Design of a New High Bandwidth Network for Agricultural Machines

Abstract

Ethernet is by now the most adopted bus for fast digital communications in many environments, from household entertainment to PLC robotics in industrial assembly lines. Even in automotive industry, the interest in this technology is increasingly growing, pushed forward by research and by the need of high throughput that high dynamics distributed control demands. Although 100base-TX physical layer (PHY) does not seem to meet EMC requirements for vehicular and heavy-duty environments, OPEN Alliance BroadR Reach (soon becoming IEEE standard as IEEE 802.3bw) technology is the most promising and already adopted Ethernet-compatible PHY, reaching 100Mbps over an unshielded twisted pair. An agricultural machine is usually a system including tractor and one or more implements attached to it, to the back or to the front. Nowadays, a specific CAN-based distributed control network support treatments and applications, namely ISOBUS, defined by ISO 11783. This work deals with architectural and technological aspects of advanced Ethernet networks in order to provide a high-throughput deterministic network for in-vehicle distributed control for agricultural machinery. Two main paths of investigation will be presented: one concerning the prioritization of standard Ethernet taking advantage of standard ways of prioritization in well-established technologies; the other changing the channel access method of Ethernet using an industrial fieldbus, chosen after careful investigation. The prioritization of standard Ethernet is performed at two, non-mutual exclusive layers of the ISO OSI stack: one at L3, using the diffserv (former TOS) Ip field; one at L2, using the priorities defined in IEEE 802.1p, used in IEEE 802.1q (VLAN). These choices have several implications in the specific field of application of the agricultural machines. The change of the access method, instead, focused on the adoption of a specific fieldbus, in order to grant deterministic access to the medium and reliability of communications for safety-relevant applications. After a survey, that will be reported, the Powerlink fieldbus was chosen and some modifications will be discussed in order to suit the scope of the research

    Similar works