication layers, or test and routing. 

A wafer scale CAM has been proposed using test and routing[27]. This scheme 

routes a signal path incrementally through the good components by testing each potential 

addition to the path through the "known to be good" signal path that is already 

established. The disadvantage is that the signal path establishes a monolithic expansion 

of the CAM component and hence a long address delay - let us consider a different 

approach which will allow us to retain the hierarchical expansion. 

Discretionary wiring dates from the late '60s. The technique is to test the 

components on a wafer and to use the results to define a further (unique) mask set for a 

final laier of metal to form appropriate interconnections between functioning units[28]. 
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This scheme is now more attractive due to the development of B-beam direct write on 

wafers, and higher reliability in the fabrication of the final layers. 

Content Addressable Memory in general is a suitable candidate for wafer scale 

integration because: 

• 	There is no critical dimension in producing a working component. A general 

wafer scale system must have at least one correctly functioning circuit for each 

of its sub-units, a RAM must have sufficient words to fill the full address space; 

a CAM functions with whatever logic it can. 

• 	The number of pins for the wafer is the same as for a single memory unit and 

does not follow the observed (so called "Rent's Law") relationship of increasing 

in proportion to the number of gates raised to the power of 0.6. 

The CAM design of this thesis is particularly suitable because: 

• 	Most signals are distributed on global buses, 

• 	The expansion logic produces a modular hierarchy to distribute the address line 

and switch the output bus. 

• 	The fault tolerance in the memory units allows the automatic isolation of 

defective words, and hence a larger practical size of sub-circuit. 

• 	The modular design allows for isolation of a defective sub-circuit. This is 

achieved by tying the look ahead output of that module to high during the 

testing. 
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• 	The only critical area is the control centre. 

The distribution network of signals (see figure 2.15) requires at least a process with 

two metal layers because of signal delays. Global signals are broadcast over the 

network, and the addressing and output signals are laid along the same paths. The 

actual decomposition of the modules depends upon the optimal numbers of modules to 

be included in each level of the hierarchy which in turn depends upon timing equations 

using the parameters of the chosen fabrication process. The control centre may be best 

placed at the actual centre of the wafer since this is the region least affected by regional 

processing defects. 

The elimination of defective submodules requires the testing and possible 

modification of the fabricated wafer. The functioning of each independent unit must be 

verified, and the lookahead input to each switch connected by discretionary wiring either 

to the lookahead output of its subtree (if the subtree is correct) or to logical high (if 

defective). The salient features are that the proposed wafer consists of several units (the 

CAMs and the switches) which can operate independently, and that a defective unit may 

be isolated by tying the lookahead nodes of its communication bus to the power rail. If 

the units where designed with a probe pad on either side of a break in each connection 

to the control bus (see, figure 2.16), an automatic tester could be used to verify each unit 

since they are each unconnected to the remainder of the circuits. If the unit functions 

correctly, the corresponding probe pads are connected by the further layer of metal; if 

the unit is defective, the lookahead inputs to the communications bus are connected to 

the power rail. The fabrication of this metal layer would require only a comparatively 

'course' process, since it need only cross a purely substrate terrain between the two 

probe pads, and there is no significant advantage in using narrow tracks. A similar 

verification and isolation could be performed at each level of the switching network. 
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Figure 2.15: the signal distribution logic 
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Figure 2.16: 2.16: a discretionary wiring scheme 
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2.9.5 Silicon Wafer Packaging 

While CAM is particularly suited, in comparison to other logic, to wafer scale 

integration there remain problems. The metal tracks of standard processçs have a 

significant RC delay and power consumption when laid over such a network; the testing 

and commissioning stage requires the production of an extra, unique mask for each 

wafer or a unique programming for E-beam direct writing. 

A middle, practical course is to produce the distribution network on an independent 

silicon wafer to which tested CAM units may be bonded. This allows the fabrication of 

the network using thick films for increased interconnection speed and low power 

consumption[291 without limiting the choice of technology for the memory units. The 

expansion logic is laid down with the network and the memory and control units are 

fabricated separately. Test structures may be included on the bonding wafer to check 

for regional defects at the bonding sites. The yield on the bonding wafer will be very 

high since there is very little active logic and the metal tracks have negligible sensitivity 

to point defects. 



Chapter 3 

PROTOTYPE REALIZATION 

To validate the design, it is necessary to fabricate some components and to 

determine whether or not they perform the functions for which they were designed. A 

1K bit component (16 x 64 bits: 4.53 x 3.56mm) of the basic design, and an 18 x 64 bit 

component (4.72 x 4.35mm) with lookahead and fault tolerance, were developed and 

fabricated on the Edinburgh 5pL poly-gate NMOS process. Plates 1 and 2 show the basic 

and enhanced components respectively, and plate 3 shows a portion of the basic 

component at the interface between three shift register words and their I/O and 

comparison tag logic. Twenty six basic components and six enhanced components were 

packaged and tested - this chapter details the methods used in the design and testing of 

these components, and the results obtained. 

S 

3.1 Computer Aided Design and Testing 

This section details the design and testing strategies which have evolved during the 

course of the prototype CAM's development. It high-lights the features of the Computer 

Aided Design tools which assisted most in the chip development, and describes the 

software which was developed to demonstrate and test the fabricated components. 
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Plate]: the basic component: 16 words of 64 bits, 4.53 x 3.65mm in a 5 x 5mm frame. 
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Plate 2: the enhanced component: 18 words of 64 bits, 4.72 x 4.35mm in a 5 x 5mm 

frame. 
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i11PT.fl1, 

Plate 3: detail of basic component showing a portion of three horizantal words. In 

each, from left to right, can be seen a non-cascading unit, a latch, the addressing logic, 

the comparison logic, the I/O interface, and part of the shift register memory word. 



3.1.1 Design Strategies 

The Computer Aided Design tools used were due to the University of California, 

Berkeley[30] and enhanced by the consortium of the University of Washington and five 

Northwest companies (UWINW VLSI Consortium) [3 1]. These include Caesar (a mask 

level VLSI layout system), Lyra (a layout rule checker), Mextra (circuit extractor), 

Esim (a switch level simulator), Pspice (a translator to spice format) and PLAP (a 

Pascal based layout programme). These were run on a SYSTIME 8750. The spice 

simulations were run on an HP 9000 series 540 computer, with colour graphics facilities, 

using the HPSPICE programme[32}. 

The design technique was to construct and test leaf cells which were combined into 

a full component using a PLAP programme. Each leaf cell was first designed in the 

Caesar editor, with the layout rules checked by Lyra and output in CIF. From this 

description, a circuit is extracted using Mextra and further converted to a spice file using 

Pspice. If the circuit does not contain floating (dynamic) nodes the switch level 

simulation allows for interactive verification, and for all circuits the spice simulation 

provides detailed circuit analysis including timing estimates. This environment lead to 

the easy assessment of different circuit and layout techniques, and also to cell design 

verification. 

The use of PLAP to assemble a component allows for the easy modification of a 

large silicon layout: thus if a cell were altered, the full component could usually be 

regenerated with a single parameter change in the PLAP programme. Additionally, 

component parameters such as number of bits, and number of words, could similarly be 

altered. It was practical to run a spice simulation, in about 15 hours, on a full 

component with only one memory cell, and through the Pascal programme construction 

this served to validate the full sized memory. In the event, this procedure served to trap 
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wiring bugs in the Pascal programme, which the switch level simulator failed to do 

because of the dynamic nodes. The ease with which the component could be modified 

was particularly useful when incorporating the fault tolerance, which was achieved by 

modifying one cell at leaf level, changing a few programme parameters, and by 

correcting mis-alignments to adjacent cells directly by entering Caesar with the full, 

FLAP generated, component. 

3.1.2 Test Strategies 

Testing was performed with the aid of a Tektronix DAS 9100 and the 91DVV 

software package[33]. The DAS is a Digital Analysis System which allows for the 

generation of test patterns and the monitoring of the resultant output signals. It 

incorporates a console by which the test data may be entered by hand, but this is a 

lengthy and error prone occupation, especially for the testing of bit serial devices. Thus, 

the makers have released a software suite which translates a computer file into a binary 

instruction packet which can then be transmitted to the DAS. The format of this file 

(DasPat) is similarly cumbersome to generate by hand, but it can be generated by 

computer software. 

The technique used was to test the chip functionally by generating patterns through 

C programme subroutines corresponding to the different operations of the component. 

Each subroutine produces the relevant test pattern in the DasPat format ready to be 

translated and transmitted to the DAS. At this stage, the simulation can be run and the 

output analysed on the DAS itself. 

This approach was developed into a full "bread-board simulator" by making the 

subroutines accessible through an interactive interpretor and including a software 

analyser for the output patterns. By using a Lexical Analyser: Lex[34], and a "read- 
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command" loop, it is possible to input a command at the computer terminal, reply to 

questions concerning the values of the relevant parameters, and have any resulting 

output displayed. The Interpretor calls the relevant subroutine to generate the DasPat 

file, converts it to binary, transmits the binary file, sends the "start simulation" 

command, retrieves the resultant data file, extracts the relevant information and outputs 

it at the terminal. The information extracted is the condition of all the group output 

lines, and the value of the output data line on a read. The subroutines themselves use 

this information to trap "run time" errors such as trying to direct a word when none are 

addressed. The complete delay in response time (mostly due to I/O) is typically about 45 

seconds. 

3.2 Test criteria 

Testing was performed by exercising the various functions of the component. The 

only output signals from the component are the three tag group address output lines and 

the data output line. Thus the testing of the component had to be performed from 

inferences gained from these. 

3.2.1 Sub-criteria 

For the memory to be deemed functionally correct, each word must be shown to 

perform its operations correctly. Each word consists of a shift register, I/O switches, 

comparison logic, two comparison tags and the empty tag. The sub-criteria are based 

upon the fact that if the sub-operations A and B are necessary in the performance of C, 

then the observation of C implies the occurrence of A and B. Thus to test the 

component, it is sufficient to test on each word the performance of a set of operations 

which depend upon (or cover) the performance of each of its functional parts. 
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If a (non-trivial) data word is written to a memory word and then recalled, then that 

shift register is verified since a break in the shift register would cause the output value 

to be stuck at one or zero. Also the I/O switches of that word must be functioning 

correctly. 

If a tag can be used to address a word for any one of the addressed operations, then it is 

verified with respect to all of them since the switching of the control and data signals 

depends upon the tag's ability to lower the word address line which is independent of 

the specific operation. 

For both of the comparison tags, both the overall comparison logic and the next function 

must be exercised. The comparison logic must be tested by ensuring that the tag 

remains active over unmasked bits and over a masked match, and is made passive 

following a masked mismatch or remains passive if the empty tag is active. For instance, 

if ABC is stored, the mask 010 and comparand ABE should succeed in addressing the 

word, and the comparand ACC with the same mask should fail. The effect of an active 

empty tag may be verified by addressing an 'emptied' memory with a null mask: the 

comparison tag is then made passive only as a result of the corresponding empty tag 

being active. 

The next function can be validated by testing whether the address signal has been 

advanced. This can be done either by counting the number of times the operation is 

performed after an unmasked comparison before the output address line is raised by the 

input address signal, or by writing distinct words to memory and following the location 

of the currently addressed word by reading its contents. 

For the empty tag group, there are three functions (1) the initialization, (2) becoming 

passive after a write, (3) the addressed remove operation. By initializing the component, 

and being able to write 16 (and only 16) words to memory, both 1 and 2 are verified; 



remove can be verified following a comparison in the same way as next. 

3.2.2 An example 

The following is an example of a test sequence whose success would validate the 

basic component: 

1 	Empty Memory 

2 	Write the words (qwertyx, qweptyx: x = 1,8) - if the output signal from the 

empty tag address line rises after the 16th word has been written then the first 

two functions of the empty tag group have been validated. 

3 	Compare on one tag group using the comparand qwertyU and the mask 1011110 

- the output address line should no longer follow the input address signal. 

4 	Address memory using that comparison group and read the addressed word; 

then perform next, read and repeat until the address output signal is raised: if 

the output data is (qwertyx: x = 1,8) then half the shift registers are validated, 

half that comparison group's tags have verified next and matching comparison 

logic, and the other half of the comparison tags have their mismatching 

comparison operation verified. 

5 	Repeat 3-4 with the comparand set to qweptyO and success implies the validation 

of the other halves of the comparison tags logic. 

6 	Repeat 2-5 with the other comparison tag group. 



7 	Perform a comparison using either tag group with a blank mask word so that all 

the words are addressed. Then use the remove command on each word in turn. If 

the output address line rises after the 16th operation, then remove has been 

verified for each memory word. 

8 	On both comparison groups, perform an unmasked comparison to verify that the 

(now active) empty tags prevent the comparison tags from becoming active. 

3.2.3 Criteria for enhanced component 

The enhanced component has two major differences from the basic design: (1) the 

output address lines are replaced by lookahead lines, (2) the fault tolerant latches have 

been included. 

With fault tolerance switched off, the component can be tested in the same way as 

the basic component except that defective words do not constitute a fatal error. To test 

the fault tolerance it is merely necessary to show that a mismatch recorded on 

comparison group one will make the corresponding word unaddressable. This may be. 

done by writing to the whole of memory and then ensuring that a mismatch occurs at 

each word; if the fault tolerance is then switched on, the whole of memory should be 

unaddressable even after an empty memory operation or an unmasked comparison. An 

individual component is verified if it can satisfy the criteria for a basic component after 

the test sequence (described in chapter 2) to eliminate defective words. 
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3.3 Actual testing 

The test patterns were generated by the computer aided test environment described 

above. Some commonly used command sequences were made automatic. With the basic 

component, each input address line was raised at the end of each operation to determine 

whether any of the tags in their respective groups were active; this was unnecessary with 

the enhanced component because of the lookahead facility. 

3.3.1 Initial elimination 

In most cases the components were found to have fatal (probably regional) defects 

which prevented any word being recalled. To avoid the delay inherent in the 

Interpretor/DAS interface, a single test pattern was devised to determine whether the 

first word could store and recall a data word. The pattern relies upon the facts that: 

• 	a read and a write operation may be performed simultaneously on the same 

currently addressed word, 

• 	an empty memory operation does not affect the contents of the shift register 

memory words 

• 	by making all the empty tags active, empty memory ensures that the first word in 

memory will be currently addressed when using the empty tag group on the next 

addressed operation 

The pattern performed an empty memory followed by a simultaneous write and read with 

a non-trivial data word. Once loaded into the DAS, the test pattern can be generated at 

the touch of a button. On the first occasion after power up, the data output line remains 

constant since the initial contents of the shift register cells all fall to the same value. 
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However, when the button is pressed a second time, the shift register is again addressed 

and should output the value of the previous write 

The basic component: With the basic component, failure of this test implies that at 

least the •first word is defective (although the defect is probably more general). Since 

there is no fault tolerance, this alone is sufficient to reject the component. Out of the 26 

basic components tested, 19 failed to output the test word. A further component was 

also rejected since the out] and out2 signals failed to follow the corresponding input 

address signals after the empty memory operation. 

The enhanced component: With the enhanced component, failure does not imply the 

rejection of the whole component since if the fault lies in the memory word itself, then 

the fault tolerance mechanism could remove it. However, of the 6 components, 5 failed 

this test, and were rejected after further testing showed that no words could be written 

and recalled on an unmasked comparison. 

3.3.2 Testing the basic c2nhJi2aJn 

Of the remaining six basic components, only one was found to be good; for the 

remainder, the testing sought to establish the exact limitations of the device. The main 

technique was to write sixteen distinct words to memory, to address them using an 

unmasked comparison, and to read them out if possible. 

Two basic errors could be found associated with any single word: either it output a 

constant value (implying either a fault in the I/O mechanism or, more likely, a break in 

the shift register), or it was unaddressable (implying a fault in either the comparison or 

in the tag logic). The actual results for four of the chips were: 12 unaddressable, 1 

constant; 2 unaddressable, 1 constant; 2 constant; and 1 constant. 
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The errors in the remaining faulty chip lie in the address logic. There are two fatal 

errors: the output signal of the first comparison group rises to high, irrespective of its 

input, while the twelfth word is being written; and the address signal in the second 

comparison group can not progress beyond the thirteenth word after an unmasked 

comparison, presumably due to a defective non-cascading unit. 

Although it would be possible to claim verification of the design from the observed 

behaviour of these defective components, it is more pleasing to be able to report the 

validity of the single remaining component. This was tested using the instruction 

sequence described above, and the results implied that the chip was indeed defect free 

and that it performs the desired functions. 

3.3.3 Testing the enhanced component 

The remaining enhanced component proved to be defective not only in the memory 

words (which is correctable), but also in the second address line which can not address 

any words beyond the first two. However, the main objective in the testing was to 

verify the features by which the component differed from the basic design. Hence it was 

sufficient to use the first address line to test whether the defective words could be 

eliminated. - 

In fact, the component had two defective words (the 3rd and 8th) which was 

ascertained by writing 18 distinct words to memory and recalling them with an 

unmasked comparison. A masked comparison was then performed which should have 

matched all the input words, and the fault tolerance invoked. The resulting configuration 

was tested as far as possible using the one address line and found to function correctly 

as a sixteen (18 - 2) word CAM - thus the fault tolerance logic had successfully 

eliminated the defective words. The lookahead circuitry was also seen to be correct 
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during this testing. 

3.3.4 Timing and electrical results 

The components are run with a 5V source and a —2.5V back bias; the current 

drawn was 0.06 amps implying a power dissipation of 0.3 watts. 

The necessary clock period was found to be surprisingly large and considerable 

effort was spent in seeking the relevant factors. The signal distribution on chip is such 

that all paths consist of metal runs with short polysilicon branches, thus it had been 

hoped that the component would  be reasonably fast. 

To isolate one timing event for a comparison between the actual and the expected 

values, there was an investigation of the width of clkl which was necessary to ensure 

that an input signal was latched by the corresponding D-flipflop. This was easily 

performed using the basic components by raising the address signals after an empty 

memory operation and observing whether or not a signal emerged on the output. Thus 

we are considering the ciki input signal which is boosted by a super-buffer along a metal 

run to clock a D-flipflop. A Spice simulation using a full extraction of the flipflop and 

the super-buffer, with (double the) worst case estimate of the RC component for the 

intermediate path, revealed that an input elki pulse of 50ns was sufficient. Tests with 

the six basic components which passed the initial elimination produced the values (in 

nano-seconds) 80, 240, 280, 280, 400 and 560; that of the fully functional component 

being 280ns. Thus the typical component is about six times slower than pessimistic 

expectations. It was interesting to note that the address propagation delay was usually 

within 20ns of the minimum ciki width; this implies that the delay in a 16 word address 

is no longer than the necessary input clock width. 
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Further experiments with the second chip producing the value 280ns were 

performed to establish the minimum clock widths necessary to initiate a full word 

rotation. The 'initial elimination' test pattern was used and the clock widths reduced 

independently until the output word deteriorated. The results were 640ns for clkl and 

680ns for clkZ. 

With these figures for the minimum widths of the pulses for the two phase clock, it 

was impossible to drive the component at the expected frequencies. Note, however, that 

if these values were reduced by a factor of three (half that suggested by the Spice above) 

then the component would be operating at a frequency of above 1MHz. As part of the 

manufacturing process, tests are performed by the Edinburgh Microfabrication Facility 

on a ring oscillator situated in a test strip on each component. Conversation with that 

department revealed that the results for the two wafers produced for the basic 

component were in fact considerably slower than usual. 

3.4 DAS output 

Figures 3.1-8 present a series of DAS displays which portray valid responses for 

the basic component; these are examples rather than a complete proof of the components 

correctness. The DAS display used here contains the twelve input lines and the four 

output lines. The labels correspond to operations on the CAM as explained elsevhere, 

except that zero is another name for the remove operation. The plots are formatted as a 

single operation followed by raising the address lines to determine whether any tags are 

active in the corresponding groups. 
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Figure 3.1: The emem signal initializes the chip by setting all of the tags in the empty 

tag group and by establishing the correct internal state. Note that the invalid out2 setting 

is corrected. 
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Figure 3.2: By addressing the empty tag group and initiating a write operation, a data 

word may be entered into memory. 
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Figure 3.3: The same data work is used in a masked comparison, on tag group 1, and a 

successful matching is indicated by the fact that out] no longer follows addl. 
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Figure 3.4: The matching word in memory is output by addressing comparison group 1 

and initiating the read operation. 
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Figure 3.7: If the memory becomes full, the oute signal follows the adde input after the 

end of the write operation to the final free location. 
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Figure 3.8: This display shows the signals associated with the initial elimination test 

pattern. 



Chapter 4 

COMPONENT CHARACTERISTICS 

This chapter describes the characteristics of the CAM component and shows that 

they can be usefully developed both by software abstraction and by including the 

component in hardware systems. 

4.1 CAM Hardware Operations 

The characterization of the component is expressed in terms of the operations which 

it can perform. We consider the simple operations which correspond to the original 

abstraction specification, and then some useful effects which arose out of the actual 

design. Finally, we consider the component in terms of its limitations. 

Firstly, consider the component in terms of its pads. These consist of two data input 

pads: the memory word input, and the comparand; and eleven control pads: three 

address lines, read, write, two compare/mask lines, two next lines, remove, and empty 

memory. Their function is related to the storage and retrieval of words, and the 

direction of the addressing mechanism. 

CAM operations can be described according to two dichotomies: word-length and 

immediate, addressed and non-addressed. Let n be the number of bits in a CAM word. 



• 	Word-length operations involve the rotation of each memory word and so 

continue for n+1 clock cycles. 

• 	Immediate operations are effective when a signal is applied for at least one clock 

cycle and then removed (this is the non-cascading unit described in chapter 2). 

The delay before a subsequent addressed operation depends upon the worst case 

delay of the addressing signal through the memory hierarchy. 

• 	Addressed operations affect only the single word which is selected according to 

the tag setting in the addressed tag group. Normally only one tag group is 

addressed. 

• 	Non-addressed operations affect every word in memory. 

A word may be addressed either as a free memory location or as the result of a 

comparison operation. The set, of free memory locations is maintained by the hardware; 

the whole of memory is placed into this set by an immediate operation: empty_memory. 

Comparison is a non-addressed, word-length operation, initiated by raising one of 

the two comparison control lines (one for each comparison group) for one clock cycle. 

On each of the n-subsequent cycles the mask bit is entered on the same control line, and 

the corresponding comparand bit is entered on the comparand data line. 

Words which match the masked comparison are addressed one at a time. The 

relevant group's address line is raised and the first matched word on the daisy-chain is 

addressed and will respond to any addressed operation. If either a next or a remove 

operation is performed, that word is no longer addressed and the next matched word on 

the daisy-chain becomes addressed. There is no possibility of returning to the first word 

without performing the comparison again - each matching word may be addressed, 

manipulated, and then passed by. Next is an addressed, immediate operation which 



allows the next word in the daisy-chain to be addressed; remove has the additional effect 

of returning the currently addressed word to the group of free memory locations. 

When all words in a group have been passed by, a signal is output. Thus the result 

of the operation "some-or-none matches to a comparison" is available directly after the 

comparison is performed. The number (x) of matches may be simply obtained by 

repeated next operations while incrementing a counter, in 0(x) time. The corresponding 

signal from the empty group indicates when the CAM is full. 

Both read and write are addressed, word-length operations. The whole word is 

read or written - this implies that a partial update of an addressed word must generally 

be implemented as: the word is completely read into a separate register, the relevant 

section altered, and the whole register is then written back into memory.. This detail 

should certainly be hidden from the high level language programmer. 

4.1.2 Developed Operations 

This section examines some 'clever' effects which rely on particular features in the 

final design. Firstly, the data input, comparand input and data output lines are all 

independent which allows the combinations of some word-length operations. Secondly, 

once a word-length operation is started, it will continue for the n clock cycles even if 

other operations start during that time, thus a second operation may be interleaved with 

the latter portion of a word-length operation - but both operations terminate - at the 

end of the first. 

A Unique Write function is possible and potentially useful. If a write operation is 

performed to a free location and a comparison is performed with the same data, any 

matching words may be eliminated by repeated remove operations until the group's 

output signal specifies no further match. This is possible since the memory location to 



which the new word is being written does not take part in the comparison. In general 

this function imposes an undetermined delay following each unique write operation 

since it depends upon the number of such words already in memory. However, if all 

write operations are performed uniquely this overhead will be at most one clock cycle. 

Uniqueness may be defined according to any subset of bits by selection of the mask 

values. 

A read and a write operation on the same memory word may be combined. This 

function depends upon the shift register implementation of memory and the 

independence of the internal input and output buses. If a write is initiated during a read 

operation, the latter portion of the word is over-written. If the write is initiated at the 

beginning of the word cycle, the written word effectively replaces the read word in 

memory. If the computation involves alternating between destructive read and write 

operations, this technique would halve the time spent in performing these data transfers. 

One potential bug is that a word waiting to be written to memory would not take part in 

a comparison performed before the next read; this error could be avoided by either 

flushing the buffer into memory before a comparison, or by including a single word 

hardware comparator into the system design. This function could be readily used to 

advantage by a compiler optimizing code which iterates through the words addressed by 

a comparison. 

Similarly a comparison may be combined with either a read or a write operation. 

With a read operation the word must be addressed by the tag group not involved in the 

comparison; and with the write operation, the written word does not take part in the 

comparison. Two comparisons may also occur during the same word cycle with the same 

comparand but possibly different masks. 



In is also possible to remove from a comparison group those words which form part 

of the other comparison group by addressing through the second whilst applying next to 

the first. This would implement a type of subtraction operation. However, this function 

is verging on the idiosyncratic and so would be unsuitable for representation in a high 

level language. 

4.1.3 Limitations 

This thesis is concerned with the characteristics of the device and the development 

of a programming environment which affords the user direct access to the advantages of 

the underlying hardware. Thus we ignore software emulation of a virtual CAM with 

enhanced features so as to concentrate on the direct matching of the hardware to high 

level languages. This does not preclude the realization of other software abstractions 

through compiler action but we will consider only the actual CAM and its 

characteristics. 

A system limitation is the number of words in its CAM. If the memory becomes 

full, there is no trivial software solution. This is reminiscent of the problems of RAM 

memory before the introduction of the virtual address space and this problem has 

recently re-emerged in some modern micros. It is not peculiar to CAM, but RAM users 

have become used to ignoring it. The swapping schemes of RAM virtual memory 

systems have no counterpart in CAM because they rely implicitly on contextual 

adjacency in RAM addressing. This is the observed phenomenon that in RAM 

successive address requests commonly correspond to physically close memory locations 

- this allows the block transfer of data with reasonable certainty that subsequent 

addresses will also be resolvable within that block (this assumption is actually becoming 

less valid in the newer' programming languages); in CAM this assumption is 

groundless. On each address the whole of a virtual memory space must be searched; no 
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indication of the physical location of the next address can be found in the current 

address; the CAM is limited to its hardware size. 

There are two parametel3 which are fixed at design time: the number of tag groups, 

and the length of the memory word. The number of tag groups is a design decision 

which must be based upon expected system usage. If the user can not solve the problem 

in the number of groups provided then a new component must be obtained. A limited 

solution is to provide a simple read of a group by placing the relevant fields on a 

software stack so that the comparison group may be used again when this information is 

processed. 

The length of the memory word can not be suitably increased by software. There 

are many schemes for this, which essentially involve the increase in word size by 

extensions to multiple words associated by a common identifier and/or an extension 

counter. However, this involves complicated software support which does not emulate 

the advantages of the hardware word size. Let us consider an example: let the address 

field be in word extension -1 and the required data be in word extension 2. Upon 

comparison, all the address words are extension] words which have no physical 

relationship to the other extensions of the same virtual word. To access the required 

data, each addressed word must be read in turn and the identifier used to address each 

required word individually. This requires unique virtual word identifiers, indirection in 

addressing, and an address comparison per word. The difficulties increase if the address 

fields span two word extensions since the addressing requires the union of the 

responding identifiers of two separate comparisons. The virtual word is cumbersome. 

The lack of order in the CAM model is not reflected in the thesis design because of 

the daisy-chain address path. This defines an order of addressing which may be 

exploited by low level programming. For instance, if data is stored in successive 



operations, then it will be retrieved in the same order. TI these entries are unmoved and 

only updated in situ, then the order is unchanged. However, the full operation set of the 

CAM limit the assumptions which can be made about this order. A new entry may not 

be added since a memory location before the other entries may have been freed (by the 

remove command) in which case the new entry will become the first rather than the last. 

In effect, the daisy-chain order may be safely used only in limited circumstances. 

Finally, there is a logical difficulty in the CAM design. The tag groups are not 

independent in that it is possible to address the same word according to a different 

comparison and since it is possible to update (or indeed remove) an addressed location, 

the outcome of the computation may depend upon which tag group is used to address the 

common location first. This produces an element of non-detrminism, and potential 

side-effects, which may undermind some attempts at programme proof theory and which 

may present pitfalls for the programmer. These are no more serious than the side-effect 

problems encountered in conventional programming, but it does make multi—tag CAMs 

less elegant than might have been hoped. 

4.2 A Software Development 

We now consider an example of a software abstraction realized by the selective 

manipulation of the comparand and mask values, using techniques first described at 

length by Falkolf[22]. 

The algorithms apply to cases where an order relation is defined on a memory field 

by interpreting its bits as a non-negative binary number. The idea is to use the 

comparand and mask values to progressively address smaller subsets of the numbers in 

memory by partitioning the binary tree inherent in their representation. An alternative 

perspective is that of tree walking on the binary tree with the branch chosen as the result 
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of a comparison operation to test for the existence of members in a sub-tree. The words 

can be accessed according to maximum, minimum, , s, <, >, nearest value 

less/greater than, and as an ordered sort. 

As an example, consider the following algorithm which produces all words in the 

CAM greater than a reference value M (say 110101). 

1 	Working from the most to the least significant bit of M, consider the first 0 to 

be the 'current' bit (that is 11C101). 

2 	The bits to the right of the current bit are masked off, the 'current' bit in the 

comparand set to 1 and the comparison is performed (on lllxxx) 

3 	Read out all responding words. 

4 	If there are no more zeros after the 'current' bit, terminate the algorithm; else, 

reset the 'current' bit to 0 in the comparand, consider the next zero to be the 

current bit and return to 2 (that is 11O1C1 on second iteration). 

The timing is thus one word cycle and one immediate operation to access each required 

word, and an overhead of a comparison operations where a is equal to the number of 

zeros in M (which is no greater than the number of bits needed to represent M). 

To describe how an ordered sort is achieved on CAM, we will describe two sub-

algorithms in terms of their tree walking paths. 

[A] Mask out trailing zeros in comparand and change the least significant 1 to a 0. 

Repeated application of this will address progressively latger subtrees, whose members 

are all less than the previous iteration, and therefore less than the initial comparand. 
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[B] Unmask the most significant masked position and set the corresponding 

comparand bit to 1. Perform comparison. If the addressed subtree is empty, set 

the comparand bit to 0. Repeat until the last bit in the word is finally set. 

Given a non-empty subtree (defined by the value of the most significant bits), [B] finds 

the maximum by a decision on each of the lower branch nodes where, at each stage, the 

branch containing the larger values is tried and followed if it is non-empty. Hit is 

empty, the other branch must be non-empty and so it is followed. 

The sort algorithm determines values by repeated application of [B] to the first 

non-empty subtree found by [A] applied to the previous value, starting with the 

maximum possible. If there are N words of to bits in memory, then the sort can be 

performed in O(Nm) since each value may be found in no more steps than walking from 

a tree leaf, to the root, and back to another leaf, and there are N such walks. 

The best known associative sort technique requires more complicated hardware[35] 

but is worth explaining. The enhancement requires immediate knowledge of the common 

value or disagreement of each bit column in the set of responding words. With this 

information, each search can partition the current set of words into two disjoint non-

empty subsets by dividing it according to the most significant bit column where there is 

a disagreement. Thus exactly (2N - 1) searches are required to address each word 

separately and in order. The additional hardware prevents redundant searches, and 

removes the timing dependency on the number of bits. 
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4.3 System Design 

A large CAM, available to system designers, would have the potential to affect and 

effect innovative architectural and linguistic design. In this section we consider a few 

examples of how the CAM component may be utilized in specific architectures. We deal 

here with applications for CAMs in general, and in some cases the nitty-gritty of 

applying the component of this thesis in particular. 

4.3.1 Direct Execution Architecture 

One proposal for the direct implementation of high level languages is the Direct 

Execution Architecture[36]. This is essentially a hardware interpretor which uses two 

CAMs as fast lookup tables: one to translate symbolic names into RAM location 

numbers, and the other to track jump entry points for programme flow: the CAMs 

provide the data structure support for what is essentially runtime compilation. The 

reported advantages are: interactive programming and debugging, architectural 

definition of programming language, and the measurement of language complexity. 

4.3.2 Relational Data Bases 

The use of a theoretical CAM has been considered at length as a basis for a 

relational data base machine[371. This was a direct implementation of a Relational data 

base with the limitations of a fixed word-length, and the implementation of the function 

join only according to equality rather than the full set of relational operators. The 

conclusions were that "the architecture permits an O(log n) decrease in time complexity 

over the best known evaluation methods on a conventional computer system'. 
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4.3.3 Multi-user Access 

Can the CAM serve as a multi-user memory store? As a directly addressable 

component the answer is "no', since there must be some synchronization of the 

processors with respect to the word cycle, and multiple I/O, even with dedicated tag 

groups, would produce contention on the If 0 buses. These problems are unlike those 

encountered with multi-user RAMs because such systems generally incorporate a 

memory hierarchy with local processor caches, and thus the difficulty is to maintain the 

integrity of the multiple copies from a single memory address. 

However, if CAM access requests were processed by a dedicated memory handler, 

the concurrent operations of the CAM may be used to good effect. The efficiency of 

such a scheme would depend upon the number of processors and the frequency of 

memory requests: specifically if the rate of requests exceeds the rate of the handler's 

mean response time, the processors will become queue bound and the CAM will be the 

limiting factor in the system's performance. Thus the multi-user CAM could not serve 

as the main store for many processors. However it could be used as a system's global 

memory where the processors access this component at a rate lower than the critical 

value (although the propensity of the system for glitches in global memory access would 

have to be carefully assessed). 

4.3.4 New Programming Languages 

The disdain felt towards conventional programming languages is exemplified by the 

words of John Backus who has described them as "obese", and "fat and flabby"[381. 

The major criticism is the lack of mathematics or logic in either their design, or their 

usage. Thus, much current research seeks to develop new programming languages upon 

secure mathematical systems, hoping to provide ease of language specification, clarity of 
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programming, and programme verification. The major problem with these languages is 

the difficulty in their implementation on conventional computers; but it is only through 

the provision of viable and efficient programming environments that new, well founded, 

programming languages will be accepted. 

One such system is that of "axiomatic set theory" - whose elegance stems from the 

ease of its total development from a small number of formal primatives[39}. A 

restricted form of sets (sets of ordered pairs) leads to relational theory[40]. A relation 

is defined as a set of pairs interpreted as the mapping from the domain element to the 

range element. In CAM this could be implemented in the data structure: 

relation id I domain —element I range —element 

and the computation is driven by matching the first two fields to derive the third. Such 

a language, for instance, is projected for the reduction machine Alice[41,42]: the 

Applicative Language Idealized Computing Engine, designed around the INMOS 

Transputer. 

Let us consider the use of the thesis CAM in this system. The idea is to replace the 

transputer maintained relational language data base directly by a CAM. The 

computation is directed by matching function and argument fields, and reading the 

associated result. Each CAM is dedicated to a single processor which executes one 

packet at a time. In deterministic computation there should be only one match, which 

implies that input to memory should be conducted through the unique write form, 

possibly with an error signal emanating if a match is found. If the data is organized as: 

comparison —field I result—field 

the comparison and read of the records may be performed in one word cycle by 

initiating the read operation at the penultimate bit of the comparison_field during the 

comparison operation. There is some fine tuning of this scheme with regard to the 
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possible address propagation delay at the completion of the comparison - but it is a 

possible optimization. The significant feature is that the CAM represents the data in the 

same form as the mathematical specification without the need for any other supporting 

data structures or operations. 

4.3.5 Token Matching in Data Flow 

Data flow is a technique for decomposing a computation into its individual 

operations and the paths by which data flows between them. An operation can only be 

executed when its arguments have all been computed and assembled into an executable 

package. In one example, the Manchester Prototype Data Flow machine[43,44], the 

arguments destined for common operation nodes are matched through hash table search 

implemented concurrently on 16 breadboards with microprocessor control of auxiliary 

memory for overflow on collisions. A large CAM would perform the matching; the data 

flow system could be supported by a store for 10-100K argument packets[45] - which is 

a plausible outcome of the proposals in chapter 2. 

With the Manchester machine, there is a dedicated queue handling processor which 

seeks a match according to a packe(s destination field over the packets already in 

memory. If a match is found, the associated argument must be read; if not, the packet is 

itself written into memory. An extension to the scheme used with Alice is impossible 

because of this conditional write. However, the same saving may be obtained by 

interleaving the comparison with the read or write of the previous packet using a 

different tag group. 

Let us follow this technique through in detail. Assume that the data is arranged in 

memory in the same format as in Alice above, and consider the progress of one packet 

through the handler when comparison line one is available. 



I 	The comparison, masked over the destination field, is performed on line one. 

2 	After the destination field has been input and compared (and while the word 

cycle continues), tag group one is addressed to ascertain whether there is a 

match. 

3 	If there is no match, the empty tag group is addressed and the packet write is 

initiated at the beginning of the next word cycle. 

4 	If there is a match, the read operation is initiated during the next word cycle 

with group one addressed, and the output becomes significant after the 

destination field of the next packet has been input. On the last bit of the word 

cycle the remove signal is sent - which acts at the beginning of the following 

clock cycle. 

The actions 1 and 2 can be interleaved with either 3 or 4 on the other address line, and 

so allowing the concurrent processing of two, staggered, packets. As explained before, a 

packet waiting to be written must be compared externally with the next packet. If a 

match is detected then the write should be prevented or corrected. 

4.4 Assocjons 

Let us consider in detail one example of a well founded programming language to 

exemplify the influence a CAM computing system could have on the future of 

programming languages. Associons is a programming notation with tuples instead of 

variables developed by Martin Rem[46,47,48], with an emphasis on concurrent 

application. The memory was assumed to be content-addressable, all entities are 

considered to be names, and each word denotes a relationship between names: 
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"associons are ordered n-tuples of names". 

An n-tuple is written in the form: (a, x, y), and the same format with square 

brackets denotes a presence condition for a corresponding associon. It is assumed that 

no more than one instance of any associon exists in memory. A programme progresses 

by constructing new associons according to the presence or absence of others. These are 

specified by presence conditions, punctuated with logical operators ('and', 'or', and 

'not'), and a list of unknowns, thus: 

x, y: [a, x, 3'] := > (r, x, y) 

means "for all x and y such that there exists an associon (a, x, y), create the (target) 

associon (r, x, y)". Each unknown must appear in at least one presence condition in 

each term to ensure that the number of target associons generated is finite. This format 

is referred to as a "closure" statement. The execution of a closure statement continues 

until the target associon is formed for all possible variables satisfying the presence 

conditions. A closure statement is said to be "cascading' if the target associon will 

match one of the positive presence conditions, thus: 

x, y, z: [r, x, y] & [r, y,  z] :=> (r, x, z) 

It turns out that if the target associon matches a negative presence condition, then the 

computation is non-determinate - therefore such closure statements are disallowed. 

The language contains the concept of local associons, where the format is described 

at the beginning of a programme block. As an example of the expressive power of this 

notation, consider the following programme: 



local (r, 7, 7) 

x, y: [a, x, y] :=> (r, x, y) 

x, y, z: [r, x, yl&[r, y, z] :=> (r,x,y) 

x: [r, x, x] := > (c) 

end—local 

which determines whether or not a graph is cyclic, with its edges specified by the set 

(a, tail_node, head node). 

The closure statement is then the basic statement which changes the sets of 

associons, and so also the "state' of a computation. It is based upon a mathematical 

formulation of "closure" whose definition is the smallest (provably unique and finite) set 

of associons which satisfy certain conditions relating it to the original set of associons 

with respect to a condition-generator pair. The closure statement is well founded in 

mathematics, as are computations whose state is directed exclusively by such statements. 

The formulation of assoeions and the closure statement has two important 

properties: 

• 	any closure statement can be translated (mechanically) into a set of simple 

closure statements whose conditions are each the conjunction of two presence 

conditions, 

• 	any programme may be rewritten (mechanically) into an equivalent programme 

with fixed (> 2) length associons. 

Thus a CAM which implements this reduced form will be able to implement associon 

programmes. 

Pre-empting the penultimate chapter slightly, let us consider how the thesis CAM 

design might implement Associons. It turns out that for an efficient implementation of 

the closure statement, a third tag group is required. This does not invalidate the design 



decision to include only two groups in the prototype, but rather demonstrates the need 

to match the exact hardware specification to the system requirements. In this case the 

closure statement: 

x, y, z: [r, x, y] & [r, y, z] :=> (s, x, z) 

can be performed by the CAM operations: 

declare name variables x, y, z; 

foreach word which matches ('r', = x, =y) using group 1 

foreach word which matches ('r', y, = z) using group 2 

perform a unique write of ('s', x, z) using group 3; 

where the "= sign implies assignment of that field to a local variable. For a cascading 

closure statement, this code block is repeated until it is executed without making an 

entry into memory. 

Thus the closure statement may be implemented with a CAM. Associons 

demonstrate that the CAM may be the basis for language design which differs radically 

from the conventional von Neumann style. 

4.5 Assessment 

The examples in this chapter have demonstrated that the thesis CAM is a useful and 

relevant component in computer architecture and language developments, and that CAM 

in general allows for considerable simplification both of hardware systems and of 

software data structures. The breadth of examples is more significant than any one 

taken alone: hardware interpretor, support for multiprocessing, support for software 

applications, implementation of new programming methodologies - a CAM system 

would effect the progress of many disparate fields of research. 



Chapter 5 

PROGRAMMING LANGUAGES AND COMPUTER HARDWARE 

Let us now consider the relationship between programming languages and computer 

hardware, and particularly the manner in which each has accommodated, or hindered, 

the development of the other. This chapter examines how innovative computer 

hardware has been incorporated into a computing environment by changes in programme 

language design, and conversely how the requirements of programming languages have 

influenced recent computer hardware projects. 

5.1 Introduction 

Development in programming language theory and in computer hardware design is 

each restrained by the other. Progress in language theory has always been hampered by 

the task of implementation in computer hardware, while the current surge of computing 

potential which has arisen from the development of VLSI is checked by programming 

difficulties. In this section we examine briefly the role of programming languages and 

the effects of VLSI on computer architectural design. We then establish a terminology 

for the subsequent discussion. 
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5.1.1 Role of 	 ning_4anguag es Languag 

A computer programme is an intermediate representation of a computation, 

between the abstract problem and the control signals of the computer hardware. The 

programming language must be such that its translation from the abstract may be 

performed by the human programmer, and its translation to the hardware control signals 

may be effected by another computer programme. Some languages have been designed 

merely to reflect the hardware configuration and have therefore proved difficult to use; 

some languages were designed without reference to implementation and have not been 

implemented. A realistic language must consider both sides of its intermediate role by 

facilitating the writing of programmes whilst allowing access to the full features of the 

computer hardware. However, the two objectives are hard to reconcile, and 

conventional languages represent a compromise between simplicity of usage and the 

complexity of their execution. 

5.1.2 The effects of VLSI technolo 

Although VLSI has brought a great freedom to architectural design, the resultant 

systems have been influenced by the characteristics of the medium: 

• 	The finite switching speed of the MOS transistor has lead to the extensive use of 

computational parallelism. 

• 	The production of processor and memory in the same material has blurred the 

distinction between them. 

0 	Processing is cheaper than communications, which renders multiprocessing an 

attractive possibility. 
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• 	Chip boundaries both limit bandwidth and increase signal delays which implies 

that as many functions as possible should be included on a contiguous integrated 

circuit. 

• 	The fabrication process imposes a limit on this size which is leading to the 

design of functionally simpler architectures. 

The 	designs tend 	to 	be 	highly concurrent, 	of 	limited 	complexity, functionally 

autonomous, and 	often 	combined into 	multiprocessing 	architectures. Ironically, 

progress has been hampered by the flexibility afforded by VLSI which has destroyed 

conventional design structures and left the 	designer 	"spoilt for choice" with design 

options. 

VLSI presents two immediate challenges with respect to programming languages: 

can languages express the new architectures which VLSI has made possible, and how can 

VLSI be best used to implement languages? This chapter considers recent developments 

relevant to these. 

5.1.3 Terminology 

To discus the relationship between Language and Hardware, we define the idea of a 

computing form. The term is introduced to encompass both what the hardware and 

software perform and what the designer is aiming to implement. It is borrowed from 

neo-Platonic philosophy where it represents the essence of a concept (such as "a chair") 

without the accidents (such as the 'colour" or the "number of legs") associated with it. 

• 	A form is an abstraction, or a potential in the computing hardware or software. 
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Integer addition is a form which is realized in the ALU; lock-stepped parallelism is a 

form realized in the architecture of some array processors; the RECORD data type is a 

form which is realized in a PASCAL compiler. Within the hierarchy of hardware 

component architecture, (microcoding), assembler, compiler, programming language; a 

form may both appear and become lost - lost in the sense that it is no longer 

expressible. For example, forms realized in the microcode become lost if the compiler 

does not utilize the relevant assembler code. 

A Computer Language provides a set of forms in which the programmer must 

express the computation - but these forms must be expressible in those forms which are 

realizable by the computer hardware. The distance between these forms is bridged by 

the compiler which acts by expressing the forms of the programming language in terms 

of the forms of the assembler code. Viewed in the opposite direction, the forms of the 

computer hardware are developed by abstraction towards the forms of a general 

computation. However, these abstractions do not always correspond to the hardware 

forms. This disparity between the high level forms and the hardware forms is often 

referred to as the 'semantic gap' in that the 'meaning' of the high level statements can 

not be directly expressed in the hardware. One of the rationals behind high level 

languages is that they provide a mode of expression which is independent from the 

underlying computer architecture: this necessarily precludes a high level statement of 

non-standard architectural forms which therefore have to be translated, or deduced, 

from the high level language. 

As an historical example, consider a form which has always been present in high 

level languages, but which has been realized at different levels of the hierarchy. 

Floating point operations were extant (with implicit declaration) in the first FORTRAN 

specification in 1954. The operations were realized through the generation of assembler 

routines by the formula translating system. The FORTRAN programmer was unaware 
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of these routines and was affected by their nature only through the restrictions on mixed 

number expressions. The original specification did not envisage these restrictions, but 

they appeared in the first release and were not removed until the inception of ALGOL. 

The assembler routines were later moved to the microcode affecting only the compiler, 

and the arrival of dedicated floating point arithmetic logic was then transparent even to 

the assembler programmer. Floating point numbers is thus a form whose realization has 

moved from compiler, through assembler and microcoding, to a hardware component. 

5.2 Programming Languages for Computer Hardware 

As a new form evolves in either hardware or programming language theory, the 

other must develop in order to accommodate this form and to allow its inclusion in a 

complete programming environment. This section surveys the nature, and success, of 

such Programming Language development. 

5.2.1 Vector Processors 

Vector Processors provide the form which is the potential to execute a sequence of 

operations concurrently on a sequence of data such that the hardware for several 

instructions is active at any one instant. At the simplest level: if a vector pipeline of N 

units is running, the associated computation runs N times faster than it could without the 

concurrency. The major problem is how to arrange the computation into streams of data 

destined for the same operational sequence. 

The best known example of a vector processor is the Cray-1[49], which was 

programmed using the CFT compiler. This was designed to compile Ansii 66 Fortran IV 

to best advantage" by "vectorizing" inner DO loops which manipulate and store the 
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results in arrays and which contain no conditional or jump statements. However, the 

compiler detection of parallelism is cumbersome. In theory the high level language 

programmer needs to know nothing about the underlying mechanism and should code 

the problem in a conventional sequential manner; in practice programmers try to 

understand the nature of the code which is best optimized and then manipulate the 

programme accordingly. In effect, they are writing a parallel algorithm in sequential 

code in such a way that the compiler can best detect the inherent parallelism. These 

contortions occur because the hardware form is not present in the high level 

programming language, and they result in inefficiency. For example, in using the Cray-

1 to execute circuit simulation programmes "even the most advanced compiler 

technology has shown poor speedup [achieving only] 12-15 percent hardware 

utilization" [50]. 

A variety of languages have been developed for vector pipelined machines which 

allow the explicit statement of vector structures and operations. Commonly these allow 

the programmer to specify a computation on all, or a subset of, the vector elements 

without an explicit DO loop. They do not, however, deal with the techniques for 

increasing the efficiency of the pipeline's usage which can be as low as 44% with 

conventional code due to hazards between adjacent instructions [51]. 

5.2.2 Array Processors 

The form of Array Processors is the potential for concurrent execution of a single 

instruction at many hardware sites, commonly interconnected on a nearest neighbour 

basis. The assembler instructions provide for data transfers in the various directions as 

well as local computations at the individual sites. 
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Array processors have been available since the Illiac IV was produced in 1973 and 

it is instructive to consider the languages on this machine in detail since sufficient time 

has elapsed for the first ideas to have been evaluated and corrected. The Illiac IV 

consists of a central control unit directing 64 arithmetic units each with 2K words of 

local memory. These units may be selectively disabled according to a 64 bit control 

register word, and data may be routed between them according to a routing register. 

The working idea is that an array is stored by mapping one of its dimensions across the 

distinct local memories; operations on that dimension may then be performed in parallel 

at each of the arithmetic units. 

There are two ways in which a language may be transformed for parallel execution: 

by providing syntax for the programmer to explicitly code the parallelism, or by 

analysing the sequential code - that is to say: the form may be stated or deduced. The 

latter is attractive since it allows existing software to be used on the new machine by 

providing a new 'clever' compiler. The Illiac IV language of this type is Ivtran: a Fortran 

analyser. The new syntax approach was used in Glypnir (Algol-based) and CFD 

(Fortran based). The assembly language ASK was also distributed. 

A survey was conducted in the late lOs upon programmer reaction to these 

languages, and the results used to formulate a new syntax for both array and vector 

processors: Actus[52}. The results of the survey showed that programmers preferred 

that the parallelism was explicit but objected to the extent to which Glypnir and CFD 

reflected the idiosyncrasies of the hardware. For instance in CFD, data structures have 

to be declared with the parallel component as the first dimension of the array and 

manipulated in units of 64, and the disabling word was explicitly set by the programmer. 

Some programmers stated that they had found it necessary to resort to ASK coding to 

achieve the desired results. It was concluded from the survey that the syntax should 

"provide the programmer with data and programme structures which reflect the type of 
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parallelism under consideration ... [and] enable the expression of parallelism in a 

manner which is suited to the problem and which can be easily exploited by a parallel 

architecture". Actus was designed to allow the parallelism to be controlled both 

explicitly and by the data, while removing the effects of the hardware's dimensions as 

much as possible. Specifically the parallel dimension may be freely chosen both in size 

and its position within the array, the disabling register is set by condition loops and case 

statements, index variables can be declared, and data shift and rotate operations are 

written explicitly. 

Similar conclusions were drawn from experience with PascalPLo which was 

designed for the CLIP3 image processor: it was 'a significant step above CLIP assembly 

language" but was "too close in spirit" to assembler and one particular approach to 

pattern recognition 'to be successful as a general high-level language"[53]. IPC (Image 

Processing C) is now the main language for programming the CLIP computers, 

providing real support for the array handling operations. More generally, there has 

been a proliferation of image processing machines and of the languages to support them. 

The trend[54] has been to provide access to the image arrays through FORTRAN 

subroutine libraries, subroutines which are machine specific. This is also true for general 

purpose array processors such as the ICL DAP. 

5.2.3 Concurrent Process 

The form of Concurrent Processing results from the existence of independent 

processors whose operations are combined by the high level language primitives of the 

operating system. Programming for a multiprocessor machine requires the identification 

of sections of the code which may be run together. This type of divergence has existed 

in operating system theory for some time through the FORK and JOIN primitives which 

spawn and consume "processes". There is a problem in providing safe access to data 



shared by more than one process. A solution to this is found in Hare's Monitors[55] 

which were included into the language: Modula[56]. This implements the form of 

modules of code which may be entered concurrently by calls from other active modules. 

The syntax is provided for protecting critical sections of code, and the general technique 

is that manipulation of shared data is performed only through code which is thus 

protected. This approach may be seen as a scheduling operating system where modules 

defined by the programmer form the units for processing. The programmer is given full 

knowledge of the possible parallelism, and must be aware of the pitfalls and their 

solutions. Most significantly for the future, these ideas are incorporated into the ADA 

language which was commissioned and funded by the American Department of Defence 

as a "standard" language. 

5.2.4 Multiprocessiqg 

The concurrent processing in the previous section relies on the programmer to 

specify and design those portions of code which may be executed in parallel; this was 

achieved through syntactic extensions to conventional languages. However, the 

conventional or "imperative" languages have developed very closely to the form of the 

von Neumann model which seldom match the forms of parallelism which can be found in 

hardware, and which gives rise to features which hinder multiprocessing. Thus to 

accommodate the form of cooperating independent processors, non-von Neumann 

languages must be considered. 

The central concept of imperative languages is the "current state" of the 

computation: a point in multidimensional vector space defined by the values of the 

programme variables. The current state is altered when a variable is "updated" and this 

may result from the execution of distinct portions of code. It is this ability of one 

section of code to affect the environment of another which precludes their parallel 
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execution. This feature of destructive updating has hindered not only multiprocessing 

but also the development of programme 'proof" or "verification" techniques, and there 

has therefore been substantial theoretical work into alternative programming styles. 

Dataflow is a technique for decomposing a computation into its individual 

operations and the paths by which data flow between them. The computation may be 

driven by more than one processor in parallel, since the data dependency is inherent in 

the graphical decomposition. The organization of dataflow computers may be viewed as 

a scheduling operating system as was concurrency processing, but with individual 

operations as the units for processing. The most common architecture is a high speed 

communication ring serving a pool of processors and a packet store. The instruction 

code may be also accessed through the ring or, alternatively, duplicated into each 

processors local memory. The packet consists of an instruction address and (possibly) 

the result of previous packet executions. A free processor takes an executable packet, 

executes the instruction, and places the resultant packet(s) back onto the ring. 

Languages to support this architecture are formed from several approaches. There 

is currently research into the technique of entering the data flow graph directly through 

a graphical language or even schematic capture in this manner, the programmer 

would present the algorithm directly in the architectural form. As with the pipelined 

and array processors, there are also techniques for detection of potential parallelism in 

sequential code of existing languages (especially for Fortran because of the existing 

investment in Fortran written software). However the limited utilization of the potential 

concurrency has prompted designers to draw upon the theoretical studies into "single 

assignment" and "functional" languages. 
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An imperative language programme is a sequence of memory updates. Dataflow 

computing differs fundamentally in the lack of reassignment to a variable: a value is 

created (possibly in several packets) and then processed. Single assignment languages 

reflect this exactly. In writing with them, the programmer is constrained by the rule 

that "no variable is assigned values by more than one statement". The resultant 

languages are similar to conventional languages with the exception of the lack of 

pointers, and of lists and other structures normally associated with pointers. Iteration 

with assignment statements is included with the understanding that each "variable", to 

which assignment is made, is distinct from any variable of the same name in the 

previous iteration. With this syntactic structure, the programmer is constrained to 

producing code which reflects the dataflow execution: the programme is in fact "a linear 

form of the programme graph". For instance, the favoured language for the Manchester 

Prototype Dataflow machine (described in the previous chapter) is a single assignment 

language: SISAL. 

Functional languages are based upon the application of functions[57}. There is no 

current state, no storage of values, and no programme counter. The language consists of 

objects, functions on objects, and operators to combine functions - the programme is 

itself a function formed as a combination of other functions. The significant advantage 

is the natural detection of - parallelism in the programme code which allows 

multiprocessing. There are two multiprocessor representations of the programme 

structure: Dataflow, where the computation is driven by the flow of data through the 

programme graph; and Reduction, where the source-and-input is transformed into the 

output by successive reductions. The mapping of the language form into the 

multiprocessing architectural form is performed by the .operating system and the system 

architecture. 
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A radically different approach to multiprocessor programming can be found in the 

Poker Programming Environment[58]. This was developed to programme a machine of 

parallel communicating processors by providing an environment which supports a 

"specificational form close to that used in the theoretical literature to describe display 

algorithms". The difficulty which Poker addresses is that abstract algorithms have been 

deliberately developed to match the form of small communicating processors without 

any corresponding programming language to express the algorithms in a form which is 

translatable to machine code. 

To resolve this, Poker provides interactive graphics whereby the programmer can 

define the communications graph between labelled processor nodes. The processor labels 

correspond to a block of sequential code in a conventional style of language with the 

addition of the data type: ports. These port variables correspond to the communications 

ports into the processor and the identifiers are assigned to the communications graph by 

labelling its arcs at each processor. The data-driven semantics are transformed into 

synchronous processing by compiler optimization. 

5.2.5 Assessment 

A new hardware feature provides a new form which must be expressed in other 

forms if it is to be available to the programmer; we have seen that this outlook has 

generally been ignored, thus limiting the impact of innovative architectures in a full 

programming environment. There are three levels at which new hardware forms may be 

integrated with a high level programming environment: 

• 	A compiler which implements a standard language by utilizing the new feature 
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• 	Extensions to the syntax of conventional high level languages to allow for 

explicit direction by the programmer 

• 	Design of a new type of programming language which better matches the 

underlying machine. 

A new hardware form should be expressed at as high a level as is necessary to allow the 

programmer full access. 

Compiler detection is a very common technique because of the commercial 

investment in existing software; however, it is often inefficient because of the 

information gap between the conventional programming languages and the novel 

machine features. If the new forms can not be successfully detected they must be 

expressed explicitly in the high level language. Syntactic extensions to conventional 

languages are attractive since they retain the established (and familiar) constructs whilst 

expressing the new features directly. However, if the machine architecture is 

fundamentally altered (for instance, to non-sequential control flow), then the old 

language constructs will not apply. 

Let us summarize the issues in designing high level language constructs to express a 

new hardware form: 	 - 

• 	New language constructs must really be high level and not merely a syntactic 

reflection of an assembler language. 

• 	The idiosyncrasies of the hardware should not be found in high level 

programming languages, but rather hidden in the compiler. 
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• 	The constructs should be designed to discourage the production of inefficient 

code. 

• 	The design must be relevant to the abstract computations which the constructs 

will be used to express. 

The core of the high level language should be the union of the hardware's potential and 

the computational abstractions. 

5.3 VLSI Hardware for Programming Languages 

The previous section was concerned with how computer languages have developed 

to express the features of innovative hardware; this section considers the converse - 

how hardware, with the potential offered by VLSI, is currently developing in the 

expression of programming languages. 

The advent of VLSI technology has promoted the design and implementation of 

hardware components where the emphasis is no longer upon language design to 

accommodate the existing architecture, but rather upon the architectural design to 

accommodate not only languages but also the needs of the abstract problem. For 

instance, image processors are designed as pixel specific communicating units; some 

chips implement single algorithms, such as an RSA-coding chip[59]; and some 

architectures are designed to execute a single specific programme, such as the MOSSIM 

hardware simulation accelerator [60]. In the design of the general purpose computer, 

VLSI affords the freedom to match hardware directly to abstract forms. Considerable 

attention has been paid to the forms of conventional high level languages[61], 

particularly that of. recursion. Another approach has been to isolate the most frequently 

used software forms and to optimize these in the hardware (at the expense of the 
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infrequent forms) to produce faster, more streamlined, designs. 

5.3.1 Revised instruction sets 

The size constraints of VLSI imply that a single chip processor must be of lower 

complexity than in conventional architectures. This has resulted in the introduction of 

the reduced instruction set architectures, first implemented in the Berkely RISC I and II 

processors[23,24]. The rational is to avoid complex control structures and to aim at 

fixed length, regular instructions with single clock cycle execution. The disadvantage is 

that more complex instructions have to be coded in the implemented instruction set by 

the compiler; this increases compiler complexity (considered a desirable trade-off) and 

also the memory bandwidth. The forms of the architecture are made simpler while 

allowing the rejected forms to be realized by the compiler using macros of the simpler 

assembler forms. 

The merits of moving the realization of forms from the hardware into the software 

can be compared in the two DEC VLSI implementations of the VAX processor. The 

VLSI VAX[62] is a nine chip implementation of the full VAX instruction set emulating a 

VAX— 11/780 class processor; the MicroVAX-32[63J is a one chip implementation of a 

subset of the VAX instruction set. The MicroVAX-32 partitions the 304 VAX 

instructions into: 175 instructions implemented directly, 70 floating point instructions 

implemented by an additional floating point unit or by macrocode, and the remaining 59 

instructions implemented by macrocode alone. The significant result is that the 57.6% 

instruction subset chosen requires only 20% of the full microcode whilst accounting for 

98.1% of the observed execution frequency. If a floating point unit is included, the 

observed performance degradation due to macrocode emulation, rather than microcode 

implementation, is only about 4%. The simplifications between the the two VLSI designs 

(including some alterations to memory mangement) allowed the MicroVAX-32 to be 
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realized on only one chip with a reduction from 1250K to 101K transistors and only a 

20% impact on performance. This supports the suggestion that some forms may be 

profitably realized in the compiler rather than in the hardware. 

5.3.2 Closeness of hardware and assembler forms 

The idea of shipping the realization of forms to the software was continued in the 

design of the Stanford MIPS processor[641. The design philosophy was to expose the 

forms of the hardware directly in the instruction set making the software able to perform 

(and so responsible for) the optimization of the hardware performance. The MIPS is 

considered to have two low levels of languages: a machine level language, and the more 

usual assembler language. Assembler is reorganized to machine level code by software 

which performs four major functions: the optimization of implementation dependent 

forms, the expanding of instruction macros, packing multiple assembler instructions into 

single machine instructions, and the detailed avoidance of pipeline dependencies and 

branch delays. This allowed the architecture to dispense with microcoding and pipeline 

interlocks. 

5.3.3 Support for procedure calls 

The design of the RISC II processor also contained features to directly assist the 

execution of a high level language. By supporting only 31 instructions, the designers 

were able to devote a significant area to a large register file which is used to store 

frequently used operands so as to minimize the flow of data across the chip boundary. 

The organization of this on-chip memory is specifically designed for efficient realization 

of procedure call and return. In general, when a procedure is called, a new current 

data frame' is instantiated. At the register level, this means that the previous values are 

stored and that new registers are allocated and (for passed parameters) initialized. With 
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a small register set this involves considerable data traffic. In RISC II the large register 

set is arranged in multiple register banks corresponding to different procedure levels. 

Each procedure has access to ten local registers, to six high and six low registers which 

overlap with the next and the previous procedure windows for parameter and result 

passing, and also to ten global registers. [ This arrangement is supported by a circular 

buffer of 8 register windows maintained by a current window pointer. On overflow, one 

(or two) windows are written to main memory and are restored only after underflow. 

This is an example of hardware design which is aimed directly at high level 

language forms. The memory arrangement is designed for procedure call intensive C 

programmes. Programmes without procedure calls derive no benefit from the large local 

register set and are restricted to the one window; programmes with few calls benefit 

only slightly. Other programming languages present difficulties through the nested scope 

rules and the increasingly common use of a large number of global variables. It is 

possible that better use might be made of the large register set if it could be controlled 

directly by an optimizing compiler. 

5.3.4 Assessment 

It is possible to provide features in VLSI designs which assist in the implementation 

of specific software forms, conversely fixing high level language forms in hardware 

limits the generality of that component. In designing a VLSI processor the task is to 

select the forms which are to be implemented, and then to decide at which level they 

may be best realized. The experience of the previous projects has confirmed the virtues 

of a reduced instruction set approach which shifts the realization of some forms out of 

the hardware and into the compiler - but the verdict is still "not proven". The 31 

instructions of the RISC chips appears extreme in contrast to the 175 instructions of the 

MicroVAX. The success of the RISC chips is more due to the large number of 
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registers[65], than to the streamlined instruction set. The 20% speed reduction of the 

MicroVAX-32 over the VLSI VAX questions the supposed speed advantage of a single 

chip implementation, and the nine chip VLSI VAX denies the necessity of compiler 

assistance in VLSI realization of system complexity. 

The above examples do show, however, that VLSI allows for a complete 

reassessment of the conventional roles of hardware and software in computing systems. 

Further, new software techniques are evolving (at the compiler level) to encompass the 

features which are emerging from this hardware medium - on the other hand, new 

hardware designs are evolving to realize software forms. In this, the use and 

applicability of VLSI must be seen in the context of compiler techniques and software 

requirements; but if a high level form can not be realized efficiently through software 

(as with Content Addressability), a designer must recourse to specialized hardware. 



THE CONTEXT FOR LANGUAGE DESIGN 

The original motivation for this thesis was that a CAM component could provide a 

new medium for the design of data structures and algorithms by software engineers; to 

establish this claim, it is necessary to develop an example programming environment 

which is clearly practical and accessible to the high level language programmer. 

In the previods chapter we found that a high level language is the necessary link 

between the abstract computation and the executing hardware, and that the language 

must therefore combine both the desired computational, and the practical hardware, 

forms. This chapter is concerned with the development of a computer architecture which 

incorporates a CAM, and an abstract characterization of content addressability itself. In 

this way we establish a programming environment which the language development of 

the next chapter will complete. 

6.1 Triplet Machine Architecture 

The aim is to explore a practical architecture for the development of a high level 

language - to this end, we consider a possible organization for the CPU in the Triplet 

model and develop a possible set of assembler instructions upon which higher levels of 

programming languages may be based. This set ignores (possibly idiosyncratic) pin level 

and microcode optimization of more complex operations; it is designed to encompass the 

pertinent features of the CAM and so to validate subsequent linguistic constructs. 



6.1.1 	The Triplet Model 

We saw in chapter 1 not only that CAM has advantages over RAM in the 

implementation of some data structures, but also that RAM has advantages over CAM 

in the implementation of others: thus to enhance the software design environment, it is 

desirable to include both modes of addressing. The Triplet architecture consists of a 

CPU connected to both a CAM and a RAM - it is the conventional von Neumann 

architecture enhanced with a second mode of addressing. 

Conventional computer operations are controlled by a single CPU. Programme 

instructions are read sequentially; operands are addressed and passed along buses to 

areas where the logical operations may be performed. The Triplet model makes no 

explicit attempt to change this mode of operation: the CAM is viewed as sitting on the 

end of a CPU data bus, and the CPU's instruction set includes the commands necessary 

to drive the CAM. It is viewed as an equal partner with the RAM in providing memory 

which the programmer may use as is appropriate to the particular programme. The 

CAM introduces a mode of addressing which was prohibitive with the Von Neumann 

bottleneck, but the sequential central control remains. 

6.1.2 	Design Issues 

Since the CAM and RAM are being viewed as equal partners in the storage of 

computer data, they will interact with each other during the CPU driven computation, 

and we need to examine the implications of this interaction on the machine organization. 

The CPU registers of a Triplet machine must provide: 

9 	a scribble pad for CAM-RAM communications 
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. 	manipulation and arithmetic with RAM words 

• 	manipulation and arithmetic with CAM fields 

There are two points of difficulty: 

S 	For effective usage, the CAM word length will be larger that of the RAM. 

• 	In RAM, the conventions for the representation of data in bit codes are 

dependent upon fixed word sizes and the flexibility inherent in CAM field 

lengths poses the problems of compaction and alignment. 

6.1.3 Control 

For the two types of memory to communicate, the relevant RAM storage address 

must be specified - which implies that data transfer between RAM and CAM must be 

supervised by some controller. Current large computer systems incorporate I/O 

handlers which are essentially limited processors to supervise the transfer of data from 

one storage medium to another. These would not be applicable in this case where the 

interaction between the CAM and its controller is more programme dependent: 

frequently there is no bulk transfer of data. - 

The CAM is more 'active' than conventional storage media. It is not simply storage 

with novel addressing but has characteristics which tie it closely to the operation of the 

CPU: a variety of different operations can be performed on each of the words 

addressed by a single comparison, perhaps conditionally upon the word's value. For 

such an algorithm, the CAM would best be controlled by the same unit which drives the 

computation: the CPU itself. 
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6.1.4 Register Alternatives 

Let us consider the options for the CPU registers. Historically, the CPU interacts 

with RAM using five broad categories of high speed registers incorporated in the CPU 

itself: 

With no local registers, the CPU communicates directly with main memory. 

A single, often extendible, register which holds a single operand for both unary 

and binary operators, and then the result; giving a uniform operating sequence 

for the ALU. 

C. 	Multiple arithmetic registers which can provide the second operand for a binary 

operator, and can be paired to provide an extension. 

A hierarchy in that the registers can be viewed as a local cache with high access 

speed, and the interface as essentially being the same type as (a). 

A stack to assist in the sequencing of ALU operations. 

In deciding the register arrangement in a Triplet architecture, let us consider how a 

CAM might function in a computer with these types of CPU register design: 

a. 	It would be inefficient to store every CAM word accessed in main RAM before 

performing simple field operations. For instance, if there were no local registers 

when updating CAM entries, each CAM word would be passed twice along the 

RAM bus for only temporary storage. Thus there should be registers for CAM-

only operations located in the CPU. 
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b. 	The single arithmetic register is specifically designed to the needs of the ALU, 

and adaptation to accommodate a CAM might defeat this purpose. However, a 

specially designed single register for the assembly and decomposition of the 

CAM words is a possible approach. 

C. 	A common use of multiple arithmetic registers is to provide extensions of the 

standard word size to form larger words: in DOUBLE PRECISION. If the 

CAM word length were limited to multiples of the RAM word length, CAM 

word assemblage could occur in the ordinary registers. The CAM instruction set 

could then form an extension to the existing machine code. This poses a 

restriction on the alignment of CAM fields in that conventional addressing of 

registers is only to the byte level and non-byte aligned fields would require 

complex manipulation without bit addressing; thus it may be useful to limit the 

fields to multiples of bytes. This is the usual convention for type representation. 

A high speed cache might alleviate the problems associated with CAM words of 

larger length than RAM word, and this is essentially a development of (c). 

A stack alone would be of little use to CPU-CAM interface since the stack would 

provide the same sequential access without allowing the other CAM functions. 

However, a hardware stack or stacks designated for CAM interfacing would 

provide a software simulation of read-only group. This would not be as 

powerful as additional hardware comparison groups, but might be a useful 

alternative.. 

The above analysis suggests that a "CAM register" in the CPU may be either a 

specialized register with bit or byte addressing or an aggregation of RAM-sized registers 

with byte addressing. The former is a specialized interface for assembly and dispersal, 

whilst the latter allows the registers to be general purpose. 
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6.1.5 Bit vs Byte 

As a first step to designing the CPU architecture, we must allow the trivial 

operation of reading a value from CAM and storing it in RAM in the appropriate 

representation and word size. For a system to support CAM fields of arbitrary bit size, 

it must provide bit manipulation functions. For instance, consider translating an integer 

and floating point number into a larger field size: the hardware must right align and 

expand the most significant bit for the integer, and left align and pad to the right with 

zero bits for the floating point. These operations would require bit orientated functions 

which are not easily provided without specialized registers. 

The problem is not so acute if the fields are of arbitrary byte size. Then the byte 

addressing in many conventional CPU register sets allows for simple algorithms 

provided a "test most significant bit" operation exists. For the Triplet machine, CAM 

fields of multiple bytes seem to be preferable; primarily for the simplification of the 

CAM-RAM interface, but also for the efficient addressability of the field boundaries. 

6.1.6 ALU organization 

The design of the CPU must accommodate the performance of arithmetic logic 

functions on locally stored data. Arithmetic and logical functions may be performed on 

RAM words of fixed length and CAM fields of variable byte length. This is possible if 

the ALU is designed byte serially, and the instruction set contains a field to specify the 

number of bytes through which the instruction cycles. The machine instruction is thus 

the instruction-identifier, the number of bytes, and the initial register address. This 

approach removes all problems with alignment to word boundaries whilst maintaining 

the conventional capabilities of the RAM machine. The full assembler language could 
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also contain arithmetic instructions which assume standard length operands. 

6.1.7 Local memory size 

The response by CPU designers to VLSI has been either to incorporate a large 

numbers of functional units, or to increase the capabilities of a few. In the latter 

category is the INMOS transputer which has a reduced instruction set and has dispensed 

with floating point hardware, but instead incorporates a novel communications interface 

and 4k bytes of local high speed memory. The number of high speed registers is no 

longer so limited by the speed of the technology. 

To perform the CAM control efficiently, the registers should hold at least five 

CAM words (3 data + 2 mask) independently. This ignores possible compression of the 

mask storage. If a CAM word is 16 bytes (for instance), this would imply the need for 

over 64 registers and so an address of at least 7 bits. With recent design capabilities in 

mind, this suggests a CPU which uses a full byte address extension in its instruction set 

giving 256 single byte registers. 

6.1.8 Group Register 

To interface with the daisy-chain addressing system, the CPU must specify an 

address group and provide a mechanism to interpret the addressed group's output signal. 

The hardware design of the CAM is such that non-addressed operations are uneffected 

by a word being addressed, so there is no need to 'de-address' a group when there is no 

addressed operation. The physical effect of addressing and de-addressing a tag group is 

to charge and discharge a signal line, but programme flow involving repeated use of the 

same tag group is common. By maintaining the charge on the line until it 'must' be 

discharged, the system both saves power and possibly operating time. Consider the 



-125— 

following algorithm: 

while (there are set tags in group 1) 

{READ <LINE 1> 

NEXT <LINE 1> 

} 

If the address line is discharged after each instruction, this would occur three times in 

each loop wasting power in the CAM and time in the necessary delay to allow the signal 

to propagate through the system. 

The alternative is to introduce the concept of a current group' control register 

which maintains the signal on the line corresponding to the last value which was loaded. 

If this register is simply loaded at the execution of each addressing machine instruction, 

the same delays result since the value loaded might have changed. The delay could be 

avoided by using a microcoded test-and-set arrangement to determine if the value has 

changed. This entails a more sophisticated register and a machine instruction delay each 

addressed operation. 

6.1.9 Condition Flag 

The output signal of the addressed group must be available to the CPU. This can 

be achieved in the same manner that overflows, logical comparisons, etc., are handled 

with conventional ALUs. A condition flag is set to be ON when the current tag group is 

empty, and OFF if the group addresses a word. The flag can then be tested by the 

machine code using conditional jumps, and in more sophisticated systems used to trap, 

with an error message, any addressed instruction on an untagged group. The above 

code could now be written as: 
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JUMP—IF—FLAG—ON 1 on 

# top 

READ 1 

NEXT 1 

JUMP_IF_FLAG_OFF 1 top 

# on 

This flow control allows simple programming of CAM iterations, and fits into the 

established operating principles of CPU architectures. 

The output of the empty tag group signals the fact that memory is full. If this 

occurs in conjunction with a write-new-word operation, then there is an error condition 

which may be dealt with by invoking a standard error-interrupt mechanism. 

6.1.10 Alternative assembler style 

An alternative would be to leave the setting of the group register to the assembler 

programmer. This has the advantage of forcing the hardware form into an assembler 

form so promoting a closer match as further software forms are devised. This conforms 

to a current trend for moving responsibility for 'house-keeping' functions from the 

hardware to the software. Additionally the assembler code is simplified and the efficient 

use of the CAM (through iterations on a group) is reflected in 'clean' assembler code 

generation. The micro-coded test-and-set operation becomes less important as the update 

of the register is less frequent; it may be rejected altogether as a trade-off between CPU 

complexity and operating speed. With the explicit setting of the group register, the 

above code becomes: 
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LOAD GROUP REGISTER 1 

JUMP-IF-FLAG-ON on 

# top 

READ 

NEXT 

JUMP_IF_FLAG_OFF top 

#0Th 

6.1.11 Assembler Instructions 

By way of a summary, the following is a possible set of assembler instructions 

which provide the interface between the CAM and the CPU. The data movement 

instructions all act on the number of bytes in a full CAM word starting at the designated 

register in the CPU. The variables 1, m, and n are each a value or a register address. 

Memory Control: 

EM - Empty Memory: initially, and at any stage of the computation, the CAM may be 

emptied by resetting all the empty tags. 

CMP n m 1 - Compare: perform the masked comparison on group 1 using the CAM 

sized word beginning at byte n as comparand, and that at byte m as the mask 

(this operation is independent from the current value of the group register). 

LDG n - Load the group register with n, to specify the currently addressed group. 

RE . Remove the word currently addressed (on the group designated by the group 

register) is removed by setting its empty tag. 
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NX - Next: the word currently addressed is de-addressed by making its address tag 

passive on the current group. 

MP 1 - Make Passive the tag in group 1 in the tag set of the currently addressed CAM 

word. 

Data Movement: 

CLD n - Load the currently addressed CAM word into the registers beginning at 

register n. 

CST n - Store the word beginning at register n into the currently addressed CAM 

word. 

Programme Flow Control: 

JP label . Jump to #label if the condition flag is ON, implying that there all the tags of 

the currently addressed group are Passive. 

JNP label Jump to #label if the condition flag is OFF. 

The following is a brief example of assembler code using this instruction set: 

LDG 1 

JP on 

#top 

CLDn 

(LDG 1) 

NX 

JNP top 

#on 
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which gives the now familiar read-while loop. The second "LDG 1" command is only,  

necessary if the group register was changed during the proceeding code; this would be 

checked by an optimizing compiler. 

6.2 An Abstract Computational Form 

Before developing a high level language syntax to run on the Triplet machine, we 

must consider the computational form which this is likely to express. Chapter 5 

indicated that a high level programming language should unite the hardware and 

computational forms, and so we will now develop content addressability as an abstract 

computational form. This evolves into a characterization of 'CAM orientated' problems. 

The relationship of the abstraction to the CAM hardware form is emphasised by 

examples of assembler code, and we discus the necessary features of a programming 

language to complete the environment. 

6.2.1 A new terminology 

Previously we have considered CAM in terms of its affinity with common data type 

abstractions, now we seek a new terminology to express the CAM abstraction itself. 

The words in a pure CAM model have no defined order. When addressed, the 

component allows access to the active words one at a time, but only in very controlled 

conditions may that order be taken as significant. To emphasis this quality, we affirm 

that the address defines a (possibly empty) bag of words. A bag is a mathematical 

entity similar to a set except that the bag may contain repeated instances of the same 

element. 
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A CAM word consists of one or more sub-words or fields. When addressing 

CAM, a programmer is concerned with two classes of fields: the address fields, and the 

data fields; the known, and the unknown. 

• 	The classification is not fixed, but re-specified in each comparison. 

• 	Fields of both classes may be updated while the word is addressed. 

• 	Either class of field may be empty; for instance, the whole of defined memory 

may be read, or an address may be used purely to ascertain the existence of a 

word. 

Unlike the order of words in a bag, the order of fields within a word is significant, 

since this defines its interpretation: the pair of fields (field —x, field —Y) will render 

different values when accessing a word if the order is reversed (fieldj', field_x). Thus 

a word is viewed as an ordered collection of fields. We will describe the general word of 

'n' fields as an ordered n-tuple. 

To summarize: 

• 	an address is defined by the values of zero or more specified fields, 

• 	an address defines a bag of ordered n-tuples. 

6.2.2 Variformity 

The variable classification of fields affords a variformity to CAM words. The dual 

value of a field is both data and address - which can allow the direct algorithmic 

construction of addresses (well beyond the simple base/offset manipulation) such as the 

computed value of a function's argument being used to address its value. As a combined 
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effect of this duality over all the fields, the same collection of words may be placed into 

different collections of bags according to which field or fields are defining the address. 

For instance, a directed graph is reversed by using the head -node instead of the 

tail-node as the address field: a simple device to implement back tracking. Thus an 

algorithm may progress by directing the data according to one collection of bags towards 

a solution specified by another. 

As an example, consider the outline of an algorithm to determine the components 

of an undirected graph: that is, given a graph G = (G, E), determine the maximal 

connected subgraphs {G1, G2, ..j. The algorithm itself is trivial, but it demonstrates 

the technique of switching perspective on the CAM word. The Traversal algorithm of 

chapter 1 for undirected graphs is used with an extra field 'graph_number' in the created 

set 'visited'. 

Set a variable counter = 1; 

WHILE there exists an unvisited node 

{Select any one and Traverse from it making the 

graph number field of each visited node equal 

to counter; 

Increment counter;} 

Following this search, the component graphs are retrieved by addressing the visited set 

according to the numerical value of the graph_number field: the workspace has become 

the address. 

6.2.3 Bag operations 

Let us consider the type of operations which might be performed on a bag of 

ordered n-tuples. The question is this: we have performed an addressing comparison 

on memory which has defined a (possibly empty) bag of n-tuples, what can we do with 
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the bag? 

Boolean test: This operation determines whether or not the bag is empty. A 

conditional jump can be programmed by the "J(N)P label': jump if (not) passive, 

assembler instructions. This differs from normal boolean operations in that the jump is 

arbitrated according to a condition flag set by the addressing mechanism rather than by 

the ALU. 

Pick out one n-tuple: In some cases an algorithm may require a single n-tuple from 

the bag. There are two problems in deciding the exact coding of this operation 

• 	How do we cater for an empty bag? Some iterations will be of the form: 

WHILE there exists - select one, in which case the programme flow is already 

determined; but if there is no such guard, it is possible for control to pass to 

statements addressing an empty tag group and this must be a runtime error. 

Unguarded picking could be rendered impossible through the language design. 

• 	When does the tag group become available for further comparisons? The answer 

must be that the tag group forms the same bag until a new one is defined, but it 

might be useful to provide language constructs which limit the textual distance of 

a bag's manipulation from its definition. 

The assembler code for this operation is a comparison, the loading of the relevant 

number into the group register and (possibly) a software error trap: 

CMP n m I 

LDG 1 

(JP error) 
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Iterate with each addressed n-tuple: Each n-tuple is to be taken and directed in turn. 

This seemingly simple iteration has two complications: 

• 	The bag must remain defined throughout and so the operation monopolizes a tag 

group for the whole block of code. We can not re-address each time at the head 

of the block since it may have new n-tuples or a different picking order. This 

dedication imposes limitations on the code within the iterative block, and 

especially on the nesting of bag operations. 

• 	The fate of each n-tuple determines the instruction by which the next one 

becomes available. If the n-tuple remains (possibly altered) in the same location 

in memory, then the iterative loop must use the instruction "NX"; if the n-tuple 

is removed ("RE') from memory, then the next n-tuple is automatically 

addressed through the hardware. A general language construct could either 

impose one such action and prevent the other, or require their explicit 

specification for each iteration. 

As an example, the following is the assembler code for an iteration, which removes each 

addressed n-tuple from memory; 

CMP n m 1 

LDG1 

II' onwards 

# top 

RE 

JNP top 

#onwards 



- 134 - 

6.2.4 Bags as a resource 

Let us consider the limitations imposed by the hardware on the design of an 

efficient programming language. The component offers two comparison tag groups, and 

one empty tag group: only two bags can be defined at any one stage of the computation, 

although it is always possible to write to a new location in memory. 

If an algorithm is constructed as: perform this code block on each n-tuple in the bag 

as it is now defined, then one of the comparison groups must be dedicated to preserving 

that bag throughout the algorithm: the code can only direct one bag at a time. Of 

course, if this code block contains the same type of algorithm, then the inner code block 

will be unable to define a bag at all. These restrictions apply also with respect to the 

coding of functions or subroutines called in the operations. 

6.2.5 Assessment 

In a computer architecture which incorporates a CAM and a RAM, data may be 

stored under either mode of addressing. The choice depends upon the data structure, its 

manipulation, and the ease with which these can be mapped onto the memory 

components. CAM should be selected for: 

S 	the storage of data elements whose structure is: inherent in their names; can be 

represented through ordered n-tuples of their names; or can be transformed into 

such by introducing new names to impose an association hierarchy, 

S 	manipulation which exploits, or is better expressed by using, the duality of 

fields, 
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• 	algorithms which apply the variformity of CAM words. 

Consider a bag defined by the values of certain fields. If another field were then 

introduced into the class of address fields, a sub-bag is defined. Indeed we could say that 

any bag is the union of all bags defined by all collections of fields which have that bag's 

address fields as a sub-collection with their values fixed - 'but what does it profit a 

man?". 

The bag model emphasizes the association between words afforded by CAM, and 

sub-bags show that the information in such an association is related to the degree of 

precision with which the bag is defined. Ultimately, the objective of an address 

specification could be to define a bag of one and only one n-tuple: to address a single 

word in memory. Yet in this too, associations implicitly exist through the bags of less 

precise definition. The significant feature of CAM is its affinity with such an 

association, unlike RAM in which association requires data structures and software 

support - an affinity which allows simple and efficient manipulation of the elements of 

an association, both individually and collectively. 



Chapter 7 

HIGH LEVEL LANGUAGE DESIGN 

This chapter considers a possible language syntax to direct the CAM component in 

a Triplet machine. The intention is to show that this architecture is plausible as a general 

purpose computer by prescribing a suitable programming language based on the 

assessment of the similar projects surveyed in chapter 5. 

It is not the intention to define a somehow optimal syntax but rather to demonstrate 

a practical and efficient interface between the programmer and the CAM component. 

We develop through low level language constructs which are closely associated with the 

hardware, to higher levels where the abstractions of the previous chapter dominate the 

appearance of the syntax. This follows the strategy of deriving a language from the 

union of the hardware forms and the desired computational abstraction. 

7.1 Strategy 

Firstly, we must decide what level of changes are necessary to provide the 

programmer with access to the enhanced hardware. We saw in chapter 4 that the CAM 

form can accommodate a variety of new programming language styles (and also new 

architectures) but it is not necessary to alter conventional language structure to direct the 

Triplet architecture. In this example, the conventional language constructs will run on 

the conventional computer configuration (a CPU—RAM pair), and it is only the 

CPU— CAM interaction which requires linguistic development. 
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On the other hand, alterations in the compiler alone are not sufficient. This would 

limit the benefits of the CAM to a novel compiler storage allocation scheme, and 

perhaps efficient array handling for an array processor: the hardware CAM form is not 

expressed in conventional languages, and can not be deduced from them. 

Thus we proceed with the middle option described in chapter 5, that of syntactic 

extension. The aim is to extend a conventional programming language, to one which 

can direct the actions of a Triplet machine. We will consider various options and 

examine their suitability for providing the necessary syntactic extensions to 

accommodate the Triplet architecture. These options were developed and investigated. 

through the design of prototype translators and a software functional simulation of the 

CAM. The development of these "compilers" afforded the ability to write and run 

Triplet language programmes, and isolated the pertinent issues in the language 

development. 

7.2 Methodology 

Let us briefly consider the organization of this software. The base language was 

chosen to be C[66]. The CAM simulation is implemented by arrays corresponding to 

the memory and tags, with serial searches to perform the comparison. Access to this 

data base is through subroutines corresponding to the CAM functions which are 

essentially the assembler commands with parameters in place of register numbers. The 

CAM word is modelled as a byte array. The object of the translator is to convert the 

extended syntax into standard C code including the simulator subroutines. In the event, 

several translators were developed implementing progressively higher levels of 

programming language. 
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The first translator converted CAM assembler code inserts into the appropriate 

subroutine calls and goto statements. This required the manipulation, by standard C 

code, of dedicated 'CAM' array variables which were then passed as parameters to the 

simulation subroutines. The translation was essentially textual substitution and was 

effected by the use of the lexical analyser: Lex[34]. 

The next translator converted a low level programming language. This allowed the 

declarations of the new variable types which were maintained by the compiler rather 

than programmer conventions. Simple CAM programming statements were included, 

and so a syntax analyser (Yacc[67]) was required. The technique was to filter out and 

modify the extended syntax only. This required knowledge of each variable's 'type' (to 

trap the extended syntax), so the translator maintained a hash table data base derived 

from the declaration statements. Further 'traps' were provided for the analysers by 

baroque tokens in CAM statements (such as "[(", or ",,'); these would not be needed if 

the programme were fully parsed - they are a feature of the translator and not the 

syntactic extensions. As an example of this language, the following is the coding, and 

the translated C code, of the set theoretic operation Intersect using the data structure and 

algorithm described in chapter 1: 

Intersect(A,B,C) char A,B,C; 

{cword cee, masc; - 

masc <- [(MASK set —id ,,MASK elem )]; 

foreach [(A set—id )] 1 -> cee 

{cee = [( B set_id )]; 

set_tag(cee, masc, 2); 

if (next(2)) 

{cee = [( C set —id )J; 

enter(cee) ;};};} 
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Intersect(A,B,C) char A,B,C; 

lint cee[2], masc[2J; 

*masc= s(masc+ 1) = 0; 

temp= MASK; 

full_write(masc,*setid,*(setjd+ 1) ,&_temp,1,32,0); 

_temp= MASK 

full_write(masc,*elem,*(elem+ 1),&_temp,1,32,0);; 

* -mask = *(_mask + 1) = 0; 

_temp = A 

_for(*set_id,*(setid+ 1)); 

I = 1 

setjag(comp,mask,i); 

while (next( i) ? load(cee,_i) : 0) 

{_temp= B 

full _write(cee,*set_id,* (set_id+ 1) ,&jemp,1,32,0);; 

set_tag(cee, masc, 2); 

if (next(2)) 

{_temp= C 

full_write(cee,*setid,* (set_id+ 1) ,&_temp,1,32,0);; 

enter(cee) ;};};} 

This language is still very closely related to the hardware operation. For example, there 

is the explicit creation of a mask word, and most CAM iterations had to be explicitly 

developed from standard C statements. 

The final translator removed some of these problems, and developed more 

sophisticated iterative and assignment statements. The shortcomings of this compiler 

lead to further ideas on appropriate syntax. The above example would be coded as: 

Jntersect(A,B,C) char A,B,C; 

{cword cee; 

foreach (@ set id A @) -> cee 

forfirst (@set_id B elem elem<@cee [# 2 #] @); 

else enter(@ set —id C elem elemc @cee @) ;} 
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7.3 Bag names 

The most severe limitation discussed in chapter 6 was the number of comparison 

tag groups and hence the number of bags which can be defined at any one stage. This 

number is a feature of the hardware and was selected in the prototype deign to be two 

according to the criteria of chapter 2; in future system design the number may be 

increased without prejudice to this discussion. 

While the high level language should protect the user from the idiosyncrasies of the 

hardware, it should not do so at the expense of efficiency. The high level programmer 

must know that there are only two bags, since if he used more bags there would have to 

be continual re-addressing of each bag by the compiler generated code, and also 

restrictions on the, bag operations. The programmer must also be able to specify to 

which of the two bags he is referring, which implies the need for some syntax to 

distinguish between them. 

The translators all referred to the comparison groups by number and assigned the 

addressed word (if any) to a declared RAM variable. There are two objections to this 

approach: the use of numbers to designate hardware control lines does not promote the 

aspect of a high level language,. and the necessary assignment to a RAM variable defeats 

the advantages of the CPU register organization which was designed to allow the 

processing of CAM words without interaction with the RAM. The following is a 

possible convention which overcomes these problems. 

At any one stage of the computation there are two (possibly empty) bags which are 

in scope: up to two words in CAM which may be directed. The scope of a bag, 

according to hardware, extends until the bag is redefined - until a comparison is 

performed using that tag group. In performing any bag operation, including 

redefinition, it is necessary to specify which of the two bags in scope is to be affected. 
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This implies that they must have names. Since there is no distinction between them, we 

shall christen them as Tweedledee and Tweedledum. The convention will be to augment 

a command word which directs a bag with the name of the bag: thus next becomes 

next_dum or next—dec. This allows the manipulation of the dee and dum variables as 

compiler maintained CPU register locations: no RAM locations are involved. 

7.4 Basic Operations 

The operations to manipulate bags were introduced in chapter 6. This section 

considers the design of a syntax which expresses these operations clearly and without 

ambiguity. We start with basic functions and then develop a syntax with features to 

assist the high level programmer. 

The programmer needs direct access to the fundamental addressing functions. 

These are the comparison, next, remove, and the boolean output of the address line (see 

chapter 4). These are sufficient for the programmer to fully direct CAM addressing; 

their necessity will be considered after discussing a syntax. 

7.4.1 Simple boolean 

Let the syntax for the boolean test be the reserved word empty which has the value 

true if and only if the associated-bag is empty. The compiler will be able to trap this 

word and implement the form using the specific assembler jump statements. The high 

level programmer may perceive it as a system maintained boolean. Thus we have 

conditional branches such as: 
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while (!empty dum) 1* while the bag dum is not empty *1 

if (empty_dee) 	1* if the bag dee is empty *1 

7.4.2 Address Drivers 

Similarly let the two commands which drive the daisy-chain address signal be the 

reserved words remove and next. It may be useful to consider these as returning a 

boolean value corresponding to whether the bag is empty following the operation; this 

leads to a more succinct programming style but also gives rise to a source of 

programming bugs. Assume that the returned value is true if the bag is not empty (this 

is the opposite of empty, but enhances programme readability), and consider the three 

loops: 

while (next dum) <statement> 

do <statement> while (next dum) 

while (!empty_dum) {c statement> next_dum} 

The first loop has the effect of ignoring the first member selected from the bag which 

would probably not be intended. The second loop avoids this pitfall but, by moving the 

test to the end of the statement, allows the execution of the statement even if the bag is 

initially empty; again, this may not have been intended. It depends upon the 

implementation whether or not a CAM access on an empty bag is trapped as a run time 

error, but this is a pernicious bug in that it is computation dependent. The third loop 

lacks the simplicity of the first two and ignores the returned value of next_dum, but it 

does provide a cafe algorithm. 
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7.4.3 Bag definition 

Let the new definition of a bag be achieved by the reserved word define. This is a 

function which takes a <pattern> as an argument to describe which fields are relevant 

to the addressing comparison and to specify their values. This raises two issues: should 

define return a boolean value, and should there be two statements provided in the 

syntax to allow separate coding for whether of not <pattern> defines an empty bag? 

These features are illustrated by the following three (possibly) equivalent pieces of code: 

define_dee(< pattern>) 

if (!empty_dee) <statementl> 

else <statement2> 

if (define dee(<pattern>)) <statementl> 

else <statement2> 

define_dee(<pattern>) <statementl> 

else <statement2> 

The first example has only the operation of defining a new bag followed by a branch 

dependent on whether or not the bag is empty; the second uses the returned value of 

define to decide the branch; and the third allows define to replace the if statement. 

These are essentially three styles which are compatible within one language. The second 

is desirable for reasons of consistency. The third has the advantage of encouraging the 

programmer to consider which portions of the code are dependent on the bag being 

non-empty and to gather these into <statementl> - clearly this programming technique 

is possible without the aid of special syntax, but a syntax should be conducive to safe 

programming. The first style could be used if either, or both, of the other styles were 

included in the syntax. 
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7.4.4 Example of necessity 

It has not yet been demonstrated that a syntax without the low level memory 

commands (next and remove) could not perform the same bag manipulations in a more 

abstract syntax. Consider the following code: 

define_dee(< pattern>) 

define_dum(< pattern>) 

while (!empty_dee && !emptydum) 

{if (<conditional>) remove dum 

else next dee} 

This is an example of the type of bag interaction to which a programmer should have 

access but which a more abstract syntax could not embrace - the commands are 

necessary. 

7.5 Scope and iterations 

A high level syntax can provide iterative constructs to replace the explicit coding of 

common loops; a CAM orientated syntax can provide iterations which support the bag 

abstraction. A common bag operation is the execution of a portion of code on each 

member of the bag: 

define_dee(c pattern>) 

while (!empty_dee) {c statement> next_dee} 

This can be replaced by a syntactic construct such as: 

foreach_dee (<pattern>) <statement> 

An added advantage is that this allows for compiler checking of the scope rules, namely 

that the <statement> contains no redefinition of the dee bag and (possibly) also no 

next_dee or remove_dee commands. 
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A similar:  loop could be effected by using the remove_dee command to finish the 

code block rather than next_dee. This results in the removal of each word addressed by 

<pattern>, thus: 

fromeach_dee (<pattern>) <statement> 

Consider the contrast between the foreach loop and the following: 

while (define_dee(c pattern>)) <statement> 

This specifies that the comparison operation is performed on each iteration. This was 

found to be a common construct where the <pattern> is used as a dynamic queue of 

items to be processed with <statement>. An intermediate form was also commonly 

encountered: namely, where the code block is repeated on each member of the bag and 

then the comparison is performed again and the form repeated if the bag is non-empty. 

This is cumbersome to express in the syntax developed so far, but the assembler coding 

is trivial: 

#top top 

CMP n m 1 

LDG 1 

JNP bottom 

#top 

- . . - <code block> 

LDG 1 

RE 

II' top 

JUMP top—top 

#bottom 

The algorithmic effect of this code is to implement a breadth —first search since the 

members of each new bag were created by the processing of the previous bag. This is 

an important form which can be efficiently implemented in the assembler code, hence 

the high level language must allow its easy expression, thus: 



repeat—with dee(c pattern>) <statement> 

7.6 Removal of CAM words 

The CAM component has the facility to make all locations 'empty' by setting all the 

empty tags to active. This is a necessary prelude to the beginning of a programme's 

execution and should be generated automatically by the compiler. In addition, a high 

level programmer may wish to use this operation explicitly during the programme; the 

appropriate form already exists in the syntax as: 

fromeachdumQ; 

since the null pattern assures that all of memory is addressed, and the null iteration 

block implies that only the implicit remove operation would be performed on each 

addressed word. The compiler should trap this expression and use the appropriate single 

assembler instruction, since the naive coding would take time preportional to the number 

of words in memory. 

Consider a temporary data structure built in CAM, perhaps used in a subroutine. 

There are obviously cases where such a structure must be unbuilt and removed after the 

immediate algorithm is complete. The syntax developed so far would enable the 

programmer to achieve this explicitly, but in a block orientated language it is desirable 

to introduce syntax which presents this garbage collection in the usual manner. For this, 

we define the local declaration which is written with the normal type declarations at the 

beginning of a block: 

local (<pattern>), (<pattern>); 

The semantics are that, at the end of the current block, all bags are removed which are 

defined by the declared addresses. This declaration refers only to CAM words; it does 
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not initiate an allocation of space nor a writing to memory; no action occurs until the 

end of the block. 

7.7 Field specification 

The syntax for assignments and address specification depends upon the manner in 

which the fields of a CAM word are specified and accessed. A field has two properties 

which the syntax must allow to be expressed: the position of the bytes within a CAM 

word to which the field refers, and the interpretation (or "type") associated with these 

bytes. We will start by imposing constraints on the fields and develop different styles of 

syntax as these are relaxed. 

7.7.1 Fixed size with explicit ordering 

Initially we consider all CAM words to have fields of the same fixed sizes. In this 

case the fields may be syntactically specified by their relative textual position within an 

n-tuple: 

(fieldi, field2, field3, field4 ,etc) 

Not all the fields will be relevant to each reference, and so to maintain a readable format 

we include awild card: *, whose exact meaning depends upon context. Irrelevant fields 

at the right hand side of the word are not written down, thus the following are 

equivalent forms: 

('V', 23, *, TRUE, 

('V', 23, *, TRUE) 
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Addressing 

An address is defined by the value of zero or more specified fields; in this case the fields 

are specified by their relative position and the wild card indicates that a field does not 

form part of the address definition. Thus the previous example denotes the address of a 

word whose first field is 'V', whose second field is 23 and whose fourth field is TRUE. 

Assignment 

Reading the value of fields from memory only applies to those fields which were not 

specified in the address and so we may replace the wild card of such fields with an 

assignment operator, thus: 

foreach_dum('V', 23, *, = fred) <statement> 

where the address is ('V', 23) and at each iteration the fourth field is assigned to the 

variable fred. An important point is that the interpretation of the fields' bit pattern is 

dependent only on the "type" of the variable to which it is assigned. 

Writing a value to memory requires the specification of the values of all the 

relevant fields which may be achieved in the obvious manner. There are two types of 

writing: one to a new memory location, and one to the location within the bag 

definition. The former does not have a dam/dee extension, so we will define a further 

extension: new, thus: 

enter —new( 'V', 23, *, 'a') 

enter dum( 'V', 23, *, 'a') 

We will assume the convention that when updating a bag member, the value of the wild 

card fields is unchanged: it is the same as that already in memory. The value of wild 

card fields with the enter —new command is (arbitrarily) zero. 
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There is one special case which should have a syntactic expression, and that is the 

copying of a CAM word from one location within memory to another: For this the 

words dum and dee are considered as reserved words, and used to designate their 

respective 'current' n-tuples. This gives rise to expressions of the forms: 

enter dum(dee) 

enter_new (d urn) 

As an example of the syntax developed so far, the following is a possible coding of 

the Traversal procedure outlined in chapter 1: 

Procedure Traversal(start node) char start —node; 

{char selected_node, head_node; 

enter_new('visited', start_node); 

enter—new ('to —do', start—node); 

while (define durn('to do', = selected_node)) 

{removedumQ; 

foreach_dee('edge', selected_node, = head —node) 

{if (!define_dum('visited', head —node) 

{enter_new('visited', head node); 

enter_new('to_do', head—node);}}}} 

7.7.2 Variable size with explicit ordering 

If the words in CAM do not all have the same field boundaries, then the syntax 

must allow the declaration of a CAM word type: that is, an identifier associated with a 

sequence of specified field sizes. This can then be used to indicate the field boundaries 

of each CAM word as it is directed. The declarations could be of the form: 

CAM—word shape(2,4,1,8) 

which associates the identifier "shape with a CAM word whose first field is two bytes, 

second field is four bytes, etc.. The use of explicit numbers may not appear to be a high 
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level language convention, but some specification of field size is necessary if it can vary. 

An alternative is to use keywords to correspond to different numbers, similar to the 

implied numbers in conventional language type declarations. 

There need be no alteration to the syntax of the previous section except that the 

identifier must be specified with each <pattern>, thus: 

define_dum(shape(16, *, 'x')) 

7.7.3 Ambiguity due to variable boundaries 

There is a possible source of errors with variable field sizes (and types). Consider 

the example: 

CAM—word alpha(1,1), beta(2); 

enter new(beta(21)); 

define_dum(alpha(0,*)); 

The second enter command will create a CAM word whose first byte is 0, since the two 

byte hexadecimal representation of 21 is 00 15. Thus the comparison will address a non-

alpha CAM word, which may not be intended. 

This may be resolved by applying the convention that a common portion of each 

CAM word contains an identifier to ensure that only the relevant part of memory can be 

addressed; thus the CAM is subdivided into sections of common field boundary 

identifiers. This could be achieved in the compiler by assigning an identifier associated 

with the declared CAM —word identifier. Access would thence be only through patterns 

with this byte implicitly maintained by the compiler. Alternatively, the programmer 

could be left to programme with these conventions himself. 
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7.7.4 Variable size with implicit ordering 

If the fields are not distinguished by their relative textual position, then it is the 

fields themselves which must be declared and specified. A field has both size and offset 

within the CAM word, which is equivalent to offset of first and last byte. In the latter 

style, we might have declarations of the form: 

field set id(1), cost(2,5) 

which declares two fields: set-id which is the first byte in a CAM word, and cost which 

is four bytes in length starting at byte two. Again, the use of numbers lacks the aspect 

of a high level language; but the programmer should be allowed a free choice in 

allocating the CAM word. 

Addressing 

The <pattern> for the CAM is now expressed by a list of specified fields and their 

values, thus: 

define_dee(setid = 'V', cost = 3) 

The order in which they are specified is no longer relevant, nor is the wild card. The 

CAM word type is specified by the fields of which it is composed, so the CAM -word 

declaration is redundant. 

Assignment 

The bag naming convention can be extended to allow the manipulation of the dumidee 

variables as compiler maintained CPU registers. Conceptually, dee and dum are the 

currently addressed members of their respective bags, and access and updates performed 

upon dee and dun are effective upon the addressed memory location. The compiler will 

optimize this access by reading the CAM location into CPU memory on the first access 

and, if an update has occurred, rewriting, only before another member is selected or a 
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new bag is defined. 

However, this declaration syntax is not sufficient since it contains no statement of 

the field's type. This was not relevant to the discussion with fixed fields since they each 

inherited the typing of the variable to which it was assigned, or of the expression 

assigned of it. In this case, the field may be accessed without a clear typing inference. 

Thus the field declaration must contain a specification of the associated type: 

field set—id(l)char, cost(2 ,5)int 

Reading the value of fields from memory is achieved by specifying the bag and the 

field identifier. Thus an expression of the form: 

d urn, cost 

refers to the cost field in the current n-tuple of the dum bag. 

Writing to memory may also be achieved in a similar syntax, specifying the bag and 

the field on the left hand side of an assignment statement: 

dum.cost = dee.cost + 1; 

using the obvious convention that only the specified field is altered by such an 

assignment. 

The enter command, is retained for writing CAM —words from one bag to another. 

The writing of a new word to CAM can not be accomplished by extending the bag 

variable concept to the empty tag group. The difference is that the assignment to a 

dumidee bag is made by the compiler before the "current" word changes, but with the 

empty tag group the word remains "current' until it is written. Specifically the compiler 

must know when a new word has been defined so that the word may be written to 

memory. If new words were created by successive new.field assignments, there would 
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have to be an explicit statement in the high level language to designate when the word 

was assembled. The alternative is to retain the enter command to apply necessarily to the 

new bag and optionally to the dumidee bags, thus: 

enter_new(cost = dee.cost, set_id = 'B') 

With this field specification, the Traversal example becomes: 

Procedure Traversal(start node) char start —node; 

{char selected node; 

enter_new(set_id = 'visited', item = start —node); 

enter_new(setid = 'to_do', item = start —node); 

while (define dum(set id = 'to_do')) 

{selected node = dum.item; 

remove dumQ; 

foreachdee(setid = 'edge', tail = selected node) 

{if (!define_dum(set id = 'visited', item = dee.head) 

{enternew(setid = 'visited', item = dee.head); 

enter_new(setid = 'to_do', item = dee.head);}}}} 

7.8 The type 'cword' 

The final field specification syntax is reminiscent of the manipulation of fields 

within records as found in some conventional high level languages, and it seems natural 

to provide the programmer with the syntax to construct such RAM records and to 

interface these with the CAM equivalents. For instance, this would allow the software 

emulation of a read-only bag by reading a bag into a record stack. To assist this, we 

introduce a new type of RAM variable: the cword, which is of the same length as a 

CAM word, and which is accessed by the same field references and syntax as the pseudo 

dumfdee words. 
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A cword is location addressed RAM. In the same manner as other RAM variables, 

it has a declared identifier, thus: 

cword cwl, cw2; 

declares two cwords variables: cwl and cw2, in RAM. Cwords are manipulated 

according to fields: 

cwl.setid = 'A'; 

cw2.cost = cwl.cost + 99; 

in the same manner as CAM words, and ditmidee may be viewed as a special example of 

a cword. Cwords may be assigned to each other in their entirity through a statement of 

the form: 

Ccword> = <cword>; 

No arithmetic operators are defined upon a cword. 

There are natural extensions to the syntax which allow for the direct transfer of 

data between CAM and RAM. A cword may be written to CAM through the enter 

command family, or by assignment to the pseudo variables dum, dee or new; and reading 

from CAM is the assignment of dum or dee, thus: 

enter dum(cwl); 

new = cw2; 

cwl = dum; 
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7.9 An Example 

Finally, let us consider an example programme written in this syntax. Perhaps the 

best known graph theoretic algorithm is that of Dijkstra for the solution to the single 

source, shortest paths problem: given a costed graph and a single node, find the length 

(cost) of the shortest path to each of the other nodes. 

7.9.1 The algorithm 

Let the initial node be i, and the graph be G = (V, E) where V is the set of nodes 

and E is the set of (costed) edges. The algorithm is based on induction. Suppose that 

there are two subsets of V: 

the nodes to which the length of the shortest path is known and is no longer than 

any path to nodes not in A 

nodes which are adjacent to, but not members of, A 

and assume that the length of the shortest path from i to each node in B, using only 

nodes in A, is also known. 

Let j be a node in B which has the shortest such path. Then J can be transferred to 

A, and the knowledge of the members of B can be updated to consider the new paths 

which include j. 

This task is simplified by the following reasoning. The shortest path to any other 

node (k) in A does not contain j, since then there would be a path to f which was shorter 

than the shortest path to k, and this contradicts the inductive hypothesis regarding A. 

- 	
The shortest path to the nodes not in A 

(using only nodes now in A) either does not contain j, and so is unchanged; or contains I 
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as the penultimate node - thus only nodes which are adjacent to j (and not in A) need to 

be considered when updating. 

The basis for the induction is that i is a member of A, and that B consists of the 

nodes which are adjacent to A whose 'path' length is known from the cost of that edge. 

7.9.2 The encoding 

The encoding (see page 157) of the algorithm is based on the use of two n-tuples, 

the costed edge representation of the graph found in chapter 1: 

Edge_tuple I from —node I to —node I cost] 

and workspace of the form: 

Work tuple I node I cheapest —known—cost I set—flag I 

where the value of the flag is used to denote whether the corresponding node in set B (if 

FALSE) or in set A (if TRUE). 

The initial node is placed in set B, and is made the selected node for transfer to set 

A. The main block has three sections: 

• 	transfer selected node from B to A 

• 	update set B by considering paths through the selected node to its adjacent nodes 

• 	select a new node from the members of B, or quit if B is empty. 
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/* Dijkstra's algorithm computes the cost of the shortest paths from a given 

node. This realization is based upon the costed edge representation: 

(E, from —node, to—node, cost) 

and a work space n-tuple of the form: 

(W, node, cheapestknown, setJlag) *1 

1* field declarations I 

field tuple_type(1)char, node(2)char, flag(3)char, cheap(4,8)int; 

field frriode(2)char, tonode(3)char, cost(4,8)int; 

1* sample graph's specification *1 

char edgelist[][3] = 

{'A', 'B', , 8} {'A','G',7}, {'A','H',o), {'A','J',4} 

{'A' ,'C' ,3}, {'C' ,'D',3}, ('C' ,'E' ,2), {'D', 'F' ,1} 

{'E','F',l}, {'E','J',lZ}, {'H', 'I', 9} }; 

mt no_arcs = 11; 

main() 

{int i, minnode, mincost, sum; 

1* create the costed edge list *1 

for (1=0; i< no arcs; i+ +) 

{enter_new(tuple type = 'E', frnode = edgelist[i][0], 

tonode = edgelist[i][1], cost = edgelist[i][2]); 

1* and in reverse for bi-directional edges *1 

enter_new(tuple type = 'E', frnode = edgelist[i]{1], 

tonode = edgelist[i][O], cost = edgelist[i][2]) ;}} 

initiate the data structure with the starting node *1 

minnode = 'A'; 

mincost = 0; 

enter_new(tuple type = 'W', node = minnode, cheap = 0, flag = FALSE); 
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I. the main block: repeat until a break *1 

while (1) 

{I* flag current node, so transferring it to set A *1 

define_dum(tuple_type = 'W', node = minnode) 

flag.dum = TRUE; 

/* for each node adjacent to the current node - 

update its shortest known path *1 

foreach_dum(tuple_type = 'E', frnode = minnode) 

{I* compute the cost of a path using the current node *1 

sum = mincost + dum.cost; 

1* and compare this with the best known route *1 

definejiee(tuple type = 'W', node = dum.tonode) 

{f* if the entry exists and 

if the new route is cheaper *1 

if (sum < dee.cheap) 

/* update the value *1 

dee.cheap = sum;} 

1* if there is no entry, create one *1 

else enter_new(tuple type = 'W', node = dum.tonode, 

cheap = sum, flag = FALSE);} 

1* of the nodes in set B, select the one with 

the shortest known path *1 

define dum(tuple type = 'W', flag = FALSE) 

{minnode = dum.node; mincost = dum.cost; 

while (next dum) 

(if (mincost > dum.cheap) 

{minnode = dum.node; mincost = dum.cheap;}}} 

else /* if no more nodes in set B *1 break;} 

1* print out results and remove the workspace *1 

fromeach_dum(tupl_type = 'W') 

printf("node %c at cost %d\n", dum.node, dum.cheap);} 
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7.9.3 Assessment 

The use made of the subset B, as a dynamically constructed set of nodes adjacent to 

A, is unusual and replaces the use of (V - A) with which the algorithm is usually 

described; it is more efficient but it is not dependent upon CAM although the 

perspective from which it was reached was engendered by considering the CAM 

implementation. The main !points, however, are that the whole data structure has a 

direct correspondence to CAM without the need for abstractions over the hardware 

form, and that this correspondence may be expressed clearly and simply in the syntactic 

constructs which have been developed in this chapter. 



Chapter 8 

CONCLUDING REMARKS 

The implicit strategy of this thesis has been the continual interaction between the 

projected software usage and the hardware design, and the success of this approach can 

be seen in the ease with which the novel hardware was rendered accessible to the general 

programmer. The initial consideration of the software's needs lead to the inclusion of 

multiple tag groups, this gave rise to the hardware organization for hardwired garbage 

collection, which in turn shaped the functional characteristics of the component and so 

the assembler forms. Unlike the examples of chapter 5 which showed the short-comings 

of an imbalanced design effort, the novel hardware of this thesis has been fully 

integrated into a complete programming environment. 

The Triplet architecture forms a general purpose computer in the same sense as the 

von Neumann model and exemplifies CAM's immediate potential as a general 

programming tool. The main significance of the syntactic extensions is that they render 

the innovative architecture and hardware accessible without fundamentally altering the 

structure of conventional programming languages, and this will facilitate the general 

acceptance of the novel architecture. The effect is the same as presenting the high level 

programmer with an abstract data type and advocating its usage on the grounds of 

efficient implementation, and this data type allows the programmer to construct data 

structures and algorithms in a manner which was previously impractical on a RAM only 

machine. 
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Content Addressability allows certain abstract data types to be implemented with 

greater clarity and efficiency; and, in the context of the hardware implementation of data 

types, CAM may be used in system design to engender new computer architectures 

ranging from simple interpreters, to multiprocessor implementations of novel 

programming languages: it is evident that CAM will assist the progress of many 

'disparate fields of computer science. Furthermore, Content Addressability will have a 

profound effect on both computing theory and practice since it transfers a specific type 

of processing to beyond, the "von Neumann bottle neck". This alone will change the 

perspectives for general software techniques and computational complexity analysis. For 

instance, the "current state" of a computation could no longer be characterized as a point 

in a multi-dimensional vector space, but rather must be viewed as the collection of 

elements in the memory bag. 

The success of the prototype components validated the CAM's design, and the 

programming language extensions, coupled with the discussion of possible architectural 

developments, demonstrated the design's potential. The need is for a large scale 

component, and the proposal for wafer scale integration shows that not only is this 

design suitable for a commercial memory project but also that it would form an excellent 

basis for work on wafer scale integration per Se. Content Addressable Memory has a 

future - which the design proposed in this thesis could effect. 
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The main omission of this thesis is in the expansion of the basic CAM ICs into the 

large scale memories which will be necessary for the successful introduction of CAM 

orientated systems. Much work is needed on the wafer scale integration proposals and to 

determine the optimum decomposition of the memory hierarchy[68]. The multi-write 

capability of CAM, which was mentioned in chapter 1, was not included in the prototype 

component design despite the ease with which this could have been done. The intention 

was to implement Content Addressability in its 'purest' form without including 

enhancements which appeared attractive due to the characteristics of the actual 

implementation. Similarly other design strategies such as the use of distributed units of 

word-serial bit-parallel comparison logic (attractive due to the possible use of 

conventions RAMs for data storage) were not fully investigated as the intention was to 

emphasize the direct link between the abstract, software, and hardware forms. 

The main point of the work reported in this thesis is that CAM is a viable and 

useful medium for data structure and algorithmic design, much work remains to done in 

quantifying the relative advantages of CAM and RAM implemetations for each 

application. Further work, too, is needed in developing the concept of variformity 

introduced in chapter 6 which embodies the form of Content Addressability without 

pointing clearly to application areas beyond the most simple use of field duality. The use 

of CAM in system design should be investigated by isolating those system 'blocks' which 

commonly appear and which bear a close affinity to CAM. Finally, the most exciting 

prospect is an investigation of programming languages which are based upon the 

charactoristics of CAM alone - and not hampered by the developments of the past forty 

years. The question should be asked: how would programming techniques have evolved 

if CAM rather than RAM had been the memory medium implemented in the EDVAC 

and its descendents? 
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