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Abstract

Due to the introduction of new network functionalities in next-generation mobile
networks, e.g., slicing or multi-antenna systems, as well as the coexistence of multiple
radio access technologies, the optimization tasks become extremely complex, increasing
the OPEX (OPerational EXpenditures). In order to provide services to the users with
competitive Quality of Service (QoS) while keeping low operational costs, the Self-
Organizing Network (SON) concept was introduced by the standardization bodies to
add an automation layer to the network management. Thus, multiple SON functions
(SFs) were proposed to optimize a specific network domain, like coverage or capacity.

The conventional design of SFs conceived each function as a closed-loop controller
optimizing a local objective by tuning specific network parameters. However, the rela-
tionship among multiple SFs was neglected to some extent. Therefore, many conflicting
scenarios appear when multiple SFs are instantiated in a mobile network. Having con-
flicting functions in the networks deteriorates the users’ QoS and affects the signaling
resources in the network. Thus, it is expected to have a coordination layer (which
could also be an entity in the network), conciliating the conflicts between SFs. Never-
theless, due to interleaved linkage among those functions, it is complex to model their
interactions and dependencies in a closed form. Thus, machine learning is proposed
to drive a joint optimization of a global Key Performance Indicator (KPI), hiding the
intricate relationships between functions. We call this approach: implicit coordination.

In the first part of this thesis, we propose a centralized, fully-implicit coordination
approach based on machine learning (ML), and apply it to the coordination of two
well-established SFs: Mobility Robustness Optimization (MRO) and Mobility Load
Balancing (MLB). We find that this approach can be applied as long as the coordina-
tion problem is decomposed into three functional planes: controllable, environmental,
and utility planes. However, the fully-implicit coordination comes at a high cost: it
requires a large amount of data to train the ML models. To improve the data efficiency
of our approach (i.e., achieving good model performance with less training data), we
propose a hybrid approach, which mixes ML with closed-form models. With the hybrid
approach, we study the conflict between MLB and Coverage and Capacity Optimiza-
tion (CCO) functions. Then, we apply it to the coordination among MLB, Inter-Cell
Interference Coordination (ICIC), and Energy Savings (ES) functions. With the hy-
brid approach, we find in one shot, part of the parameter set in an optimal manner,



which makes it suitable for dynamic scenarios in which fast response is expected from
a centralized coordinator.

Finally, we present a manner to formally include MRO in the hybrid approach and
show how the framework can be extended to cover challenging network scenarios like
Ultra-Reliable Low Latency Communications (URLLC).



Kurzfassung

Bedingt durch die Einführung neuer Netzfunktionen in den Mobilfunknetzen der näch-
sten Generation, z. B. Slicing oder Mehrantennensysteme, sowie durch die Koexistenz
mehrerer Funkzugangstechnologien, werden die Optimierungsaufgaben äußerst kom-
plex und erhöhen die OPEX (OPerational EXpenditures). Um den Nutzern Dienste
mit wettbewerbsfähiger Dienstgüte (QoS) zu bieten und gleichzeitig die Betrieb-
skosten niedrig zu halten, wurde von den Standardisierungsgremien das Konzept des
selbstorganisierenden Netzes (SON) eingeführt, um das Netzmanagement um eine Au-
tomatisierungsebene zu erweitern. Es wurden dafür mehrere SON-Funktionen (SFs)
vorgeschlagen, um einen bestimmten Netzbereich, wie Abdeckung oder Kapazität,
zu optimieren. Bei dem konventionellen Entwurf der SFs wurde jede Funktion als
Regler mit geschlossenem Regelkreis konzipiert, der ein lokales Ziel durch die Ein-
stellung bestimmter Netzwerkparameter optimiert. Die Beziehung zwischen mehreren
SFs wurde dabei jedoch bis zu einem gewissen Grad vernachlässigt. Daher treten
viele widersprüchliche Szenarien auf, wenn mehrere SFs in einem mobilen Netzwerk
instanziiert werden. Solche widersprüchliche Funktionen in den Netzen verschlechtern
die QoS der Benutzer und beeinträchtigen die Signalisierungsressourcen im Netz.
Es wird daher erwartet, dass eine existierende Koordinierungsschicht (die auch eine
Entität im Netz sein könnte) die Konflikte zwischen SFs lösen kann. Da diese Funk-
tionen jedoch eng miteinander verknüpft sind, ist es schwierig, ihre Interaktionen
und Abhängigkeiten in einer abgeschlossenen Form zu modellieren. Daher wird
maschinelles Lernen vorgeschlagen, um eine gemeinsame Optimierung eines globalen
Leistungsindikators (Key Performance Indicator, KPI) so voranzubringen, dass die
komplizierten Beziehungen zwischen den Funktionen verborgen bleiben. Wir nennen
diesen Ansatz: implizite Koordination. Im ersten Teil dieser Arbeit schlagen wir eine
zentralisierte, implizite und auf maschinellem Lernen basierende Koordination vor
und wenden sie auf die Koordination zweier etablierter SFs an: Mobility Robustness
Optimization (MRO) und Mobility Load Balancing (MLB). Anschließend gestalten
wir die Lösung dateneffizienter (d. h. wir erreichen die gleiche Modellleistung mit
weniger Trainingsdaten), indem wir eine geschlossene Modellierung einbetten, um
einen Teil des optimalen Parametersatzes zu finden. Wir nennen dies einen "hybriden
Ansatz". Mit dem hybriden Ansatz untersuchen wir den Konflikt zwischen MLB und
Coverage and Capacity Optimization (CCO) Funktionen. Dann wenden wir ihn auf
die Koordinierung zwischen MLB, Inter-Cell Interference Coordination (ICIC) und



Energy Savings (ES) Funktionen an. Schließlich stellen wir eine Möglichkeit vor, MRO
formal in den hybriden Ansatz einzubeziehen, und zeigen, wie der Rahmen erweitert
werden kann, um anspruchsvolle Netzwerkszenarien wie Ultra-Reliable Low Latency
Communications (URLLC) abzudecken.
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1 Introduction

With the advent of 5G, the ability to offer agile on-demand services to the users is
mandatory. Therefore lifecycle operations such as initial service deployment, config-
uration changes, upgrades, scale-out, scale-in, optimization, self-healing, etc., should
be fully automated processes. Fortunately, as the evolution of mobile technologies has
demanded, more flexible architectures are targeted, aiming at reducing the time-to-
market of the services as well as CAPital EXpenditure (CAPEX) and OPerational
EXpenditure (OPEX). As shown in Fig. 1.1, the CAPEX is mainly driven by the first
two network deployment stages1 (i.e., planning and initial rollout), whereas the cost
attributed to the operation and maintenance (which are expected to be long-term and
expensive tasks) are accounted for by the OPEX.

Planning

Self-Configuration

Self-Coordination

Self-Optimization and
Self-Healing

Network Lifetime

Costs

CAPEX

OPEX
Rollout

Operation and
Maintenance

Figure 1.1: Network deployment stages.

To address the expected challenges during the continuous operation and management
of multiple Radio Access Technology (RAT)s, the Self-Organized Networks (SON) con-

1Which are meant to be continuous but short-duration phases.
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cept was initially conceived by the Next Generation Mobile Networks (NGMN) Alliance
[1]. From the network operator perspective, SON was intended to ease optimizing the
Quality of Service (QoS) of the users while being financially and operationally efficient
(i.e., minimizing CAPEX and OPEX). Specifically, three categories of Self-organized
network Functions (SF)s have been considered: self-configuration (coping with the op-
timization challenges of the early stages of the network deployment), self-optimization,
and self-healing for the long-lasting optimization tasks, as shown in Fig. 1.1.

Regarding the long-lasting self-optimization branch, multiple SFs were proposed to
optimize a specific network dimension (out-of-many). A subset of these functions is
depicted in Fig. 1.2, in which three canonical and conflicting optimization dimensions
are shown: Quality of Experience (QoE), network coverage, and network capacity.

User QoE

Coverage Capacity

MRO

MLB

CCO

ICICCOC

Figure 1.2: Tradeoffs among canonical network optimization dimensions.

Near each corner of the triangle in Fig. 1.2, there is a SF designed to improve
that particular aspect of the network. Specifically, Mobility Robustness Optimiza-
tion (MRO) is intended to reduce the drop calls/sessions due to the mobility of the
users (improving the quality), Mobility Load Balancing (MLB) is designed to dis-
tribute the load across the whole network (improving the network capacity), Coverage
and Capacity Optimization (CCO) is proposed (as its name suggests) to model and
optimize the compromise between coverage and capacity, Inter-Cell Interference Co-
ordination (ICIC) is meant to improve the throughput of the users, especially in the
cell borders (i.e., quality and network capacity), and finally, Cell Outage Compensa-
tion (COC), as the name suggests, recovers the coverage once a cell outage is detected,
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minimizing coverage holes and improving the quality of the users.
From an individual perspective, every SF receives information about the state of the

network (what we call environmental variables) and adjusts a parameter set (from now
on, controllable variables) to optimize a cell-specific Key Performance Indicator (KPI).
Unfortunately, there are tight relations among the different variables consumed (or
tuned) by the SFs with respect to other SFs. In other words, an isolated analysis and
design of the SFs yield suboptimal states in the network and (very likely) instabilities,
as will be explained in Section 2.3.

Any mechanism to cope with the conflicting scenarios among multiple SFs is gath-
ered under the standard Self-coordination denomination (see Fig. 1.1), which becomes
extremely important and challenging for next-generation networks, as the number of
optimization dimensions, SFs, controllable and environmental variables is expected to
be remarkably high.

We elaborate on an automatic approach to coordinate multiple SFs boosted by
Machine Learning (ML) techniques throughout this document.

1.1 Thesis Objectives and Scope
This thesis deals with the coordinated operation of the canonical SFs depicted in Fig.
1.2 in a centralized way, what is called in the literature a Centralized SON (C-SON)
approach [2]. The following research questions are addressed:

1. feasibility of framing a centralized coordination approach in the 5G network
architecture,

2. necessary conditions to formulate the centralized SF coordination problem as a
fully holistic optimization solution,

3. benefits and limits of having a holistic ML-based coordination framework,

4. viability to improve the scalability and data-efficiency2 of a holistic coordination
scheme.

2Defined as the amount of training data needed to attain the best possible parameter set during the
network operation.
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1.2 Proposed Solutions
The complexity of the coordination problem explodes when heterogeneity in the net-
work (i.e., multiple RAT or several cell types) is introduced, as well as concepts like
network slicing or Multiple Input Multiple Output (MIMO) are considered. Addition-
ally, the introduction of new network functionalities and new SFs yields an increase in
the dimensionality of the coordination problem, making closed-form modeling unfea-
sible. Therefore, we propose the joint optimization of SFs employing ML techniques
to reduce human intervention.

In the first part of this document, a fully ML-based coordination framework is
proposed in which the high dimensional joint optimization problem is reformulated
in a low dimensional space where the optimization task reduces to a simple lookup
procedure. However, we run into the problem of requiring a vast amount of information
for training the involved ML models (due to the curse of dimensionality).

To reduce, to some extent, the amount of information required for the training,
a hybrid approach considering both ML stages as well as closed-form modeling is
proposed in the second part of this document.

1.3 Publication List
In line with the research directions discussed in Section 1.2, the contributions of the
thesis can be categorized into three major groups:

• implicit (ML-based) coordination,

• extensions to the implicit coordination approach, and

• a hybrid coordination approach.

As part of the dissemination process of the main ideas elaborated in this thesis, the
following papers were published (a description of the main milestones of each one is
also supplied):

1.3.1 Fully Implicit Coordination by ML Methods

• Tanmoy Bag, Sharva Garg, Diego Preciado, Zubair Shaik, Jens Mueckenheim,
and Andreas Mitschele-Thiel. Self-organizing network functions for handover
optimization in LTE cellular networks. In Mobile Communication-Technologies
and Applications; 24. ITG-Symposium, pages 1–7. VDE, 2019.
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This paper deals with the identification and implementation of the variables
involved in the coordination between MLB and MRO in an open-source, system-
level simulator.

• Diego Preciado and Andreas Mitschele-Thiel. Machine learning-based SON func-
tion conflict resolution. In 2019 IEEE Symposium on Computers and Commu-
nications (ISCC), pages 1–6. IEEE, 2019.

This paper presents the feasibility of finding a ML model capable of predicting
in a centralized manner a global KPI using controllable variables (i.e., network
parameters) and environmental variables (i.e., beyond the network operator’s
control) related to the execution of several SON functions. As it turns out, this is
the first stage of a fully-implicit coordination framework, which will be explained
in detail in Chapter 3. The conflict between MLB and MRO is considered in this
study.

• Diego Preciado and Andreas Mitschele-Thiel. A scalable SON coordination
framework for 5G. In NOMS 2020-2020 IEEE/IFIP Network Operations and
Management Symposium, pages 1–8. IEEE, 2020.

This study presents the feasibility of reformulating a high-dimensional optimiza-
tion problem in a low-dimensional space (using ML) and solving the new op-
timization problem in a centralized manner using a simple lookup procedure.
By chaining the models of this paper with the one above, we present the com-
plete fully-implicit coordination framework, which will be explained in detail in
Chapter 3. The conflict between MLB and MRO is considered in this paper.

• Diego Preciado, Faiaz Nazmetdinov, and Andreas Mitschele-Thiel. Zero-touch
coordination framework for self-organizing functions in 5G. In 2020 IEEE Wire-
less Communications and Networking Conference (WCNC), pages 1–8. IEEE,
2020.

End-to-end results for the ML-based, fully-implicit coordination approach are
presented in this paper using two ML groupings: Self-Organizing Maps (SOM)
with hierarchical clustering and Uniform Manifold Approximation and Projec-
tion (UMAP) with Hierarchical Density-Based Spatial Clustering of Applica-
tions with Noise (HDBSCAN). A comparison with benchmark solutions based
on temporal-spatial execution separation (see Section 2.5) is also supplied. The
conflict between MLB and MRO is considered in this paper.
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1.3.2 Extensions to Implicit Coordination

• Gerald Budigiri, Diego Preciado, Andreas Mitschele-Thiel, and Stephen Mwanje.
Optimal rules mining in SON for distributed intelligence in future cognitive cel-
lular networks. In 2019 International Symposium on Advanced Electrical and
Communication Technologies (ISAECT), pages 1–6. IEEE, 2019.

Since the centralized and fully-implicit approach removes the human intervention
in the network optimization, there is a lack of explainability of the rules and
policies generated to optimize the network. Therefore, an ML explainability
stage is added to the approach to automatically derive high-level rules in the
shape of: IF (environmental condition is met) THEN (set specific parameter
values). The results of this paper are not included in this document. The reader
is kindly referred to [7] to find results for the conflict between MLB and MRO.

• Tanmoy Bag, Sharva Garg, Diego Preciado, and Andreas Mitschele-Thiel. Ma-
chine learning-based recommender systems to achieve self-coordination between
SON functions. IEEE Transactions on Network and Service Management,
17(4):2131–2144, 2020.

Unlike the centralized and fully-implicit approach discussed above, this paper
shows a decentralized method for solving, in an implicit way, the conflicts among
two different SFs, namely CCO and ICIC (as explained in Section 2.3.2). The
ML theory used corresponds to Recommendation Engines (in the content-based
and collaborative filtering domains). The results of this paper are not included
in this document. The reader is kindly referred to [8].

1.3.3 Hybrid Coordination Approach

• Diego Preciado, Martin Kasparick, Renato L. G. Cavalcante, and Slawomir
Stanczak. SON function coordination in campus networks using machine
learning. In 2022 IEEE Wireless Communications and Networking Conference
(WCNC), pages 1–6. IEEE, 2022.

A hybrid approach is presented in this paper to improve the data efficiency of
the fully-implicit approach. The main idea is to solve part of the optimization
problem in a closed form using Fixed Point Iteration (FPI) and the other part
using ML (hereby the hybrid denomination). This paper applies the hybrid
approach to a specific campus network scenario, in which the concept of Service
Test Point (STP) is introduced as a point in the network where information
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about traffic profiles and radio conditions is known. A Feed Forward Neural
Network (FFNN) is used to predict the best possible antenna downtilt, whereas
FPI is used to find the optimal user association, which is afterward enforced
into the network. The specific results for campus networks are not included in
this thesis but for a macrocell scenario as detailed in Chapter 4 for the conflict
between MLB and CCO.

• Diego Preciado and Andreas Mitschele-Thiel. A data driven coordination
between load balancing and interference cancellation. In NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium, pages 1–6. IEEE,
2022.

This paper applies the hybrid coordination approach to MLB and ICIC in a
macrocell scenario and shows that it can be easily extended to cover another SF
called Energy Savings (ES). The details about this study are supplied in Chapter
5.

1.4 Thesis Outline
This section sketches the rest of the content of the thesis and suggests a reading order
based on different audience backgrounds.

In Chapter 2, some fundamental concepts regarding mobile networks basics and
modeling (from a high-level perspective and mainly related to interference-limited sys-
tems) are visited, which will be needed to elaborate on the main ideas throughout this
document. The framing of a C-SON approach from the architectural point of view is
also proposed. Finally, a deep explanation about SON evolution as well as conflicts
among multiple SFs is supplied.

In Chapter 3, a fully implicit coordination by ML methods is proposed. The moti-
vation behind this scheme is that, in C-SON architectures, there is global observability
of the states of every cell and every SF, which eases the centralized decision-making
process. The applicability of this coordination scheme is studied through the conflict
between MRO and MLB functions. We identify the limits that are encountered with
this straightforward solution, mainly due to the well-known curse of dimensionality .

In Chapter 4, a hybrid approach to overcome the limits encountered with the fully
implicit approach is presented. The proposed solution still runs in a closed-form man-
ner, but this time two loops are considered: an outer loop which is entirely based on
ML predicting part of the network parameters, and an inner loop, which estimates in
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a closed-form manner the rest of the parameters (hence the "hybrid" designation). Of-
floading part of the parameter estimation to the inner loop, we obtain data efficiency
(better predictions with a lower amount of data). The studied SFs in this chapter
correspond to MLB and CCO.

In Chapter 5, an extension to the hybrid approach is elaborated, including inter-
ference cancellation techniques as well as energy savings. The studied SFs in this
chapter are MLB, ICIC, and ES. Multiple SFs have been considered all over this
document. The reason behind that is that we wanted to test the robustness of the
proposed solution for multiple network optimization objectives. However, there is a
common denominator in all the chapters: the inclusion of the MLB function. As it
turns out (as it will be explained later on), the MLB-related parameters become the
worst offenders in terms of dimensionality. Therefore, we claim MLB is an interesting
function to study while designing a data-driven coordination mechanism.

Finally, the main conclusions of this research, as well as some directions for future
work, are suggested in Chapter 6.

The details about the main ML models and the heuristics chosen as benchmark
schemes can be found in the Appendix section.

The proposed order of reading of this thesis is presented in Fig. 1.3.
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Chapter 1

Holistic Approach:
MLB and MRO

Hybrid Approach:
MLB and CCO

The reader has a 
ML background

The reader has good 
knowledge of Mobile 
Networks and SON

Chapter 3

Chapter 2

Chapter 4

Chapter 5

Chapter 6

Hybrid Approach:
MLB, ICICI and ES

The reader appreciates
the details about the ML
models investigated

Appendix

Figure 1.3: Proposed thesis reading order for different audiences.
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2 Fundamentals

The design of new mobile network technologies is a dynamic process that started in
the 80s and has experienced a continuous evolution through the so-called network
generations:

• 1G networks. This technology was introduced in the early 80s and was char-
acterized by analog services, low network capacity, and very large and expensive
User Equipment (UE)s.

• 2G networks. This generation was adopted in the early 90s. Global System
for Mobile Communications (GSM) was the main representative. It was a digital
technology that enabled more efficient use of the resource as well as cheaper
devices. It was initially designed for voice services through a centralized circuit-
switched core domain, and later on, it supported Short Message Service (SMS).

• 2.5G networks. General Packet Radio Service (GPRS) networks were charac-
terized by the introduction of a packet-switched core domain to carry data traffic
which became popular during the GSM roll-out.

• 3G networks. Universal Mobile Telecommunication System (UMTS) was de-
veloped from GSM by completely changing the technology used on the air in-
terface, based on Wideband Code Division Multiple Access (WCDMA), while
keeping the core network (both circuit and packet-switched) mainly unchanged.
The standard bandwidth allocated to the base stations is 5 MHz for uplink and
downlink.

• 3.5G networks. They took off around 2005. The main enabler was the intro-
duction of High-Speed Packet Access (HSPA) both in uplink as well as in down-
link, i.e., High-Speed Uplink Packet Access (HSUPA), and High-Speed Downlink
Packet Access (HSDPA) respectively.

• 4G networks. For this technology, the Evolved Packet Core (EPC) replaced
the packet-switched core, whereas there is no equivalent to the circuit-switched
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domain, which means that the voice traffic must go over IP (e.g., using an IP
Multimedia Subsystem)1. Unlike 2G or 3G, LTE provides UEs with always-on
connectivity by setting up an IP connection (known as a default bearer) for a
device when it switches on and maintaining that connection until it switches
off. In the radio part, LTE introduces Orthogonal Frequency-Division Multiple
Access (OFDMA) for downlink and Single Carrier Frequency Division Multiple
Access (SC-FDMA) for uplink. The allocated bandwidth is more flexible: 1.4,
3, 5, 10, 15, or 20 MHz [11]. From the architectural point of view, LTE is flatter
than the previous technologies in the sense that no explicit radio controller is
needed, i.e., 3G-Radio Network Controller (RNC) tasks are now executed by an
evolved Node B (eNB).

• 4.5G networks. They are also coined under the "LTE-advanced" denomination,
mainly characterized by the introduction of the concept of carrier aggregation
(which allows operators to combine two or more LTE carriers to increase the
channel capacity) as well as the enhanced use of MIMO antennas2 and the in-
troduction of low-power base stations to improve the coverage (known as relay
nodes).

• 5G networks. 5G technology represents a breakthrough in the mobile world
concerning the way how the network architecture and network management are
conceived. The main enablers of 5G technology are:

– the 5G Radio (including new spectrum options, new antenna structures, an
extended physical layer, protocols designs, etc.),

– the cloud network/edge computing/virtualization concepts (enabling new
network architectures, in which decentralization, as well as the use of com-
modity servers to host specialized network functions, is foreseen),

– and Artificial Intelligence (leveraging smart network management in what
is traditionally called the Automation Plane - See Fig. 2.12).

These factors are called "major inflection points" in [12].

1As a matter of fact, Long Term Evolution (LTE) was designed to be fully IP-based.
2MIMO was already used by LTE in Release 8. LTE-advanced enhanced this further.
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2.1 System under Study
In this thesis we use the following standard notations: scalars are denoted by lowercase
letters (e.g. x and y) whereas boldface letters are intended to denote vectors (e.g. x and
y). The i-th element of a vector x is denoted by xi. A vector inequality x ≥ y should
be understood as a component-wise inequality. Sets are defined with calligraphic fonts
(e.g. X and Y). By ∥ ⋅ ∥2 , we denote the standard l2 norm a.k.a. the Euclidian
norm. Sets of nonnegative and positive reals are denoted by R+ and R++. The set of
positive integers is denoted by Z ≔ {1, 2, ...}. For the sake of unit conformity, we adopt
the nonstandard convention of adding the superscript [⋅][dBm] to the quantities that
should be considered in dBm rather than linear units (unless the units are explicitly
mentioned otherwise).

The relevant notation considered throughout this chapter is provided in Table 2.1.

Table 2.1: List of variables
Description Symbol
Set of cells B = {1, ..., B}
Set of UEs S = {1, ..., S}
i-th cell’s transmit power i-th cell pi ∈ R+

Transmit power vector p ∈ RB
++

i-th cell utilization ρi ∈ [0, 1]
Cell utilization vector ρ ∈ [0, 1]B

Link budget from i-th cell to m-th UE gi,m(⋅)
SINR from i-th cell to m-th UE SINRi,m(⋅)
Base station’s Bandwidth BW
Noise Power measured over BW σ

2
∈ R+

distance between BS of the i-th cell to m-th UE di,m ∈ R+

Zero-mean Gaussian distributed random variable χΩ ∈ R
Shannon capacity between i-th cell to m-th UE ci,m(⋅) ∈ R+

Reduction power factor in the i-th cell center η
c
i ∈ [0, 1]

Reduction power factor at the i-th cell edge η
e
i ∈ [0, 1]

m-th UE’s requested data rate γm ∈ R+

i-th cell’s user association Pi

Set of user associations P ≔ {P1, ...,Pi, ...,PB}
Average response time in the i-th cell’s Ti(x) ∈ R++

Waiting time in the i-th cell’s queue Wi(x) ∈ R+

Throughput perceived by m-th UE in the i-th cell Ri,m ∈ R+

Hysteresis H
Time to trigger TTT
Cell Individual Offset between cells i and j CIOi,j
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2.1.1 Interference Limited Systems

Regardless of the mobile network technology, the dynamics in the radio domain are
ruled by well-established phenomena and tradeoffs. On the first-hand side, because the
mobile networks are designed to serve multiple users, a multiplexing scheme is needed
to reduce the access contention to the scarce radio resources, namely: space, frequency
(for 2G), time (for 2G), orthogonal codes (for 3G) or orthogonal subcarriers3 (for 4G
and 5G). The multiplexing of several UEs takes place in the network’s physical layer
and aims at optimizing signal strength and quality while reducing the interference.

Interference is the major limiting factor in mobile networks (in terms of performance
and capacity). There are various interference scenarios in the network, and they depend
on the data flow direction, i.e., uplink (from UE to the base station) or downlink (from
the base station to the UEs). This document focuses on the downlink interference
scenarios in a Frequency-Division Duplexing (FDD) system, like the one presented in
Fig. 2.1.

In the downlink direction, the sources of interference can be other base stations
operating in the same frequency band (at the exact moment) or any noncellular system
which inadvertently leaks energy into the frequency band of a specific cell.

S

I
I

Figure 2.1: Downlink interference scenarios.

In Fig. 2.1, the downlink desired signal is S, whereas the interference from neighbor
base stations is I. To allow the receiver at the UE to decode a message successfully, it is
expected to have a high Signal-to-Interference-plus-Noise Ratio (SINR) value, defined
as:

SINR =
S

∑k Ik + σ2 (2.1)

3Which corresponds to frequency and time as well.
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where σ
2 accounts for the average thermal noise power measured over the frequency

bandwidth allocated to the serving base station [13], which is BW = 10 MHz for all
the base stations throughout this thesis. The summation in the denominator in Eq.
(2.1) groups all the "active" interfering "co-channel" cells, denoted by k. The term
"active" refers to the cells that are transmitting in a specific frequency at some time
(since they can generate interference to the neighbors, whereas the inactive cells are
assumed not to create any interference whatsoever4). The activity factor of a cell, i.e.,
the percentage of used resources, is measured through the cell utilization (ρk), as we
will see below. In Fig. 2.1, there are two base stations with no users (not a common
situation), therefore, they do not impose any interference level on the neighborhood.
The term "co-channel cells" groups all the cells transmitting in the same time-frequency
resources (which does not necessarily mean the tier-one neighbors if some frequency
reuse scheme is used in the network, as explained in Section 2.1.2).

Additionally, it is well-established that the average received signal strength at any
point decays as a power law of the distance of separation between a transmitter and
receiver. Therefore, in Fig. 2.1, the interference level received by active co-channel
cells located far away is lower (orange arrows) than the interference level from close
interferers (red arrows).

Let us consider a Public Land Mobile Network (PLMN) with B cells, represented
by the set B = {1, ..., B}, and S UEs, represented by the set S = {1, ..., S}. Let pi

be the transmitting power of serving cell i, and gi,m(⋅) the link budget from i-th cell
to m-th user5. According to Eq. (2.1), the perceived SINR for the m-th user being
served by i-th cell is given by:

SINRi,m(ρ, ⋅) =
pigi,m(⋅)

∑B

k≠i pkgk,m(⋅)ρk + σ2
(2.2)

we claim that gi,m(⋅) aggregates the impact of three main radio propagation mecha-
nisms: reflection, diffraction, and scattering. There are several large-scale propagation
models based on the physics of these three mechanisms in the literature. In this doc-
ument (especially for the simulation studies), we consider the so-called Log-distance
Path Loss Model with Log-normal Shadowing for a carrier frequency of 2 GHz in a
macrocell scenario, expressed as in Eq. (2.3) [14].

[gi,m(⋅)][dBm]
= 128.1 + 37.6log(di,m) + χΩ (2.3)

4We neglect the interference from channels and signals that are always active even without users.
5(⋅) expresses the dependency of the channel losses on multiple parameters, e.g., the antenna tilt,

azimuth, or the distance between the UE and the base station.
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where di,m corresponds to the distance between the transmitter and receiver and χΩ

represents a zero-mean Gaussian distributed random variable (in dB) with standard
deviation Ω. The last term in Eq. (2.3) measures the so-called shadow fading caused
by large obstacles, e.g., buildings or hills, that obscure the line-of-sight signal between
the base station and the UE. The second term in Eq. (2.3) expresses the increment
in the link budget as the distance between a transmitter and a receiver increases. It
is worth mentioning that the channel losses are applied to the desired signal as well
as the interference. Therefore, in an ideal scenario, to minimize inter-cell interference,
two co-channel cells should be located far away from each other.

A side effect of a high interference level is a degradation in the quality: e.g., missed or
blocked calls if there is interference on control channels or cross-talk in traffic channels
(especially for voice calls). Apart from degradation in the network quality, there
is also an impact on the capacity of the system. As a matter of fact, there is a
fundamental upper bound on the achievable capacity, given by the Shannon theorem
[13] and expressed as in Eq. (2.4).

ci,m(ρ, ⋅) = BW log2 (1 + SINRi,m(ρ, ⋅)) [bps] (2.4)

where BW is the bandwidth assigned to a base station. The smaller BW, the smaller
the UE achievable data rate. The higher the interference levels, the lower the SINRi,m

and therefore, the lower the system capacity. That is why current mobile networks are
considered interference-limited systems.

To mitigate the interference created by the neighbor cells, it is possible to divide
BW into several subbands and assign them with a specific reuse scheme. Of course,
the effective bandwidth allocated to each cell is reduced, which negatively impacts the
achievable rate according to Eq. (2.4). The advantage of such an approach is that the
distance between two co-channel cells is much higher, which reduces the interference.
To illustrate this tradeoff, we introduce the "reuse cluster" concept as the set of cells
that collectively use the complete BW.

In Fig. 2.2 two reuse schemes are depicted. In Fig. 2.2(a) a frequency reuse of
3 is used (please notice that the size of the reuse clusters is 3 cells), whereas in Fig.
2.2(b) a reuse scheme of 7 is implemented. It is possible to see that, for the same
network layout, the distance between two co-channel cells is higher for the reuse 7
scheme (although the bandwidth assigned to each base station is lower).

However, to improve the spectral efficiency (defined as the information rate that can
be transmitted over a given bandwidth in kbps/Hz), it is desired to have frequency
reuse equal to 1 (i.e., the whole BW should be allocated to each cell). To improve the



2 Fundamentals 24

(a) Reuse 3 (b) Reuse 7

Figure 2.2: Frequency reuse schemes

spectral efficiency while keeping low levels of interference, multiple frequency-based
mitigation techniques have been proposed, as explained in Section 2.1.2.

2.1.2 Interference Mitigation Schemes

Improving the Quality of Experience (QoE) of the UEs is challenging, especially at the
cell edge, where the radio propagation losses from the serving cell are expected to be
higher as well as the interference level from the neighborhood. ICIC is a SF proposed
to mitigate inter-cell intra-frequency interference (as will be detailed in Section 2.2).
It can be carried out in several radio resource domains: time, frequency, space, and
power (or a combination of them). For any of those domains, it is possible to find
multiple studies with attractive candidates to mitigate Inter-Cell Interference (ICI) in
various scenarios (either homogeneous or heterogeneous). The reader is kindly referred
to [15], a good survey regarding modern ICIC techniques in the multiple radio resource
domains.

This thesis focuses on frequency-based ICIC techniques, which divide each cell into
center and edge regions and then allocate different subcarriers to UE in different loca-
tions. Two main branches are discussed in the literature [16]:

1. Hard Frequency Reuse (HFR): a.k.a reuse-n techniques, in which the whole
frequency band (BW) is divided into n equal but orthogonal subbands and the
adjacent cell will be allocated different subbands, as it was explained in Section
2.1.1. As we saw, these schemes reduce the ICI at the cost of very low bandwidth
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utilization (i.e., low spectral efficiency). Only 1/n resources are utilized in each
sector.

2. Fractional Frequency Reuse (FFR): this scheme offers frequency reuse factors
between 1 and 3. It divides the whole available resources into two subsets or
groups to serve the cell-edge UEs as well as cell-center UEs. This category is
mainly divided into [16]:

a) Partial Frequency Reuse (PFR): a.k.a. strict FFR, allows a "common"
subband to be used in all sectors with equal power (i.e., that subband
exhibits a reuse factor of 1), while the power allocation of the remaining
subbands is coordinated among the neighboring cells to create one subband
with a low ICI level in each sector, which is commonly assigned to edge UEs
(i.e., those subbands have a reuse factor larger than 1).

b) Soft Frequency Reuse (SFR): BW is divided into three adjacent orthogonal
subbands in each cell. Two subbands are allocated to the center UEs, and
the third subband is allocated to the edge UEs, as shown in Fig. 2.3.

Figure 2.3: Soft frequency reuse scheme

As SFR provides a higher spectrum reuse factor [17] (and therefore higher spectral
efficiency), we focus on it throughout the rest of the document.
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To formally introduce the SFR scheme depicted in Fig. 2.3, let B = {1, ..., B} be the
set of B cells in a macrocell network. We assume that the maximum transmit power
for i-th next-generation Node B (gNB) is pi in Watts, with p being the (maximum)
downlink power vector. As expected in a SFR pattern, no two neighbor cells use the
same frequency subband at the edge. In this way, ICI is mainly caused to an UE at
the edge of the cell by a signal transmitted toward the neighbor cell’s center users.
Consequently, if the neighbor reduces its transmit power towards its center users, ICI
is also further reduced. Thus, in SFR, every cell applies reduction power factors η

c
i and

η
e
i at the center and the edge respectively. Therefore, the transmit power for resources

that are assigned to edge users is η
e
i pi whereas for the resources assigned to center

users is η
c
i pi. Since we require high throughput and coverage for users at the edge, we

set η
e
i = 1 for all cells as in [18].

Unfortunately, the use of SFR leads to natural tradeoffs among performance metrics
such as coverage for cell-edge users, network throughput, and spectral efficiency. That
compromise becomes more complex if the load imbalance among neighboring cells
is considered because it causes inefficient resource utilization and low throughput.
Accordingly, a tight relationship between ICIC and MLB functions is evident, as well
as the necessity of considering a coordination scheme between both SFs. Additionally,
as different user association schemes will result in diverse interference levels in the
network, ICIC schemes should also be jointly considered with user association. We
elaborate on this idea in detail in Chapter 5.

2.1.3 Radio Resource Management

The main objective of Radio Resource Management (RRM) mechanisms is to ensure
efficient use of resources taking advantage of multiple adaptation techniques while sup-
plying the UE with the requested QoS. The main RRM mechanisms for an OFDMA-
based network6 work in conjunction with the SFs and are distributed across the Layers
1 to 3 in the base station, as shown in Fig. 2.4, which is adapted from [19]. Please
recall that we consider only the downlink channel, which is OFDMA-based.

The RRM functions in Layer 3 in Fig. 2.4 are considered semi-dynamic mechanisms
in the sense that they are only executed during the setup of a new data session, whereas
the function in Layers 1 and 2 are highly dynamic as their execution takes place every
Transmission Time Interval (TTI) which is fixed to 1 millisecond for LTE or flexible
for 5G (0.125 milliseconds being the lowest, used for latency-sensitive traffic).

6LTE uses OFDMA in the downlink whereas 5G uses it for both uplink and downlink.
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Regarding the interaction between RRM and SON, we conceived the SFs coordina-
tion and execution as a slow outer loop that consumes information from faster RRM
cycles (every 1 millisecond) as shown in Fig. 2.5.

User Plane Control Plane RRM Mechanisms Execution

Layer 1

Layer 2

Layer 3 QoS 
management

Admission
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Figure 2.4: RRM functions.
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Figure 2.5: SON functions and RRM mechanisms interaction.

A detailed explanation of the RRM mechanisms in Fig. 2.4 is out of the scope of this
document, and we focus especially on the mechanisms which have an impact (according
to our criteria) on the SF execution, namely Channel Quality Indicator (CQI) manager,
link adaptation and dynamic scheduling. A detailed explanation of the SFs will be
provided in Section 2.2.

• CQI manager. This mechanism processes the Channel Quality Indicator reports
(in downlink7) from active UEs. The CQI can be considered as a feedback
from the user containing information about the channel quality. Based on these
reports, the base station makes decisions about the link adaptation as well as
the scheduling.

7As well as the Sounding Reference Signals (SRS) in the uplink.
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• Link adaptation. This mechanism is executed in the time domain and is in charge
of selecting the best modulation and channel coding schemes according to the
channel conditions. Suppose the channel is noisy (meaning a low SINR). In that
case, a robust modulation should be selected, e.g., QPSK (which allows trans-
mitting 2 bits/symbol), whereas if the radio conditions are good, a higher-order
modulation like 64-QAM (6 bits/symbol) should be selected, enabling a higher
data rate. Likewise, the coding schemes (which represent the level of redun-
dancy injected in the data flow) can change according to the channel conditions.
This mechanism is also known as the Adaptive Modulation and Coding (AMC)
scheme.

• Dynamic scheduling. The Layer 2 packet scheduler performs scheduling deci-
sions every TTI, allocating Physical Resource Blocks (PRB)s to the users based
on information like the CQI, QoS Class Identifiers (QCI), information about
the retransmission status (H-ARQ), buffer status of the UEs, UE capabilities,
available resources (PRBs), etc. The outputs of the scheduler correspond to the
scheduled users, the PRB assignment to every user, the modulation and coding
scheme selected for every transmission, and the transmitted power per PRB.

For the sake of completeness, we elaborate a bit more on the time-frequency re-
sources scheduling because it is essential for MLB and ICIC modeling in the rest of
the document. An OFDMA symbol (which can transport multiple bits depending on
the selected modulation) mapped to a subcarrier represents a Resource Element (RE).
These OFDMA symbols as REs are grouped in subframes of 1-millisecond duration
(the same TTI duration), composed of two time slots of 0.5 milliseconds each. The time
slots are further divided in the frequency domain into Resource Block (RB)s. Each
RB comprises 12 sub-carriers of 15 kHz each making it 180 kHz wide (see Fig. 2.6).
The minimum allocation unit to the users in the downlink is a PRB corresponding to
two RBs, i.e., 14 symbols along 12 subcarriers.

The number of PRBs depends on the allocated channel bandwidth of a base station
(i.e., BW). For instance, for BW = 10 MHz, the number of PRBs is 50. We define the
resource utilization of i-th cell (ρi) as the ratio between the number of used PRBs and
the number of available PRBs. Clearly, ρi represents the resource usage factor that was
introduced in Eq. (2.2). In general, neglecting all the details of the scheduling process,
ρi depends on the UE requested data rate as well as the capacity of the channel. It is
possible to estimate the cell utilization through Eq. (2.5)
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(∀i ∈ B) ρi = ∑
l∈Pi

γl

ci,l(ρ, ⋅) , (2.5)

where Pi corresponds to the set of users associated with the cell i, the numerator γl

represents the UE requested data rate, and the denominator corresponds to the Shan-
non bound in Eq. (2.4). This estimation will come in handy, especially in Chapters 4
and 5, in which the impact (on the network performance) of several user associations
(P ≔ {P1, ...,Pi, ...,PB}) is assessed before applying any change into the network.

2.1.4 A Minimalist Model of the Scheduler

There are many versions of scheduling algorithms in real network deployments since
their design is not that standardized by Standards Developing Organization (SDO)s
but rather left to the vendor’s criteria. The scheduling policies for OFDMA-based
systems can be classified into [20, 21]:

• Opportunistic algorithms: assume a full-buffer UE traffic model (i.e., UE traffic
queues are continuously backlogged). They work by scheduling a UE when its
instantaneous channel quality is higher than its average channel condition over
time. Two main representatives are the Proportional Fair and Proportional Fair
Exponential schedulers.

• Fair algorithms: this category of schedulers aims at improving the fairness among
users. Fairness is an important requirement that should be considered to guar-
antee minimum performance even to users experiencing bad channel conditions
(e.g., cell-edge users). The two main representatives are the Round Robin and
Max-Min Fair schedulers. In this thesis, we consider a Round Robin scheduler.

• Throughput Based Algorithms: these schedulers aim to maximize the spectral
efficiency by assigning each PRB to the UE that can achieve the maximum
throughput in the current TTI. The main representative is the Maximum Rate
scheduler.

• Delay Based Algorithms: these scheduling techniques are mainly designed for
delay-sensitive applications and consider the time that a UE data packet has
spent in the scheduler queue to be served first. The main representative is the
Maximum Largest Weighted Delay First scheduler.
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Considering the L2 scheduler is a critical component in the RRM as well as SON,
and for the sake of gathering the main performance metrics related to the scheduling
process, a minimalist model is proposed. This will be especially useful in the selection
of a suitable cost function in Chapters 4 and 5.

We follow the modeling approach of a Round Robin scheduler presented in [22], in
which the users are dispatched on a first-come-first-serve manner whenever there are
enough time-frequency resources. If there are no resources (e.g., ρi is extremely high),
we assume there is a queue that holds customers awaiting service.

Newly arriving UE data packets join the single queue, work their way up to the
head of this queue in a first-come-first-serve fashion, and then finally receive a fraction
of the time-frequency resources, i.e., PRBs (known as "quantum" in [22]). When that
"quantum" expires and if they need more service (i.e., the data transfer has not been
completed yet), they then return to the tail of that same queue and repeat the cycle.
This scheme is known as the Processor-Sharing model, and it is depicted in Fig. 2.7.

Queue Time-Freq.
Resources

Cycled Users

Packets Arrival
Packets Dispatch

Figure 2.7: Processor-sharing M/G/1 scheduler

When there is no contention for the time-frequency resources (e.g., there is only one
UE in the network), and the user needs x seconds to dispatch all its packets, then
the average response time, T (x), is equal to x. However, when multiple UEs share
the same resources, some time will be spent in the queue, W (x). Of course, T (x)
and W (x) are direct measurements of the latency associated with the scheduler which
should be minimized, especially thinking on Ultra-Reliable Low latency Communica-
tion (URLLC) services for 5G.

There are closed-form expressions for both T (x) and W (x) (normalized with the
nominal service duration x with no contention), assuming that the whole packet arrival-
dispatch process of the i-th cell can be modeled as a M/G/1 system:

Ti(x)
x =

1
1 − ρi

(2.6)
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Wi(x)
x =

ρi

1 − ρi
(2.7)

Some properties of the Round Robin scheduler pop up: on the first-hand side,
according to Eq. (2.6), the response time, T (x), has a linear relationship with nominal
service time x, i.e., a packet twice as long as some other will spend on average twice
as long in the network. On the other side, and according to Eq. (2.7), if we consider
Wi(x)

x
as a penalty for transmitting x seconds of service over a shared resource, then it

is independent of the UE’s service time distribution (which depends on the Shannon
bound, and therefore on the SINR), and is in that sense "fair", as we mentioned it
before.

Apart from the latency relationships in Eq. (2.6) and Eq. (2.7), it is possible
to find in the literature a figure of merit for the data rate perceived in a M/G/1 -
Processor Sharing queue. According to [23, 24], the throughput perceived by the m-th
UE connected to i-th cell is given by Eq. (2.8).

Ri,m = (1 − ρi) ci,m(ρ, ⋅) (2.8)

where the second term corresponds to the Shannon bound in Eq. (2.4).
The term (1−ρi) in all the previous equations, corresponds to the available resources

in the i-th cell. In Chapters 4 and 5, we define a cost function that is compliant with
the performance metrics in Eq. (2.6), Eq. (2.7), and Eq. (2.8).

2.1.5 Mobility Management

When an UE is either in a voice call or transmitting/receiving data traffic, it is said to
be in active state (specifically, the user is in RRC_CONNECTED state [25]). If the
user happens to be in movement, it is crucial to keep the ongoing session up regardless
of the velocity and the movement direction. Otherwise, if the connection can not be
retained by the network, there will be dropped calls/sessions, which affects the QoS
of the users. As the user is moving, it is likely that the cell that is offering service to
the user will change. Therefore, a network procedure to smoothly transfer an active
session from one cell (source cell) to another one (destination cell) is employed.

The network uses the network-triggered and user-assisted HandOver (HO) procedure
to control the user association for UEs that are actively transmitting or receiving
data. The objectives here are to maximize the UE’s data rate and the overall network
capacity. The mobility management for active users is standardized in [26], [27]. In this
research, we focus on the mobility management for UEs in the active state because the
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HO rules the dynamics of two well-established SFs, MRO and MLB, which generates
a conflict as it will be mentioned in Section 2.3.1.

According to the standard, the HO is a three-step procedure:

• UE measurements. The UE measures the signal levels from the serving and
neighboring cells and sends the measurement report to the serving cell. To set up
the measurements, the serving cell sends a Radio Resource Control (RRC) Con-
nection Reconfiguration message to the UEs. Within that message, there is an
information element called measurement configuration, which contains informa-
tion about when the UE should report back to the serving cell. The measurement
procedure is well-established in the standard, see [28], [29].

• HO decision. Based on the measurement report, the cell decides about HO
triggering. The most general reporting mechanism in mobile networks is event-
triggered periodic reporting, in which a UE starts to send periodic measurement
reports if a signal level crosses over a threshold and stops if the signal crosses back
[11]. Throughout this document, we consider the A3 HO event, which triggers
the vast majority of HOs in LTE corresponding to intra-frequency HOs [11].

• HO execution. Corresponds to the signaling flow over the X2 interface (for
LTE) or Xn (for 5G) or through the core network if the cells lack an interface
among them. We do not spend too much time explaining this step since we
consider the bottleneck of the network is the radio part rather than the backhaul
or the core network. If more details are needed, [27] is a suitable reference.

In the A3 HO event, a HO is carried out whenever the neighbor cell Reference Signal
Received Power (RSRP) becomes stronger than the RSRP of the serving cell by a
specific offset, and this condition is met for a time of at least Time-To-Trigger (TTT)
(between 0 and 5120 milliseconds). We estimate the RSRP as the product of the
transmitting power of serving cell i, that is pi, and the channel gain from cell i to user
m, that is gi,m(⋅)8, namely: [pigi,m(⋅)][dBm], in which the placeholder [⋅][dBm] implies
that the quantity within the brackets is expressed in dBm. Let B = {1, ..., B} be the
set of B cells in a macrocell network, a simplified version9 of the entry condition for
an A3 HO from cell i to cell j is given by Eq. (2.9):

[pigi,m(⋅)][dBm]
+ H + CIOi,j < [pjgj,m(⋅)][dBm]

, (2.9)
8(⋅) expresses the dependency of the gain on multiple parameters, e.g., the dependency on the

antenna tilt which is studied in Chapter 4.
9The optional frequency-specific offsets have been neglected.
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where the Cell Individual Offset (CIO) is a power offset given in [dB]. For the sake
of avoiding coverage holes, we consider CIO ≔ (CIOi,j)B×B with CIOi,j = −CIOj,i

and CIOi,i = 0 ∀ i, j ∈ B. H is the hysteresis value which shows the difference needed
between the measurements of the serving and the neighbor cells to trigger the A3 event
also in [dB].

Likewise, the UE leaves the event A3 reporting when the condition in Eq. (2.10) is
met for at least TTT.

[pigi,m(⋅)][dBm]
− H + CIOi,j > [pjgj,m(⋅)][dBm]

, (2.10)

While the entry condition is held, the UE sends measurement reports to the cell every
reportInterval (from 120 milliseconds up to 60 minutes [29]). The maximum number
of reports the UE sends can go from 1 to 64 (or unlimited) [29]. In Fig. 2.8, it is
possible to visualize the aforementioned concepts.

Cell i HO Execution

Periodic Reports

TTT

Cell j

Time [ms]

RSRP [dBm]

H + CIOi,j

Serving Cell
Neighboring Cell

Figure 2.8: Measurement reporting and handover decision using A3 entry condition

2.2 SON: Origins and Evolution
We have described so far the main network-related concepts associated with the exe-
cution of SFs. In this section, we dive into the details about the historical background
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and specifics of the SON concept, especially from the standardization perspective. As
the main references in the rest of this chapter correspond to SDO’s deliverables, we
consider it relevant to picture them (at least the principal ones) along the standard-
ization track. For mobile networks, the standards are defined by the third Generation
Partnership Project (3GPP), which gathers contributions from members of multiple
regional standards bodies. Before a standard is defined, the requirements and use cases
need to be determined. This is carried out through forums either in the International
Telecommunication Union - Radio sector (ITU-R) or NGMN Alliance (which corre-
spond to industry forums). Additionally, research forums are considered, especially
the projects part of the 5G infrastructure Public-Private Partnership (5G-PPP) and
5G Mobile communications promotion Forum (5GMF), which collect research input
from academia and industry.

SFs were proposed and standardized to provide self-adaptation capabilities to mobile
networks on different fronts: configuration, optimization, and healing, thus reducing
the error-prone human intervention. Unfortunately, the conventional design of these
SFs was based on single objective optimization approaches where SFs were considered
as standalone agents aiming at one very specific local objective (e.g., reducing the
interference or increasing the coverage). Thus, complex interdependencies between
SFs were, to some extent, unattended, so when more than one function is acting on
the network, conflicts are inevitable. Therefore, it was needed to introduce a self-
coordination stage to settle the conflicting scenarios.

A taxonomy of the SFs (as introduced by the SDOs) is proposed in Fig. 2.9. Five
categories group all the SFs: self-configuration/optimization/healing/auxiliary func-
tionalities and self-coordination (the latter is the focus of this document).

SON was initially conceived by the NGMN Alliance to address expected challenges
during the continuous operation and management of multiple RATs [1]. Soon after [1]
was issued, the standardization process for the use cases proposed by NGMN Alliance
(not all of them) started and continues since then. The 3GPP Release 8 of LTE
defined the basic concepts and requirements regarding initial deployment, rollout, and
integration of networks, especially considering the Automatic Neighbour Relation
(ANR) and automated configuration of Physical Cell Identity (PCI) functions
[30], [31].

During the Release 9 of LTE, and product of the work of the 3GPP RAN3 working
group, canonical SFs for intra-RAT self-optimization were introduced [32], namely:

• CCO. This function deals with the joint optimization of the coverage and ca-
pacity of the network. The CCO concept was defined for LTE in [33, 34, 35].
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Figure 2.9: SON functions taxonomy and functional split

According to the SDOs, this function applies to 5G; however, the functions spe-
cific to 5G radio technology (e.g., beam management) need to be taken into
account [2].

• ES. With this SF, the energy savings are achieved through switching off inactive
network cells or by reducing the transmit power, as long as the UEs QoS is not
affected. This function is commonly executed during off-peak-traffic (low traffic
demand) scenarios - we will observe this in Chapter 5. The coverage, as well as
the capacity of the energy-saving cell, must be taken over by neighboring cells,
either in the same RAT (intra-RAT ES) or a different one (inter-RAT ES). Intra
and inter-RAT ES for LTE are proposed in [36], whereas, for 5G, an application
study is available in [37].

• Automated configuration of PCI. This function also belongs to the self-
configuration category, and it is in charge of automatically assigning a unique
identifier to a New Radio (NR) cell by the gNB Distributed Unit (DU) and the
management system. It was standardized for LTE in [27] (see clause 22.3.5), and
an applicability study in 5G is presented in [37].
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• MRO. This self-optimizing function aims at detecting and solving the problems
associated with inter and intra-RAT mobility, e.g., Radio Link Failure (RLF)s
due to too-late HO, too-early HO, HO to wrong cell, unnecessary HO, Ping-
Pong (PP) HO. The definition of MRO for LTE is given in [34, 27], and a study
for applicability to 5G can be found in [37].

• MLB or Load Balancing Optimization (LBO) function. This function
corresponds to a self-optimizing use case. MLB (nowadays LBO), enables over-
loaded cells to transfer part of their loads to neighboring cells, yielding a fairly
distributed load across the network, decreasing the wastage of resources, increas-
ing the probability of acceptance of new sessions, and boosting the throughput.
This process is carried out by modifying intra-RAT and inter-RAT mobility pa-
rameters (like MRO), as will be explained later on. The load balancing concept
was introduced for LTE in [34], [27], whereas a study for 5G is available in [37].

• Random Access CHannel (RACH) optimization. This is another self-
optimization function. The RACH needs to be adequately configured to pro-
vide enough random access opportunities to the UEs regardless of the cell sizes.
RACH optimization is in charge of finding the best trade-off between access
opportunities and the resources which have to be sacrificed for them. The con-
ceptual design for LTE is available in [27], whereas a study for its application in
5G can be found in [37].

• ANR. It traditionally belongs to the self-configuration category. It is in charge
of discovering neighbors and creating/updating the corresponding relationships,
as well as automatically setting the X2 (LTE) and Xn (5G) interfaces among
neighbors. It was introduced for LTE in [38]. For 5G, the functionality is pre-
sented in [39, 40, 41]

• ICIC. This use case belongs to the self-optimizing category. This SF corresponds
to a multi-cell RRM function whose objective is to mitigate ICI and improve the
SINR, especially at the cell edge. ICIC needs to take into account information
(e.g., the resource usage status and traffic load situation) from multiple cells to
make the most favorable decisions. ICIC mechanisms for LTE were proposed in
[27], including both frequency and time domain techniques. ICIC also applies to
5G according to [2].

As from Release 10, enhancements to some of the previously defined SF were pro-
posed, as well as adaptations to support multi-RAT scenarios and the introduction
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of self-healing networks10. The concepts of self-healing for LTE are described in [42].
The main representatives for this category of SFs are:

• Cell Outage Detection (COD). In charge of detecting sleeping cells11, out-
of-service cells, and so on [42].

• COC. Once an outage state is detected in one cell, this function is in charge of
distributing the load of the affected cell across the neighborhood [42].

The Minimization of Drive Testing (MDT) (coming from the 3GPP RAN2
working group) functionality was also introduced in the 3GPP Release 10 of LTE as
a way to collect UE measurements either when the UE is in active or idle mode. As
its name implies, the idea is to minimize the frequency of conventional and expensive
measurements made using specialized measurement equipment installed on vehicles.
For LTE, MDT was introduced in [43], and the application to 5G is discussed in [37].
A complementary functionality has been introduced in 3GPP Release 15: Trace and
reporting of Tracing Data (Trace), indicating the ability to trace all active calls
in a cell or multiple cells as well as keep records of control signaling information for
specified interfaces [44].

In Release 14, a SF for Active Antenna Systems (AAS) in LTE was introduced
[33, 34] to create a framework for splitting and merging cells as well as changing the
cell shaping. In 5G, it is expected that this task will be absorbed by the CCO SF
[2]. From Release 16 on, and mainly regarding 5G, the following SFs have been under
definition:

• Network Slice Instance (NSI) resource allocation optimization. This
function adjusts the allocation of radio and core resources (e.g., scaling in or
out the resources) for the NSIs [2]. This SF is mainly supported by predictive
reports supplied by the Network Data Analytics Function (NWDAF) Network
Function (NF).

• Self-establishment of 3GPP NF. This SF is based on a server-agent in-
teraction. A recently deployed node requests configuration data and software
from a self-configuration service producer, and it receives the configuration data

10A critical factor in fault management if we consider that in the Radio Access Network (RAN), every
cell is in charge of serving a dedicated coverage area with little (if any) redundancy. Therefore,
reducing Mean Time To Repair (MTTR) is crucial

11A cell which carries no traffic despite the presence of UE requesting service but not generating any
alarm.
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that may include radio configuration data, IP connectivity data, and software
installation. Once the information is received, the node proceeds with the set of
instructions received [2].

• Multi-vendor Plug & Play of NFs. Once a NF is deployed, either Physical
Network Function (PNF) or Virtual Network Function (VNF), this SF is in
charge of connecting the NF to the management system providing support for
self-configuration processes as automatically as possible [2].

• Automatic NSI creation. This SF enables operators to create the NSI that
contains 5G Core NF, gNB Central Unit (CU), and gNB Distributed Unit auto-
matically, based on the requirements given by the authorized customers [2].

• Optimization of the quality of communication services. This SF enables
service quality optimization. For example, the goal could be to minimize average
latency on the communication services provided to the URLLC category of ser-
vices. If this SF detects a performance degradation, it modifies the configuration
parameters in the corresponding RAN and core nodes or NSIs/Network Slice
Subnet Instance (NSSI)s [2].

• Cross-slice network resource optimization. This SF is in charge of opti-
mizing the resource allocation across multiple NSIs of the total available physical
and virtual resources [2].

• Multi-aspect / multi-domain resource optimization (MARO). The ob-
jective of this SF is to enable joint resource optimization across multiple domains
(e.g., access network, core network) among multiple network aspects, including
the radio resources, VNFs, and network slices [2]. This SF uses Fault, Config-
uration, Accounting, Performance, Security (FCAPS) information which is an-
alyzed, and resource provisioning policy improvements are generated afterward,
for instance: changing the characteristics of transport links based on observed
transport network performance bottleneck or changing the network slice or sub-
net resource provisioning for inter-slice resource optimization [2].

As it will be seen in Section 2.3, multiple SFs tweak the same (or related) network
parameters, usually under incompatible policies, generating instabilities and conflicting
scenarios. Thus a coordination mechanism is imperative. On that note, the Self-
coordination concept was introduced for LTE in the 3GPP Release 11 [34], which is
also applicable to 5G, although the adaptation to 5G is still under construction as
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the early coordination framework does not account for multiple network aspects, e.g.,
virtualization or slicing [2].

As shown in Fig. 2.9, the self-coordination framework spans over the self-configuration,
self-optimization, and self-healing categories and could also receive input data from the
Auxiliary Functionalities branch (as a matter of fact, that is one necessary condition
for the coordination approach proposed in Chapters 4 and 5).

2.3 Conflicts among SFs
Throughout this research, we mainly consider "canonical" functions of the self-
optimization branch in Fig. 2.9, namely: MLB, MRO, ICIC, CCO, and ES. From
every possible combination of SFs drawn out of this subset, it is possible to discover a
conflicting scenario that turns a coordination scheme into a major necessity. With the
help of Fig. 2.10, some conflicting scenarios are illustrated in the following subsections.
Because we pursue a centralized solution, whenever we mention a specific SF, we mean
the central entity which has visibility of other instances of the same or different SFs
in the whole network.
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Figure 2.10: Coordination among multiple SFs.

2.3.1 Conflicts between MRO and MLB

Both MRO and MLB functions optimize network performance by adjusting handover
parameters and influencing the same KPIs. Typical implementations of MRO consider
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TTT and H in A3-HO events (see Section 2.1.5) as input parameters, whereas MLB
uses the CIO values: CIOi,j [34].

Since two different SFs modify parameters related to the same network procedure (in
the opposite direction or towards the same direction but on different scales), conflicting
commands could take place, as shown in the following hypothetical scenarios:

1. The MRO function may adjust handover parameters (e.g., increase H of source
Cell 1 in Fig. 2.10) to minimize the number of too early handovers from Cell 1 to
Cell 2, while the MLB function may adjust handover parameters (e.g., decrease
the CIO of source Cell 1 to target Cell 2) to advance the handover from Cell 1
to Cell 2 in case the load of Cell 2 is much less than Cell 1. A conflict is evident
here.

2. If the MLB function detects one cell is overloaded, it could try to shrink its
cell size, transferring edge users to the neighborhood. Thus, the overloaded cell
could reduce the CIO for some of its neighbor cells (advancing some HO proce-
dures towards the tier-one neighbors). Nevertheless, if the radio conditions in a
destination cell are not good enough for the users that were handed over, some
RLF (due to too-early handovers) could occur, so the MRO function (after an-
alyzing the performance metrics) adjusts the neighbor relationship between the
overloaded cell and the neighbor cell such that the UEs do not handover that
easily to the neighborhood. However, that jeopardizes the original load balanc-
ing procedure driven by MLB in the overloaded cell. Therefore, orchestration
between both SFs is paramount.

3. Alternatively, if one user is moving at high velocity in a heterogeneous network
(where macrocells co-exist with micro and femtocells), the user should be served
by a macrocell to avoid multiple subsequent HOs (e.g., towards and inbetween
microcells) and in such a way to reduce signaling traffic, so MRO function in
the macrocell could increase H or the TTT (and in that way delaying the HOs)
which in turn increases the offered load in the macrocell which could advance the
triggering of some MLB actions to compensate a possible overload. Once again,
the need for coordination between both SON use cases is evident.

This kind of conflicts12 jeopardizes the global stability of the system and consumes a
significant amount of signaling resources. We study this conflict within our proposed
coordination framework in Chapter 3.
12Known in the literature as output parameter conflict [45].
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2.3.2 Conflicts between ICIC and CCO

This well-known conflict occurs when the same network parameters are modified in
different directions due to the greedy objectives of individual SFs. Let us consider the
following scenario: the antenna downtilt in Cell 1 could be reduced by a CCO instance
to increase the coverage over a specific area, but an increase in the ICI created by
Cell 1 is expected. Once the generated ICI is increased, the ICIC function may try
to increase the downtilt of the antenna again. With the change rollback, the network
ends up in the initial scenario, and the situation could be triggered again. Therefore, a
coordination mechanism coping with a compromise between both objectives is required.
This type of conflict is known in the literature as a direct characteristic conflict [45].

2.3.3 Conflicts between MRO and CCO

This conflict is categorized as a measurement conflict [45], which is present when a
change in the network configuration influences the network metrics, but it takes some
time until those changes show an effect in the measurements. For example, an instance
of CCO could change the tilt configuration of a cell according to its optimization
policy. This change has a long visibility delay time (in the network statistics), so in
the meanwhile, an instance of MRO could decide to modify handover parameters based
on out-of-date information. Therefore, once the change of tilt is visible in the network,
the solution found by MRO could become obsolete. We propose a method to deal with
this conflict (as future work) in Chapter 6.

2.3.4 Conflicts between MLB and CCO

To illustrate this conflict please consider (as an example) the cell layout depicted in Fig.
2.10. The conflict occurs when an instance of CCO in Cell 1 modifies the transmitting
power or electrical tilt, impacting the cell size. A MLB instance simultaneously running
on a neighboring Cell 2 modifies the CIO between Cell 2 and Cell 1 to achieve a
better load distribution between the cells. However, the size of Cell 1 modified by
the CCO function has an impact on the handover procedure as the overlap area with
the neighboring Cell 2 changes. This causes MLB parameter changes in Cell 2 to
be potentially unsatisfactory. We handle the coordination of this specific problem in
Chapter 4.
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2.4 SF Coordination Complexity
It can be deduced from the above scenarios that the relationship mesh among SFs,
network parameters, and KPIs is quite interleaved. This is mainly due to the fact that
there is a vast number of parameters related to SFs, and the number of relations is
increasing as more SFs and network functionalities are introduced by the SDOs.

For the sake of reference, a list of crucial SON-related parameters has been considered
by the standard for LTE in [46] and 5G in [34], as well as the SON-related network
performance information in [37]. To get an idea of the complexity of the conflict
dynamics among SFs, Fig. 2.11 shows the degree of interaction amidst some SFs
concerning the network parameters for one (and only one) specific RAT and NSSI.
The straight lines represent direct parameter-SF interaction, whereas the dashed lines
represent indirect interaction, e.g., that a change in a particular parameter affects the
SF decision-making process.
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Figure 2.11: Interaction mesh among SFs and their corresponding network parameters

It is worth it mentioning that the location of the functions within the network has
not been explicitly stated yet in Fig. 2.11. As it will be shown in Section 3.2.1, there
are conflicts between the same SF (or different SFs) executed in neighboring cells
concurrently. We call this kind of conflict: inter-cell dependencies. One example of
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these dependencies is the conflict between CCO and ICIC described in Section 2.3.2.
As the reader can guess, there are also intra-cell dependencies, e.g., the relationship
between ANR and MLB/MRO.

The complexity of the coordination problem explodes if heterogeneity in the network
is introduced, as well as concepts like slicing or MIMO are considered. For example,
consider the mobility management ruled by the handover procedure: it is expected
to have explicit scenarios for inter-RAT mobility, inter-beam mobility, or inter-slice
mobility, increasing the complexity of the SFs modifying the handover parameters,
e.g., MRO and MLB (see Fig. 2.11). Consequently, the introduction of new network
functionalities and new SFs yields an increase in the dimensionality of the coordination
problem.

Furthermore, it is worth mentioning that an operation management domain could be
highly customizable, in the sense that not all the operators will have an instance for all
the SFs (this will depend on the business model of each operator) and probably not for
all of the RATs or geographic areas. In addition, any attempt to coordinate SFs should
be vendor-agnostic and scale to multiple network sizes: from legacy PLMN to small
deployments available, for instance, in Non-Public Land Mobile Networks (N-PLMN),
a.k.a. campus network scenarios.

At this point, the convolution of the coordination problem is evident, so simul-
taneously considering multiple SFs increases the difficulty of modeling the network
dynamics in a closed-form way. Therefore, it is expected that, for the next generation
of mobile networks, a smart approach to coordinate all SFs shall be defined. Here
comes ML into the landscape as an enabler for 5G to provide a smart automation
layer to the network, easing the network management as long as enough information
is available to train a trustworthy ML model.

Accordingly, it is expected to have a smart layer hosting the ML models and perform-
ing the "self-everything" tasks in the network. Thus, apart from the typical functional
split in the network (i.e., user plane, control plane, management plane), a so-called
Automation Plane is conceived, as in Fig. 2.12, which is adapted from [47].

In the section below, a thorough analysis of the state of the art of SF’s coordination
methods is provided along with a non-standard taxonomy of the considered references.
Important SON-related research projects are also mentioned.
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Figure 2.12: Communication layers and planes.

2.5 SF Coordination: the State of the Art
According to a review of the available literature, we consider that there are five research
directions regarding the coordination of SFs. This taxonomy is far from standard and
is used to ease the framing of our contributions in this thesis.

• (Temporal-spatial) separation. In this category, the execution of conflicting SFs
is carried out using a temporal or spatial separation. In general, with the execu-
tion separation, the complexity of the interaction among SFs is reduced. How-
ever, we claim that this approach is too slow in order to meet the requirements
of highly dynamic network environments.

• Explicit coordination. In this branch, there is explicit modeling of the interac-
tions among conflicting SFs. The downside of these methods is two-fold: deep
expertise in network modeling is needed, and highly simplifying assumptions
about the model conditions are required (otherwise, the modeling is intractable).

• Tailing (or a posteriori) coordination. In this category, it is considered that
many agents are executing greedy optimization algorithms, finding local policies,
and thereafter a coordinator conciliates the possible conflicts among the local
policies. A drawback of these approaches is that the optimality achieved by the
individual agents is lost with the conciliation stage; therefore, there is a lack of
optimality understanding during the mediation process.

• Heading (or a priori) coordination. The methods within this category are meant
to avoid the conflicts among SFs from their design. The idea is that with the
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right design of conflict-free SFs, network instabilities disappear. Similar to the
explicit coordination category, deep expertise is needed to design functions with-
out conflicts. Furthermore, strong assumptions about the model conditions are
required. Additionally, as was shown in Section 2.2, the design of SFs is not that
flexible because it has constraints from the standardization perspective.

• Implicit coordination. In this category, the coordination problem is rendered
into a joint optimization problem, in which the optimization of a global metric
(or utility) is sought. The utility definition hides all the complexity of the net-
work dynamics and should be aligned with the business strategy of the network
operator.

In the following subsections, we present a detailed discussion about some representa-
tives of the above categories.

2.5.1 Temporal-Spatial Separation

There have been several research projects focusing on the study of SON. One of
them is the FP7 SOCRATES (Self-Optimization and self-ConfiguRATion in wirelESs
networks) project, in charge of developing and demonstrating algorithms for self-
coordination, optimization, healing, and coordination of 3GPP-compliant networks.
Within the SOCRATES project, and regarding the self-coordination branch, the au-
thors in [48] propose two schemes to mitigate conflicts among SFs. First, they propose
a SF execution separation in the time domain depending on the number of measure-
ments needed to make a statistically-meaningful decision to modify the SF-related
parameters; the authors call this the "separation approach", and they claim it substan-
tially lowers the overall SF interaction complexity. The authors also propose a so-called
coordination method based on Hidden Markov Chains to determine precisely when a
reoptimization should occur; the authors claim that the advantage of the "coordination
scheme" is that the re-optimization is triggered when it is most appropriate and not at
predefined intervals. Therefore, with the coordination scheme, it is possible to react
faster than with the separation scheme because the latter restricts reoptimizations to
the end of measurement intervals of predefined lengths. Unfortunately, the authors in
[48] do not present any quantitative results for any of the SFs introduced in Section
2.2.

Regarding separation schemes, the authors in [49, 50] also propose a spatial-temporal
decoupling of the SFs. Every SF is modeled as an agent running Q-Learning, and their
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execution is separated in either space, time, or both. In [49, 50], simulation studies
considering MLB and MRO showed that a distributed coordination approach where
SFs learn to minimize their effects on one another is a promising solution for network
management. The authors in [51] also provide a time-separation-based execution of
SFs. The authors study the conflicts between MRO and ES and present simulation
results regarding the reduction of the power consumption and the HO failures while
solving an integer linear programming problem.

2.5.2 Explicit Coordination

It is also possible to find C-SON approaches based on an explicit formulation of the
coordination problem. For instance, the authors in [52, 53] coordinate the execution of
MLB, CCO, and COC using an explicit model of the dynamics of the SFs through the
formulation of a joint optimization problem. A solution to the optimization problem is
found using a structured search algorithm called the Taxi Cab Method and a network
partitioning method. In [54], the authors extend the work in [52, 53] by adding a
rule to progressively switch off some base stations while ensuring a minimum coverage.
Thus, [54] presents a centralized framework based on Taxi Cab Method and network
partitioning to optimize MLB, CCO, and ES jointly. In [55], the authors coordinate
the execution of MLB, ICIC, and ES in a heterogeneous network with macro and pico
cells, using network partitioning techniques and the Nelder-Mead algorithm to solve a
bandwidth allocation problem in a FFR-based network.

Regarding explicit coordination methods, but with decentralized implementation,
the authors in [56] propose a mechanism to stabilize a system of ordinary differential
equations using control theory, specifically Rosen’s concave games. The authors study
the coordination among MLB, Call Admission Control (CAC), and CCO. For this ap-
proach, there is a strong assumption about the linearity of the system, and every SF is
modeled through one (and only one) KPI and one network parameter. That work was
carried out within the FP7 UNIVERSELF project [57], a major SON-related research
initiative along with SOCRATES. Another reference considering explicit modeling is
available [58]. The authors propose an open-loop estimation of "good-enough" param-
eter sets and a fine-tuning task of the estimation using a slower closed loop. The first
estimation of the parameter set is carried out considering two types of parameters per
SF: one regarding the cell size (or cluster) and another regarding the resource usage
efficiency within the cell (or cluster). Explicit modeling of the relationship between
the two types of parameters per SF and the involved KPIs is needed. Results consid-
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ering an energy-related KPI through the modifications related to MLB and ICIC are
available in the [58].

2.5.3 Tailing Coordination

Another branch of the self-coordination theory in the literature corresponds to tailing
or a posteriori coordination. The authors in [59] propose a functional architecture
based on two steps: first, every SF is decomposed as a Markov Decision Problem,
which is solved using reinforcement learning theory, more specifically the actor-critic
algorithm; second, a coordination game is formulated to conciliate the individual pol-
icy of every SF (obtained in the first step). An application of this framework to the
coordination between CCO and ICIC is presented in [59]. Another reference consid-
ering tailing coordination is available in [60], in which the coordination between MLB
and MRO is tackled.

In [60], the authors propose to truncate the output range for SFs parameters leading
the HO margin towards extreme values to some predefined thresholds. When the SFs
produce parameter changes greater than those thresholds, the respective SF output
is truncated to the corresponding threshold value. The authors claim that the ex-
treme values of CIO and Hysteresis are obtained in extremely high mobility or load
conditions.

In [61], the authors propose a tailing coordination mechanism using a centralized
coordinator, which solves conflicting policies between MRO and MLB functions. Ev-
ery function is modeled as a reinforcement learning agent (specifically actor-critic al-
gorithm). The work in [61] was carried out within another important SON-related
project, the FP7 SEMAFOUR project, whose objective was the development of multi-
RAT/multi-layer SFs that provide a closed control loop for the configuration, opti-
mization, and failure recovery of the network across different RATs [62].

2.5.4 Heading Coordination

This coordination is achieved mainly through a conflict-free SF design. [63] is a good
representative of this category. The authors in [63] propose three design principles
to achieve conflict-free design, namely: separation of control (which guarantees inde-
pendence in the parameters used by a SF), separation of concern (which guarantees
independence in the KPIs), and separation of time scales. In order to elaborate on
these principles, the authors follow classical control theory approaches. [63] is another
deliverable of the FP7 SEMAFOUR project.
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Another heading coordination approach is presented in [64], in which the authors
start with the identification and classification of potential conflicts that are possible
among the main SFs. Based on the classification of all the possible conflicts, the
authors propose decision trees for executing MLB and MRO in a conflict-free environ-
ment. The decision trees are generated using what the authors call "Trigger-Condition-
Action policies". Of course, creating such decision trees demands deep domain expertise
to model all the possible conflicts among SFs.

2.5.5 Implicit Coordination

One way to deal with the complexity of self-coordination is to consider an implicit
coordination mechanism that allows the operator to define global KPIs and let the
system automatically determine the best coordination decision based on the KPIs
without human involvement. We consider that this approach represents the highest
level of automation as it makes human intervention dispensable.

Some ideas in this direction are available in [65], in which an objective-driven SON
coordination method is proposed. The authors propose a centralized coordinator using
stochastic modeling of the SFs, and multiattribute utility theory to make decisions in
probabilistic settings. Simulation results are presented for the coordination among
MRO, MLB, and CCO. The authors claim that this objective-driven coordination
allows the operator to define KPI objectives and let the system automatically determine
the best coordination decision based on them without human involvement.

Another implicit approach is available in [66], in which the authors propose a "super
KPI" expressing overall network status and guaranteeing conflict-free coordination of
SFs. The "super KPI" is defined considering the coverage, capacity, and quality di-
mensions (see Fig. 1.2). The authors present results for a CCO and ANR scenario and
consider a regression stage to study network traffic trends and predict future network
resource requirements.

Within the SOCRATES project, the authors in [67] study the impact of the joint
optimization between MRO and CAC with an implicitly defined metric. Even though
CAC is considered more of a RRM management function, as shown in Fig. 2.4, CAC
is related to MLB (in the sense that MLB aims at maximizing the available resources
in the network and, therefore, maximizing the admission probability). Results in
[67] show that joint optimization of CAC and MRO yields better numbers in terms
of network performance than individually optimizing both functions. Although the
authors in [65, 66, 67] propose the definition of a global KPI or utility function hiding
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the complex dynamics of the network and driving the joint optimization procedures,
we consider that they are not "fully-implicit" approaches because they require human
intervention to some extent.

To the moment of writing this document, only [68] presents what we consider a
fully-implicit coordination approach using machine learning and a multi-objective op-
timization heuristic. Even though some of the references above already use ML to
some extent, e.g., reinforcement learning models as feedback controllers or regression
techniques for forecasting, only [68] presents a tool that uses ML as a cornerstone
within a multi-objective optimization problem. According to the authors, the motiva-
tion behind embedding a ML stage into a multi-objective optimization heuristic is that
usually, several configurations need to be assessed during an optimization task, and
trying them in a real network is not feasible. Nevertheless, if the network dynamics are
captured through a ML model (e.g., using regression techniques), it is possible to run
the heuristic directly on top of the model in an off-line manner reducing the impact
on the network. Therefore, regression analysis shifts the processing complexity to the
model creation stage and allows fast performance evaluations when optimization is
running. The heuristic used in [68] is genetic algorithms, specifically NSGA-II. The
authors study the conflict between MLB and MRO.

ML is a suitable tool to model complex relationships in a mobile network and reduce
the processing complexity while optimizing the network (but not while generating the
ML models). In that regard, and in order to frame a ML-based self-coordination
solution into the 5G network architecture, the 5G-PPP-SELFNET project13 [69] was
recently planned to develop an efficient SON management framework for 5G.

The SELFNET architectural framework considers an automation plane (in compli-
ance with Fig. 2.12) called "SON Autonomic Layer", which is responsible for solving
the conflicts among several SFs. This layer is responsible for collecting, aggregat-
ing, and analyzing the FCAPS-related information. Thus, any ML model could be
onboarded there.

Additionally, in the "SON Autonomic Layer", the operator has visibility across the
whole network and resources, and the decision-making is rather centralized. Different
studies about the feasibility of this framework are available in [70, 71, 72, 73, 74, 75],
although unfortunately not directly related to the coordination of SFs in Section 2.2.

13SELFNET: A Framework for Self-Organized Network Management in Virtualized and Software
Defined Networks.
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2.5.6 Summary

Table 2.2 summarizes the previous references and frames them within the categories
above.

Table 2.2: State-of-art Summary

Reference Category Technique Considered SFs Architecture
[48] Separation Hidden Markov Chains None decentralized
[51] Separation Integer Linear Programming MRO/ES decentralized

[49, 50] Separation Q-Learning MRO/MLB decentralized
[63] Heading Control theory MLB/CCO centralized
[64] Heading Decision Trees MRO/MLB centralized
[59] Tailing Actor-Critic and Game Theory ICIC/CCO decentralized
[60] Tailing Extreme values truncation MRO/MLB decentralized
[61] Tailing Actor-Critic MRO/MLB decentralized

[52, 53] Explicit Taxi Cab Method MLB/CCO centralized
[54] Explicit Enhanced Taxi Cab Method MLB/CCO/ES centralized
[56] Explicit Control Theory MLB/CCO/CAC decentralized
[55] Explicit Nelder-Mead Algorithm MLB/ICIC/ES centralized
[58] Explicit Clustering estimation MLB/ICIC decentralized
[67] Partially-Implicit Directed Search MRO/CAC decentralized
[65] Partially-Implicit Multiattribute utility theory MLB/CCO/MRO centralized
[66] Partially-Implicit Decision trees and regression CCO/ANR centralized
[68] Fully-Implicit SVM and NSGA-II MRO/MLB decentralized

We have seen that, as new network functionalities are being introduced in 5G, an
increment in the number of network parameters is expected, as well as an increase in
the interweaving degree among SFs. Therefore, solving a SF coordination problem in
a closed form becomes intractable. SDOs have high hopes for an automation plane
boosted by ML models yielding a closed-loop control in which human intervention
could be dispensable. In the rest of this document, we pretend to show the benefits,
limits, and workarounds regarding a centralized fully-autonomic coordination function.
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3 Implicit Coordination Applied to
Joint MLB and MRO Optimization

At a high level, the main takeaway from Chapter 2 regarding the coordination among
SFs is as follows: the 5G (and beyond) network management should include a fully
autonomic layer based on ML that shall boost a closed-loop control to coordinate
conflicting network functions, taking advantage of the global visibility of FCAPS data
attainable in the Operations Support Systems (OSS).

In that regard, in this chapter we propose a framework that is fully compliant with
that idea, and use it to coordinate two SFs, namely MRO (for HO optimization)
and MLB (for load balancing). Without coordination, performance degradation is ex-
pected due to the cross-dependencies between both SFs. To cope with the underlying
dynamics, we propose a zero-touch coordination framework based on ML to automati-
cally learn the interdependencies between the selected SFs and solve the joint network
optimization problem.

3.1 Introduction
As mentioned in Section 2.2, SON comprises a set of functions in charge of ruling the
behavior of a mobile network based on specific optimization targets and resource con-
straints. Roughly speaking, every SF takes as input some metrics of the environment
(from now on called environmental variables) and, according to some policy, tunes
network parameters (controllable variables) to solve a SF-specific optimization task.

We can think of every SF as a black-box controller aiming to solve specific single-
objective optimization problems within the network. As described in Section 2.3.1,
two of these black boxes are:

• MLB which is in charge of the balancing of the load across cells, therefore im-
proving the network capacity, and
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• MRO, whose goal is to reduce the number of RLFs induced by the mobility of
the UEs, and thus improving the QoS.

These SFs have strong interdependencies (as both optimize handover parameters),
which can induce conflicts undermining the stable network operation.

The need for dynamic allocation of SFs (e.g., based on the expected user profiles)
is evident, especially if we consider two canonical 5G use cases: massive Machine
Type Communications (mMTC) and enhanced Mobile BroadBand (eMBB). Because
the mobility capabilities for mMTC are expected to be low, MRO function onboard-
ing could be neglected. However, for eMBB, the instantiation of both SF is desired.
Therefore, it is expected that SFs to be virtualized and instantiated on-demand (ac-
cording to slice-specific QoS requirements). Hence the idea of Self-Organized networks
Functions as a Service (SFaaS) is entirely plausible. Achieving this degree of flexibility,
as well as meeting the condition of a solution being vendor-agnostic, and being adapt-
able to new network functionalities like slicing, are the main drivers to lean toward
ML-driven coordination schemes, like the one proposed in this chapter.

As it was already pointed out in Section 2.3, isolated modeling of SFs is suboptimal,
and it results in poor performance and problems with the system stability. Conse-
quently, self-coordination is proposed as a mechanism to guarantee interoperability
among multiple SFs and a conflict-free environment. According to Table 2.2, one of
the most studied conflicting scenarios is the one involving MLB and MRO, which has
references for almost every category of the taxonomy in the table, except for the ex-
plicit coordination branch (the reason behind being the lack of an explicit formulation
of MRO dynamics1).

In [60, 61], the authors use tailing coordination mechanisms for the conflict between
MRO and MLB, whereas in [64], a heading coordination technique for the same conflict
is presented. As we mentioned in Section 2.5, with tailing coordination the optimality
degree achieved by the individual agents is jeopardized during the conciliation stage.
Likewise, for heading coordination, deep knowledge and strong assumptions about the
modeling process are needed to design conflict-free SFs. Frequently, the expertise for
SF modeling is not available right away and the generated models do not capture
complex dynamics in real networks.

Regarding the implicit coordination category (see Table 2.2), the authors in [68]
propose a distributed coordination scheme for conflict resolution between MRO and
MLB based on a multi-objective optimization heuristic supported by a supervised

1In Chapter 6 we propose a way to explicitly model MRO within a joint optimization problem.
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learning model. The ML model is in charge of predicting the performance for each
isolated SF (i.e., without including information of the not-handled SF), whereas the
heuristic searches for a set of non-dominated solutions2. We claim for the sake of
optimality, it is better to predict the KPI at the network level, so dependencies between
SFs located in different cells are considered right away and directly. Additionally, we
claim that it is also possible to shift the complexity of the optimization step to a ML
model to get a simpler optimization task (e.g., as simple as a table lookup).

The authors in [50] propose a separation-based coordination (see Table 2.2) between
MRO and MLB. The main idea is to delay the execution of a SF until the effects of
another conflicting executing SF function become visible in the system. The separation
can be carried out in space or time, allowing the scheduling of the execution of SFs
at different spatial-temporal points to minimize negative cross effects among the SFs
but with the (intrinsic) limits of this concerning stability and finding the best global
solution. In Section 3.3.1.1, we compare the performance of our proposed model with
some of these approaches.

3.1.1 Contributions

Since modeling the cross effects between MLB and MRO usually demands expert
knowledge which limits the self-organizing properties of the network and makes the
network management expensive, we propose and implement a centralized method to
jointly optimize SFs (achieving implicit coordination as a by-product of this optimiza-
tion), taking advantage of the FCAPS information available in the OSS. Even though
this method was tailored in this chapter for MLB and MRO interaction, it has also
been applied to other conflicts, namely: MLB and CCO coordination in Chapter 4
and MLB and ICIC coordination in Chapter 5. The proposed method is exclusively
boosted by ML models, and different groupings of the ML models were designed and
implemented.

In this chapter, we show that it is possible to carry out the joint optimization task
(yielding implicit coordination among SFs) as long as the SF dynamics can be de-
composed into three separable domains: environmental, controllable, and utility parts.
We also proposed a ML-based stage to interpolate unknown combinations of the last
three domains and show how this helps to speed up the learning process (see Section
3.2.3.1). We were able to translate the convoluted, high-dimensional, and complex
coordination problem into a human-readable low-dimensional representation in which

2Solutions that can not improve the performance of one SF without degrading the other one.
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the optimization task is formulated as a lookup step (see Sections 3.2.3.2 and 3.2.3.3).
A comparison with the state-of-art benchmark was carried out. It was observed an

improvement in the performance in a global KPI in steady-state. However, some limits
were hit regarding the available data for the optimization as well as scalability issues
which will be addressed in Chapters 4 and 5.

3.2 ML-based Joint Optimization
This section elaborates on our idea to jointly optimize SFs using ML. We claim that
through this data-driven optimization, we achieve implicit coordination of the studied
SFs.

The relevant notation considered throughout this chapter is provided in Table 3.1.

3.2.1 Network Management Model

Let SFi
n be the n-th SF of the i-th cell. Let Ki

n be the controllable vector specific
to SFi

n, let K be the network-wide configuration vector, let Ei
n be the environmental

vector impacting the n-th SF for i-th cell, and let E be the network-wide environmental
variable vector. Every SF could be modeled as a learning agent locally interacting
within one cell, so the whole network can be seen as a multi-agent system, where each
learner’s decision has an impact on other learners in the same cell (what we call: intra-
cell dependencies) and probably on the neighborhood (i.e., inter-cell dependencies) as
shown in Fig. 3.1.

Let Edim be the total number of environmental variables in the network, which means
E ∈ REdim . Additionally, let Kdim be the total number of controllable variables in the
network3, which means K ∈ RKdim . Finally, let U ∈ R be a global utility aggregating
the coordination effect into the whole network performance defined as in Eq. (3.1):

U ≔ h(K1
1, K1

2, ..., E1
1, E1

2, ..., K2
1, K2

2, ..., E2
1, E2

2, ...) (3.1)

h(⋅) in Eq. (3.1) is called the network management model and represents the linkage
function between U (dependent variable) and controllable and environmental variables
the cell is exposed to (independent variables). h(⋅) is assumed unknown at the begin-
ning of the optimization process.

3Both Edim and Kdim depend on the number of cells, the number of SFs per cell, and the number
of parameters per SF.
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Table 3.1: List of variables
Description Symbol
n-th SF of the i-th cell SFi

n

Configuration vector specific to SFi
n Ki

n

Network-wide configuration vector K ∈ RKdim

Environmental vector impacting SFi
n Ei

n

Network-wide environmental variable vector E ∈ REdim

Total number of environmental variables in the network Edim ∈ Z+

Total number of controllable variables in the network Kdim ∈ Z+

Global utility function U ∈ R
Network management model h(⋅)
Change in environmental variables ∆E ∈ REdim

The best possible configuration vector K
∗
∈ RKdim

Predicted utility value U ∈ R
Unknown environmental variable E ∈ REdim

Unknown controllable variable K ∈ RKdim

Set of clusters (regardless the unit being clustered) {Ck}
The best possible configuration vector for cluster Ck K

∗
Ck

∈ RKdim

Dataset X ∈ Rm×n mapped into a lower dimensional space X′
∈ Rm×n′

Number of users under the service of the i-th cell N
i
∈ Z+

Mean user velocity in the i-th cell V i
∈ R+

HandOver Aggregated Performance (HOAP) HOAP
Ping-Pong HO rate for i-th cell PPi

RLF rate in i-th cell (too-early HO) RLFEi

RLF rate in i-th cell (too-late HO) RLFLi

Unsatisfied users rate for i-th cell N
i
uu ∈ [0, 1]

User distribution for i-th cell uDi ∈ [0, 1]
Set of cells B = {1, ..., B}
Set of neighbor cells for i-th cell N (i)
Reward function for Q-Learning rt ∈ R
Change in the i-th cell utilization ∆ρi ∈ [0, 1]
i-th cell’s transmit power i-th cell pi ∈ R+

i-th cell utilization ρi ∈ [0, 1]
m-th UE’s requested data rate γm ∈ R++

A3-HO Hysteresis H
A3-HO Time to trigger TTT
Cell Individual Offset between cells i and j CIOi,j
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Figure 3.1: Inter- and intra-cell interactions among SFs

Since we have defined a global utility, we let every agent in Figure 3.1 collect data
from the environment and send it to the OSS. In a C-SON architecture, we allow
intra/inter-cell observability, and we claim that this will let us gain simplicity in the
final optimization process. Because global decisions are made, concurrent modifications
of parameters take place, and these are explicitly signaled to all the agents4. In this
manner, the locally-gathered knowledge is exploited to understand (in a centralized
way) the dynamics between all agents. Nevertheless, a drawback is expected: the
optimization space becomes much larger and more sparsely populated, at least at
the beginning of the process, which could yield unsatisfactory solutions (the so-called
cold-start problem). To cope with this limitation, we propose a ML-based phase for
speeding the "learning" up (to some extent), as shown in Section 3.2.3.

3.2.2 Visualization of the Optimization Problem

Regarding the functional decomposition of the optimization problem given in the pre-
vious section (namely, the separation between controllable, environmental, and utility
planes), the optimization task could be considered as depicted in Fig. 3.2.

Let us assume that the current environmental conditions in the network lie within

4Every agent is in charge of the local configuration enforcement.
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Environmental
Domain

Controllable
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Figure 3.2: Graphical representation of the optimization problem.

the region 1⃝ in Fig. 3.2 and the current configuration set is within 2⃝ yielding a global
U 3⃝. As the environmental conditions are (to some extent) beyond the operator’s con-
trol, at some point, a change in the non-controllable conditions could take place (∆E),
shifting the working point to region 4⃝. If the operator keeps the previous configura-
tion 5⃝, the general performance might degrade to 6⃝. Therefore, the network operator
should find the new best (K∗) configuration set (represented by 7⃝) to improve the
KPI the most ( 8⃝) given the current environmental conditions in 4⃝.

It is essential to point out that we propose to find regions or clusters in every plane
(instead of specific values), as it is visible in Fig. 3.2, because we assert it is possible
to reuse configuration sets for different environmental conditions. Additionally, we
consider that different combinations of environmental and controllable variables could
result in the same utility values. In Section 3.2.3, we propose an architecture based
on the chaining of multiple ML stages to implement the aforementioned optimization
approach.

3.2.3 Solution Architecture

The proposed SF’s joint optimization architecture is depicted in Fig. 3.3. Each in-
volved stage is described in the following subsections.

3.2.3.1 Step a) Model Completion

We claim that it is feasible to derive the network management model, h(⋅) using the
appropriate regression techniques (and assuming sufficient historical information is
available). Once h(⋅) is estimated with some confidence, it is possible to interpolate
unknown combinations to some extent, to reduce the sparsity of the optimization space.
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Figure 3.3: Global view of the proposed scheme.

Therefore, we can create an extended knowledge database with the links between
dependent and independent variables. That is step a) in our proposed solution, as
depicted in Fig. 3.3, in which we try to interpolate U for never-seen-before combinations
of {E, K}.

An important factor to consider in step a) is that the variance of a regression model5

is inversely proportional to the difference between the number of independent variables,
i.e., Edim+Kdim, and the number of observations/samples represented by m [76]. That
means that when Edim + Kdim is close to m, the variance of the model is pretty high.
According to Eq. (3.1), the number of independent variables is expected to be high, so
reducing the variance in our regression models is a major challenge to face. We propose
to use regularization techniques in some of the models to tackle variance issues. That
choice partially guides us through the selection of benchmark models in Section 3.3.1.3.

3.2.3.2 Step b) Dimensionality Reduction

Once we have a realization of the extended network management model (h(⋅)) in a
database, a naive optimization approach could be seen as a "lookup" process within it.
However, the dimensionality of the structure is pretty high, and the operational cost
to do such a scan process is prohibitively high. So we propose to apply dimensional-

5In regression techniques, the model’s error can be expressed as the sum of three errors: the bias, the
variance, and the irreducible error [76]. The bias is the difference between the real value and the
expected estimation, so it measures the accuracy of the estimates. On the other hand, variance
measures the spread or uncertainty in these estimates. Finally, the irreducible error is due to the
noisiness of the data itself.
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ity reduction without losing the linkage function between dependent and independent
variables as depicted in step b) in Fig. 3.3 (using what we could call a semi-supervised
dimensionality reduction). With this step, we translate the high-dimensional optimiza-
tion problem to a low-dimensional representation that is human-readable. This gives
us insights into the direction we should move in the low-dimensional space in order to
find the best configuration. The remaining question is a suitable step size, which is
calculated as explained in Section 3.2.3.3.

3.2.3.3 Step c) (Rules derivation by) Clustering of Similar Environmental States

As it turns out, the "movement" toward the best configuration in the low-dimensional
space is constrained by the environmental conditions, in other words, there are several
best configurations for different environmental conditions. Therefore, in step c) we
cluster the low-dimensional space in an unsupervised manner based exclusively on the
environmental conditions (E), i.e. we discover a set of clusters {Ck}.

In this research steps b) and c) in Fig. 3.3 are carried out using grouping methods
a.k.a. ensemble methods, in which a ML model is built on top of another one to achieve
better performance. Two grouping methods are proposed: the first one is the assembly
made up of SOM and hierarchical agglomerative clustering as detailed in Appendix A,
whereas the second one corresponds to the combination of UMAP and HDBSCAN as
described in Appendix B. We elaborate a bit more on these two groupings in Sections
3.2.4 and 3.2.5 (especially the application in mobile networks), because we consider
steps b) and c) are the cornerstones in the proposed framework. The details about the
models are kept in the Appendix though.

3.2.3.4 Step d) Optimization (Lookup)

In step d) in Fig. 3.3, the framework finds out the current state of the network (E, K),
which is associated with a specific cluster out of the set of clusters ({Ck}) from step c),
then it selects the best configuration (K∗) within that current cluster. The selected
configuration is chosen based on the Hamming distance between the current config-
uration vector (K) and the candidates of configuration sets. That means we choose
the configuration vector with the lowest number of changes with respect to the current
configuration.

As mentioned before, for steps b) and c) in Fig. 3.3, we use two groupings, which
are in charge of redefining the optimization problem in a lower-dimensional space.
One of them is based on neural network theory whereas the other one is graph-based.
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Even though the studied groupings have different characteristics, they have some com-
monalities: on the one hand-side, they work efficiently for high-dimensional data sets;
second, they support "metric learning" (that means adding new points to an existing
embedding), and finally both support supervised and semi-supervised dimensional-
ity reduction i.e., labeled data6 can be used as extra information for dimensionality
reduction, as it is explained in detail in Appendix A.

3.2.4 First Grouping: Low-Dimensional SOM Representation and
Hierarchical Agglomerative Clustering

As shown in Appendix A, a SOM could have more than one layer of feature represen-
tation. We propose to use three layers (one for every domain: controllable, environ-
mental, and utility planes) which are trained progressively, as shown in the Algorithm
7. This arrangement is called Super-Organizing Map [77], and it is shown in Fig. 3.4
along with the way the data corresponding to Eq. (3.1) is presented to the model
for training and testing purposes: please notice that the SOM is trained to optimize
a score metric (e.g. Root-Mean-Square Error (RMSE), see Section 3.3.2) considering
the true utility value for the test set (UTest) compared with the estimated value based
on the controllable and environmental parts (UTest). That corresponds to the dotted
lines in Fig. 3.4. In that sense, the SOM acts as a traditional FFNN for prediction.

Additionally, as a product of the arrangement of the input data using the three
domains jointly, it is possible to locate the best utility in a specific corner7 of the
utility layer of the SOM, as illustrated on the right-hand side of Fig. 3.4. Therefore,
we claim we gain a sense of directionality in the low-dimensional space to optimize the
utility.

As it will be shown in Section 3.3.2, once the model is trained, it is possible to
get insights about the direction one should move within the grid to optimize U : it
is enough to look at the utility layer in the SOM to obtain the best direction. That
means we have gained human readability about a complex optimization problem.

After having the dynamics mapped into a lower-dimensional representation (i.e., a
trained SOM), we learn high-level/high-value behavioral rules that can be applied in
complete sets of network conditions. This way, we ensure the scalability and portability
of our "learning" as well as simplicity in the optimization process. To create portable

6Labeled data represents samples with information about the KPI.
7Depending on the random seed used for training the model, the location of the best corner will

change.
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Figure 3.4: Training of a Super-Organizing Map.

models, we allow the reuse of the same controllable parameters for multiple environ-
mental conditions. So, by creating clusters in the environmental space in Fig. 3.4 and
projecting them to the other two grids, we find excursion zones where an optimization
task is almost as simple as a lookup process. This process is observed in Fig. 3.5.

Controllable Part Environmental Part Utility Part

Directions 
of utility 
improvement

Figure 3.5: Cluster propagation and optimization process in the low-dimensional space.

In the right-hand part of Fig. 3.5, the sense of directionality to optimize the utility
is shown. In the central grid of Fig. 3.5, a set of clusters ({Ck}) is obtained (based on
environmental conditions), and those clusters are propagated to the other two grids.
The clusters are obtained according to the procedure in Appendix A and are calculated
only considering the environmental conditions. The philosophy behind that decision
is that we can only move as far as the environment (which is not controlled by the
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operator) allows it. Once the clusters have been projected to the controllable layer of
the SOM (left-hand side of Fig. 3.5), it is possible to find the set of configurations
within the clusters which optimize the utility (K∗

Ck
). The best configuration is feedback

to the network afterward. It is worth mentioning that this approach is fully compliant
with the architecture proposed in Fig. 3.2.

As described in Appendix A, the main hyperparameters for SOM correspond to xdim

(neurons on the horizontal axis) and ydim (neurons on the vertical axis). To find the
best values for these parameters, a grid search is carried out, as shown in Section 3.3.2.

3.2.5 Second Grouping: UMAP and HDBSCAN

For this grouping, the proposed workflow is made up of seven steps as shown in Fig.
3.6 and it is also fully aligned to Fig. 3.2 and the philosophy behind the general frame-
work in Fig. 3.3. In 1⃝ we observe information regarding E, K, and U from the
network. In 2⃝, using UMAP, the observation is embedded into a lower-dimensional
space X′

≔ {x
′
i} ∈ Rm×n′

(that is induced by a graph H as seen in Appendix B). In
step 3⃝, the HDBSCAN model determines the cluster for each observation. HDBSCAN
can automatically determine the clustering {Ck} using the hyperparameter mpts (as
explained in Appendix B). After having a cluster associated with each observation in
the low-dimensional space, in 4⃝, 5⃝ and 6⃝ it is possible to retrieve the best configura-
tion vector within the cluster. To do so, in 6⃝ we lookup for the closest environmental
condition in terms of euclidean distance, and in 7⃝ then the best configuration vector
(K∗) for the current environmental conditions is enforced into the network.

It is important to point out that the ML model hyperparameters (which are cor-
respondingly described in Appendix B) significantly affect the performance of this
approach. Therefore a grid search procedure is carried out to find the best values for
the parameters of each model, as shown in Section 3.3.2.

So far, we have kept the proposed solution in Fig. 3.3 as general as possible because
we claim it could be applicable to any network management problem where the involved
variables can be mapped into the three categories we have seen: controllable variables
(or tunable parameters), environmental quantities (not under the operator’s control),
and performance metrics (in line with the operator’s policies).

To show the feasibility of our framework, we have applied it to two SFs: MLB
and MRO (see Section 2.3.1), which interact with each other through the handover
procedure parameters (see Section 2.1.5). The specifics about the joint optimization
of these SFs are given in the following section.
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Figure 3.6: Data flow for the UMAP and HDBSCAN grouping.

3.3 Use Case: MLB and MRO
Let us consider a mobile network with B installed cells, represented by the set B =

{1, ..., B}. The average cell utilization at cell i ∈ B is ρi, 0 ≤ ρi ≤ 1, which represents
the average fraction of used resources (both in time and frequency), i.e., the average
fraction of physical resource blocks (PRBs) utilized. Let N

i be the number of users
under the service of the i-th cell. Additionally, let V i be the mean user velocity in the
i-th cell.

We consider that, for MRO, the main environmental variable is the mean user ve-
locity (V i), the controllable variables are TTT and H, and the main metric is the
HandOver Aggregated Performance (HOAP), defined as in (3.2):

HOAP ≔
(w1 ∑i∈B PPi + w2 ∑i∈B RLFEi + w3 ∑i∈B RLFLi)

∑i∈B N i
(3.2)

where PPi is the PP rate for i-th cell. A PP HO is registered when a successful HO
from a cell j to another cell i occurs in a time less than the "PP time" after another
successful HO had already occurred from i to j. The PP rate measures the rate of HO
oscillations per user per second. RLFEi and RLFLi components in (3.2) are related
to the RLF rate in i-th cell. A RLF occurs if the UE’s SINR stays below a threshold
for a duration equivalent to the critical time (T310) [29]. The RLFs are differentiated
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between those due to HOs being triggered too early (second term in Eq. (3.2)) and
those due to HOs being triggered too late (latter term in Eq. (3.2)). We consider that
w1 + w2 + w3 = 1.

For MLB, the environmental variables considered are: the border’s user distribution
uDi, defined as the relationship between the number of users in the i-th cell’s border
over the total number of users in i-th cell (N i) and ρi. The controllable variables
are the CIO values and the main KPI for MLB is the rate of unsatisfied users N

i
uu

which is the relation of the number of unsatisfaction events in cell/second and the
number of users in the cell (N i) as in Eq. (3.3). One unsatisfaction event occurs when
the user’s total achieved data rate in the continuous 1-second period is less than the
Guaranteed Bit Rate (GBR). Intuitively N

i
uu can be seen as the probability of having

one unsatisfied user in one cell.

Nuu ≔
∑i∈B N

i
uu

∑i∈B N i
(3.3)

To explicitly coordinate MLB and MRO, we defined a combined metric as the weighted
average of HOAP and Nuu:

U ≔ w4HOAP + w5Nuu (3.4)

The KPI in Eq. (3.4) is meant to be minimized. Table 3.2 summarizes the main
variables involved in the optimization space.

Table 3.2: Main variables for MLB and MRO coordination

SF Environmental Var. Controllable Var. KPI
MLB uDi, ρi CIOi,j Nuu

MRO V i TTTi, Hi HOAP

All the quantities in the second and third columns in Table 3.2 are the regressors
in our model trying to explain the combined metric in Eq. (3.4).

From Section 2.1.5 and Table 3.2, it is possible to see that CIO values are defined
adjacency-wise rather than cell-wise. Because a cell could have many neighbor cells, it
is reasonable to think that CIO values become the worst offender in terms of dimen-
sionality. This situation is a challenge for a fully ML-based optimization approach;
thus, in Chapters 4 and 5 we propose an idea to face this issue. Please notice that the
KPIs in Table 3.2 are defined network-wide; therefore, it is expected a collaborative
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behavior of the cell agents. Finally, it is worth mentioning that the metric in Eq. (3.4)
corresponds to the same global KPI defined in Eq. (3.1).

3.3.1 Comparative Evaluation of Algorithms for joint MLB-MRO
Optimization

3.3.1.1 Baseline Algorithms

To compare the performance of our framework with state-of-art approaches, we use as a
benchmark some of the proposed schemes in [50] where MLB and MRO are modeled as
decentralized agents running a model-free Reinforcement Learning algorithm, namely
Q-Learning (QL) as explained in Appendix C.

In [50], each SF acts as a control agent that observes the network to evaluate its
activation triggers (both environmental and controllable variables), takes an action
(exploration process), and gets feedback on the effect of that action at the end of a
monitoring period. An action corresponds to the adjustment of any of the control-
lable variables in Table 3.2. Based on the effect of this action, the Q-learner receives
an immediate reward, and the environment undergoes a transition into a new state,
see Appendix C. The objective of the learner is to choose actions that maximize the
discounted cumulative rewards over time. A greedy implementation of MLB is called
QLB, whereas QMRO is a QL version of MRO [50].

• In [50], for QMRO, the reward function in Algorithm 11 is defined as the negative
of Eq. (3.2), namely rt ≔ −

(w1 ∑i∈B PPi+w2 ∑i∈B RLFEi+w3 ∑i∈B RLFLi)
∑i∈B N i , whereas S (see

Appendix C) is the set of discrete velocities, and A (see Appendix C) corresponds
to the cartesian product of H and TTT. This is fully compliant with Table 3.2.

• In [50], for QLB, the reward is defined considering the impact on the utilization
of the overloaded cell, i.e., ∆ρi, and the extra load transferred to the neighbor
cells i.e., ∆ρn∀n ∈ N (i), with N (i) representing the set of neighbor cells for
i-th cell. S is defined as the cartesian product of discrete load values for both ρi,
ρn∀n ∈ N (i) and the user distribution uDi. Regarding A, the change in CIO
values is considered. This is again compliant with the quantities in Table 3.2.

• QLH refers to a scheme where both MLB and MRO are working simultaneously
without any coordination. It is expected to be the worst-case scenario in terms
of network performance due to the underlying conflicts.
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To decouple the execution of the agents previously defined in time and space, two
separation approaches proposed in [50] are also considered as a benchmark, namely:

• Temporal Separation during Learning (TSL). This scheme is intended to reduce
intra-cell conflicts in Fig. 3.1. During the agent learning period, there is a time
separation between the SFs. Thereafter all the SFs are simultaneously executed.

• Concurrent learning with Spatial Separation (CSS). To reduce inter-cell conflicts
in Fig. 3.1, two conflicting SFs should not take actions in two neighbor cells
concurrently. Thus, with CSS, actions are only taken concurrently in two cells,
if there is at least 1 other cell in between the two. The result is a reuse-3
concurrency structure among the cells.

3.3.1.2 Simulation Environment and Parameters

Simulation studies were carried out using a C++ event-based LTE downlink system-
level simulator based on software libraries provided by Nokia Bell Labs and the Univer-
sity of Stuttgart’s Institute of Communication Networks and Computer Engineering
[78]. The network scenario (which is the same throughout this document) consists of
7 eNBs, each with 3 cells, where each cell has a system bandwidth BW= 10 [MHz].
The simulator implements a wraparound of the network for reliable interference and
SINR calculations, see Fig. 3.7.
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Figure 3.7: Network layout.
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Mobile users are randomly placed in the coverage area and move around following
a random walk mobility model. We have introduced an asymmetric load distribution
via 30 static users in Cell 10. The simulation runs multiple batches, each lasting
a specified batch period and within which multiple snapshots are taken. A single
snapshot represents the aggregated effects of all the events that would have happened
in the network since the last snapshot was taken. At the beginning of each batch,
all users are re-introduced into the network following the random deployment model.
Further details of the simulation parameters are given in Table 3.3.

Table 3.3: Simulation parameters
Type Parameter Value

System
specifics

Inter-site distance 500 [m]
Pathloss See Eq. (2.3)
Shadowing See Eq. (2.3), Ω = 6[dB]
eNB Tx power (pi) 46dBm
eNB Tx antennas gain 15 [dBi], height = 32 [m]

Simulation
specifics

Batch duration 180 [s]
Snapshots Every 10 [ms]

User
specifics

Number of UEs 240 mobile, 30 static (cell 10)
V i 10-120 [Km/h]
Mobility model Random Walk
UE positioning uniform distribution
UE antennas gain 2 [dBi], height = 1.5 [m]
UE data rate (γm) 256-1024 [kbps]

Algorithm
specifics

PP Time 5 [s]
T310 0.2 [s]
TTT 0-5120 [ms], 16 steps defined in [29]
H 0-15 [dB], steps: 0.5 [dB]
Weights in (3.2) w1 = 0.3 w2 = 0.2 w3 = 0.5
Weights in (3.4) w4 = 0.5 w5 = 0.5

3.3.1.3 Optimization of Hyperparameters

To learn the network management model h(⋅) in Eq. (3.1) and overcome the "cold-
start" issue (to some extent), a supervised learning approach is proposed as in step
a) in Fig. 3.3. The idea is to estimate the expected KPI based on the 150 regressors:
21 values per cell for the variables Hi, TTTi, V i, uDi, ρi and 45 values for CIO (one
value per adjacency)8. Several well-established supervised ML models are compared

8That is the number in a rather regular hexagonal grid as the one shown in Fig. 3.7. However, in a
real deployment, that number could be higher.
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including regression trees (rTree), random forest regressors (rForest), support vector
regressor (sVR), deep learning models (dLearning), and models with regularization9,
namely: ridge regression (ridge), lasso regression (lasso), elastic nets (eNet) and partial
least squares regression (pLS).

For every model, a grid search was carried out to determine the best value of the
associated hyperparameters. A detailed explanation of every model and its hyperpa-
rameters is out of the scope of this document. However, if further details are needed,
[76] could be a starting point. The performance of the models is shown in Table 3.4.

Table 3.4: Supervised model’s performance
Model RMSE R

2

rTree 0.078 0.625
rForest 0.056 0.812

sVR 0.047 0.863
dLearning 0.010 0.970

ridge 0.050 0.844
lasso 0.051 0.838
eNet 0.050 0.845
pLS 0.049 0.850

The best model is a dLearning structure which exhibits the smallest RMSE and
highest correlation factor (R2), followed by the pLS model. The final neural network
architecture (found through a grid search procedure) consists of 4 hidden layers with
150/130/50/21 units respectively, using Rectified Linear Unit (ReLU) activation func-
tion and an output layer with one unit and linear activation function. In Fig. 3.8,
we plot the predicted (U) and actual values of the utility function (U) defined in Eq.
(3.4) given by the dLearning model in the test set10. We can see that the points are
located around the perfect correlation curve (black dashed line), where the real value
is exactly as the predicted one, with low dispersion.

It is worth mentioning at this point that during the running time, only the knowledge
database in Fig. 3.3 is extended by 10% with respect to the size of the training set using
the deep learning model. Of course, continuous retraining of the model is needed as

9As it was mentioned in Section 3.2.3.
10We have used the traditional cross-validation approach where the training set is used to create

a base model, the validation set is used for fine-tuning, and the test set to face the model to
never-seen-before data and assess its performance.
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more real information is gathered or when the network layout changes. That is done
through an external loop that is in charge of validating the integrity of the data,
the predictions, and the obsolescence of the trained model. Further considerations
regarding this retraining loop are given in Chapter 4.

Figure 3.8: Predicted against real values for deep learning regression method.

As we mentioned before, steps b) and c) in Fig. 3.3 are performed using grouping
methods. The first one is the combination of UMAP and HDBSCAN (U+H). A grid
search process was conducted to find the best values for the main hyperparameters of
the grouping. The results are available in Table 3.5. Although it is not possible to plot
the low dimensional space (as the best number of dimensions in the reduced space is
5), the optimization process follows the workflow in Fig. 3.6.

Table 3.5: UMAP and HDBSCAN grouping’s hyperparameters
Type Parameter Value

UMAP
k (see Appendix B) 10
n
′ (see Appendix B) 5

HDBSCAN
minimum cluster size (see Appendix B) 5
mpts (see Appendix B) 1

The second grouping is the combination of SOM and hierarchical clustering
(SOM+HC). A grid search procedure took place to find the best hyperparameters
which are shown in Table 3.6.

Because SOM reduces the dimensionality to 2D, we can obtain the standard side-by-
side representation of the three spaces (see Fig. 3.4) to get an idea of what the trained
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Table 3.6: SOM and hierarchical clustering hyperparameters
Type Parameter Value

SOM
xdim (see Appendix A) 15
ydim (see Appendix A) 15

grids look like, as shown in Fig. 3.9.

(a) Environmental Space (b) Controllable Space

(c) KPI Space

Figure 3.9: Super-Organizing Map for MLB and MRO dynamics

Every neuron in the map contains a unique "spectrum" revealing the expected vari-
able profile for all the samples collected within that unit. These profiles become the
neuron’s signature (see Appendix A) and every node can collect new data samples into
it as long as the new incoming point has a similar variable’s profile.

Looking at the KPI grid in Fig. 3.9(c) we realize that the worst value for the global
metric in Eq. (3.4) lies in the top left-hand corner (the bigger the red circle is, the
higher the KPI and the lower the network performance). The best value is diagonally
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opposite.
By adding a hierarchical clustering stage on top of SOM (as indicated in Appendix

A) based only on the environmental variables, namely ρi, uDi, and V i, it is possible to
find excursion zones where an optimization task is viable to change the configuration
parameters (i.e., Hi, TTTi and CIOi,j) to get close to the bottom and rightmost corner
(where the best KPI value lies). It was found using the Elbow method that the number
of clusters is 8 (∣Ck∣ = 8).

In Fig. 3.10, 8 clusters are depicted on top of the KPI grid. Within every excursion
zone, all the nodes have quite similar values in the environmental variables but different
values in the controllable quantities, so starting from an initial operating point, it is
possible a parameter’s fine-tuning process trying to move the operating point toward
the bottom rightmost corner inside every excursion zone as it was explained in Fig. 3.5,
where one initial operating point is shown and by changing the parameter accordingly
(∆K), it is possible to reach the best possible value of the indicator. Inter-zone
changes are only possible if the environmental conditions change (which is not under
the network operator’s control).

Figure 3.10: Intra-cluster optimization.

3.3.2 Comparative Analysis

Performance comparison among our proposed framework (with the above grouping
models) and the aforementioned benchmark schemes was conducted at a low-speed
scenario where V i is randomly distributed around 30 [km/h]. In Fig. 3.11, it is shown
the evolution over time for the HOAP (after an exponential smoothing process) for



3 Implicit Coordination Applied to Joint MLB and MRO Optimization 73

the considered models. It is evident that after a long exploration phase, QMRO learns
the best policy, whereas QLH or QLB can not reach the same optimality degree. On
the other side, SOM+HC outperforms the benchmark from the very beginning of the
simulation. The worst performance is achieved with the QLH and QLB algorithms.

Simulation Time [minutes]

H
O

A
P

CSS
QLB

QLH
QMRO

SON+HC U+H
TSL

Model:

Figure 3.11: HOAP evolution after removal of high-frequency components.

The rate of unsatisfied users (Nuu) is shown in Fig. 3.12. For this low-speed scenario,
QLB quickly reaches optimality (it highly depends on the users’ speeds). The mean
performance of SOM+HC is relatively stable across the simulation, although, it is not
as good as the one obtained with QLB. The worst performance is achieved with the
QLH and QMRO algorithms. The best performance is obtained with QLB and U+H.

The evolution of the global KPI defined in (3.1) is depicted in Fig. 3.13. It is evident
that the two proposed grouping schemes outperform the baseline, being the SOM+HC-
based approach the best one. Due to this fact, we stick to the SOM+HC grouping for
future performance comparisons in the rest of this document.

Due to the different nature of the Reinforcement Learning (RL)-based models and
semi-supervised approaches, like SOM+HC or U+H, a comparison in steady-state
should be made for the sake of fairness. This comparison is depicted in Fig. 3.14.
The figure shows that the worst performance is achieved when no coordination is
present (QLH) and the best ones using U+H and SOM+HC. U+H provides good
results in terms of unsatisfied users, whereas SOM+HC produces the best results in
terms of HOAP. Therefore, we could further state that U+H is suitable for scenarios
where mobility is expected to be low (e.g., mMTC), and SOM+HC could be used for
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Simulation Time [minutes]
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Figure 3.12: Smoothed rate of unsatisfied users profile.
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Figure 3.13: Global KPI comparison.
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scenarios where mobility can not be neglected, providing the best compromise between
both MLB and MRO.

HOAP

CSS
QLB

QLH
QMRO

SON+HC U+H
TSL

Model:

Figure 3.14: Average steady-state performance.

3.4 Summary
In this chapter, we have shown the applicability of ML techniques to get a higher degree
of automation in mobile network management, namely the coordination between SFs.
Although our approach was applied to the conflict between MLB and MRO, we claim
it can be used for several SFs as long as a functional decomposition of the SFs into
environmental, controllable, and metric variables is possible.

Two main challenges were faced: the time needed to learn the network management
model and the dimensionality explosion. To cope with the first problem, a supervised
learning approach based on regression techniques was followed to speed up the "learn-
ing" process and interpolate unseen combinations among dependent and independent
variables. It turned out that deep learning models were the most suitable choices for
this task. These estimators shall be retrained every time a new SF is instantiated, or
a cell is deployed. Therefore a continuous outer loop (or even more depending on the
nature of the ML models) for the ML model’s integrity control should be present (this
is fully compliant with [79]).

To face the high dimensionality of the optimization problem, two grouping meth-
ods were proposed to translate the optimization task to a low-dimensional space, one
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based on the bagging of UMAP and HDBSCAN while the other one relies on the com-
bination of SOM and hierarchical clustering. With both groupings, we show that it is
possible to reduce the dimensionality of the optimization problem without losing the
linkage between the combined dependent and independent variables, which means the
underlying model of the dynamics between SFs was kept.

After defining excursion zones within the low dimensional space, based only on the
environmental conditions, it was possible to reformulate the optimization problem as
a simple lookup process where the current cell’s working point is moved towards the
best "corner" inside every excursion zone based on configuration adjustments.

Even though our C-SON approach has outperformed the selected benchmarks in
this chapter, some limitations were observed with our architecture proposed in Fig.
3.3. Some motivations to adapt the ideas presented in this chapter are as follows:

• Curse of dimensionality. This is a well-known phenomenon in statistical decision
theory, which has multiple manifestations; three of them are presented below to
illustrate how obtaining regression models11 capable of generalizing to new sam-
ples becomes exponentially more difficult when working with high-dimensional
data [80, 81], as there is no notion of "closeness" as the dimensionality increases
(which is somehow counterintuitive):

1. If we randomly pick points12 within the 2D-unit square, the chance of
this point being located less than ϵ = 0.001 from any border (i.e., being
an “extreme” point along any dimension) is (2ϵ)2

= 0.004. For a higher
number of dimensions (d), the probability becomes (2ϵ)d. But in a 10000-
dimensional unit hypercube, the same probability is greater than 0.99999999.
That means, that most points in a high-dimensional hypercube are close to
the borders [76] and the interior is "empty".

2. If now we pick two points from the same 2D-unit square, the mean distance
between them will be around 0.52, in a 3D-unit cube, it will be 0.66, and in
a 10000-dimensional unit hypercube, it will be about 408.25: there is plenty
of space in higher dimensions [76]. So the distance between two randomly
drawn data points increases drastically with their dimensionality.

3. As the number of features or regressors grows (remember that in this chapter
we used 150), the amount of data a model needs to generalize accurately

11Particularly those models that assume that similar regressors yield similar KPIs.
12Following a uniform distribution because (for instance) there is no prior knowledge of whether the

optimization space has a low-intrinsic dimensionality, i.e., lies in a low-dimensional subspace or
low-dimensional manifold.
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grows exponentially. For d dimensions and v zones of interest of the global
KPI, we seem to need O(vd) samples [80].

As a result, high-dimensional problems come with the risk of having very sparse
optimization space: most training instances are likely to be far from each other.
This also means that a new instance will likely be far away from any training
instance, making predictions much less reliable than in lower dimensions as they
will be based on much larger interpolations [76]. In short, the more dimensions
the training set has, the greater the risk of overfitting it.

In theory, one solution to the curse of dimensionality could be to increase the
size of the training set to reach a sufficient density of training instances. Unfor-
tunately, in practice, it is quite expensive to get labeled data in a real scenario.
Another option is to implement a prior stage of dimensionality reduction; how-
ever, for the sake of preserving the functional division among the controllable,
environmental, and utility planes, which is the main idea behind our proposed
framework, we do not consider this option. Another option is to engineer the
features beforehand, e.g., do we need to modify both TTT and H for MRO since
the final objective is to advance or delay a HO, and we can do that with only
one?

As it turned out, the worst offenders in terms of dimensionality are the CIO
values because, according to our definition in Section 2.1.5, they are adjacency-
wise defined parameters rather than cell-wise defined. Therefore, it makes sense
to deal with MLB (and therefore with CIOs) in a different manner. The way
how we face this challenge is elaborated in Chapter 4.

• Regardless of the choices for the grouping method in steps b) and c) in Fig. 3.3,
from a high-level perspective, we are chaining three ML "boxes": a regression-
related task, a dimensionality reduction model, and a clustering stage. Every
model must be retrained as long as more information is being gathered from the
network or as soon as the network layout changes, so additional loops for updat-
ing the ML models must be implemented, which could make the optimization
process complex, and this time is due to an extra-burden which is not related to
the mobile network optimization whatsoever.

• As we are connecting "black boxes" with no reliability metric apart from the
ones given by the individual ML models and the network KPIs, there is a lack
of explainability of how the errors propagate from stage to stage in the data
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pipeline.

• The approach presented in this chapter could be considered a best-effort method
in the sense that we go as far as the collected data allow us. However, there is a
lack of optimality understanding in the sense that there are no insights about how
far a recommended configuration is from a global optimal (provided it exists).

Based on the given insights and learnings above, we elaborate a hybrid approach
that tries to solve some pieces of the coordination problem in a closed form, leaving
the rest of the coordination problem to be solved using a ML stage in one shot, as it
will be seen in Chapters 4 and 5 for different combinations of SFs.
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4 Coordination between CCO and
MLB: A Hybrid Approach

This chapter presents an explicit formulation of the joint optimization problem when
MLB and CCO are instantiated in a mobile network, as well as a hybrid approach to
deal with the underlying optimization task: on the one hand side, an User Association
(UA) stage works in a closed form to balance the load in the network and, on the other
side, a ML stage is included to boost the optimization of the network coverage (hence
the hybrid denomination). Both stages are connected through a global utility, like in
the previous chapter, which guarantees the modeling of the compromise between both
SFs.

The relevant notation considered throughout this chapter is provided in Table 4.1.

4.1 Introduction
As mentioned before, with the advent of 5G, network lifecycle operations such as
initial service deployment, configuration management, network optimization, and self-
healing shall be fully automated processes to reduce CAPEX and OPEX and also to
allow new players such as campus networks owners, to come into the scene as non-
traditional network operators. To this end, SFs were proposed as a first attempt to
provide self-adaptation capabilities to mobile networks on different fronts and to reduce
the error-prone human intervention. Nevertheless, deploying multiple optimization
functions in a network brings demanding challenges in terms of conflicting objectives in
coordination. Automatically coordinating all those functions is paramount for network
operators or even industry owners in campus networks (as they usually do not have
the expertise to carry out network optimization in an agile manner).

Typically, each SF aims at individual goals by modifying coupled network param-
eters, generally in dissonant directions concerning other SFs, jeopardizing the global
stability of the system. A common conflicting scenario between CCO and MLB was
already described in Section 2.3.4.
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Table 4.1: List of variables
Description Symbol
x-th ML retrain loop Lx

retrain

Network-wide configuration vector K ∈ RKdim

Network-wide environmental variable vector E ∈ REdim

α-fairness cost function Φα

Global utility function U ∈ R
Geometric Mean of Available Resources GMAR
The best possible configuration vector K

∗
∈ RKdim

User distribution for i-th cell uDi ∈ [0, 1]
Set of cells B = {1, ..., B}
i-th cell’s transmit power pi ∈ R+

Transmit power vector p ∈ RB
++

i-th cell utilization ρi ∈ (0, 1]
Cell utilization mapping T ∶ RB

+ → RB
++

Cell utilization vector ρ ∈ (0, 1]B

Link budget from i-th cell to m-th UE gi,m(⋅)
SINR from i-th cell to m-th UE SINRi,m(⋅)
Base station’s Bandwidth BW
Noise Power measured over BW σ

2
∈ R+

Shannon capacity between i-th cell to m-th UE ci,m(⋅)
m-th UE’s requested data rate γm ∈ R++

UE’s requested data rate vector γ ∈ RS
++

i-th cell’s user association Pi

Set of user associations P ≔ {P1, ...,Pi, ...,PB}
Optimal user associations P∗

i-th cell’s antenna downtilt ei ∈ De

Antenna downtilt vector e ∈ DB
e

The best possible antenna downtilt vector e
∗
∈ DB

e
Coverage degree C(e) ∈ R+

Signal strength threshold ξm ∈ R+

A3-HO Hysteresis H
A3-HO Time to trigger TTT
Cell Individual Offset between cells i and j CIOi,j

The best possible Cell Individual Offset values CIO∗
∈ RB×B

Optimal cell for m-th UE k
∗

Current cell for m-th UE k
Mismatch between current and optimal cells Di(CIO)
Maximum CIO value CIOmax
CIO step value ∆
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Our drivers to enhance the proposed optimization framework in this chapter are
three-fold, and they are aligned with what was pointed out in Section 3.4:

• first, to minimize the burden of retraining a full chain of ML models like the one
presented in Fig. 3.3,

• second, we want to tackle the high dimensionality imposed by the CIO values
(related to the typical MLB implementations),

• and lastly, we want to acquire insights into the optimality of the proposed ap-
proach for one or both SFs.

To understand the implications of the first issue, we depict in Fig. 4.1 the expected
retraining loops for the ML models in dashed lines. Please notice that Fig. 4.1 is an
enhanced version of Fig. 3.3. The retraining loops are not necessarily synchronous
and are triggered once:

• there is a change in the layout of the network,

• there are new SFs are included in the operation,

• there is more data collected to the network (which will adjust the models), or

• there is a lack of accuracy in the model’s predictions.

Network

a) Model 
Completion
(Regression)

c) Rules 
Derivation

(Clustering)

Knowledge
Base

b) Dimensionality 
Reduction

d) Optimization 
(Lookup)

Figure 4.1: Global view of the proposed scheme with ML retraining loops.

We identify three retraining loops that enable changes in the four steps in Fig. 4.1.
Please notice that a change in step c) immediately triggers an update in the rules
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lookup in step d), therefore we claim that both are controlled by a single re-training
loop, namely: Lc

retrain. Considering this, we propose to use a single ML Stage, and
therefore, a single re-training loop, as shown in Fig. 4.2, although the details for
the training process are supplied later in this chapter. This ML stage is in charge of
predicting the best possible downtilt vector (e∗) as the high-dimensional MLB-related
parameters are optimally calculated in a closed form (as will be explained in Sections
4.3.1 and 4.3.2).

Regarding the second motivation from the list above (i.e., the high dimensionality
imposed by the CIO values), we claim that the dynamics of the network are ruled
by the so-called User Association, UA, (which is governed by several network proce-
dures, depending on the state of the UEs, e.g., initial cell selection, cell re-selection,
and handover), because changing the relationship among users and cells affects the
interference levels, the load distribution, the HO trigger conditions, etc. As the UA
can be controlled using the CIO values in the A3-HO condition in Eq. (2.9), and that
condition is a linear inequality, UA fits as a suitable candidate to be solved in a closed
form. Accordingly, we aim to find an optimal UA (P∗), which shall be aware of the
dynamics between MLB and CCO. From P∗ we intend to obtain the best CIO values,
i.e., CIO∗. This is achieved using the shadowed boxes in Fig. 4.2.

As mentioned before, the best antenna tilt vector (e∗) is predicted using the ML
stage in the outer loop in Fig. 4.2.

Network

Find Optimal 
UA

Enforce Optimal
UA

Knowledge
Base

ML
Stage

Figure 4.2: Global view of the proposed scheme.

The two loops can run asynchronously, and we claim the decoupling is compliant
with the different nature of the SFs, in the sense that, for MLB it is expected to have
a faster timescale of operation than CCO [19].
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From Fig. 4.2, a part of the best possible configuration is obtained using a ML-
based outer loop, whereas the other part of K

∗ is obtained through the inner loop in
a closed-form manner. Therefore, we refer to this framework as a hybrid approach.

A first attempt to harmonize the simultaneous operation of UA and MLB through an
explicit optimization problem definition is presented in [82]. However, the solution was
tailored to IEEE 802.16m technology rather than LTE/5G. Additionally, the authors
assumed that base stations periodically shared their average loads with the UEs, and
UEs used that information to make decisions over time. Nevertheless, this assumption
is hardly met in real 3GPP-compliant network deployments. In [83], an extension of
the ideas in [82], considering cache-enabled network optimization is presented, but the
solution is meant to jointly optimize content placement and UA rather than improve
the network coverage or capacity. The authors in [53] propose a combination between
fixed-point iterations and directed search mechanisms to deal with the coordination
between MLB and CCO. We build on top of [53] by adding a machine learning stage
to tackle the high-dimensional problem we observed in Chapter 3, as well as to take
advantage of the inter-cell dynamics among SF to boost the network performance.

4.1.1 Contributions

In this chapter, we deal with the limitations elaborated in Section 3.4. We propose
improving the architecture in Fig. 4.1 by reducing the number of ML retraining loops.
The new scheme is depicted in Fig. 4.2 and only contains a single training loop
(Lretrain), which will be studied in detail in Section 4.3. The motivation of the inner
loop in Fig. 4.2 is two-fold: on one side, it optimally solves the load balancing problem
in a closed form (provided the constraints in the CIO values, given by the 3GPP, are
met), and on the other hand side, we mitigate the problem’s dimensionality imposed
by the CIO values. Therefore, we claim the hybrid approach is more data-efficient
than the approach proposed in the previous chapter, meaning that, with the same
training set size, the performance is better for the solution in Fig. 4.2. On that note,
a comparison is carried out through simulation studies to prove that point.

Additionally, a flexible fairness measure is introduced, that is fully aligned with the
minimalist model of the Round Robin scheduler we introduced in Section 2.1.4. This
objective function allows a variety of objectives, from maximizing available resources,
minimizing delay, or even equalizing the cell utilization across the network. It only
takes to modify a parameter in the objective function, namely α.

Furthermore, it is proposed a mechanism to enforce a rather theoretical concept as
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the user association (P) into real 3GPP-compliant networks through the A3-HO event
(this corresponds to the second shaded box in the inner loop in Fig. 4.2).

Finally, the outer loop in Fig. 4.2, in charge of predicting the best possible antenna
downtilt, is proposed as a multiouput learning problem, carefully studied through-
out all the taxonomy branches available in the literature. Additionally, a deep neural
network is proposed to tackle the antenna downtilt prediction. Throughout the rest
of this document, we will be interested in landing in the neural network domain for
two reasons: the first one is related to the robustness against the curse of dimensional-
ity, and the second one is regarding state-of-art techniques to deal with the cold-start
problem.

4.2 Formulation of the Centralized Joint Optimization
Problem

In this section, we formulate a joint optimization problem of a network where MLB
and CCO are running concurrently. We start selecting a suitable fairness measure
and draw some connections with the basic scheduler model presented in Section 2.1.4.
Afterward, we explain how the main variables involved in the optimization problem
are estimated, specifically the cell utilization and the coverage degree. Subsequently,
a joint optimization problem is formally proposed.

4.2.1 A Fairness Measure for Centralized Decision-Making and
Conflict Resolution

To select a suitable fairness measure, fully compliant with the scheduler model pre-
sented in Section 2.1.4, the resource allocation theory that involves multiple players
(base stations) and a central decision-maker (C-SON) is visited [84, 85]. To capture
a compromise between fairness to UEs and utilization of resources in the network, we
consider the α-fairness function as the objective function to be minimized, and this
function is defined by [84]:

Φα(ρ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑B

i=1
(1−ρi)1−α

α−1 α ≥ 0, α ≠ 1

∑B

i=1 − log(1 − ρi) α = 1
(4.1)

Out of the available allocation options in the literature (e.g., social welfare, Nash,
Kalai–Smorodinsky, or Max–min schemes), the α-fairness was selected since it is the
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most versatile and flexible (see [84]) in the sense that Eq. (4.1) supports a family of
optimization objectives as α ranges from 0 to ∞, including the following:

• Minimizing Φ0 reduces to the minimization of the sum of cell utilization. When
α = 0, the minimization of Eq. (4.1) is equivalent to the maximization of the
summation of (1 − ρi). As we saw in Section 2.1.4, those terms correspond to
the available resources in the network.

• Minimizing Φ1 allows for maximizing the Geometric Mean of Available Resources
(GMAR), defined as GMAR ≔ 10−Φ1/∣B∣.

• Minimizing Φ2 corresponds to minimizing the overall average delay. To elaborate
on this idea, please consider that Φ2 = ∑B

i=1
1

(1−ρi)
= ∑B

i=1
ρi

(1−ρi)
+ 1. Therefore,

for the sake of minimization of Φ2, it is enough to minimize the first part of the
latter summation, which turns out to be (according to Section 2.1.4) the delay
due to the queueing system of the scheduler, as expressed in Eq. (2.7).

• As α continues increasing, equalization in the cell utilization is observed, as
shown in Fig. 4.3(a) and 4.3(b), in which the cost function in Eq. (4.1) is shown
for two cells for the cases of α = 2 and α = 10 respectively. It is evident that for
higher α values, the cells tend to have the same utilization.

From Eq. (4.1), it is evident that an accurate estimation of the cell utilization is
essential. Therefore, in the following section, we use a well-established method for cell
utilization estimation [86, 87, 53], which is compliant with the system model proposed
in Section 2.1. Additionally, we propose a method to account for the network coverage
(for CCO purposes).

4.2.2 Cell Utilization and Coverage Estimation

Let e represent the antenna downtilt vector (in degrees), where the i-th coordinate
ei is the tilt of cell i, and it takes values from a discrete set De. In this chapter, we
make the propagation loss dependent on the antenna downtilt, which is a reasonable
assumption as changing the orientation of the cell radiation pattern alters the loss for
m-th UE with respect to cell i. Therefore, given the antenna tilt ei, the propagation
loss between cell i and an UE m is denoted by gi,m(ei).

Replacing Eq. (2.2) into Eq. (2.4), we can write the Shannon capacity as Eq. (4.2).

ci,m(ρ, p, e,P) = BW log2 (1 +
pigi,m(ei)

∑B

k≠i pkgk,m(ek)ρk + σ2
) (4.2)
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(a) α = 2

(b) α = 10

Figure 4.3: Utilization equalization in a network with two cells.
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For an arbitrary (but fixed) power allocation p, downtilt vector e, data rate require-
ments vector γ, and user association P , the cell utilization is estimated by solving the
equation system in Eq. (2.5), which is revised in Eq. (4.3):

(∀i ∈ B) ρi = ∑
l∈Pi

γl

ci,l(ρ, p, e,P) , (4.3)

We are interested in estimating the impact of multiple user associations (P) on the
cell utilization (ρ) without actually applying any change in the network. That means
we are interested in solving Eq. (4.3). The equation system in Eq. (4.3) represents a
set of nonlinear equations, which is implicitly defined because the cell utilization ρi is
on both sides of the equation. The conventional way to solve such an equation system
is through the use of Fixed Point Iteration (FPI) algorithms, like the standard one
presented in Eq. (4.4):

ρ
(k+1)

= T (ρ(k)), ρ
(1)

∈ RB
+ (4.4)

where T is a vector-valued mapping given by:

T ∶ RB
+ → RB

++

ρ ↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑l∈P1

γl

c1,l(ρ,p,e,P)
∑l∈P2

γl

c2,l(ρ,p,e,P)
⋮

∑l∈PB

γl

cB,l(ρ,p,e,P)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

A solution to Eq. (4.5) is called a Fixed Point of the mapping T , and it is expressed
as ρ ∈ Fix(T ).

Apart from estimating the cell utilization, we are also interested in estimating the
network coverage. Therefore, to account for the coverage in the network, an UE is
considered covered as long as the received power by the UE is greater than some specific
threshold. For an arbitrary UA (P), we define the coverage degree C(e) ∈ [0, 1] as
the fraction of covered UEs:

C(e) ≔ 1
S
∑
i∈B

∑
m∈Pi

1i,m (4.6)
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where:

(∀i ∈ B)(∀m ∈ S) 1i,m ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 [pigi,m(ei)][dBm]
> ξm

0 otherwise

where ξm is the service requirement threshold at UE m in dBm.

4.2.3 Optimization Problem Formulation

Against this formulation, we choose to maximize the GMAR considering utilization
and coverage constraints. Formally, the optimization problem is proposed as in Eq.
(4.7):

minimize
P,ρ,e

Φ1(ρ)

subject to ρ ∈ Fix(T )
0 ≤ ρ ≤ 1

e ∈ DB
e

C(e) ≥ Cmin

(4.7)

As in every constrained optimization problem, it is not enough to find the mini-
mum point of the objective function (Φ1(ρ)). It is also needed to guarantee that the
minimum lies within the feasible set (jointly specified by the constraints of the opti-
mization problem). Hence, the constraints in Eq. (4.7) have been defined to connect to
the mobile network dynamics; namely: the first constraint ensures that the objective
function is evaluated at the solutions to the system in Eq. (4.5) through FPI, which
corresponds to the definition of utilization in Eq. (4.3); the second constraint also
follows from the definition of utilization (the PRB usage can not exceed 1); the third
constraint limits the antenna’s downtilt values to be within a discrete set, whereas the
last constraint ensures that the network coverage is satisfactory.

4.3 A Hybrid Solution
The problem in Eq. (4.7) is complex owing to the implicit formulation of the cell
utilization, the choice of UE-cell association P , and the effects of the antenna downtilt
on the received power, coverage, and cell utilization. However, exploiting the fact
that for fixed p, e, γ, and P , the optimal utilization vector minimizing Φ1 is given
as the unique solution to ρ ∈ Fix(T ) as it will be seen in Section 4.3.1 (and already
proven in [82], [53]), and by noticing also that having fixed values for e, p, and γ
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yields the fact that the association P determines ρ (as in Eq. (4.3)), it is possible
to define a utility function aligned with the problem in Eq. (4.7) by considering
a compromise between available capacity (GMAR) and coverage. To this end, we
introduce 0 ≤ κ1, κ2 ≤ 1; κ1 + κ2 = 1, and we define the following utility function:

U ≔ κ110−Φ1(ρ)
B + κ2C(e) (4.8)

The first term of the utility function corresponds to the GMAR, whereas the second
term is the coverage degree as defined in Eq. (4.6). We propose to maximize U in Eq.
(4.8) as a surrogated version of the original optimization problem in Eq. (4.7) (subject
to the same three first constraints).

To maximize U (i.e., to find e
∗ and ρ

∗), several approaches could be followed:

1. Naively and exhaustively searching over the antenna downtilt: first fixing e,
measuring C(e), finding ρ

∗ according to Section 4.3.1, computing U and finally
selecting the value of e exhibiting the highest utility value (e∗). Unfortunately,
this approach is intractable due to the high dimensionality of the problem.

2. Alternately, a heuristic search could also be used. Since we have a discrete set for
the downtilt candidates, for maximizing Eq. (4.8), which is a combinatorial op-
timization problem with permutation property [88], Simulated Annealing (SA),
as described in Appendix E, is selected as a benchmark in this research. Unfor-
tunately, such an approach is computationally expensive due to the high number
of parameters which makes it not that scalable: as explained in Appendix E,
to get close to the global optimum, the temperature of the model must not de-
crease that fast, and the number of solution perturbations per temperature (i.e.,
imax, see Appendix E) must be high. Thus, running an instance of SA is time-
consuming. Additionally, the higher the number of parameters to be estimated,
the higher the "exploration" time of the method.

Accordingly, we propose the hybrid approach in Fig. 4.2, which is revised in Fig.
4.4 to include more details about the training of the ML model (see the dashed lines).
In Fig. 4.4, an inner loop is envisaged to maximize the first term in Eq. (4.8) (i.e.,
finding the optimal user association P∗), whereas the outer loop tries to maximize the
latter term (i.e., finding the best antenna downtilt vector). As mentioned before, the
compromise between both terms is captured through the weights κ1, κ2. It is important
to notice that both loops work in coordination (not necessarily in sync), meaning that
the global utility function in Eq. (4.8) is jointly maximized.
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Figure 4.4: Hybrid approach with training pipeline.

As it will be shown in Section 4.3.1, the optimal user association P∗ can be obtained
by using a FPI algorithm, and that association can be enforced using a search method
based on the A3-HO condition, as explained in Section 4.3.2. The chaining of both
methods makes up the inner loop of our hybrid solution.

On the other side, for the outer loop, we propose to use a machine learning stage to
directly predict e

∗ based on the environmental conditions E. To train the ML model,
it is needed to gather enough information about the tuple: (E, e

∗). To accomplish that
we use a "smart exploration" approach, based on SA heuristic, as shown in Fig. 4.4.
The term offline "smart exploration" refers to the feature of SA to accept solutions
that improve the utility as the exploration time passes by. More details about the
implementation of SA are given in Section 4.3.3.2, which is devoted to explaining the
outer loop of our framework.

One of the main advantages of our method, as we will see later on, is that even if
the predicted tilt configurations obtained through the outer loop are not optimal, the
inner loop still provides the optimal CIO values for the given tilt configuration e. In
the following sections, we dive into the details of every box in Fig. 4.4.

4.3.1 Inner Loop: Finding the Optimal Association (P∗)

Maximizing Eq. (4.8) over the set of P , ρ, for fixed vectors e and p, yields:
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maximize
P,ρ

U

subject to ρ ∈ Fix(T )
0 ≤ ρ ≤ 1

(4.9)

According to [82], [83], [53], the solution to Eq. (4.9) gives a unique policy to
associate every UE to a single cell (i.e., P∗). Specifically, UE m should be associated
with the cell k

∗ , with:

k
∗
= argmax

i∈B
(1 − ρi)α

ci,m(ρ, p, e,P) (4.10)

In simpler words, the m-th UE should be connected to the cell which maximizes the
product on the right-hand side of Eq. (4.10).

The association rule in Eq. (4.10) can be interpreted as follows: the best association
between an UE and a cell is ruled not only by the Shannon capacity at the UE location
(which is a purely SINR-based decision), but it also considers the network utilization.
Therefore, the UEs will avoid connecting to highly utilized cells. Hereby lies the load-
balancing principle exposed in this chapter.

As we mentioned before, with α = 0 or α = 1 we pursue the maximization of available
resources (either as the summation or as the geometric mean respectively). However,
only for α ≥ 1, a load balancing effect is really considered from Eq. (4.10). Hence, our
selection of α = 1 in this thesis. Another exciting relation shows up when α = 1 as
the product in Eq. (4.10) becomes the weighted average rate over time for a processor
sharing M/G/1 queue with a Round Robin scheduling policy, as it was established in
Section 2.1.4 (please see Eq. (2.8)). Therefore, when α = 1, the association policy given
by Eq. (4.10) aims at improving the UE throughput (as observed by the scheduler’s
queue [23]).

The association policy in Eq. (4.10) is used along a FPI to find the best user
association (P∗), which is afterward enforced in the network as explained in Section
4.3.2. Our implementation to obtain P∗ is proposed in Algorithm 1.

Please notice that the association rule in Eq. (4.10) is implemented in line 4 of
Algorithm 1. The utilization estimation in Eq. (4.3) takes place in line 5, and the
Fixed Point Iteration (FPI) is implemented in line 7. However, we do not use the
standard form in Eq. (4.4) but rather an interpolated version, as suggested in [82].
Algorithm 1 runs iteratively until the cell utilization estimation converges, as expressed
in line 8, where an estimation error (µ) is calculated. The outputs of the algorithm
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Algorithm 1: FPI for the calculation of the best UA
1: INPUT: µ,ϵ,k = 0,ρ(0)

∈ RB
+ ,β

2: while µ > ϵ do
3: for all cell i ∈ B do

4: calculate new UA: P(k)
i = {m ∈ S ∣ i = argmax

j∈B
(1 − ρ

(k)
j ) cj,m(ρ, p, e,P)};

5: calculate new utilization: Ti(ρ(k)) = min {∑l∈Pi

γl

ci,l(ρ,p,e,P) , 1 − ϵ};
6: end for
7: ρ

(k+1)
= βρ

(k) + (1 − β)T (ρ(k))
8: µ =∥ ρ

(k+1) − ρ
(k) ∥2, k = k + 1;

9: end while
10: OUTPUT:P∗

i = P(k)
i ,ρ∗

= ρ
(k),Φ1 = ∑B

i=1 − log(1 − ρ
(k)
i ), GMAR = 10−Φ1/∣B∣

are, the optimal user association P∗, the cell utilization imposed by the P∗, and the
maximum achievable GMAR.

4.3.2 Inner Loop: Enforcing P∗ into the Network

To modify the ongoing UA in the network according to the optimal association P∗

from Algorithm 1, we consider the handover procedure, as suggested in [53]. As it was
already explained in Section 2.1.5, an A3-HO is carried out whenever the neighbor
cell RSRP becomes stronger than the RSRP of the serving cell by a certain offset. A
simplified version of the entry condition for an A3 handover from cell i to cell j is given
in Eq. (2.9), which is revisited in Eq. (4.11):

[pigi,m(ei)][dBm]
+ H + CIOi,j < [pjgj,m(ej)][dBm]

, (4.11)

where the CIO is a power offset given in [dB]. For the sake of avoiding coverage holes,
we consider CIO ≔ (CIOi,j)B×B with CIOi,j = −CIOj,i and CIOi,i = 0 ∀ i, j ∈ B. As
mentioned in Section 2.1.5, H is the hysteresis value which shows the difference needed
between the measurements of the serving and the neighbor cells to trigger the A3 event
also in [dB].

Likewise, an UE m will remain associated to cell i as long as:

[pigi,m(ei)][dBm]
+ H + CIOi,j ≥ [pjgj,m(ej)][dBm]

therefore, the UA policy ruled by the HO procedure is defined as:
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k = argmax
i

([pigi,m(ei)][dBm]
+ H + CIOi,j − [pjgj,m(ej)][dBm]),∀j ∈ B \ i.

Thus, k denotes the index of the cell that serves UE m according to the current HO
setting, whereas k

∗ in Eq. (4.10) denotes the index of the cell that should serve UE
m according to the optimal association P∗. To measure the difference between both
associations, let us introduce:

1i(x) ≔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 x = i

0 otherwise

and the distance between both association policies per cell as [53]:

Di(CIO) ≔ ∑
m∈S

∣1i(k∗) − 1i(k)∣. (4.12)

In other words, Eq. (4.12) counts the number of users for whom the current cell,
specified by the A3-HO parameters, is different from the optimal one given by Eq.
(4.10). Therefore, as in [53], the CIO values can be adjusted in a way that the mismatch
is minimized:

CIO∗
= argmin

CIO

B

∑
i=1

Di(CIO). (4.13)

In principle, given a set of possible values for CIOi,j, the problem in Eq. (4.13) is a
complex combinatorial problem. Therefore, a direct search is proposed at this stage,
as shown in Algorithm 2: in line 6, the current cell (k) for the m-th user is obtained.
In line 7, the current cell (k) is compared to the optimal one (k∗). If both cells are
equal, there is no adjustment in the CIO value (from the m-th user’s perspective) as
in line 8. If the cells are not the same, a HO of the m-th user from cell k to cell k

∗

should be triggered; therefore, the minimum needed CIO value is calculated as in line
10. The adjustment in the CIO value is driven by the A3-HO condition. CIOi,j

m is the
offset between cells i and j (from the perspective of UE m) needed to be compliant
with the best association. Line 16 in Algorithm 2 is intended to conciliate the final
CIO value when more than one user should be transferred from cell k to cell k

∗, and
in line 17, we guarantee that CIOi,j = −CIOj,i according to the definition.

Please notice that only discrete changes in the CIO values are allowed. Those changes
are determined by the input variables ∆ and CIOmax, which must be compliant with
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the 3GPP specifications. According to the standard, a CIO value can be between -24
and 24 dB. However, for this thesis, only values between -12 and 12 dB with steps of
0.1 dB were considered

Algorithm 2: Enforcement of the UA policy
1: INPUT: P∗,∆,CIOmax
2: RESET CIO
3: for all j ∈ B do
4: k

∗
= j: optimal cell

5: for all m ∈ P∗
j do

6: i = {k ∣ m ∈ Pk}
7: k = i: current cell
8: if k=k

∗ then
9: CIOm

i,j = 0.0: no HO is needed for m-th user
10: else
11: CIOm

i,j = ∆ ∗ floor(([pjgj,m(ej)][dBm] − [pigi,m(ei)][dBm] − H)/∆)
12: end if
13: end for
14: end for
15: for all i ∈ B do
16: for all j ∈ B & i! = j do
17: CIOi,j = min

m∈P∗
j

{CIOi,j
m}

18: CIOj,i = −1.0 ∗ CIOi,j
19: end for
20: end for
21: OUTPUT:CIO∗

= CIO

4.3.3 Outer Loop: a Supervised ML Stage

The outer loop is made of a supervised machine learning model predicting the best
possible antenna downtilt vector e

∗ based on the environmental conditions (E). For
the joint optimization of MLB and CCO, E corresponds to the set of mean UE rate
requirements (γm), which can change over time, as well as the user distribution (uDi),
as defined in Section 3.3. Because we have a multioutput prediction task (one output
per cell’s parameter to be predicted), we land in the so-called multioutput learning
domain.
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4.3.3.1 Multioutput Learning

In a C-SON scheme, while simultaneously optimizing multiple network parameters, it
is possible to formulate a multioutput learning problem in which every output of the
prediction corresponds to a parameter of a cell. In our case, every prediction output
corresponds to the best possible downtilt value for each cell, i.e., e

∗
i . Depending on

the cardinality of each output, the multioutput learning problem can be categorized
as in Table 4.2 [89, 90].

Number of outputs Output cardinality Type of problem
>1 2 (i.e., 0 or 1) Multilabel classification
>1 >2 Multiclass-multioutput classification
>1 Continuous Multioutput regression

Table 4.2: Multioutput learning categories.

Since we deal with multi-cell scenarios, with a network layout like the one depicted
in Fig. 2.10 with B = 21 cells, and to keep the data collection process tractable,
we stick with a low cardinality of the targets without loss of generality, even though
in real deployments, a higher cardinality (or even continuity) of the output variables
is desired. Therefore, we will consider binary outputs, which are extensively used
in mobile networks, such as switching on or off a cell, using high or low antenna
downtilts, or using high or lower transmit power. Therefore, we land in the multilabel
classification world according to Table 4.2.

In the central branch of Fig. 4.5 it is shown a taxonomy of the meta-estimators that
could be used to tackle a multilabel classification problem [89, 90].

We supply some specifics about multioutput classifiers and classifier chains in Ap-
pendix D. In general, the main difference between both families is that the multioutput
classifiers consider that the outputs are statistically independent, and therefore inde-
pendent classifiers are trained (one for every output). In contrast, the classifier chains
drop the inter-output independence assumption, allowing a linkage among individual
classifiers. Even though both families are considered in the simulation studies in this
thesis, it is expected to have a better performance for the classifiers chains as there
are interdependencies among cells in a real mobile network.

Apart from the two families above, deep neural networks are also considered to
solve the multioutput learning problem. That decision is natural because FFNNs
support multiple inputs, multiple outputs, and multiple cardinalities in the outputs
(even continuity).
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Figure 4.5: Multioutput models taxonomy

The general FFNN architecture is depicted in Fig. 4.6. It is evident the multiple
input - multiple output nature of the architecture. To control the cardinality of every
output, several activation functions in the output layer should be considered: e.g.,
when the output is binary, the sigmoid function is the natural selection; when the
cardinality is higher than 2, the softmax function should be selected; if continuity
is expected a linear activation function should be considered for each output in the
output layer.

Regardless of the selected model, its performance depends largely on the amount
and quality of the information used to train it. Therefore, the collection of training
data is an essential step for the outer loop of our solution.

4.3.3.2 Training Set Collection

Naively, the labeled data for training the ML models could be obtained through an
offline exhaustive search procedure given a small number of tilt candidates (∣De∣).
If generating the training set is not feasible using an exhaustive search (e.g., due to
the high number of parameter permutations), training sets can be constructed offline
with time-consuming heuristics such as SA. As shown in Fig. 4.4, the latter is the
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Figure 4.6: Feed forward neural network for multioutput learning problem

approach followed in the document to get labeled data, i.e., (E, e
∗). Nevertheless, as

we mentioned before, the higher the number of parameters to be explored, the higher
the "exploration" time of the heuristic. Since the total number of tilt combinations is
given by the permutation with repetitions ∣De∣B, the number of cells should be small
or the cardinality of every output to keep a reasonable exploration time. As stated
before, we choose the latter option.

Our version of the SA heuristic (detailed in Appendix E) for getting labeled data and
as a time-consuming benchmark for maximizing the utility in Eq. (4.8) is presented
in Algorithm 3.

4.4 Comparative Evaluation of Algorithms for joint
MLB-CCO Optimization

A simulation campaign was conducted with a mobile network comprising 21 cells, as
depicted in Fig. 3.7. The main parameters for the simulation are shown in Table 4.3.
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Algorithm 3: Simulated Annealing for MLB and CCO Optimization
1: INPUT: einit, imax, τmin, τmax

2: INITIALIZE: τ = τmax, e = einit

3: U(e) ← Compute utility in (4.8)
4: while τ > τmin do
5: for all i = 1 to imax do
6: U(e′) ← Compute utility in (4.8) for e

′
∈ DB

e \ e
7: ∆(U) = U(e′) − U(e)
8: flag=1
9: if ∆(U) > 0 then

10: Accept e ← e
′

11: else
12: Calculate probability: Pr(∆(U)) = e

∆(U)
τ

13: if Pr(∆(U)) > rnd(0, 1) then
14: Accept e ← e

′

15: else
16: Reject e ← e

′

17: flag=0
18: end if
19: end if
20: if flag=1 then
21: Update e

∗
= e

22: end if
23: end for
24: τ =

τ

log(i+1)
25: end while
26: OUTPUT:e∗
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Table 4.3: Simulation parameters
Type Parameter Value

System
specifics

Inter-site distance 500 [m]
Pathloss see Eq. (2.3)
Shadowing see Eq. (2.3), Ω = 6[dB]
pi (Eq. (4.2)) 46 [dBm]
De {9°, 12°}
Tx antennas gain 15 [dBi], height = 32 [m]
BW (Eq. (4.2)) 10 [MHz]
σ

2 (Eq. (4.2)) -95 [dBm]
ξm (Eq. (4.6)) -115 [dBm]
Scheduler round robin

User specifics

UEs 240
Mobility model random walk
UE positioning uniform distribution
UE antennas gain 2 [dBi], height = 1.5[m]
γm 300-1024 [kbps]

Algorithm
specifics

H (Eq. (4.11)) 3.0 [dB]
∆ 0.1 [dB]
CIOmax 12.0 [dB]
α (Eq. (4.1)) 1
β (Algorithm (1)) 0.9
κ1,κ2 (Eq. (4.8)) 0.5
τmin, τmax 0.0001 , 100
imax 100

Sim. period After training 30 [s] (except for SA)

To collect the training data, multiple network scenarios with randomly deployed
users were simulated. For every scenario, both the distribution of the users (uDi)
and the requested data rate (γm) change, emulating the change in the traffic profile
throughout the day. For every scenario, a search over the antenna downtilt using SA
was carried out to learn the best possible tilt configuration e

∗. Once a large enough
number of scenarios have been simulated, it is possible to train the ML Stage in the
outer loop in Fig. 4.4.

Once the ML model is trained, the framework in Fig. 4.4 is ready to optimize MLB
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and CCO jointly, providing implicit coordination among them. To check the perfor-
mance of the joint optimization, the simulation batch duration is set to 30 seconds.
At the beginning of every batch, the user distribution (uDi) and the requested data
rate (γm) change, and based on these environmental variables (E), the best possible
downtilt vector is predicted using the outer loop of Fig. 4.4 and applied afterward.
Soon after the change in the downtilt, we allow the registration of UEs to the re-
spective cells and the generation of data traffic (γm). At the 10th second, once we
have a stable estimation of the cell utilization (ρi), the user association optimization is
triggered using Algorithm 1, and the resulting association (P∗) is enforced thereafter
using Algorithm 2.

A subset of γm ∶ {300, 400, 500, 600, 700, 800, 900} [kbps] is used to evaluate the per-
formance of the proposed framework over multiple traffic conditions. Two benchmark
schemes are considered to compare the benefits of the proposed framework, namely:

1. SA-based heuristic. This long-lasting heuristic can be used not only to collect
the training data but also to predict the best possible downtilt vector (e∗).

2. The best fully-implicit optimization mechanism1 in Chapter 3, using the archi-
tecture in Fig. 3.3. We want to investigate whether there is an advantage of
using a hybrid approach compared with the fully-implicit method presented in
the previous chapter in terms of network performance when both methods are
trained with the same amount of information.

A brief discussion about the performance of every method is exposed in the following
subsections. Afterward, we present and discuss the performance of the individual boxes
of the hybrid approach, and we end up with a network performance comparison among
all the schemes.

4.4.1 Simulated Annealing Approach

Apart from collecting data for training, SA can also be used as a long-lasting method
to find the best antenna downtilt (e∗). That is, SA (as in Algorithm 3) could replace
the ML stage in the outer loop. For a specific user distribution2, and for the different
values of γm, the heuristic was in charge of maximizing the utility function U defined
as in Eq. (4.8) through the modification of the antenna downtilt vector. The evolution
of U for different values of γm is depicted in Fig. 4.7.

1This corresponds to the ensemble of SOM and hierarchical clustering.
2That was not explored during the training data collection, i.e., a "test" user distribution.
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Please recall that for every value of n, imax perturbations of the solutions are allowed
(taking place in line 6 of Algorithm 3).
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Figure 4.7: Improvement of the utility function U over the time

We can see that, for every value of γm that was considered, the proposed version of
SA finds a suitable downtilt configuration provided it was given a high enough number
of perturbations (i.e., long simulation time). The impact of the obtained configuration
on the network performance will be supplied in Section 4.4.4.

4.4.2 Fully-Implicit Optimization Approach

Regarding the fully-implicit coordination mechanism, we found in Chapter 3 that
the best approach was the combination of SOM and Hierarchical Clustering (HC).
We select that model as a benchmark considering the following functional domains:
the main KPI (U) as in Eq. (4.8), the controllable part corresponds to the downtilt
vector (e) and CIO values (CIO), whereas the environmental part corresponds to the
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requested data rate γm and user distributions (uDi).
As in Chapter 3, a three-layer SOM is trained, and the hyperparameters ruling the

model behavior are found using a grid search procedure. After finding the best SOM
model, a hierarchical cluster is applied, considering only the environmental variables.
As indicated in Appendix A, the Elbow method using Within cluster Sum of Squares
(WSS) is used to determine the number of clusters. For this specific SF optimization
problem, a cluster size of 8 is selected, as shown in Fig. 4.8 (one should choose a
number of clusters so that adding another cluster does not reduce that much the total
WSS).
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Figure 4.8: Selected number of clusters

Propagating those clusters to the KPI layer in the SOM grid (as explained in Fig.
3.5), we obtain Fig. 4.9.

From Fig. 4.9, we observed that the best value of U is located in the top left corner
(the inner circles with the highest area), whereas the worst utility values are obtained
in the central top area of the map.

On the other side, we observed some "islands" in the clustering. That means the
clusters are not fully connected. An explanation of that phenomenon is given consider-
ing the "quality"3 of the SOM grid, which shows the mean distance of objects mapped
to a unit to the unit signature. The smaller the distances, the better the objects are
represented by the signature [77].

The quality grid of the SOM is depicted in Fig. 4.10. As it turns out, the number of
samples behind the gray units is zero, i.e., we have empty neurons. One way to solve
this issue is to gather more information for training. Another way is to reduce the xdim

3Concept introduced in Appendix A
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Figure 4.9: 3-layer SOM and hierarchical clustering on the KPI layer

and ydim of the map (see Appendix A). However, as mentioned before, a grid search
was carried out to find the appropriate dimensions of the grid with respect to a score
metric (as shown in Fig. 3.4). The results of that grid search are shown in Table 4.4.

Figure 4.10: Quality metric of the 3-layer SOM

For the sake of fairness to the other methods, we keep the same volume of data for
training the SOM, and we keep the dimensions of the grids according to Table 4.4, i.e.,
xdim = 20 and ydim = 20.

4.4.3 Hybrid Approach

To find the optimal user association (P∗) and map it to the suitable CIO values
(CIO∗), it is needed to execute both Algorithm 1 and Algorithm 2. Therefore, it
makes sense to evaluate these algorithms separately.
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Table 4.4: Grid search over xdim and ydim

xdim ydim RMSE R
2 Mean Absolute Error (MAE)

5 5 0.0348 0.8991 0.0279
5 10 0.0315 0.9174 0.0248
5 20 0.0282 0.9339 0.0218
20 5 0.0275 0.9370 0.0214
10 10 0.0268 0.9404 0.0210
10 20 0.0241 0.9515 0.0186
20 10 0.0247 0.9492 0.0191
20 20 0.0212 0.9622 0.0162

4.4.3.1 Inner loop: Algorithm 1

For a specific user distribution and variable γm, the evolution of the cost function Φ1

from Algorithm 1 as well as GMAR are depicted in Fig. 4.11 and Fig. 4.12 respectively.
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Figure 4.11: Evolution of the cost function: Φ1

It is evident that after a few iterations of the proposed method, the cost function
monotonically converges for every value of γm, and so does the GMAR.

4.4.3.2 Inner loop: Algorithm 2

To illustrate the Algorithm 2 dynamics, multiple snapshots of the UA are taken to
show three different states: the initial UA, the optimal UA (P∗), and the final UA
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Figure 4.12: Evolution of the GMAR function

(i.e., after Algorithm 2 execution). Those snapshots are shown in Fig. 4.13 when γm

was set to 300 [kbps] for the user distribution depicted in the figures.
As you can see from Fig. 4.13(c), not all the UEs can be associated with the desired

cell as depicted in Fig. 4.13(b) (please notice the dots surrounded by dashed boxes).
This is due to the real constraints imposed on the values ∆ and CIOmax (given in
Table 4.3). Therefore, to measure the mismatch between both the best and the final
associations, as well as the mean number of modified adjacencies, and the maximum
offset applied to the adjacencies, Table 4.5 is presented.

Table 4.5: Performance of the Algorithm 2 for a macro-cell scenario

γm [Kbps] Matching rate [%] Modified Adjacencies max{CIOi,j} [dB]
300 99.16 13 5.0
400 99.58 9 5.0
500 99.58 9 2.9
600 99.58 8 3.0
700 100 10 3.9
800 100 11 3.9
900 99.58 2 5.5

As seen from the second column of Table 4.5, the matching rates between the final
and optimal associations are pretty high under reasonable changes of CIO, which
implies that Algorithm 2 exhibits a consistent behavior for the considered values of
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(c) Final user association (after the execution of Algo-
rithm 2).

Figure 4.13: UA optimization and enforcement for γm = 300[kbps]
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γm.

4.4.3.3 Impact on the Network Performance of the Inner Loop

From the network perspective, it is possible to see to what extent the chaining of the
shaded boxes in Fig. 4.2 improves the performance. Let us consider the mean SINR
profile for multiple values for γm, as shown in Fig. 4.14.

According to Fig. 4.14, an improvement in SINR is evident after TTT has expired
(see Section 2.1.5) and all the HOs (product of the UA optimization and enforcement)
were executed. Therefore we conclude that the inner loop of the proposed framework
improves the network performance.

Figure 4.14: Improvement of the SINR over time

4.4.3.4 Outer Loop

The hybrid approach, based on ML for the prediction of e
∗ and the chaining of Algo-

rithm 1 and Algorithm 2 to find CIO∗, is also tailored to achieve the best performance
during the prediction of e

∗ using the most suitable ML Stage in Fig. 4.2. As men-
tioned before, several multioutput models were considered according to Fig. 4.5. The
metric considered to select the best model was the "micro-averaged" version of the
Area Under the Receiver Operating Characteristic (ROC) Curve (see Appendix D).

Based on that selection, a grid search was carried out to find the appropriate hyper-
parameters per model. A deep explanation of the considered models and their main



4 Coordination between CCO and MLB: A Hybrid Approach 108

hyperparameters is not within the scope of this thesis. In Table 4.6, it is possible to
see the results of the grid search procedure. The considered hyperparameters for each
model are not shown. Please notice that the best model with respect to the selected
score metric is the chain classifier made of logistic regressors in all the targets. That
makes sense considering that De = {9°, 12°}, i.e., a binary output.

Table 4.6: Grid search for different multioutput strategies

Type Model Area Under ROC Curve

Multioutput classifier

Gradient Boost 0.7565
K-Neighbors 0.7539

Random Forest 0.7010
Extremely Randomized Trees 0.6625

Multi-layer Perceptron 0.6113

Chain classifier

Logistic Regression 0.81
K-Neighbors 0.8021

Ridge Classifier 0.8020
Random Forest 0.7804

Extremely Randomized Trees 0.7802
Quadratic Discriminant Analysis 0.7619

Nearest centroid classifier 0.7502
Deep Learning FFNN (see Fig. 4.6) 0.6785

As stated before, apart from the multioutput models, a FFNN with a deep structure
(see Fig. 4.6) was also considered. As De = {9°, 12°}, we only have two options for
the tilt of every cell. Therefore, the output layer in Fig. 4.6 uses sigmoidal activation
functions. Please remember that when more than two categories of tilt need to be
predicted, the activation function should be softmax; if a continuous value is needed,
a linear activation function should be selected.

The deep Artificial Neural Network (ANN) did not perform as expected for this sce-
nario. The hypothesis behind this is that deep ANNs could not capture the dynamics
of the studied SFs with the amount of available training data. As a matter of fact, in
Chapter 5, we collect 50% more labeled data, and we see that the FFNN outperforms
the same candidates. However, in real networks, we often deal with limited reference
data (ground truth) because its acquisition is extremely time-consuming and costly.
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4.4.4 Performance Comparison

Bearing in mind the results in the previous subsections, we carry out a performance
comparison of the considered approaches. The following methods are compared: INI-
TIAL corresponds to a static configuration obtained during the exploration done by
SA when n = 20 (see Fig. 4.7), FPI corresponds to activating MLB only (i.e., the inner
loop in Fig. 4.2), SA corresponds to using both loops in Fig. 4.2, being the outer loop
driven by SA, SOM+HC represents the solution proposed in the previous chapter, i.e.,
Fig. 3.3, and finally HYBRID represents the scenario in Fig. 4.2 with the ML Stage
being a chain of logistic regressors solving a multioutput learning problem.

In Fig. 4.15 it is shown the SINR in the network. It is evident that the best
performance is achieved with the HYBRID approach; please notice that the median,
.75-percentile, and the mean, are the highest for almost all the traffic scenarios. The
second-best performance is obtained with the implicit method except for some scenarios
(e.g., γm ∈ [400, 500, 600]) in which SA outperforms it. The same holds for UE data
rates, as shown in Fig. 4.16.

From the results above, we can deduce that the HYBRID approach (proposed in Fig.
4.2) is superior to the fully-implicit approach (proposed in Fig. 3.3 and implemented
using SOM+HC) when both use the same amount of data to train the involved ML
models. The HYBRID approach is more data-efficient than the fully-implicit approach.

Due to the user accommodation after the HOs execution, it is expected an impact
on the cell utilization. According to the cost function in Eq. (4.1), a join reduction
in the cell utilization is foreseen (please recall that one component of U is GMAR).
Since a high cell utilization (ρi = 1) means the network might not handle new sessions,
we are interested in the higher values of the cell utilization distribution (rather than a
central tendency metric like the mean). At the same time, we want to avoid using the
maximum cell utilization value because it is susceptible to outliers. Therefore, we select
the .75-Percentile as the figure of merit. The .75-percentile of the cell utilization is
shown in Table 4.7. The HYBRID approach alleviates the high cell utilization through
an α-fair distribution of users across the network.

Finally, in terms of coverage, Fig. 4.17 shows the coverage degree as defined in Eq.
(4.6). Once again, the best numbers are obtained with the HYBRID method.
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Figure 4.15: Mean UE SINR

Table 4.7: Impact on the cell utilization (and therefore available resources)

γm INITIAL FPI SA SOM+HC HYBRID
300 0.3888 0.3854 0.3418 0.3545 0.3483
400 0.5177 0.5035 0.4404 0.4601 0.4404
500 0.6466 0.6254 0.5385 0.5730 0.5168
600 0.7755 0.7522 0.6317 0.6663 0.6132
700 0.9044 0.9080 0.7554 0.7430 0.7361
800 1.0000 1.0000 0.8524 0.9134 0.8454
900 1.0000 1.0000 0.9590 1.0000 0.9474
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Figure 4.16: Mean UE data rate
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Figure 4.17: Coverage degree C(e)
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4.5 Summary
A hybrid network optimization framework has been presented, which applies to net-
work scenarios in which the knowledge of propagation loss values and traffic signatures
is available. We assume that this information is attainable, e.g., once the MDT func-
tion is active in the network. We proposed a ML stage that predicts in an outer loop
a suitable downtilt configuration from data rate requirements and users distribution
information, whereas a fixed point algorithm finds the optimal user association in an
inner loop given a predicted downtilt.

One of the advantages of the proposed method is that it predicts the downtilt non-
iteratively, which is an essential feature for networks that should adapt quickly to the
surrounding changes. Another advantage is that the fixed point algorithm guarantees
an optimal user association given any prediction from the ML model. Therefore we
have gained some optimality insights we were missing according to Section 3.4.

We demonstrated the advantages of jointly optimizing multiple conflicting functions
in terms of network performance. The method has been shown beneficial regarding a
utility function combining both coverage and composite network capacity indicators.

The main limitation of the proposed architecture is the unavailability of labeled data.
Even though we have trained a ML stage using a heuristic (SA) that runs multiple
scenarios during a long enough period of time, it is quite likely that in real network
deployments, the amount of information for training a ML model is unavailable, or
there is not such a degree of freedom to run a heuristic like SA. Of course, this
limitation is also valid for the approach proposed in the previous chapter and (for
the sake of fairness) for all the possible solutions aiming to solve the SF coordination
problem in a centralized data-driven manner.

In that sense, we claim that there are already workarounds to face the lack of labeled
data, e.g., transfer learning theory for FFNN models, in which the training of a neural
network is carried out using information from a "similar" domain4 in which enough
information is available, not necessarily in the mobile communications world. With this
technique, the deeper layers of a neural network trained with the data from the source
domain are fine-tuned with the scarce real network information, a.k.a. target domain.
This way, the FFNN will not have to learn from scratch all the low-level features and
structure of the problem, it will only have to learn the higher-level structures (which
requires less labeled data) [76].

When it comes to situations in which, unfortunately, it is not possible to find a

4The more similar the tasks are, the more layers in the neural network it is possible to reuse.
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model trained on a similar task (i.e., transfer learning is no longer a feasible option),
it could be possible to use unsupervised pretraining [76] using Restricted Boltzman
Machines, Autoencoders or Generative Adversarial Networks, keeping the lower layers
of those models and adding an output layer which could be fine-tuned using small
labeled datasets.

Even though the above solutions seem to be tailored to neural network models, and
for this specific chapter, the vanilla FFNN was not the best model (see Table 4.6),
in [9] we carry out a study in which a FFNN was used to coordinate MLB and CCO
in a smaller network with only 9 cells in a campus network scenario. Additionally, in
Chapter 5 we will collect more labeled data at the expense of more simulation time,
and we will see that a FFNN model becomes the most suitable model to execute the
outer loop in Fig. 4.2
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5 An extension of the Hybrid
Approach: Including ICIC and ES

In this chapter, we present the application of the hybrid solution proposed in the
previous one (see Fig. 4.4) to a different set of SFs, namely: MLB, ICIC, and ES.
This solution is intended to optimize the SFs in a hybrid manner: on the one hand
side, a ML stage predicts part of the best possible configuration in one shot using an
outer loop, whereas an inner loop tries to solve, in a closed form, the high dimensional
load balancing problem.

The relevant notation considered throughout this chapter is provided in Table 5.1.

5.1 Introduction
Modern cellular systems based on OFDMA, such as LTE (in downlink) or 5G (in both
uplink and downlink), are conceived as technologies with a Frequency Reuse (FR) of
1 to achieve the highest utilization of the spectrum. FR allows all cells to transmit
over the whole set of time-frequency resources (improving the spectral efficiency) but
yields to ICI, where an UE is affected by interfering signals coming from the neighbor
cells transmitting in the same resources (a.k.a. co-channel cells). This situation is even
worse for users located in the cell borders due to the bad channel conditions expected
as the distance from the serving transceiver increases. With a rise in the interference
levels comes a degradation of the SINR, and therefore a throughput reduction.

To mitigate ICI, multiple schemes are available either in the time domain, such as
Almost Blank Subframe (ABS)-based ICIC, or frequency reuse-n approaches, such as
HFR, FFR, and SFR [17]. In this study, we focus on the latter category, especially
on SFR (see Section 2.1.2). SFR provides the best spectrum reuse because the entire
available system bandwidth is used in each cell (i.e., reuse 1). To reduce ICI, SFR sets
up edge subbands that are different for any two neighbor cells, usually combined with
lower power on the signals towards the cell centers (see Fig. 2.3).

The use of SFR in mobile networks leads to natural tradeoffs among performance
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Table 5.1: List of variables
Description Symbol
Network-wide configuration vector K ∈ RKdim

Network-wide environmental variable vector E ∈ REdim

α-fairness cost function Φα

Global utility function U ∈ R
Geometric Mean of Available Resources GMAR
The best possible configuration vector K

∗
∈ RKdim

User distribution for i-th cell uDi ∈ [0, 1]
Set of cells B = {1, ..., B}
Set of neighbor cells for i-th cell N (i)
i-th cell’s transmit power pi ∈ R+

Transmit power vector p ∈ RB
++

i-th cell utilization ρi ∈ (0, 1]
Cell utilization mapping T ∶ RB

+ → RB
++

Cell utilization vector ρ ∈ (0, 1]B

Link budget from i-th cell to m-th UE gi,m(⋅)
SINR from i-th cell to m-th UE SINRi,m(⋅)
Shannon capacity between i-th cell to m-th UE ci,m(⋅)
Reduction power factor in the i-th cell center η

c
i ∈ Dp ⊆ R+

Vector of power factors in cell centers η
c
∈ DB

p ⊆ RB
+

Best possible vector of power factors in cell centers η
c∗

∈ DB
p ⊆ RB

+

Reduction power factor at the i-th cell edge η
e
i ∈ Dp ⊆ R+

Vector of power factors in cell edge η
e
∈ DB

p ⊆ RB
+

m-th UE’s requested data rate γm ∈ R++

UE’s requested data rate vector γ ∈ RS
++

i-th cell’s user association Pi

Set of user associations P ≔ {P1, ...,Pi, ...,PB}
Optimal user associations P∗

A3-HO Hysteresis H
A3-HO Time to trigger TTT
Cell Individual Offset between cells i and j CIOi,j

Best possible Cell Individual Offset values CIO∗
∈ RB×B

Optimal cell for m-th UE k
∗

Edge SINR in i-th cell edgeSINRi ∈ R
Edge interference in i-th cell edgeIfi ∈ R
Interference created by the ith cell createdIfi ∈ R
Edge interference in i-th cell’s neighborhood neighEdgeIfi ∈ R
UEs associated with the i-th cell’s center Pc

i

UEs associated with the i-th cell’s edge Pe
i

UEs location-dependent bandwidth factor BWFi,m
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metrics such as coverage for edge users, network throughput, and spectral efficiency.
That compromise becomes more complex if the load imbalance among neighboring
cells is considered because it causes inefficient resource utilization and low throughput.
Accordingly, it is evident a tight relationship between ICIC and MLB functions, as well
as the necessity of considering a joint optimization scheme between both SFs.

To the best of our knowledge, explicit coordination schemes between ICIC and MLB
are only mentioned in [93] and [55]. The authors in [93] developed a tailor-made
method to jointly optimize the aforementioned SFs considering FFR. Even though
FFR is comparatively better in terms of coverage outage probability, SFR exhibits
higher bandwidth efficiency. We claim that the outage probability could be optimized
by a different SF, i.e., CCO (some insights for that kind of deployment were shown
in the previous chapter and are also available in [18]). Therefore, we lean towards the
use of SFR in this study. The authors in [55] proposed a combination between fixed-
point iterations and a non-derivative heuristic, namely Nelder and Mead algorithm,
to deal with the coordination between MLB and ICIC in a Heterogeneous Network.
Unfortunately, that heuristic works well only on problems of relatively small dimensions
(up to 10 decision variables) [94].

For the sake of completeness, regarding implicit coordination schemes (although
for different SF), [68] proposes a tailing coordination scheme based on network per-
formance predictions using ML followed by a posteriori multi-objective optimization
process, which searches for a set of suitable configurations. In [68], it is observed
that the performance of the ML models depends on the network size as the number of
regressors increases with the number of cells imposing scalability issues on the solution.

Similarly to the previous chapter, in this one we combine the best of both explicit
and implicit approaches to get rid of the dimensionality curse1, as well as to boost the
optimization process using a ML stage.

5.1.1 Contributions

In this chapter, we explore the applicability of the framework presented in Chapter
4 to consider the joint optimization of MLB and ICIC, the latter implemented as a
frequency domain solution, namely SFR, which was introduced in Section 2.1.2. To
our best knowledge, by the time of writing this document, this is the first work dealing
with the joint optimization of MLB and SFR-based ICIC SFs. We compare multiple

1Especially when it comes to finding the appropriate values for the CIO which, as has been mentioned
before, are the worst offenders in terms of dimensionality since they are meant to work in an edge-
wise manner rather than cell-wise.
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network dimensions of the proposed architecture in Fig. 5.1 against a fully-implicit
coordination architecture as in Fig. 4.1 and a benchmark heuristic.

We propose using a neural network capable of predicting the best possible power
factor vector (ηc∗) in one shot and show how this ML model admits an extension to
ES SF, which is in charge of switching off some cells when the load conditions are not
that high. We are interested in landing in the neural network domain to boost the
future use of techniques to mitigate the cold-start problem that have been tailored for
deep neural networks.

5.2 Formulation of the Centralized Joint Optimization
Problem

As we did in the previous chapter, we start formulating an optimization problem. We
select a fairness measure and present how to estimate the main variables involved in
the optimization problem considering a dynamic SFR scheme working on an OFDMA
network.

5.2.1 A Fairness Measure for Centralized Decision-Making and
Conflict Resolution

Like we did in Chapter 4, and for the same reasons, the α-fairness function is selected
as the cost function. The α-fairness function is revisited in Eq. (5.1).

Φα(ρ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑B

i=1
(1−ρi)1−α

α−1 α ≥ 0, α ≠ 1

∑B

i=1 − log(1 − ρi) α = 1
(5.1)

Once again, our objective is to maximize the GMAR considering cell utilization and
interference constraints, i.e., we select α = 1. Unlike the previous chapter which used a
combined metric to model both MLB (with GMAR) and CCO (with C(e)), we claim
that for jointly optimizing MLB and ICIC it is enough to minimize Φ1. The reasons
behind that selection are two-fold:

• According to Eq. (4.10), with α = 1, it is possible to maximize the available
resources and have a load-balancing effect. Therefore, MLB dynamics are mod-
eled with Φ1. As we saw in the previous chapter, the association rule given by
Eq. (4.10) implies a user association based on throughput, assuming a processor
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sharing M/G/1 queue with a Round Robin scheduling policy, as it was estab-
lished in Section 2.1.4 (please see Eq. (2.8)). Therefore, Eq. (4.10) is compliant
with the objective of improving the throughput of the users in the cell’s border,
which is a major objective of ICIC.

• As it will be shown in Fig. 5.6, minimizing Φ1 also reduces the interference levels
created by the i-th cell and imposed on its neighborhood. Therefore, we claim
the dynamics of ICIC are covered by Φ1.

From Eq. (5.1), it is evident that an accurate estimation of the cell utilization is
essential. In the following section, we use a well-established method for cell utilization
estimation, which is compliant with the system model proposed in Section 2.1.4, and
we adapt it to introduce a dynamic SFR scheme.

5.2.2 Cell Utilization Estimation

We consider an OFDMA network with a dynamic SFR scheme. As mentioned in
Section 2.1.2, by considering a SFR scheme on the system, the coverage area of the
cell is divided into two mutually exclusive parts, the center, and the edge. In each cell,
the frequency bandwidth (BW) is divided into three adjacent orthogonal subbands.
Two subbands are allocated to the center users, and the third subband is allocated to
the edge users, as shown in Fig. 2.3.

We assume that the maximum transmit power for the i-th cell is pi in Watts, with
p being the (maximum) downlink power vector. As mentioned in Section 2.1.2, in
SFR, every cell applies the reduction power factors η

c
i and η

e
i at the center and the

edge respectively. Therefore, the transmit power for resources assigned to edge users
is η

e
i pi, whereas for the resources assigned to center users is η

c
i pi. Let η

c be the power
factor vector at the center of the cells, where the i-th coordinate η

c
i is the center

power factor of cell i, and it takes values from a discrete set Dp with cardinality ∣Dp∣.
Additionally, η

e is the power factor vector at the edge of the cells, where the i-th
coordinate η

e
i is the edge power factor of cell i, and it also takes values from a discrete

set Dp with cardinality ∣Dp∣.
Given the antenna tilt ei, the propagation loss between cell i and an UE m is denoted

by gi,m(ei). Unlike the previous chapter, in this study, we will assume the tilt for all
antennas is fixed; therefore, we drop the dependency of the losses to the downtilt. On
the other hand, as we require high throughput and good coverage for users at the edge,
we additionally fix the edge power to maximum: (∀i ∈ B)ηe

i = 1 as in [18], [95].
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Like in Chapter 4, replacing Eq. (2.2) into Eq. (2.4), we can write the Shannon
capacity as Eq. (5.2), which is adapted here to consider SFR.

ci,m(ρ, η
c
,P) = BWFi,mBW log2 (1 +

PFi,mpigi,m

∑B

k≠i PFk,mpkgk,mρk + σ2
) (5.2)

where σ
2 is the noise power over the transmission bandwidth BW, and ρ is the cell uti-

lization vector. Additionally, an user location-dependent bandwidth factor (BWFi,m)
and power factor (PFi,m) are introduced and defined as follows:

(∀i ∈ B)(∀m ∈ S) BWFi,m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2/3 m ∈ Pc
i

1/3 otherwise,

(∀i ∈ B)(∀m ∈ S) PFi,m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

η
c
i m ∈ Pc

i

1 otherwise,

where Pc
i corresponds to the central portion of the i-th cell2.

As we have already seen, for an arbitrary maximum power allocation p, downtilt e,
data rate requirements γ, and user association P , the cell utilization is estimated by
solving the equation system in Eq. (2.5), which is revised in Eq. (5.3):

(∀i ∈ B) ρi = ∑
l∈Pi

γl

ci,l(ρ, η
c
,P) , (5.3)

As in Chapter 4, we want to estimate the impact of multiple user associations (P)
on the cell utilization vector (ρ) without actually applying any change in the network.
Therefore, we are interested in solving Eq. (5.3). The equation system in Eq. (5.3)
is a set of nonlinear equations, which is implicitly defined because the cell utilization
ρi is on both sides of the equation. The conventional way to solve such an equation
system is through the use of FPI algorithms, like the standard one presented in Eq.
(5.4):

ρ
(k+1)

= T (ρ(k)), ρ
(1)

∈ RB
+ (5.4)

2Identifying the nominal cell range of a cell as well as the boundary between the cell center and
edge is not an easy endeavor. In this chapter, the association of a UE to any of those regions is
achieved by computing a normalized distance based on the separation between the cell and UE
and the horizontal angle between transmitter and receiver.
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where T is a vector-valued mapping given by:

T ∶ RB
+ → RB

++

ρ ↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑l∈P1

γl

c1,l(ρ,η
c
,P)

∑l∈P2

γl

c2,l(ρ,η
c
,P)

⋮

∑l∈PB

γl

cB,l(ρ,η
c
,P)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.5)

A solution to Eq. (5.5) is called a Fixed Point of the mapping T , and it is expressed
as ρ ∈ Fix(T ).

5.2.3 Optimization Problem Formulation

Formally, the optimization problem is given by:

minimize
P,ρ,η

c
Φ1(ρ)

subject to ρ ∈ Fix(T )
0 ≤ ρ ≤ 1

η
c
∈ DB

p

(5.6)

The first constraint ensures that the objective function is evaluated at the solutions
to the system in Eq. (5.5), which corresponds to the definition of cell utilization in
Eq. (5.3). The second constraint also follows the definition of utilization. The third
constraint limits the center power factor in every cell to be within a discrete set Dp.

5.3 A Hybrid Solution
The problem in Eq. (5.6) is complex due to the implicit formulation of the cell uti-
lization, the choice of UE-cell associations P , and the effects of the antenna downtilt
on the received power, coverage, and cell utilization. However, exploiting the fact that
for a fixed η

c, e, γ, and P , the optimal utilization vector minimizing Φ1 is given as
the unique solution to ρ ∈ Fix(T ), as it will be seen in Section 5.3.1 (and it has been
proven in [82], [53], [55]), and considering that the optimization over P (and ρ) and the
optimization over η

c are differently structured optimization problems [55], we propose
to use the hybrid architecture presented in Chapter 4, which is revisited in Fig. 5.1,
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to solve maximize the utility function given by Eq. (5.7), which corresponds to the
GMAR definition.

U ≔ 10−Φ1(ρ)
B (5.7)

Network

Find Optimal 
UA

Enforce Optimal
UA

Knowledge
Base

ML
Stage

Simulated
Annealing

Figure 5.1: Global view of the proposed scheme.

The framework in Fig. 5.1 is designed to maximize Eq. (5.7).
The inner loop finds and enforces the optimal user association (P∗), whereas the

outer loop predicts the best possible power factors η
c∗ in one shot. It is important to

mention that both loops work in coordination, meaning that the global utility function
in Eq. (5.7) is jointly maximized. As shown in Section 5.3.1, P∗ is obtained using
a FPI algorithm, and the resulting association is enforced in the network using the
A3-HO condition.

For the outer loop, we propose to use a ML stage to directly predict η
c∗ based on

the environmental conditions E. In order to train the ML model, it is needed to gather
enough information about the tuple: (E, η

c∗). Therefore, as we did in Chapter 4, we
use a "smart exploration" approach based on the SA heuristic, as shown in dashed lines
in Fig. 5.1.

As in Chapter 4, one of the main advantages of our method is that even if the
predicted power factors (obtained through the outer loop) are not optimal, the inner
loop still provides the suitable CIO values for the predicted η

c.
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5.3.1 Inner Loop: Finding and Enforcing P∗

For a fixed power factor vector η
c, maximizing Eq. (5.7) over the set of P , ρ yields:

maximize
P,ρ

U

subject to ρ ∈ Fix(T )
0 ≤ ρ ≤ 1

(5.8)

As we already saw in Section 4.3.1, and according to [82], [83], [53], the solution to
Eq. (5.8) gives a policy to associate every UE to a single cell (i.e., P∗) [82]. Specifically,
UE m should be associated with the cell k

∗, with :

k
∗
= argmax

i∈B
(1 − ρi) ci,m(ρ, η

c
,P) (5.9)

Since ICIC aims to reduce the ICI, especially at the edge of the cell, improving the
throughput of the edge UE, it makes sense to let the user association be driven by
the association rule in Eq. (5.9). Additionally, according to Eq. (5.9), users should
be associated with cells with lower utilization to experience an increased throughput,
which is the main objective for MLB. Therefore, it is evident that the problem formu-
lation is consistent with a SF coordination framework between ICIC and MLB. Thus,
as mentioned before, the definition of the utility function as in Eq. (5.7) is enough to
achieve the joint optimization of ICIC and MLB.

The association rule in Eq. (5.9) is used along FPI to find an optimal user associa-
tion. Our implementation is proposed in Algorithm 4.

Algorithm 4: FPI for the calculation of the optimal user association
1: INPUT: µ,ϵ,k = 0,ρ(0)

∈ RB
+ ,β

2: while µ > ϵ do
3: for all gNB i ∈ B do

4: calculate cell area: P(k)
i = {m ∈ S ∣ i = argmax

j∈B
(1 − ρ

(k)
j ) cj,m(ρ, η

c
,P)};

5: calculate new utilization: Ti(ρ(k)) = min {∑l∈Pi

γl

ci,l(ρ,η
c
,P) , 1 − ϵ};

6: end for
7: ρ

(k+1)
= βρ

(k) + (1 − β)T (ρ(k))
8: µ =∥ ρ

(k+1) − ρ
(k) ∥2, k = k + 1;

9: end while
10: OUTPUT:P∗

i = P(k)
i ,ρ∗

= ρ
(k),Φ1 = ∑B

i=1 − log(1 − ρ
(k)
i ), U = 10−Φ1/∣B∣

As the reader can appreciate, the association rule in Eq. (5.9) is implemented in
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line 4 of Algorithm 4, the cell utilization estimation in Eq. (5.3) takes place in line
5, and the FPI is implemented in line 7 using an interpolated version rather than the
standard one presented in Eq. (5.4). The outputs of the algorithm are the desired user
association P∗, the cell utilization imposed by the P∗, and the maximum achievable
GMAR.

To enforce P∗ in the network, we use the method explained in Section 4.3.2. Specif-
ically, we use Algorithm 2. It is possible to reuse the enforcement method of the
previous chapter as it is taking place in the Radio Resource Control (RRC) layer,
which is on top of layers 1 and 2, which are the ones that are mainly involved with the
introduction of SFR.

5.3.2 Outer Loop: a Supervised ML Stage

To naively maximize U over η
c, an exhaustive search could be carried out: first fixing

η
c, finding ρ

∗ according to Section 5.3.1, computing GMAR and finally selecting
the value of η

c exhibiting the highest GMAR value (ηc∗). Unfortunately, such an
approach is computationally expensive due to the high number of parameters, making
it not tractable. Therefore, as we did in the previous chapter, we propose a ML-driven
approach in the outer loop in Fig. 5.1, which predicts the best possible power factors
η

c∗ based on the environmental conditions (E). For the joint optimization of MLB
and ICIC, E corresponds to the set of mean UE rate requirements (γm), which can
change over time and the user distribution (uDi), as defined in Section 3.3.

Because we have a multioutput prediction task, we again consider the classical mul-
tioutput learning domain, as explained in Section 4.3.3.1, only that in this case, every
model predicts the power factor in the respective cell: η

c
i . Apart from the multioutput

models, we also consider a FFNN like the one presented in Fig. 5.2.
Regardless of the selected ML model, its performance depends largely on the amount

and quality of the information used to train it. As mentioned before, obtaining labeled
data (i.e., with KPI information) is expensive in real networks. If generating the
training set is not feasible using an exhaustive search, the training set can be generated
with the output of a time-consuming heuristics like SA. As shown in dashed lines in
Fig. 5.1, we obtained labeled data, i.e., (E, η

c∗) using SA. However, the higher
the number of parameters to be optimized (and therefore explored), the higher the
"exploration" time of the heuristic. Considering that the total number of power factor
combinations is given by the permutation with repetitions ∣Dp∣B, the number of cells
(B) or the cardinality of every output should be small to keep a reasonable exploration
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Figure 5.2: Feed forward neural network for a multioutput learning problem.

time. As we did in the previous chapter, we consider the latter option. The modified
version of SA to get labeled data is presented in Algorithm 5.

5.4 Comparative Evaluation of Algorithms for joint
MLB-ICIC Optimization

Multiple simulations were carried out using an OFDMA system-level simulator, con-
sidering 7 gNB each with 3 cells with the layout depicted in Fig. 3.7. Further details
of the simulation parameters are given in Table 5.2.

To collect the training data, multiple network scenarios with randomly deployed
users were simulated. For every scenario, both the distribution of the users (uDi)
and the requested data rate (γm) change, emulating the change in the traffic profile
throughout the day. For every scenario, a search over the power factors using SA
was carried out to learn the best possible tilt configuration η

c∗. Once a large enough
number of scenarios have been simulated, it is possible to train the ML stage in the
outer loop in Fig. 5.1. There is a twist in this chapter though compared to the previous
one, we collect 50% more information compared to the training set size.

As we did in the previous chapter, once the ML model is trained, the solution in Fig.
5.1 is ready to optimize MLB and ICIC jointly. To check the performance of the joint
optimization, the simulation batch duration is set to 30 seconds. At the beginning
of every batch, the user distribution (uDi) and the requested data rate (γm) change,
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Algorithm 5: Simulated Annealing for MLB and ICIC Optimization
1: INPUT: η

c
init, imax, τmin, τmax

2: INITIALIZE: τ = τmax, η
c
= η

c
init

3: U(ηc) ← Compute utility in (5.7)
4: while τ > τmin do
5: for all i = 1 to imax do
6: U(ηc

′

) ← Compute utility in (5.7) for η
c
′

∈ DB
p \ η

c

7: ∆(U) = U(ηc
′

) − U(ηc)
8: flag=1
9: if ∆(U) > 0 then

10: Accept η
c
← η

c
′

11: else
12: Calculate probability: Pr(∆(U)) = e

∆(U)
τ

13: if Pr(∆(U)) > rnd(0, 1) then
14: Accept η

c
← η

c
′

15: else
16: Reject η

c
← η

c
′

17: flag=0
18: end if
19: end if
20: if flag=1 then
21: Update η

c∗
= η

c

22: end if
23: end for
24: τ =

τ

log(i+1)
25: end while
26: OUTPUT:ηc∗
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Table 5.2: Simulation parameters
Type Parameter Value

System
specifics

Inter-site distance 500 [m]
Pathloss See Eq. (2.3)
Shadowing See Eq. (2.3), Ω = 6[dB]
pi (Eq. (5.2)) 46 [dBm]
Dp {0.5, 0.8}
Tx antennas gain 15 [dBi], height = 32 [m]
BW 10 [MHz]
σ

2 (Eq. (5.2)) -95 [dBm]
Scheduler Round Robin

User specifics

Number of users 240
Mobility model Random Walk
UE positioning uniform distribution
UE antennas gain 2 [dBi], height = 1.5[m]
γm 100-800 [kbps]

Algorithm
specifics

H (Eq. (4.11)) 3.0 [dB]
∆ 0.1 [dB]
CIOmax 12.0 [dB]
α (Eq. (4.1)) 1
β (Algorithm 4) 0.9
τmin, τmax 0.0001 , 100
imax 100

Sim. period After training 30 [s] (Except for SA)
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and based on these environmental variables (E), an appropriate power factor vector
is predicted using the outer loop of Fig. 5.1 and applied afterward. Soon after the
change in the power factor, we allow the registration of UEs to the respective cells and
the generation of data traffic. At the 10-th second, once we have a stable estimation of
the cell utilization (ρi), the user association optimization is triggered using Algorithm
4. The resulting association (P∗) is enforced afterward using Algorithm 2.

A subset of γm ∶ {100, 200, 300, 400, 500, 600, 700, 800} [kbps] is used to evaluate the
performance of the proposed framework over multiple traffic conditions. As we did in
the previous chapter, two benchmark schemes are considered to compare the benefits
of the proposed framework, namely:

1. SA-based heuristic. This long-lasting heuristic can be used not only to collect
the training data but also to predict a suitable power factor vector (ηc∗).

2. The best fully-implicit optimization mechanism in Chapter 3, corresponding to
the grouping of SOM and hierarchical clustering, using the architecture in Fig.
3.3.

A brief discussion about the performance of every method is given in the following
subsections. Afterward, we show the network performance comparison among all the
schemes.

5.4.1 Simulated Annealing Approach

Apart from collecting data for training, SA (as in Algorithm 5) can also be used as
a (long-lasting) method to find the suitable power factors (ηc∗). That is, SA could
replace the ML stage in the outer loop. For a specific user distribution3, and for the
different values of γm, the heuristic was in charge of maximizing the utility function U
defined as in Eq. (5.7) through modifying the power factor vector. The evolution of
U for different values of γm is depicted in Fig. 5.3.

We can see that for every value of γm that was considered, the proposed version
of SA finds a suitable configuration provided it was given a high enough number of
iterations (n) and solution perturbations. Please recall that for every value of n,
multiple perturbations of the solutions are allowed (imax in Table 5.2). The impact
of the obtained configurations on the network performance will be supplied in Section
5.4.4.

3That was not explored during the training data collection, i.e., a "test" user distribution.



5 An extension of the Hybrid Approach: Including ICIC and ES 129

0 10 20 30
n

0.9302

0.9304

0.9306

0.9308
G

M
A

R
γm = 100[kbps]

0 10 20 30
n

0.839

0.840

0.841

0.842

0.843

G
M

A
R

γm = 200[kbps]

0 10 20 30
n

0.716

0.718

0.720

0.722

0.724

0.726

0.728

G
M

A
R

γm = 300[kbps]

0 10 20 30
n

0.58

0.59

0.60

0.61

0.62

G
M

A
R

γm = 400[kbps]

0 10 20 30
n

0.46

0.47

0.48

0.49

0.50

0.51

G
M

A
R

γm = 500[kbps]

0 10 20 30
n

0.37

0.38

0.39

0.40

0.41
G

M
A

R

γm = 600[kbps]

0 10 20 30
n

0.28

0.30

0.32

0.34

G
M

A
R

γm = 700[kbps]

0 10 20 30
n

0.22

0.24

0.26

0.28

0.30

G
M

A
R

γm = 800[kbps]

Figure 5.3: Improvement of the GMAR over the time

5.4.2 Fully-Implicit Optimization Approach

Regarding the fully-implicit coordination approach, we found in Chapter 3 that the
best approach was the combination of SOM and HC. In this chapter, we consider
the following functional domains: the main KPI (U) as in Eq. (5.7), the controllable
part corresponds to the power factor vector (ηc) and CIO values (CIO), whereas the
environmental part corresponds to the requested data rate (γm) and user distributions
(uDi).

As in Chapters 3 and 4, a three-layer SOM is trained, and the hyperparameters
ruling the model behavior, i.e., xdim and ydim, are found using a grid search procedure.
The results are available in Table 5.3. The best combination corresponds to xdim = 5
and ydim = 10. As we have more training data and also the number of units in the SOM
is lesser than in Chapter 4, it is expected that we do not have that many problems
with empty units. As a matter of fact, the quality plot of the map (which shows the
mean distance of objects mapped to a unit to the neuron signature [77]) is depicted
in Fig. 5.4(a). Please recall that the smaller the distances, the better the objects are
represented by the neuron’s signature [77]. Compared with the SOM in Fig. 4.10, in
this case, we do not have gray units (empty neurons).

After finding the best SOM model, hierarchical clustering is applied considering only
the environmental variables. As indicated in Appendix A, the Elbow method using
WSS is used to determine the number of clusters. A cluster size of 8 is selected, as
shown in Fig. 5.4(b).
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Table 5.3: Grid search for SOM representation

xdim ydim RMSE R
2 MAE

5 5 0.1065 0.8539 0.0841
5 10 0.1060 0.8553 0.0840
5 20 0.1079 0.8500 0.0846
10 5 0.1033 0.8627 0.0817
10 10 0.1059 0.8554 0.0836
10 20 0.1464 0.7231 0.1154
20 5 0.1077 0.8505 0.0850
20 10 0.1541 0.6943 0.1213
20 20 0.1784 0.5905 0.1411

Propagating the 8 clusters to the KPI layer in the SOM grid (as explained in Fig.
3.5), we obtain Fig. 5.4(c). We can see from Fig. 5.4(c) that the optimization in the
low-dimensional corresponds to moving towards the right-most bottom corner at step
sizes given by the clusters.

5.4.3 Hybrid Architecture

5.4.3.1 Inner Loop

Because the behavior of the cost function and the GMAR, which are calculated using
Algorithm 4, are monotonically decreasing as in Section 4.4, we focus directly on the
performance of Algorithm 2 while enforcing the user association P∗.

To gain insights about the changes that are taking place under the hood in the
network with the enforcement of P∗, Table 5.4 shows the average matching rate
between the optimal (P∗

i ) and the final associations in the network (i.e., after the
execution of Algorithm 2), the average number of modified adjacencies, as well as the
maximum offset value that was applied to an adjacency. As it can be seen from the
second column of the table, the matching rates are almost perfect under reasonable
changes of CIO, which implies that Algorithm 2 exhibits consistent behavior for the
considered values of γm.

From Table 5.4, we observe that Algorithm 2 strives to do the best it can with the
constraints given in Table 5.2, i.e., the values for ∆ and CIOmax.
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(a) Quality metric of the 3-layer SOM (b) Selected number of clusters

(c) 3-layer SOM and Hierarchical clustering
on the KPI layer

Figure 5.4: SOM and hierarchical clustering



5 An extension of the Hybrid Approach: Including ICIC and ES 132

Table 5.4: Performance of the Algorithm 2

γm [Kbps] Matching % Mod. Adjacencies max{CIOi,j} [dB]
100 100 6 7.5
200 100 5 6.2
300 100 4 3.1
400 100 4 2.4
500 99.58 5 3.8
600 100 6 7.5
700 100 9 7.5
800 99.58 12 8.6

5.4.3.2 Impact on the Network Performance of the Inner Loop

From the network perspective, it is possible to see to what extent the chaining of the
shaded boxes in Fig. 5.1 improves the performance. For a specific instance of η

c

predicted in the outer loop, the impact on the average cell SINR for the considered γm

values is depicted in Fig. 5.5.

Figure 5.5: Mean network SINR.

As indicated in Fig. 5.5, once the HOs are executed after triggering Algorithm 4 and
Algorithm 2 (once TTT has expired), it is possible to see an increment in the mean
cell SINR profile, especially when γm is higher.
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Another significant impact on the network performance is evident when the level of
interference created by one cell (and imposed on the UEs of other cells) is accounted
for, namely: createdIfi ≔

∑m∉Pi
PFi,mpigi,m

∣{m∉Pi}∣
. The average created interference for the

different values of γm is depicted in Fig. 5.6.

Figure 5.6: Mean interference level generated (createdIfi).

It is evident that after the 10th second, the ICI is alleviated. One important take-
away appears here: with the sole definition of the utility as in Eq. (5.7) and the user
association being driven by P∗ from Algorithm 4, it is possible to reduce ICI. Thus,
while minimizing Φ1, we guarantee joint optimization of ICIC and MLB.

Please notice that we have not modified η
c yet, so we claim that with an additional

adjustment of η
c, we can improve (even further) the ICI levels. The hybrid approach

is also tailored to achieve the best performance during the prediction of η
c∗ using the

most suitable ML Stage in Fig. 5.1.

5.4.3.3 Outer Loop

To discover the convenient model for the ML stage in Fig. 5.1, several ML models
were considered for predicting η

c∗, including neural networks (like the one in Fig. 5.2,
and multioutput models (see Appendix D).

A grid search to find the appropriate hyperparameters per model was carried out
based on the "micro-averaged" version of the area under the ROC curve. A deep
explanation of the considered models and their main hyperparameters is not within
the scope of this thesis, but we kindly refer the reader to [76].



5 An extension of the Hybrid Approach: Including ICIC and ES 134

In Table 5.5, it is possible to see the performance of the best parameters per model
(the considered hyperparameters for each model are not shown in the table).

Table 5.5: Grid search for different multi-learning strategies

Type Model Area Under ROC Curve

Multioutput classifier

Gradient Boost 0.7263
K-Neighbors 0.7150

Random Forest 0.6673
Extremely Randomized Trees 0.6455

Multi-layer Perceptron 0.7312

Chain classifier

Logistic Regression 0.7146
K-Neighbors 0.6714

Ridge Classifier 0.7106
Random Forest 0.6755

Extremely Randomized Trees 0.6558
Quadratic Discriminant Analysis 0.6338

Nearest centroid classifier 0.6220
Deep Learning FFNN (see Fig. 4.6) 0.7521

According to Table 5.5, in this opportunity, the best model happens to be a FFNN4.
Since Dp = {0.5, 0.8} (see Table 5.2), we only have two options for the tilt of every cell.
Therefore, the output layer in Fig. 4.6 uses sigmoidal activation functions5.

5.4.4 Performance Comparison

For a comprehensive assessment of the hybrid framework, a study in steady-state is
carried out to fairly compare the selected schemes. In that sense, we define some
counters to compare the different approaches in this section.

We say the m-th user is in the center of the i-th cell if m ∈ Pc
i . Likewise, the m-th

user is at the edge of the i-th cell if m ∈ Pe
i . The number of users in the center of the

i-th cell is given by ∣Pc
i ∣ whereas the number of users in the edge of the i-th cell is given

by ∣Pe
i ∣. Let N (i) represent the set of neighbor cells for the i-th cell. The following

KPIs are used to evaluate the benefits of the proposed approach in this chapter:

4The grid search procedure suggested a neural network with 3 hidden layers, each with 30 neurons
with a softsign activation function and adam optimizer.

5When more than two categories of power factors need to be predicted, the activation function should
be softmax. In contrast, if a continuous value is required, a linear activation function should be
selected.
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1. Edge SINR in i-th cell (to be maximized): defined as the mean SINR perceived by
the UEs located at the edge of the i-th cell. Formally: edgeSINRi ≔

∑m∈Pe
i

SINRm

∣Pe
i ∣

2. Edge interference in i-th cell (to be minimized): accounts for the total received
signal strength from all the surrounding cells excluding the serving cell i (from
now on If) measured by an UE located at the edge of the i-th cell. Formally:
edgeIfi ≔

∑m∈Pe
i

Ifm

∣Pe
i ∣

3. Interference created by the i-th cell (to be minimized): the name is self-
explanatory. Formally: createdIfi ≔

∑m∉Pi
PFi,mpigi,m

∣{m∉Pi}∣

4. Edge interference in the neighborhood of the i-th cell (to be minimized): defined
as the interference perceived by the users located at the edge of the neighbor
cells of the i-th cell. Formally: neighEdgeIfi ≔

∑j∈N (i) ∑m∈Pe
j

Ifm

∑j∈N (i) ∣Pe
j ∣

5. .75-Percentile of the cell utilization (to be minimized): Q(ρi, 3)

The following methods are compared: INITIAL corresponds to a static configura-
tion obtained during the exploration done by SA when n = 20 (see Fig. 5.3); FPI
corresponds to activating only the inner loop in Fig. 5.1; SA corresponds to using
both loops in Fig. 5.1, being the outer loop driven by SA; SOM+HC represents the
fully-implicit optimization approach proposed in Chapter 3 (i.e., Fig. 3.3); finally HY-
BRID represents the scenario in Fig. 5.1 with the ML Stage being a FFNN solving the
multioutput learning problem in the outer loop. The mean values of the above KPIs
over all the cells for multiple values of γm are shown in Fig. 5.7.

From Fig. 5.7, it is evident that the HYBRID method (the red-filled polygons)
proposed in this chapter outperforms all the other methods since it is ranked first (or
second) in almost all the scenarios for all the considered performance counters. When-
ever the HYBRID method was beaten, the winner was the long-lasting SA heuristic.
Therefore, we can deduce that sometimes the outer loop of the hybrid approach does
not perform as expected. This could be explained if we consider the performance in
Table 5.5 which should be close to 1 in an ideal scenario. Please remember that the
ground truth for training the neural network comes from many executions of SA before
the online execution of the hybrid approach on never-seen-before network scenarios.

5.4.5 Final Comments on Energy Savings

It is worth mentioning that the proposed solution is extendable to consider the ES
function, as suggested in Fig. 5.8, in which the median of the power factors (ηc

i ) has
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Figure 5.7: Network performance evaluation
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been calculated from the ML model. It is clear that for lower values of γm, some cells
are set with the lowest value of power in the set Dp (i.e., 0.5), whereas the maximum
value (0.8) will be set as γm increases. Therefore, if we extend Dp to consider zero as
a valid power factor, some cells could be switched off when the user’s traffic demand
is low. That is precisely what is expected from ES according to Section 2.2. Please
notice that the dips in the curve for higher values of γm represent underperformance
of the prediction done by the FFNN.

Figure 5.8: Median of η
c
i over all the cells.

5.5 Summary
A machine learning-driven optimization technique has been presented, which is appli-
cable to mobile network scenarios, given the knowledge of propagation loss values and
traffic signatures. We assume that this information is attainable, i.e., a function like
MDT is active in the network.

We introduced a machine learning stage that predicts the power factor configuration
from data rate requirements and user distribution information, whereas a fixed point
algorithm finds the optimal user association given a predicted power configuration. One
of the advantages of the proposed method is that it predicts the power configuration
non-iteratively, which is an important factor for networks that should adapt quickly
to the surrounding changes.



5 An extension of the Hybrid Approach: Including ICIC and ES 138

Another advantage is that the fixed point algorithm guarantees the best user associ-
ation given any power configuration prediction (regardless of whether it is optimal or
not). The method has been shown beneficial regarding the level of interference created,
composite network capacity indicators, and energy savings.

As in previous chapters, the main limitation of the proposed solution is to obtain
the amount of labeled data that is needed to train the ML Stage in the outer loop
of Fig. 5.1. We have seen that chain classifiers are more data-efficient than neural
networks (at least for the scenarios considered in this document) in the sense that
they outperform neural network models when the amount of training data is not that
big (see Section 4.4.3.4). Nevertheless, we have mentioned in Section 4.5 that there are
methods to deal with the lack of labeled data that are well suited for neural network
models, like transfer learning or unsupervised pre-training.

Another challenge is related to the SFR scheme implementation per se, and it comes
to the difficulty of defining a border between the edge and the center of the i-th cell.
In fact, simply identifying the cell coverage is a complicated task. In this chapter,
we have considered a normalized distance, calculated based only on the distance and
angle in the azimuth plane between UEs and gNBs, and compared that normalized
distance to a fixed threshold, known as Edge-to-Centre Boundary (ECB). When the
normalized distance happens to be larger than ECB, the UE is considered to be in the
edge (m ∈ Pe

i ) or the center (m ∈ Pc
i ) otherwise. We claim that different strategies

should be considered to account for the radio losses rather than the geographic location
of the UEs with respect to the base stations.
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6 Conclusions and Future Work

Throughout this document, we have presented different architectures for jointly opti-
mizing several SFs in a centralized manner. These architectures are fully compliant
with the specifications of SDOs as well as their perspectives in terms of design, re-
quirements, and expected research directions. We have proven that it is possible to
coordinate multiple SFs in a fully-implicit manner using a functional decomposition of
the problem in three domains: controllable, environmental, and utility planes (provided
there is enough data for training). This kind of approach is especially useful in net-
work management scenarios in which the network owner has no deep knowledge about
network optimization, which could be the case in campus networks or N-PLMNs or in
scenarios in which the network optimization becomes that interleaved that closed-form
solutions or classical optimization heuristics are impossible to use.

We have shown that the associated high dimensional optimization problem can be
rendered in a low dimensional space in which the optimization process becomes human-
readable, and therefore it can be formulated as a simple lookup procedure in the low
dimensional space (based on the current environmental conditions of the network)
followed by controlled changes in the parameter set.

We demonstrated that it is possible to use this fully-autonomic approach by chaining
multiple ML models, provided there is a large enough1 amount of data in the OSS.
Typically that is the case if the operators store FCAPS information in a data lake.
However, we are well aware that the stored data could not have that much variance,
especially in the controllable part. To elaborate a bit more on this regard, please
consider the following hypothetical scenarios:

• If a suboptimal configuration was accidentally set in a real network and there
was QoS degradation, a rollback should occur as soon as possible (limiting the
number of samples gathered during misconfiguration).

• In network deployments where an online exploration of parameters is not viable,
the operators will probably keep the default configuration, usually provided by

1What large enough means in this domain still needs to be characterized.



6 Conclusions and Future Work 140

the vendors.

Based on these scenarios, we can deduce that the datasets from a real network could
be imbalanced or sparsely populated. Additionally, it is evident that getting more
labeled data is expensive in the real world (no operator is willing to trade user unsat-
isfaction to get online insights about inappropriate configuration sets). The tradeoff
between spending more resources collecting more information or developing more so-
phisticated ML models has already been discussed [96, 97]. Fortunately, there are
promising methods (especially tailored for neural networks) to face the lack of training
data, namely transfer learning and unsupervised pretraining, which should be visited
in future work.

Strong assumptions were also made considering the environmental variables, for
instance, about the availability of the mean velocity of a user in a specific cell. We
claim variables like that could be calculated through proxy variables, for instance, the
permanency time in a cell (which could be obtained from Call Detail Records - (CDR)
information) and the approximate cell size.

Solving the coordination problem in a fully-implicit and centralized way also imposed
a high dimensionality on the framework in case we want to take advantage of the global
visibility of the variables (gaining observability of intra- and inter-cell conflicts) and set
the complete parameter set at once. Therefore, that approach comes with the curse
of dimensionality, which is an issue for many ML models. Fortunately, models like
perceptrons and neural networks are robust to that problem. That is why throughout
the whole thesis, we tried to land in the neural network domain, even though, for
training a deep neural network, more training data is required due to the number of
parameters (weights in the neural network that need to be found), especially for fully
connected networks.

To reduce the dimensionality of the joint optimization problem, we modified
the fully-implicit approach and proposed a hybrid framework in which the high-
dimensional MLB dynamics are characterized in a closed-form manner (finding a fixed
point in the so-called load estimation problem [98]) whereas other SFs (like CCO,
ICIC, and ES) are optimized using ML. Of course, both paths are interleaved in a
single optimization task using a common utility function. While jointly optimizing
the utility function, it is possible to achieve implicit coordination among the SFs.

We observed that the hybrid approach outperformed the fully-implicit framework
and the selected benchmark schemes assuming the same amount of information, mean-
ing that the hybrid approach is more data-efficient for this type of problem. It is es-
sential to keep in mind that while optimizing mobile networks using ML, the scarcity
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of data for training is almost as important as the scarcity of radio resources.
For future work, it could be interesting to solve the so-called power estimation prob-

lem [98, 99]. To illustrate the formulation of this problem, the cell utilization estimation
is presented again in Eq. (6.1).

(∀i ∈ B) ρi = ∑
l∈Pi

γl

ci,l(ρ, p,P) , (6.1)

Multiplying both sides of Eq. (6.1) by pi/ρi, we end up with a system of non-linear
equations implicitly defined with respect to the power allocation (p):

(∀i ∈ B) pi =
pi

ρi
∑
l∈Pi

γl

ci,l(ρ, p,P) , (6.2)

As shown in [99], it is possible to solve this system using FPI, as we have done
throughout this document. We claim that solving that problem gives a closed-form
way of dealing with ICIC and ES since the power vector estimation can be carried out
by finding the fixed point of a so-called standard interference mapping as proposed in
[99], in which the implicit nonlinear system in Eq. (6.2) is solved for the power vector
(rather than the utilization vector). The reasoning behind this is that it has been
proven that the data rate requirement of users (γm) can be satisfied with lower transmit
energy if we allow the cell utilization to increase (we sacrifice the load balancing to
some extent). Additionally, acceleration methods for the FPI are proposed in [98] and
could be helpful, especially if the network size increases.

In addition, for future work, it is interesting to consider different values for α in the
α-fairness function used in Chapters 4 and 5. Of particular interest is the scenario
when α = 2. As we saw in Section 4.2.1, if α = 2, the delay associated with the
scheduling should be reduced. To prove this, the inner loop in our hybrid approach is
applied to the network layout we used throughout this thesis for several values of α.
During the first two seconds of simulation, all the UEs are attached to the network
and the application traffic is triggered. At the second 2, all the CIO values in the
network are intentionally shuffled to simulate a hypothetical suboptimal state. Five
seconds later (i.e. second 7), the inner loop is triggered. The results considering the
delay measured in the Packet Data Convergence Protocol (PDCP) layer are shown in
Fig. 6.1. It is evident that minimizing Φ2 has an impact on the latency as measured in
the upper layers. We claim this could be useful for delay-sensitive traffic, e.g., URLLC
scenarios in 5G.
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Figure 6.1: Mean user delay, as seen in the PDCP layer.

Even though we only focus on mobility optimization (i.e. MRO) in Chapter 32,
we claim it is possible to incorporate MRO into the hybrid approach. To do so, we
further constrain the optimization task to find the best possible amount of "overlap" of
the received power signatures from two neighboring cells. The overlap should be large
enough to avoid RLFs due to too-early HOs but should not be that large, in order to
avoid RLFs due to too-late HOs. Formally, the overlap region (Oi) of the i-th cell with
its neighbors is defined as:

(∀i ∈ B)Oi ≔
1

∣ Pi ∣
∑

m∈Pi

1im (6.3)

with

(∀i ∈ B)(∀m ∈ S) 1im ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ∃ i
′
≠ i ∣ ∣pigim − pi′gi′m∣ ≤ Hi, i

′
∈ B

0 otherwise
(6.4)

1im in Eq. (6.4), checks whether the received power from (at least) two different
cells i, i

′ is good enough so any of both cells can be selected as a destination cell in
potential HO procedure. Therefore, to consider HO optimization, we could formulate
the global optimization problem as in Eq. (6.5).

2The main reason is that nowadays, around 95% of internet data volume is generated by static or
quasi-static users.
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minimize
P,ρ,e,H

Φα(ρ)

subject to ρ ∈ Fix(Tp,e,γ,P)
0 ≤ ρ ≤ 1

e ∈ DB
e

C(e) ≥ Cmin

Omin ≤ O(e, H) ≤ Omax

(6.5)

An option to deal with the optimization proposed in Eq. (6.5) would be to solve a
surrogate optimization problem in which a utility function (U) is enhanced to consider
the overlap degree, as we did in Chapter 4. With this formulation, we claim the
proposed hybrid approach covers the coordination of all the canonical self-optimization
SFs.

Of course, the dynamics among the variables in the problem in Eq. (6.5) are more
interleaved now and the parameter space is larger, so more exploration for training
the outer loop of the hybrid approach would be needed. Therefore more runtime is
necessary in order to get meaningful training data. The challenge is two-fold now:
sacrificing the runtime to gather more training data and finding methods for learning
from smaller sets.
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A Self-Organizing Maps and
Hierarchical Clustering

Self-Organizing Maps (SOM) in the SF coordination scenario are used to translate a
high-dimensional optimization problem to a low-dimensional space in which the "rede-
fined" optimization problem can be posed as a simple lookup. This is possible due to
the fact that the dimensionality reduction is not naive (it is not a classical unsuper-
vised dimensionality reduction method), in the sense that it also considers information
about the target variable to accommodate the information in the low-dimensional space
(what is called a supervised or semi-supervised dimensionality reduction). We claim
the redefinition of the joint optimization problem is feasible because it is possible to
reuse a parameter set (K) in multiple environmental conditions (E). Likewise, multi-
ple combinations of different environmental (E) and controllable variables (K) could
yield the same KPI values (U). As a matter of speaking, we "cluster" the K-E-U infor-
mation in a supervised manner, i.e., without losing information about the underlying
model h(⋅).

SOM corresponds to a low-dimensional projection and visualization technique that
compresses information while preserving the most important topological relationships
of the input data. They are a special kind of ANN that can handle high-dimensional
datasets with little a priori information or assumptions concerning the statistical dis-
tribution of the input data. It exhibits a shallow architecture consisting of an input
layer and a two-dimensional (2D) grid as the output layer whose dimensions are xdim

and ydim respectively, as shown in Fig. A.1.
Every neuron is fully connected to the n variables of the input layer. For the sake of

clarity, only the connections to 2 output neurons are shown in Fig. A.1. The weights
of the connections between a neuron and the input layer correspond to the "signature"
of the neuron. Every unit clusters input data samples with the same distribution as
the neuron’s signature.

Additionally, the neurons on the grid are interconnected to each other through a
neighborhood relationship. Therefore changes in the signature of one output neuron
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also affect the neurons in its neighborhood1.

wi(t)

ydim

xdim

wj(t)

x1(t) xn(t)
...

Figure A.1: SOM - Fully connected output and input layers.

For the sake of simplicity and without loss of generality, we start explaining the
training of an unsupervised SOM (i.e., without considering the target variable), and
afterward, we include the target information to train what is called a Super-Organizing
Map. Generally speaking, the training process of an unsupervised SOM is an iterative
process as shown in Algorithm 6.

Let X ∈ Rm×n be the training set with m samples and n number of features or
dimensions. Let t ∈ Z+ be a training iteration index. The set of neurons in the grid
is represented by the set C. The initialization approach of a SOM taking place in
line 3 in Algorithm 6 mainly affects the training speed [100]. Once a data point is
received (x(t)), a so-called Best Matching Unit (BMU) (c(x) ∈ C) is found. A BMU
corresponds to the neuron with the closest signature2 to the input data (x(t)). The
closeness notion here depends on a predefined distance metric. Although in line 6 in
Algorithm 6, the Euclidean norm has been used, multiple distances can be considered,
e.g., Manhattan, Tanimoto, or Mahalanobis distances [100].

1This unique feature is used to control the overfitting level of the SOM model [100].
2As mentioned before, a neuron’s signature corresponds to the weights vector in Fig. A.1.
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The learning rate of the SOM (δ(t)) is a function that decreases from a value δ0

with an increasing number of iterations. The update of δ(t) takes place in line 7 in
Algorithm 6. Afterward, the so-called Neighborhood Function (ζ(t)) is also adapted as
in line 8 in Algorithm 6. Let dc,i be the distance (w.r.t the predefined distance metric)
between the ith neuron in the grid and the BMU c(x), the so-called Neighborhood
Distance Weight function (hc,i(t)) is adjusted as in line 9 in Algorithm 63.

Finally, after each iteration, all the weights in the grid are adapted considering the
current data sample x(t). The type of update in line 10 in Algorithm 6 is called an
online update [100].

Algorithm 6: Training Process of an Unsupervised SOM
1: INPUT: X, tmax, δ0, δend, ζ0
2: INITIALIZE: learning step t = 1
3: INITIALIZE: randomly initialize the units signatures (∀i ∈ C)wi(t) ∈ Rn

4: while t < tmax do
5: Get random input data point: x(t) ∈ Rn

⊂ X
6: Find BMU: c(x) ∈ argmin

i∈C
∥ x(t) − wi(t) ∥2

7: Update Learning Rate: δ(t) = δ0 ( δend
δ0

)
t

tmax

8: Update Neighborhood Function: ζ(t) = ζ0 (1 − t

tmax
)

9: Update Neighborhood Distance Weight: hc,i(t) = e
−

d
2
c,i

2δ(t)2 (∀i ∈ C)
10: Update Unit’s Signatures: wi(t + 1) = wi(t) + δ(t)hc,i(t)[x(t) − wi(t)]

(∀i ∈ C)
11: end while
12: OUTPUT: Trained Unsupervised SOM

After reaching the maximum number of iterations tmax, the unsupervised SOM is
fully trained. A graphical interpretation of the main steps in Algorithm 6 is shown in
Fig. A.2.

Since the number of nodes on the grid (∣C∣ = xdimydim) can be larger than the
number of samples in the training set, several nodes that are not linked to any data
point of that respective dataset could exist. A measure of this phenomenon can be
obtained through the so-called "quality" plot [77] of a SOM, which is typically available
in statistical packages. Naturally, it is desired to have grids of high quality. We face a
situation where low-quality SOM affects the SF coordination approach in Section 4.4.

In order to include information about the target variable, i.e., to generate a super-
vised clustering model, it is needed to gather information for both dependent (y ∈ Rm)

3Multiple strategies for updating δ(t), ζ(t), and hc,i(t) are available in [100].
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x(t)

wi(t + 1)

wi(t)

BMU: c(x)

Update BMU’s signature

BMU’s vector code

Updated vector code

Neighborhood: hc,i(t)

Input vector

Find the BMU

Figure A.2: SOM - training process

and independent variables (X ∈ Rm×n). To train a supervised SOM, a second grid
(characterizing y) is chained to the trained SOM in Algorithm 6. The training of the
second stage is shown in Algorithm 7. Even though at first glance, it could look pretty
similar to the one presented in Algorithm 6, there are slight differences in terms of the
dimensionality of the signatures, as well as the determination of the BMU. The main
considerations are posed as footnotes below the algorithm.
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Algorithm 7: Training Process of a Supervised SOM
1: INPUT: Trained Unsupervised SOM from Algorithm 6,X, y, tmax, δ0, δend, ζ0

2: INITIALIZE: learning step t = 1
3: INITIALIZE: Initialize signatures Supervised SOMa (∀i ∈ C)wi(t) ∈ R
4: while t < tmax do
5: Get random input data point: x(t) ∈ Rn

⊂ X, y(t) ∈ R ⊂ y
6: Find BMUb: c(x) ∈ argmin

i∈C
∥ x(t) − wi(t) ∥2

7: Update Learning Rate: δ(t) = δ0 ( δend
δ0

)
t

tmax

8: Update Neighborhood Function: ζ(t) = ζ0 (1 − t

tmax
)

9: Update Neighborhood Distance Weight: hc,i(t) = e
−

d
2
c,i

2δ(t)2 (∀i ∈ C)
10: Update Unit’s Signaturesc: wi(t + 1) = wi(t) + δ(t)hc,i(t)[y(t) − wi(t)]

(∀i ∈ C)
11: end while
12: OUTPUT: Trained Supervised SOM

aIn this stage, the signature for every unit in the supervised SOM is not a vector, as we have a single
output scenario

bPlease note that the BMU is obtained considering only the independent variables, i.e., x(t), which
means the BMU is selected considering the already trained unsupervised SOM

cNote that the weight that is updated here corresponds to the second grid, therefore it is a single
value per unit rather than a codevector
By combining the unsupervised and the supervised SOM, the former is used to

select the BMU for each data point while the latter links the selected BMU to a
specific regression estimate.

All in all, the SOM training process can be understood as the coexistence of "compe-
tition" and "cooperation" stages. During the competition, neurons in the grid compete
with each other to become the BMU, whereas, during the cooperation, a topological
neighborhood is created and updated such that the BMU will be located at the center
of the neighborhood [101].

The aforementioned SOM algorithms can be applied to large data sets. The com-
putational complexity scales linearly with the number of data samples (m) [102]; it
does not require huge amount of memory — basically just the signature vectors and
the current training vector. Nevertheless, the complexity scales quadratically with the
number of map units, i.e., xdim and ydim [102].

Just as we did for chaining two grids (the unsupervised and the supervised maps), it
would be possible to stack more grids and carry out an incremental training process,
ending up with a so-called Super-Organizing Map. The number of layers depends on
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the functional separation of the data and the specifics of the problem to solve. As
we see in Chapters 3, 4, and 5, we split the automatic coordination among SFs into
three functional domains: controllable, non-controllable, and utility domains. As we
see in Chapters 3, 4, and 5, with a Super-Organizing Map we obtain insights about
how to move in the low dimensional space to improve a utility function. However,
that movement is constrained to environmental conditions (since they are beyond the
operator’s control). Therefore, to estimate a step size (in the best possible direction),
an additional clustering stage can be carried out, as explained below.

Combined SOM-Ward Clustering Analysis

An additional clustering layer could be stacked on top of a Super-Organizing Map.
Clustering the SOM rather than clustering the data directly has two benefits [102]:

1. Reduction of the computational cost. In [102], the reduction of the computational
load is estimated in

√
m/15, with m the number of samples in the training set.

2. Noise reduction4. The signatures in the SOM grid5 are "local averages" of the
data and, therefore, less sensitive to random variations than the original data.

A well-studied representative of these methods is the SOM-Ward clustering grouping.
Several studies have shown the effectiveness of the SOM-Ward combination compared
with state-of-the-art techniques [101], [102], [103] .

From the taxonomy perspective, the SOM-Ward clustering grouping is considered
a hierarchical agglomerative (bottom-up) method. The hierarchical term expresses
that a kind of tree is generated, in which every leaf corresponds to a cluster. The
term agglomerative (or bottom-up) means that the tree starts being populated from
the bottom and reaches the root corresponding to the whole dataset. Usually, that
dynamic is represented using a dendogram, like the one presented in Fig. A.3.

Let r and s represent two clusters, nr and ns the number of samples associated with
each cluster, whereas wr and ws correspond to the center of gravity of the clusters.
The process of generating the clustering on top of the SOM grid, using the so-called
Ward distance, is shown in Algorithm 8.

4Many clustering techniques require the clusters to be compact and well separated. However, in
real applications, this is rarely the case. Instead, the gaps between clusters are blurred due to the
noise, the clusters overlap, and the outliers.

5Also known as "prototypes" in [102]
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Figure A.3: Dendogram

Algorithm 8: Process to obtain a Dendogram out of a SOM
1: INPUT: Trained Unsupervised SOM from Algorithm 6
2: INITIALIZE: t = 1
3: INITIALIZE: Each unit in SOM is a cluster
4: while t > 1 do
5: Compute distance among clusters: dr,s(t) ≔ nr(t)ns(t)

nr(t)+ns(t)
∥ wr(t) − ws(t) ∥2

6: Merge the two clusters that are closest to each othera.
7: Update the cardinality: nr(t + 1) ≔ nr(t) + ns(t)
8: Update center of gravity: wr(t + 1) ≔ nr(t)wr(t)+ns(t)ws(t)

nr(t)+ns(t)
9: t = get number of clusters left

10: end while
11: OUTPUT: Dendogram for clustering the low-dimensional representation

aFor instance, let cluster r absorb cluster s

Usually, some modifications could be implemented regarding the line 5 in Algorithm
8 to consider some specifics about SOM. On the one hand side, to cope with empty
neurons, an adjustment to the distance is shown in Eq. (A.1).

d
′
r,s(t) ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 nr(t) = 0 or ns(t) = 0
nr(t)ns(t)

nr(t)+ns(t)
∥ wr(t) − ws(t) ∥2 otherwise

(A.1)

Additionally, to take into account the topological properties of the SOM grid, two
neurons that are not adjacent in the grid are never considered to be merged, see Eq.
(A.2).
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d
′′
r,s(t) ≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
′
r,s if r and s are adjacent in the grid

∞ otherwise
(A.2)

Of course, multiple versions of Eq. (A.1) and Eq. (A.2) are available, and they
can be tailored to accomplish a specific task, e.g., rather than assigning ∞ distance
whenever two clusters are not adjacent, it would be possible to assign a distance that
increases exponentially concerning the relative position between clusters s and r. In
that manner, the connectivity of the resulting clusters is obtained more smoothly.

However, the output dendogram from Algorithm 8 does not provide a unique clus-
tering, as shown in Fig. A.3. Fortunately, there are many techniques to find the
appropriate number of clusters (∣Ck∣) and prune the dendogram, for instance, the
Elbow, Siluethe, Gap Statistic methods among others [104], which try to follow the
classical definition of clustering: a partitioning that minimizes distances within and
maximizes distances between clusters. Throughout this thesis, we use the well-known
Elbow method, which looks at the total WSS, which measures the compactness of the
clustering.
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B Uniform Manifold Approximation
and Projection - UMAP

UMAP is a relatively modern technique that excels at reducing the dimensionality from
an extremely high number of dimensions1 and it is commonly used for visualization,
like in the case of SOM in the Appendix A. It was introduced in [105], and it is made of
two steps: first, the construction of a high-dimensional graph followed by force-directed
placement of the graph into a low-dimensional space.

Once again, let X ≔ {xi} ∈ Rm×n be the training set with m samples and n number
of features and d(xi, xj) a distance metric between two instances of the training set xi

and xj, i.e., d ∶ X × X → R+.
The general steps of UMAP are shown in Algorithm 9, which offers a slight adap-

tation from [106]. First, the generation of a weighted high-dimensional (k-neighbor)
graph G takes place from lines 2 to 7 in Algorithm 9. The main hyperparameter for
this part of the algorithm is k (the number of nearest neighbors in the high dimensional
space every point is allowed to have), which models a tradeoff between conserving the
local structure (i.e., specifics of the data set, since a relatively low value for k results
in many small and independent clusters) versus the global structure of the data (i.e.,
the main characteristics of the data set). If k is high, the global structure is conserved,
whereas if k is low, the local structure of the input data is conserved. Finding the
suitable k is usually carried out through grid search procedures, as we see in Section
3.3.1.3.

1To get an idea, the "hello world" example for UMAP consists of reducing the dimensionality of
the well-studied MNIST dataset which has an input dimension of 784 into 2D or 3D keeping the
topological characteristics of the input data.
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Algorithm 9: UMAP Algorithm
1: INPUT: X, k, a, b, ε

2: Find a set of k neighbor points: θi ∀i = 1, ..., m

3: Find nearest neighbor and the distance: (∀i)(∀xj ∈ θi)ξi ≔ min(d(xi, xj))
4: Solve for χi ∀i = 1, ..., m in: ∑xj∈θi

e
−max(0,d(xi,xj)−ξi)

χi = log2k

5: Find matrix Aa with elements: w(xi, xj) = e
−max(0,d(xi,xj)−ξi)

χi

6: Calculate Bb: B = A + AT − A ◦ ATc

7: Create Graph G ≔ (V , E , B)d

8: Mapping to low-dimensional space: H = GraphLayout(G, a, b, ε)
9: OUTPUT: Graph H

aOne could interpret Aij as the probability that a directed edge from xi to xj exists
b
Bij is the probability that at least one of the two directed edges (from xi to xj and from xj to xi)
exists

c◦ is the Hadamard (or pointwise) product
dThe vertices V of the graph G correspond to the set X whereas the weight of the edges E is given

by the adjacency matrix B
Second, to project G to a low-dimensional space keeping the topology properties,

a force-directed graph layout algorithm is used, obtaining a new induced graph H.
Without losing generality, and to keep Algorithm 9 simple, we aggregate the whole
second stage of UMAP into a single function called GraphLayout(G, a, b, ε) (line 8 in
Algorithm 9). If implementation details are needed, [105] could be a starting point.
Let x′

i, i = 1, ..., m be the coordinates of an input data point in the low-dimensional
space, i.e., x′

i ∈ Rn′

, with n
′
<< n, and let a, b, and ε be algorithm hyperparameters,

then the attractive force between two vertices i and j (Fa
i,j) is defined as in Eq. (B.1),

whereas the repulsive force (Fr
i,j) is defined as in Eq. (B.2).

Fa
i,j ≔

−2ab∣∣x′
i − x′

j∣∣
2(b−1)
2

1 + ∣∣x′
i − x′

j∣∣2
2

w(xi, xj)(x′
i − x′

j) (B.1)

Fr
i,j ≔

2b

(ε + ∣∣x′
i − x′

j∣∣2
2)(1 + a∣∣x′

i − x′
j∣∣2b

2 )
(1 − w(xi, xj))(x′

i − x′
j) (B.2)

GraphLayout(G, a, b, ε) proceeds by iteratively applying the predefined attractive
and repulsive forces at each vertex during a long enough number of iterations or until
convergence with respect to some metric is achieved2. This metric is usually the edge-
wise cross-entropy between graphs G and H, which is meant to be minimized [105],

2This mechanism resembles the competition-collaboration harmony in SOM (see Appendix A).
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[107]. GraphLayout(G, a, b, ε) aims at solving a non-convex optimization problem
[105], and the convergence to a local minimum is guaranteed by slowly decreasing the
attractive and repulsive forces in a similar way to the reduction of the learning rate in
SOM training (see Appendix A) or the temperature cooling down scheme in simulated
annealing (see Appendix E).

Hierarchical Density-Based Spatial Clustering of Applications with Noise
-HDBSCAN

As we did with the SOM-Ward clustering grouping in Appendix A (and for the same
reasons), we study the grouping of UMAP and HDBSCAN, which has been proven
recently to exhibit outstanding performance while clustering noisy data in a low-
dimensional space [107, 108]. HDBSCAN was initially proposed in [109], and it is
an extension of the clustering algorithm Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) which was proposed in [110, 111]. HDBSCAN only needs
an input parameter: mpts, which can be interpreted as the number of neighboring
points in a low-dimensional space. Let X′

≔ {x
′
i} ∈ Rm×n′

be the data set in the low-
dimensional space induced by H (output from Algorithm 9). To formally introduce
HDBSCAN, the following definitions are taken from [109]:

Definition B.0.1 (Core Distance). The core distance of an instance x′
i ∈ X′ w.r.t.

mpts, dcore(x′
i), is the distance from x′

i to its mpts-nearest neighbor (incl. x′
i).

Definition B.0.2 (Mutual Reachability Distance). The mutual reachability distance
between two objects x′

i ∈ X′ and x′
j ∈ X′ w.r.t. mpts is defined as dmreach(x′

i, x′
j) =

max {dcore(x′
i), dcore(x′

j), d(x′
i, x′

j)}.

Definition B.0.3 (Mutual Reachability Graph). It is a complete graph, Gmpts , in
which the objects of X′ are the vertices, and the weight of each edge is the mutual
reachability distance w.r.t. mpts (see Definition B.0.2) between the respective pair of
objects.

Considering the previous definitions, the HDBSCAN method is sketched as in Al-
gorithm 10, which was adapted from [112].
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Algorithm 10: HDBSCAN Algorithm
1: INPUT: X′, mpts

2: Compute the core distances: dcore(x′
i) ∀ x

′
i ∈ X′ (see Definition B.0.1)

3: Compute the Mutual Reachability Graph: Gmpts (see Definition B.0.3)
4: Compute a Minimum Spanning Tree (MST)a out of Gmpts

5: Extend the MST by adding for each vertex a "self-edge" with the core distance
dcore(x′

i) ∀ x
′
i ∈ X′ of the corresponding object as weight.

6: Generate a dendogram out of the extended MST [112]
7: Condense the dendogram using the "Excess of Mass" Method [109]
8: Obtain the final clusters using the stability concept: S(Ck)
9: OUTPUT: Set of clusters: {Ck}

aA Spanning Tree is a subset of the graph which covers all vertices with the minimum possible edges.
A MST is a spanning tree with minimum cost in a weighted graph. There are multiple methods
to obtain the MST like Prim’s, Kruskal’s, or Dual-Tree Boruvka methods, however, a detailed
description is out of the scope of this document.
As we did in Appendix A, a dendogram is generated from lines 1 to 6 in the Algorithm

10. Having the dendogram, we could use a technique to prune it as we did in Appendix
A, i.e., we could draw a horizontal line through the dendogram and select the clusters
that it cuts through. As a matter of fact, that is how DBSCAN works.

Fortunately, HDBSCAN offers a way to condense the dendogram and automatically
generate a smaller tree with a little more data attached to each branch. This is done
through the "Excess of Mass" method proposed in [109], which requires a hyperparam-
eter called: minimum cluster size. Once again, a grid search is needed to select the
best values for this parameter, as shown in Section 3.3.1.3.

To extract the final set of clusters ({Ck}), a stability metric is defined based on the
so-called Λ-values (Λ ≔ 1/(distance on dendogram)) as in Eq. (B.3) [109]:

S(Ck) ≔ ∑
x′

i∈Ck

(Λmax(x′
i, Ck) − Λmin(Ck)) (B.3)

where Λmin(Ck) is the minimum density level at which Ck exists3, and Λmax(x′
i, Ck) is

the density level beyond which object x′
i no longer belongs to cluster Ck. Intuitively,

Eq. (B.3) computes the "area" of every cluster, and we want to keep the ones that
exhibit the greatest areas of "ink" in the plot (compared with the parent’s areas).
Using dummy data, and for the sake of clarity, the steps above are reproduced using
a statistical package to illustrate the whole process as in Fig. B.1

3That means, the Λ-value when the cluster split off and became its own cluster
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(b) MST as in line 5 in Algorithm 10

(c) Dendogram as in line 6 in Algorithm
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Figure B.1: HDBSCAN in a nutshell
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C Reinforcement Learning

RL is a category within machine learning designed to solve a Markov Decision Pro-
cess (MDP). It is quite different from traditional supervised or unsupervised learning
techniques since it is designed to let an agent learn online through interaction with an
environment. RL aims to find an optimal policy that maps environmental conditions
to the best possible actions to maximize a numerical reward (or minimize a penalty).

Let S be the state space of the system, let A be the set of actions an agent can
take, let T ∶ S × A × S → [0, 1] be a transition function, let R ∶ S × A × S → R
be a reward function, and let Γ ∈ [0, 1] be a reward discount factor. At each time
step (t = 0, 1, ...), the agent receives information about the environment state through
st ∈ S; based on that state, the agent takes an action at ∈ A, forcing to move the
system to a different state st+1 ∈ S while obtaining a reward rt+1 ∈ R.

During the training process, the agent updates the so-called agent’s policy: π
1 to

maximize the total reward in the long term, as defined in Eq. (C.1) [113], [114]:

Rt ≔

∞

∑
k=0

Γk
rt+k+1 (C.1)

If Γ is close to zero, the method is called myopic [114] (which means it aims at immedi-
ate high rewards), whereas if Γ is close to 1, the algorithm maximizes future rewards.
Additionally, let us define the value of a state s ∈ S as the expected future return
associated to follow the policy π starting from s, as in Eq. (C.2).

V
π(s) ≔ Eπ {Rt∣st = s} = Eπ {

∞

∑
k=0

Γk
rt+k+1∣st = s} (C.2)

Likewise, the state-action value (a.k.a Q-values) is defined as the expected reward
if we choose action a in state s and follow the policy π afterward, as in Eq. (C.3)

1Short for π (s, a), which represents the probability of taking the action a at time t (at = a) when
the system is in state s (st = s)



C Reinforcement Learning 160

Q
π(s, a) ≔ Eπ {Rt∣st = s, at = a} = Eπ {

∞

∑
k=0

Γk
rt+k+1∣st = s, at = a} (C.3)

Let P
a
ss′ be the probability of transitioning from state s to s

′ given the agent has
chosen action a, as in Eq. (C.4).

P
a
ss′ ≔ Pr {st+1 = s

′∣st = s, at = a} (C.4)

Let R
a
ss′ be the expected reward after transitioning to state s

′ from state s while
applying action a, as in Eq. (C.5).

R
a
ss′ ≔ E {rt+1∣st = s, at = a} (C.5)

In order to intuitively understand the uncertainty factors in a state transition, please
consider Fig. C.1 which shows a stochastic transition from state s to state s

′ after
taking action a in the initial state. Please notice that the red state (the so-called
Q-state) is a theoretical abstraction used to show the uncertainty both in the action
to take (a) as well as in the landing state (s′).

s

s
′

(s, a)

(s, a, s
′)

s and s
′ are states

a is an action

a

(s, a) is called a Q-state
(s, a, s

′) is a transition

π(s, a)

P
a
ss′

Figure C.1: Transition dynamics in a MDP.

Based on Fig. C.1, it is possible to reformulate Eq. (C.2) and Eq. (C.3) in a different
manner:

V
π(s) = ∑

a∈A
π (s, a) ∑

s′∈S

P
a
ss′ [R

a
ss′ + ΓV

π(s′)] (C.6)
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Q
π(s, a) = ∑

s′∈S

P
a
ss′ [R

a
ss′ + ΓV

π(s′)] (C.7)

Eq. (C.6) and Eq. (C.7) are called the Bellman Equations for the value function
and state-action function, respectively. The first sum on the right-hand side of Eq.
(C.6) goes over all the possible actions in state s (see the upper part of Fig. C.1).
The second sum in Eq. (C.6) is taken over all the possible next states (see the bottom
part of Fig. C.1). The term in squared brackets in both equations corresponds to the
immediate reward R

a
ss′ plus the future discounted rewards from the next state onwards

(ΓV
π(s′)).

Let V
∗(s) ≔ max

π
V

π(s)∀s ∈ S be the optimal value function and Q
∗(s, a) ≔

max
π

Q
π(s, a)∀s ∈ S,∀a ∈ A be the optimal state-action function. It is possible to

show that [115]:
V

∗(s) = max
a∈A

Q
∗(s, a) (C.8)

If a
∗ is an action at which the maximum of Eq. (C.8) is attained, then the optimal

policy is given by π
∗(s) = a

∗ [115].
Therefore, if an agent learns the Q-values, it can optimally decide what to do next

based on its current state. However, according to Eq. (C.7), finding Q
∗(s, a) implies

the knowledge about P
a
ss′ and R

a
ss′ (these quantities are known as the system model)

and solving a system of equations afterward.
Unfortunately, the system model is hardly available in real scenarios. Therefore,

some model-free methods to estimate Q
∗(s, a) are available within the domain of Time

Difference Learning (TDL). Q-Learning is a well-established model-free approach to
estimate the optimal state-action function [115].

The recursive equation used by Q-Learning is as in Eq. (C.9).

Qt+1(st, at) = (1 − δt)Qt(st, at) + δt {rt + Γmax
at+1

Q(st+1, at+1)} (C.9)

where δt ∈ (0, 1] is an adaptive learning rate. In Algorithm 11 it is shown the
complete Q-Learning method [115].
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Algorithm 11: Q-Learning Algorithm
1: INPUT: tmax

2: INITIALIZE: t = 1, randomly assign Qt(st, at)
3: while t < tmax do
4: Observe the current state: st

5: Choose an action at based on an ϵ-greedy policya

6: Observe the subsequent state: st+1

7: Observe the received payoff: rt

8: Update Qt+1(st, at) using Eq. (C.9)
9: st = st+1

10: end while
11: OUTPUT: Q

∗(s, a) = Qt+1(st, at)

aAt each iteration t, the agent chooses a random action at with a probability ϵ or an optimal action
given by at = π(st) with a probability 1− ϵ. ϵ monotonically decreases from 1 at the beginning of
the iterations to 0, forcing the agent to take only optimal actions once the agent is trained with
the optimal policy.
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D Multilabel Learning Problem

A multilabel learning task receives as input a training set {(x1, y1), ..., (xm, ym)} which
has m samples and aims to find a model h ∶ X → Y , with Y = {0, 1}B that predicts the
binary value for each output, indicating a high (1) or low (0) value for a cell parameter.
Under this definition, the number of parameters to optimize is given by B (the number
of cells), and the size of the optimization space is given by 2B. A description of
the major multilabel classification families (namely, multioutput classifiers and chain
classifiers) is given below.

Multioutput Classifiers

The strategy behind multioutput classifiers in Fig. 4.5 consists of fitting one traditional
classifier per output (cell) [91, 89, 90]. For a multioutput classification problem with
B outputs, B binary classifiers are trained using X , as indicated in Eq. (D.1).

hj ∶ X → {0, 1} (D.1)

Standard classifiers can be used in this family, e.g., decision tree, k-neighbors, multi-
layer perceptrons, random forest, and ridge classifiers, among many others. Rather
than visiting the details of any of those well-established classifiers, we spend some
time discussing the evaluation metrics for a multilabel task because those metrics
allow us to pick the best model among the vast number of candidates. If details about
individual models are needed, [76] is a good starting point.

The so-called label-based evaluation measures decompose the evaluation process into
separate evaluations for each model (hj), which are subsequently averaged over all the
outputs [91]. Any metric for binary evaluation could be used here, such as accuracy,
the area under the Receiver Operating Characteristic (ROC) curve, precision, or recall.
Therefore, we review some basic definitions:

• let TP be the true positive samples (that were correctly predicted as 1),

• let FP be the false positive samples (that were wrongly predicted as 1),
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• let FN be the false negative samples (that were wrongly predicted as 0),

• and let TN be the true negative samples (that were correctly predicted as 0).

The well-known classification performance metrics are defined as follows:

• The classification precision is defined as [76]: precision ≔
TP

TP+FP

• The recall (a.k.a sensitivity) [76]: recall ≔ TP
TP+FN

• The F1 metric, which measures the compromise between precision and recall
through the harmonic mean between both [76], F1 ≔

2
1

precision+
1

recall

• The ROC curve plots the recall in the vertical axis against the False Positive
Rate (FPR) [76], defined as: FPR ≔

FP
FP+TN . FPR is equal to 1-True Negative

Rate (TNR), which is the ratio of negative instances that are correctly classified
as negative. The TNR is also called specificity. Hence, the ROC curve plots
recall versus 1-specificity. A perfect classifier will have an Area Under ROC
Curve equal to 1, whereas a purely random classifier will have an Area Under
ROC Curve equal to 0.5.

However, the above list applies only to single-output learning tasks. As we saw, all
of them depend on the tuple (TP, TN, FP, FN). Let H(TP, TN, FP, FN) generalize
any of the previous metrics. To apply them in a multilabel scenario, an aggregation
is needed. There are two main types of aggregation (averaging), the macro-averaging
(see Eq. (D.2)) and micro-averaging (see Eq. (D.3)) [91]:

Hmacro =
1
B

B

∑
j=1

H(TPj, TNj, FPj, FNj) (D.2)

Hmicro = H (
B

∑
j=1

TPj,
B

∑
j=1

TNj,
B

∑
j=1

FPj,
B

∑
j=1

FNj) (D.3)

The micro-averaging differs from macro-averaging for precision, recall, and area
under the ROC curve metrics [91].

To select the adequate metric, a rule of thumb is used: one should prefer the F1
metric whenever the positive class (1) is rare or when one cares more about the false
positives (FP) than the false negatives (FN). Otherwise, use the ROC curve [76].
Throughout this document (especially in Chapters 4 and 5), we use the micro-averaged
version of the Area Under ROC Curve since we have no a priori knowledge about the
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rareness of the positive class, and we care about both false positives and false negatives
to the same extent.

Regardless of the chosen model, the multioutput classifiers exhibit a drawback: they
cannot take advantage of possible dependencies among the different outputs. If the
value of one output may (statistically) depend on the value of others1, then predicting
all outputs in an interweaved manner should indeed be better than predicting them
separately. Herein the chain classifiers cover that gap, as shown below.

Chain Classifiers

The other family of multilabel classifiers in Fig. 4.5 is the chain classifiers. In [92],
the output-independence assumption is dropped, and it is proposed a novel chain-
ing method that can model output correlations while maintaining acceptable compu-
tational complexity. Unlike multioutput classifiers, in which isolated classifiers are
trained per output, in the chain classifiers family, there is a linkage among individual
classifiers.

For a multilabel classification problem with B outputs, B binary classifiers are
trained using an extension of X (based on the classifiers of the previous outputs2),
in the sense of Eq. (D.4) (please compare with the approach in Eq. (D.1)):

hj ∶ X × {0, 1}j−1
→ {0, 1} (D.4)

The training procedure is shown in Fig. D.1, which is adapted from [116], where it
has been assumed that B = 5. From Fig. D.1, it is observed that the first classifier is
trained with the original attributes and predicts a binary output, which will be used
to extend the training set of the second classifier, which in turn predicts an additional
binary output, and so on.

Once the models are trained, and for prediction purposes, the first output is predicted
exclusively by the first classifier using the actual features: x ∈ X , while the second
output is predicted using x ∈ X and the prediction of the previous classifier, and so
on. The final prediction is made up using Eq. (D.5). This is further illustrated in Fig.
D.2.

y = (h1(x), h2(x, h1(x)), h3(x, h1(x), h2(x, h1(x))), ...) (D.5)

1That is what we expect in real mobile networks.
2A sort of training order is imposed on the chain beforehand. The standard rule is to train the chain

multiple times using random sorting and averaging the final predictions over the different train
runs.
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(Original and Supplementary) features used as predictors

Supplementary feature to be predicted

Classifier 1

Classifier 2

Classifier 3

Classifier 4

Classifier 5

x ∈ X y ∈ Y

Figure D.1: Training of a classifier chain.

As mentioned before, the ordering of the outputs in the chain plays an important
role. The first model in the chain (providing a parameter configuration to a cell) has
no information about the other outputs (meaning that it can not model the impact
of other cells). In contrast, the last one has features indicating the presence of all of
the other outputs (thus considering the effect of other cells in the modeling). To cope
with this unfairness, many randomly ordered chains are trained, and their predictions
are averaged altogether [89, 90].
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Original features used as predictors

Target to be predicted

Supplementary features used as predictors

Classifier 1

Classifier 2

Classifier 3

Classifier 4

Classifier 5

x ∈ X y ∈ Y

Figure D.2: Prediction using a classifier chain
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E Simulated Annealing

Simulated Annealing (SA) is a heuristic introduced in the 80s to solve large combina-
torial problems. The way how SA works in this kind of scenario is depicted in Fig.
E.1, which is adapted from [117], where (for the sake of illustration) the minimization
of a univariate function (f(x)) is sought. Let N(x′) be the neighborhood of a feasible
solution x

′, τmax the maximum (initial) temperature of the annealing process, which is
reduced through a cooling down procedure until reaching the minimum temperature
τmin.

At the beginning of the procedure, due to the high temperature, strong perturbations
are applied (to the candidate solutions x

′) allowing the method to jump over peaks
(and escape from local minima), searching for the bottom of the box (i.e., the global
minimum).

As the temperature monotonically decreases, it is less likely to jump over high peaks.
Hopefully, once τmin is reached and if the temperature has not been decreased that
quickly, the optimization space has been explored long enough, and x

′
→ x

∗.

τmax

f(x)

f(x)

f(x)

xx
′

N(x′)

x

xτmin x
∗

Figure E.1: Simulated Annealing for a minimization problem.
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In a nutshell, the heuristic (which has been implemented as in Algorithm 12) has
three main stages:

1. Solution perturbation: generating a random solution within a neighborhood (fol-
lowed by a utility calculation under the new solution). It takes place in lines 6-7
in Algorithm 12. Please notice that, for every temperature τ , a maximum num-
ber of iterations (imax) (solution perturbations) is carried out. The number of
temperatures visited, as well as imax, determine the amount of exploration over
the optimization space.

2. Acceptance test: it uses the Metropolis Criterion to accept not only utility im-
provements but also deteriorations to a limited extent to escape from local min-
ima. It is implemented from lines 9 to 19 in Algorithm 12.

3. Cooling down schedule: the notion of cooling is interpreted as decreasing the
probability of accepting solutions with worse utility as the search space is ex-
plored. It is taking place in line 24 in Algorithm 12.
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Algorithm 12: Simulated Annealing
1: INPUT: xinit, imax, τmin, τmax

2: INITIALIZE: τ = τmax, x = xinit

3: Compute f(x)
4: while τ > τmin do
5: for all i = 1 to imax do
6: Compute f(x′) with x

′
∈ N(x) \ x

7: ∆(f) = f(x′) − f(x)
8: flag=1
9: if ∆(f) > 0 then

10: Accept x ← x
′

11: else
12: Calculate probability: Pr(∆(f)) = e

∆(f)
τ

13: if Pr(∆(f)) > rnd(0, 1) then
14: Accept x ← x

′

15: else
16: Reject x ← x

′

17: flag=0
18: end if
19: end if
20: if flag=1 then
21: Update x

∗
= x

22: end if
23: end for
24: τ =

τ

log(i+1)
25: end while
26: OUTPUT:x∗
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