20 research outputs found

    Conflict resolution in mobile networks: a self-coordination framework based on non-dominated solutions and machine learning for data analytics [Application notes]

    Get PDF
    ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Self-organizing network (SON) is a well-known term used to describe an autonomous cellular network. SON functionalities aim at improving network operational tasks through the capability to configure, optimize and heal itself. However, as the deployment of independent SON functions increases, the number of dependencies between them also grows. This work proposes a tool for efficient conflict resolution based on network performance predictions. Unlike other state-of-theart solutions, the proposed self-coordination framework guarantees the right selection of network operation even if conflicting SON functions are running in parallel. This self-coordination is based on the history of network measurements, which helps to optimize conflicting objectives with low computational complexity. To do this, machine learning (ML) is used to build a predictive model, and then we solve the SON conflict by optimizing more than one objective function simultaneously. Without loss of generality, we present an analysis of how the proposed scheme provides a solution to deal with the potential conflicts between two of the most important SON functions in the context of mobility, namely mobility load balancing (MLB) and mobility robustness optimization (MRO), which require the updating of the same set of handover parameters. The proposed scheme allows fast performance evaluations when the optimization is running. This is done by shifting the complexity to the creation of a prediction model that uses historical data and that allows to anticipate the network performance. The simulation results demonstrate the ability of the proposed scheme to find a compromise among conflicting actions, and show it is possible to improve the overall system throughput.Peer ReviewedPostprint (author's final draft

    Benefits and limits of machine learning for the implicit coordination on SON functions

    Get PDF
    Bedingt durch die Einführung neuer Netzfunktionen in den Mobilfunknetzen der nächsten Generation, z. B. Slicing oder Mehrantennensysteme, sowie durch die Koexistenz mehrerer Funkzugangstechnologien, werden die Optimierungsaufgaben äußerst komplex und erhöhen die OPEX (OPerational EXpenditures). Um den Nutzern Dienste mit wettbewerbsfähiger Dienstgüte (QoS) zu bieten und gleichzeitig die Betriebskosten niedrig zu halten, wurde von den Standardisierungsgremien das Konzept des selbstorganisierenden Netzes (SON) eingeführt, um das Netzmanagement um eine Automatisierungsebene zu erweitern. Es wurden dafür mehrere SON-Funktionen (SFs) vorgeschlagen, um einen bestimmten Netzbereich, wie Abdeckung oder Kapazität, zu optimieren. Bei dem konventionellen Entwurf der SFs wurde jede Funktion als Regler mit geschlossenem Regelkreis konzipiert, der ein lokales Ziel durch die Einstellung bestimmter Netzwerkparameter optimiert. Die Beziehung zwischen mehreren SFs wurde dabei jedoch bis zu einem gewissen Grad vernachlässigt. Daher treten viele widersprüchliche Szenarien auf, wenn mehrere SFs in einem mobilen Netzwerk instanziiert werden. Solche widersprüchlichen Funktionen in den Netzen verschlechtern die QoS der Benutzer und beeinträchtigen die Signalisierungsressourcen im Netz. Es wird daher erwartet, dass eine existierende Koordinierungsschicht (die auch eine Entität im Netz sein könnte) die Konflikte zwischen SFs lösen kann. Da diese Funktionen jedoch eng miteinander verknüpft sind, ist es schwierig, ihre Interaktionen und Abhängigkeiten in einer abgeschlossenen Form zu modellieren. Daher wird maschinelles Lernen vorgeschlagen, um eine gemeinsame Optimierung eines globalen Leistungsindikators (Key Performance Indicator, KPI) so voranzubringen, dass die komplizierten Beziehungen zwischen den Funktionen verborgen bleiben. Wir nennen diesen Ansatz: implizite Koordination. Im ersten Teil dieser Arbeit schlagen wir eine zentralisierte, implizite und auf maschinellem Lernen basierende Koordination vor und wenden sie auf die Koordination zweier etablierter SFs an: Mobility Robustness Optimization (MRO) und Mobility Load Balancing (MLB). Anschließend gestalten wir die Lösung dateneffizienter (d. h. wir erreichen die gleiche Modellleistung mit weniger Trainingsdaten), indem wir eine geschlossene Modellierung einbetten, um einen Teil des optimalen Parametersatzes zu finden. Wir nennen dies einen "hybriden Ansatz". Mit dem hybriden Ansatz untersuchen wir den Konflikt zwischen MLB und Coverage and Capacity Optimization (CCO) Funktionen. Dann wenden wir ihn auf die Koordinierung zwischen MLB, Inter-Cell Interference Coordination (ICIC) und Energy Savings (ES) Funktionen an. Schließlich stellen wir eine Möglichkeit vor, MRO formal in den hybriden Ansatz einzubeziehen, und zeigen, wie der Rahmen erweitert werden kann, um anspruchsvolle Netzwerkszenarien wie Ultra-Reliable Low Latency Communications (URLLC) abzudecken.Due to the introduction of new network functionalities in next-generation mobile networks, e.g., slicing or multi-antenna systems, as well as the coexistence of multiple radio access technologies, the optimization tasks become extremely complex, increasing the OPEX (OPerational EXpenditures). In order to provide services to the users with competitive Quality of Service (QoS) while keeping low operational costs, the Self-Organizing Network (SON) concept was introduced by the standardization bodies to add an automation layer to the network management. Thus, multiple SON functions (SFs) were proposed to optimize a specific network domain, like coverage or capacity. The conventional design of SFs conceived each function as a closed-loop controller optimizing a local objective by tuning specific network parameters. However, the relationship among multiple SFs was neglected to some extent. Therefore, many conflicting scenarios appear when multiple SFs are instantiated in a mobile network. Having conflicting functions in the networks deteriorates the users’ QoS and affects the signaling resources in the network. Thus, it is expected to have a coordination layer (which could also be an entity in the network), conciliating the conflicts between SFs. Nevertheless, due to interleaved linkage among those functions, it is complex to model their interactions and dependencies in a closed form. Thus, machine learning is proposed to drive a joint optimization of a global Key Performance Indicator (KPI), hiding the intricate relationships between functions. We call this approach: implicit coordination. In the first part of this thesis, we propose a centralized, fully-implicit coordination approach based on machine learning (ML), and apply it to the coordination of two well-established SFs: Mobility Robustness Optimization (MRO) and Mobility Load Balancing (MLB). We find that this approach can be applied as long as the coordination problem is decomposed into three functional planes: controllable, environmental, and utility planes. However, the fully-implicit coordination comes at a high cost: it requires a large amount of data to train the ML models. To improve the data efficiency of our approach (i.e., achieving good model performance with less training data), we propose a hybrid approach, which mixes ML with closed-form models. With the hybrid approach, we study the conflict between MLB and Coverage and Capacity Optimization (CCO) functions. Then, we apply it to the coordination among MLB, Inter-Cell Interference Coordination (ICIC), and Energy Savings (ES) functions. With the hybrid approach, we find in one shot, part of the parameter set in an optimal manner, which makes it suitable for dynamic scenarios in which fast response is expected from a centralized coordinator. Finally, we present a manner to formally include MRO in the hybrid approach and show how the framework can be extended to cover challenging network scenarios like Ultra-Reliable Low Latency Communications (URLLC)

    Optimization of Mobility Parameters using Fuzzy Logic and Reinforcement Learning in Self-Organizing Networks

    Get PDF
    In this thesis, several optimization techniques for next-generation wireless networks are proposed to solve different problems in the field of Self-Organizing Networks and heterogeneous networks. The common basis of these problems is that network parameters are automatically tuned to deal with the specific problem. As the set of network parameters is extremely large, this work mainly focuses on parameters involved in mobility management. In addition, the proposed self-tuning schemes are based on Fuzzy Logic Controllers (FLC), whose potential lies in the capability to express the knowledge in a similar way to the human perception and reasoning. In addition, in those cases in which a mathematical approach has been required to optimize the behavior of the FLC, the selected solution has been Reinforcement Learning, since this methodology is especially appropriate for learning from interaction, which becomes essential in complex systems such as wireless networks. Taking this into account, firstly, a new Mobility Load Balancing (MLB) scheme is proposed to solve persistent congestion problems in next-generation wireless networks, in particular, due to an uneven spatial traffic distribution, which typically leads to an inefficient usage of resources. A key feature of the proposed algorithm is that not only the parameters are optimized, but also the parameter tuning strategy. Secondly, a novel MLB algorithm for enterprise femtocells scenarios is proposed. Such scenarios are characterized by the lack of a thorough deployment of these low-cost nodes, meaning that a more efficient use of radio resources can be achieved by applying effective MLB schemes. As in the previous problem, the optimization of the self-tuning process is also studied in this case. Thirdly, a new self-tuning algorithm for Mobility Robustness Optimization (MRO) is proposed. This study includes the impact of context factors such as the system load and user speed, as well as a proposal for coordination between the designed MLB and MRO functions. Fourthly, a novel self-tuning algorithm for Traffic Steering (TS) in heterogeneous networks is proposed. The main features of the proposed algorithm are the flexibility to support different operator policies and the adaptation capability to network variations. Finally, with the aim of validating the proposed techniques, a dynamic system-level simulator for Long-Term Evolution (LTE) networks has been designed

    Coordinating Coupled Self-Organized Network Functions in Cellular Radio Networks

    Get PDF
    Nutzer der Mobilfunknetze wünschen und fordern eine Steigerung des Datendurchsatzes, die zur Erhöhung der Netzlast führt. Besonders seit der Einführung von LTE erhöht sich daher die Anzahl und Dichte der Zellen in Mobilfunknetzen. Dies führt zusätzlich zur Zunahme der Investitions- und Betriebskosten, sowie einer höheren Komplexität des Nerzbetriebs. Der Einsatz selbstorganisierter Netze (SONs) wird vorgeschlagen, um diese drei Herausforderungen zu bewältigen. Einige SON-Funktionen (SF) wurden sowohl von Seiten der Netzbetreiber als auch von den Standardisierungsgremien vorgeschlagen. Eine SF repräsentiert hierbei eine Netzfunktion, die automatisiert werden kann. Ein Beispiel ist die Optimierung der Robustheit des Netzes (Mobility Robustness Optimization, MRO) oder der Lastausgleich zwischen Funkzellen (Mobility Load Balancing, MLB). Die unterschiedlichen SON-Funktionen werden innerhalb eines Mobilfunknetzes eingesetzt, wobei sie dabei häufig gleiche oder voneinander abhängige Parameter optimieren. Zwangsläufig treten daher beim Einsatz paralleler SON-Funktionen Konflikte auf, die Mechanismen erfordern, um diese Konflikte aufzulösen oder zu minimieren. In dieser Dissertation werden Lösungen aufgezeigt und untersucht, um die Koordination der SON-Funktionen zu automatisieren und, soweit möglich, gleichmä{\ss}ig zu verteilen. Im ersten Teil werden grundsätzliche Entwürfe für SFs evaluiert, um die SON-Koordination zu vereinfachen. Basierend auf der Beobachtung, dass die Steurung der SON-Funktion sich ähnlich dem generischen Q-Learning Problem verhält, werden die SFs als Q-Learning-Agenten entworfen. Dieser Ansatz wurde mit sehr positiven Ergebnissen auf zwei SFs (MRO und MLB) angewandt. Die als Q-Learning-Agenten entworfenen SFs werden für zwei unterschiedliche Ansätze der SON-Koordination evaluiert. Beide Koordinierungsansätze betrachten dabei die SON-Umgebung als ein Multi-Agenten-System. Der erste Ansatz basierend auf einer räumlich-zeitlichen Entkoppelung separiert die Ausführung von SF-Instanzen sowohl räumlich als auch zeitlich, um die Konflikte zwischen den SF-Instanzen zu minimieren. Der zweite Ansatz wendet kooperatives Lernen in Multi-Agenten-Systemen als automatisierten Lösungsansatz zur SON-Koordination an. Die einzelnen SF-Instanzen lernen anhand von Utility-Werten, die sowohl die eigenen Metriken als auch die Metriken der Peer-SF-Instanzen auswerten. Die Intention dabei ist, durch die erlernte Zustands-Aktions-Strategie Aktionen auszuführen, die das beste Resultat für die aktive SF, aber auch die geringste Auswirkung auf Peer-SFs gewährleisten. In der Evaluation des MRO-MLB-Konflikts zeigten beide Koordinierungsansätze sehr gute Resultate.Owing to increase in desired user throughput and to the subsequent increase in network traffic, the number and density of cells in cellular networks have increased, especially starting with LTE. This directly translates into higher capital and operational expenses as well as increased complexity of network operation. To counter all three challenges, Self-Organized Networks (SON) have been proposed. A number of SON Functions (SFs) have been defined both from the network operator community as well as from the standardization bodies. In this respect, a SF represents a network function that can be automated e.g. Mobility Robustness Optimization (MRO) or Mobility Load balancing (MLB). The different SFs operate on the same radio network, in many cases adjusting the same or related parameters. Conflicts are as such bound to occur during the parallel operation of such SFs and mechanisms are required to resolve or minimize the conflicts. This thesis studies the solutions through which SON functions can be coordinated in an automated and preferably distributed manner. In the first part we evaluate the design principles of SFs that aim at easing the coordination. With the observation that the SON control loop is similar to a generic Q-learning problem, we propose designing SFs as Q-learning agents. This framework is applied to two SFs (MRO and MLB) with very positive results. Given the designed QL based SFs, we then evaluate two SON coordination approaches that consider the SON environment as a Multi-Agent System (MAS). The first approach based on Spatial-Temporal Decoupling (STD) separates the execution of SF instances in space and time so as to minimize the conflicts among instances. The second approach applies multi-agent cooperative learning for an automated solution towards SON coordination. In this case individual SF instances learn based on utilities that aggregate their own metrics as well as the metrics of peer SF instances. The intention in this case is to ensure that the learned state-action policy functions apply actions that guarantee the best result for the active SF but also have the least effect on the peer SFs. Both coordination approaches have been evaluated with very positive results in simulations that consider the MRO - MLB conflict

    Self-coordination of parameter conflicts in D-SON architectures: a Markov decision process framework

    Get PDF
    We consider a distributed SON (D-SON) architecture where the interaction of different self-organizing network (SON) functions negatively affect the performances of the system. This is referred to in 3rd Generation Partnership Project (3GPP) as a SON conflict, which needs to be handled by means of a self-coordination framework. We focus on a functional architecture and a theoretical framework based on the theory of Markov decision process (MDP) for the self-coordination of different actions taken by different SON functions. In order to cope with the complexity of the overall SON problem, we subdivide the global MDP modeling the long-term evolution (LTE)-enhanced node base station (eNB) onto simpler subMDPs modeling the different SON functions. Each sub-problem is defined as a subMDP and solved independently by means of reinforcement learning (RL), and their individual policies are combined to obtain a global policy. This combined policy can execute several actions per state but can introduce policy conflicts. We focus on the specific SON conflict generated by the concurrent execution of coverage and capacity optimization (CCO) and inter-cell interference coordination (ICIC) SON functions, which may require to update the same parameter, i.e., the transmission power level. The coordination among the different actions selected by the conflicting use cases is achieved by means of a coordination game where the players are the subMDPs and the actions and rewards are those provided by means of a RL approach. Performance evaluation is carried out in a ns3 release 8 compliant LTE system simulator, and it shows that our self-coordination approach provides satisfying solutions in terms of system performances for both the conflicting SON functions.Peer ReviewedPostprint (published version

    Load-Based Traffic Steering in heterogeneous LTE Networks:A Journey from Release 8 to Release 12

    Get PDF

    Self organisation for 4G/5G networks

    Get PDF
    Nowadays, the rapid growth of mobile communications is changing the world towards a fully connected society. Current 4G networks account for almost half of total mobile traffic, and in the forthcoming years, the overall mobile data traffic is expected to dramatically increase. To manage this increase in data traffic, operators adopt network topologies such as Heterogeneous Networks. Thus, operators can de­ ploy hundreds of small cells for each macro cell, allowing them to reduce coverage hales and/or lack of capacity. The advent of this technology is expected to tremendously increase the number of nodes in this new ecosystem, so that traditional network management activities based on, e.g., classic manual and field trial design approaches are just not be viable anymore. As a consequence, the academic J literature has dedicated a significant amount of effort to Self-Organising Network (SON) algorithms. These solutions aim to bring intelligence and autonomous adaptability into cellular networks, thereby reducing capital and operation expenditures (CAPEX/OPEX). Another aspect to take into account is that, these type of networks generate a large amount of data during their normal operation in the form of control, management and data measurements. This data is expected to increase in SG due to different aspects, such as densification, heterogeneity in layers and technologies, additional control and management complexity in Network Functions Virtualisation (NFV) and Software Defined Network (SDN), and the advent of the Internet of Things (loT), among others. In this context, operators face the challenge of de ­ signing efficient technologies, while introducing new services, reaching challenges in terms networks, which are self-aware, self-adaptive, and intelligent. This dissertation provides a contribution to the design, analysis, and evaluation of SON solutions to improve network opera tor performance, expenses, and users' experience, by making the network more self-adaptive and intelligent. It also provides a contribution to the design of a self-aware network planning tool, which allows to predict the Quality of Service (QoS) offered to end-users, based on data al ­ ready available in the network . The main thesis contributions are divided into two parts. The first part presents a novel functional architecture based on an automatic and self-organised Reinforcement Learning (RL) based approach to model SON functionalities, in which the main task is the self-coordination of different actions taken by different SON functions to be automatically executed in a self-organised realistic Long Term Evolution (LTE) network. The proposed approach introduces a new paradigm to deal with the conflicts genera ted by the concurrent execution of multiple SON functions, revealing that the proposed approach is general enough to modelali the SON functions and their derived conflicts. The second part of the thesis is dedicated to the problem of QoS prediction. In particular, we aim at finding patterns of knowledge from physical layer data acquired from heterogeneous LTE networks. We propose an approach that not only is able to verify the QoS level experienced by the users, through physical layer measurements of the UEs, but it is a lso able to predict it based on measurements collected at different time, and from different regions of the heterogeneous network. We propose then to make predictions independently of the physical location, in order to exploit the experience gained in other sectors of the network, to properly dimension and deploy heterogeneous nodes. In this context, we use Machine Learning (ML) as a tool to allow the network to learn from experience, improving performances, and big data analytics to drive the network from reactive to predictive.Hoy en día, el rápido crecimiento de las comunicaciones móviles está cambiando el mundo hacia una sociedad completamente conectada. Las redes 4G actuales representan casi la mitad del tráfico móvil total, y en los próximos años se espera que el tráfico total de los dispositivos móviles aumente drásticamente. Para gestionar este incremento de tráfico de datos, los operadores adoptan tecnologías de redes como las redes heterogéneas. De esta manera, los operadores pueden desplegar centena res de pequeñas celdas por cada macro celda, permitiendo reducir zonas sin cobertura y/o falta de capacidad. Con la introducción de esta tecnología, se espera que incremente de manera sustancia l el número de nodos en el nuevo ecosistema, de manera que las actividades de gestión de las redes tradicionales, basadas en, por ejemplo, el diseño manual, sean inviables. Como consecuencia, la literatura académica ha dedicado un esfuerzo significativo al diseño de algoritmos de redes auto-organizadas (SON). Estas soluciones tienen como objetivo introducir inteligencia y capacidad autónoma a las redes móviles, reduciendo la capacidad y costes operativos. Otro aspecto a tener en cuenta es que este tipo de redes generan una gran cantidad de datos durante su funcionamiento habitual, en forma de medidas de control y gestión de datos. Se espera que estos datos incrementen con la tecnología SG, debido a diferentes aspectos como los son la densificación de redes heterogéneas, la complejidad adicional en el control y la gestión de la virtualización de las funciones de redes (NFV) y las redes definidas por software (SON), así como la llegada del internet de las cosas (loT), entre otros. En este contexto, los operadores se enfrentan al reto de diseñar tecnologías eficientes, mientras introducen nuevos servicios, consiguiendo objetivos en términos de satisfacción del cliente, en donde el objetivo global del operador es la construcción de redes auto-conscientes, auto-adaptables e inteligentes. Esta tesis ofrece una contribución al diseño y evaluación de soluciones SON para mejorar el rendimiento de las redes, los costes y la experiencia de los usuarios, consiguiendo que la red sea auto-adaptable e inteligente. Así mismo, proporciona una contribución al diseño de una herramienta de planificación de red auto-consciente, que permita predecir la calidad de servicio brindada a los usuarios finales, basada en la explotación de datos disponibles en la red.Avui en dia, el ràpid creixement de les comunicacions mòbils està canviant el món cap a una societat completament connectada. Les xarxes 4G actuals representen casi la m trànsit mòbil total, i en els propers anys s’espera que el trànsit total de dades mòbils augmenti dràsticament. Per gestionar aquest increment de trànsit de dades, els operadors adopten topologies de xarxa com ara les xarxes heterogènies (HetNets). D’aquesta manera, els operadors poden desplegar centenars de cel·les petites per a cada cella macro, permetent reduir forats en la cobertura i/o la manca de capacitat. Amb l’arribada d’aquesta tecnologia, s’espera que incrementi enormement el nombre de nodes en el nou ecosistema, de manera que les activitats de gestió de xarxa tradicionals, basades en, per exemple, el disseny manual i els assaigs de camp esdevenen simplement inviables. Com a conseqüència, la literatura acadèmica ha dedicat una quantitat significativa d’esforç als algorismes de xarxa auto organitzada (SON). Aquestes solucions tenen com a objectiu portar la intel·ligència i capacitat d’adaptació autònoma a les xarxes mòbils, reduint el capital i les despeses operatives (CAPES/OPEX). Un altre aspecte a tenir en compte és que aquest tipus de xarxes generen una gran quantitat de dades durant el seu funcionament habitual, en forma de mesuraments de control, gestió i dades. S’espera que aquestes dades incrementin amb la tecnologia 5G, degut a diferents aspectes com ara la densificació, l’heterogeneïtat en capes i tecnologies, la complexitat addicional en el control i la gestió de la virtualització de les funcions de xarxa (NFV) i xarxes definides per software (SDN), i l’adveniment de la internet de les coses (IoT), entre d’altres. En aquest context, els operadors s’enfronten al repte de dissenyar tecnologies eficients, mentre introdueixen nous serveis, aconseguint objectius en termes de satisfacció del client, i on l’objectiu global d’un operador és la construcció de xarxes que són autoconscients, auto-adaptables i intel·ligents. Aquesta tesis ofereix una contribució al disseny, l’anàlisi i l’avaluació de les solucions SON per millorar el rendiment de l’operador de xarxa, les xi despeses i l’experiència dels usuaris, fent que la xarxa sigui més auto-adaptable i intel·ligent. També proporciona una contribució al disseny d’una eina de planificació de xarxa autoconscient, el que permet predir la qualitat de servei (QoS) oferta als usuaris finals, basada en dades ja disponibles a la xarxa. Les contribucions principals d’aquesta tesis es divideixen en dues parts. La primera part presenta una nova arquitectura funcional basada en un aprenentatge per reforç (RL) automàtic i auto-organitzat, enfocat en modelar funcionalitats SON, on la tasca principal és l’auto-coordinació de les diferents accions dutes a terme perles diferents funcions SON a ser executades de forma automàtica en una xarxa Long Term Evolution (LTE) auto-organitzada. L’enfocament proposat introdueix un nou paradigma perfer front als conflictes generats per l’execució simultània de múltiples funcions SON, revelant que l’enfocament proposat és prou general per modelar totes les funcions SON i els seus conflictes derivats. La segona part de la tesis està dedicada al problema de la predicció de la qualitat de servei. En particular, el nostre objectiu és trobar patrons de coneixement a partir de dades de la capa física adquirides de xarxes LTE heterogènies. Proposem un enfocament que no només és capaç de verificar el nivell de QoS experimentat pels usuaris, a través de mesuraments de la capa física dels UEs, sinó que també és capaç de predir-ho basant-se en mesuraments adquirits en diferents instants, i de diferents regions de la xarxa heterogènia. Proposem per tant fer prediccions amb independència de la ubicació física, aprofitant l’experiència adquirida en altres sectors de la xarxa, per dimensionar i desplegar nodes heterogenis correctament. En aquest context, utilitzem l’aprenentatge automàtic (ML) com a eina per permetre que la xarxa aprengui de l’experiència, millorant el rendiment, i l’anàlisi de grans volums de dades per a conduir la xarxa de reactiva a predictiva. Durant l’elaboració d’aquesta tesis, s’han extret dues conclusions principals clau. En primer lloc, destaquem la importància de dissenyar algorismes SON eficients per fer front eficaçment a diversos reptes, com ara la ubicació més adequada de funcions SON i algorismes per resoldre adequadament el problema d’implementació distribuïda o centralitzada, o la solució de conflictes entre funcions SON executades a diferents nodes o xarxes. En segon lloc, en termes d’eines de planificació de xarxes, es poden trobar diferents eines cobrint una àmplia gamma de sistemes i aplicacions orientades a la indústria, així com per a fins d’investigació. En aquest context, les solucions investigades són sotmeses contínuament a canvis importants, on un del principals impulsors és presentar solucions més rentable

    Context-Aware Handover Policies in HetNets

    Get PDF
    Next generation cellular systems are expected to entail a wide variety of wireless coverage zones, with cells of different sizes and capacities that can overlap in space and share the transmission resources. In this scenario, which is referred to as Heterogeneous Networks (HetNets), a fundamental challenge is the management of the handover process between macro, femto and pico cells. To limit the number of handovers and the signaling between the cells, it will hence be crucial to manage the user's mobility considering the context parameters, such as cells size, traffic loads, and user velocity. In this paper, we propose a theoretical model to characterize the performance of a mobile user in a HetNet scenario as a function of the user's mobility, the power profile of the neighboring cells, the handover parameters, and the traffic load of the different cells. We propose a Markov-based framework to model the handover process for the mobile user, and derive an optimal context-dependent handover criterion. The mathematical model is validated by means of simulations, comparing the performance of our strategy with conventional handover optimization techniques in different scenarios. Finally, we show the impact of the handover regulation on the users performance and how it is possible to improve the users capacity exploiting context information
    corecore