
Coordinating Coupled Self-

Organized Network Functions

in Cellular Radio Networks

A thesis submitted in fulfilment of the requirements
for the degree of

Doktoringenieur (Dr.-Ing.)

by: Stephen Ssekiranda Mwanje

to the
Faculty of Computer Science and Automation
Ilmenau University of Technology

urn:nbn:de:gbv:ilm1-2015000135

http://www.tu-ilmenau.de/iks/personen/mitarbeiter/?no_cache=1&staff_id=217
Faculty Web Site URL Here (include http://www.tu-ilmenau.de/en/faculty-of-computer-science-and-automation/)
http://www.tu-ilmenau.de




Coordinating Coupled Self-

Organized Network Functions

in Cellular Radio Networks

Dissertation Zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

von: Stephen Ssekiranda Mwanje

vorgelegt der
Fakultät für Informatik und Automatisierung

der
Technischen Universität Ilmenau

urn:nbn:de:gbv:ilm1-2015000135

http://www.tu-ilmenau.de/iks/personen/mitarbeiter/?no_cache=1&staff_id=217
http://www.tu-ilmenau.de/ia/
http://www.tu-ilmenau.de/ia/


ii

Submitted on: 08.09.2014

Defended on: 08.04.2015

Reviewer 1: Prof. Dr. Ing. habil. Andreas Mitschele-Thiel
Ilmenau University of Technology

Reviewer 2: Professor Dr.-Ing. habil. Armin Zimmermann
Ilmenau University of Technology

Reviewer 3: Prof. Dr.-Ing Anja Klein
Technische Universität Darmstadt

http://www.tu-ilmenau.de/iks/personen/mitarbeiter/?staff_id=1
http://www.tu-ilmenau.de/sse/mitarbeiter/prof-a-zimmermann/
http://www.kt.tu-darmstadt.de/fachgebiet_kt/mitarbeiter_kt/mitarbeiterdetails_20800.de.jsp


Abstract

Owing to increase in desired user throughput and to the subsequent increase in
network traffic, the number and density of cells in cellular networks have increased,
especially starting with LTE. This directly translates into higher capital and oper-
ational expenses as well as increased complexity of network operation. To counter
all three challenges, Self-Organized Networks (SON) have been proposed. A num-
ber of SON Functions (SFs) have been defined both from the network operator
community as well as from the standardization bodies. In this respect, a SF
represents a network function that can be automated e.g. Mobility Robustness
Optimization (MRO) or Mobility Load balancing (MLB).

The different SFs operate on the same radio network, in many cases adjusting
the same or related parameters. Conflicts are as such bound to occur during the
parallel operation of such SFs and mechanisms are required to resolve or minimize
the conflicts. This thesis studies the solutions through which SON functions can
be coordinated in an automated and preferably distributed manner.

In the first part we evaluate the design principles of SFs that aim at easing the
coordination. With the observation that the SON control loop is similar to a
generic Q-learning problem, we propose designing SFs as Q-learning agents. This
framework is applied to two SFs (MRO and MLB) with very positive results.

Given the designed QL based SFs, we then evaluate two SON coordination ap-
proaches that consider the SON environment as a Multi-Agent System (MAS).
The first approach based on Spatial-Temporal Decoupling (STD) separates the
execution of SF instances in space and time so as to minimize the conflicts among
instances. The second approach applies multi-agent cooperative learning for an au-
tomated solution towards SON coordination. In this case individual SF instances
learn based on utilities that aggregate their own metrics as well as the metrics of
peer SF instances. The intention in this case is to ensure that the learned state-
action policy functions apply actions that guarantee the best result for the active
SF but also have the least effect on the peer SFs. Both coordination approaches
have been evaluated with very positive results in simulations that consider the
MRO - MLB conflict.



Zusammenfassung

Nutzer der Mobilfunknetze wünschen und fordern eine Steigerung des Daten-
durchsatzes, die zur Erhöhung der Netzlast führt. Besonders seit der Einführung
von LTE erhöht sich daher die Anzahl und Dichte der Zellen in Mobilfunknet-
zen. Dies führt zusätzlich zur Zunahme der Investitions- und Betriebskosten,
sowie einer höheren Komplexität des Nerzbetriebs. Der Einsatz selbstorganisierter
Netze (SONs) wird vorgeschlagen, um diese drei Herausforderungen zu bewältigen.
Einige SON-Funktionen (SF) wurden sowohl von Seiten der Netzbetreiber als auch
von den Standardisierungsgremien vorgeschlagen. Eine SF repräsentiert hierbei
eine Netzfunktion, die automatisiert werden kann. Ein Beispiel ist die Opti-
mierung der Robustheit des Netzes (Mobility Robustness Optimization, MRO)
oder der Lastausgleich zwischen Funkzellen (Mobility Load Balancing, MLB).

Die unterschiedlichen SON-Funktionen werden innerhalb eines Mobilfunknetzes
eingesetzt, wobei sie dabei häufig gleiche oder voneinander abhängige Parameter
optimieren. Zwangsläufig treten daher beim Einsatz paralleler SON-Funktionen
Konflikte auf, die Mechanismen erfordern, um diese Konflikte aufzulösen oder zu
minimieren. In dieser Dissertation werden Lösungen aufgezeigt und untersucht,
um die Koordination der SON-Funktionen zu automatisieren und, soweit möglich,
gleichmäßig zu verteilen.

Im ersten Teil werden grundsätzliche Entwürfe für SFs evaluiert, um die SON-
Koordination zu vereinfachen.. Basierend auf der Beobachtung, dass die Steurung
der SON-Funktion sich ähnlich dem generischen Q-Learning Problem verhält, wer-
den die SFs als Q-Learning-Agenten entworfen. Dieser Ansatz wurde mit sehr
positiven Ergebnissen auf zwei SFs (MRO und MLB) angewandt.

Die als Q-Learning-Agenten entworfenen SFs werden für zwei unterschiedliche
Ansätze der SON-Koordination evaluiert. Beide Koordinierungsansätze betra-
chten dabei die SON-Umgebung als ein Multi-Agenten-System. Der erste Ansatz
basierend auf einer räumlich-zeitlichen Entkoppelung separiert die Ausführung von
SF-Instanzen sowohl räumlich als auch zeitlich, um die Konflikte zwischen den SF-
Instanzen zu minimieren. Der zweite Ansatz wendet kooperatives Lernen in Multi-
Agenten-Systemen als automatisierten Lösungsansatz zur SON-Koordination an.
Die einzelnen SF-Instanzen lernen anhand von Utility-Werten, die sowohl die eige-
nen Metriken als auch die Metriken der Peer-SF-Instanzen auswerten. Die Inten-
tion dabei ist, durch die erlernte Zustands-Aktions-Strategie Aktionen auszuführen,
die das beste Resultat für die aktive SF, aber auch die geringste Auswirkung auf
Peer-SFs gewährleisten. In der Evaluation des MRO-MLB-Konflikts zeigten beide
Koordinierungsansätze sehr gute Resultate.
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Demand for mobile communication services have exceptionally grown in the last
two decades; especially recently driven by the need for mobile Internet connectivity.
This has necessitated networks operators to deploy more Base Stations (BSs) in
order to meet users’ Quality of Service (QoS) expectations at all locations and
times. These deployments, characterized by high BS densities, translate into into
high Capital expenditures (CapEx) and Operational Expenditures (OpEx). Besides,
continued demand for better user experience has necessitated newer access schemes
and technologies. The combination of dense BS deployments and simultaneous
operation of multiple Radio Access Technologies (RAT) has however increased the
complexity of network design and operation.

In order to overcome these operational challenges and reduce the related expen-
ditures, different players have suggested the need to introduce automation in the
networks through Self-Organization (SO) of radio networks [1]. The idea behind
SON is the automation of network functions in all the phases of a network’s life-
time, like deployment, operation, optimization, maintenance and service recovery.
Within the context of SON, a number of SFs also refereed to as Use Cases (UCs)

1
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have been developed. This thesis studies the special problem of how to combine
and coordinate multiple SFs in an environment where many are required to work
concurrently. The rest of this chapter describes: 1) the problem that has been
studied; 2) the scope of the study; 3) a high level introduction of the approaches
that have been evaluated and 4) an aid to reading the rest of the thesis through a
reading map for different audiences.

1.1 Self-Organization in Cellular Networks

In justifying the need for SO in mobile networks, the Next Generation Mobile
Networks (NGMN) consortium, a worldwide cooperation of mobile network oper-
ators, presented the operators’ SON requirements to the standardization bodies
[2]. The NGNM identified UCs where SO can be applied, classifying them among
self-configuration, self-optimization and self-healing. Following NGNM’s publica-
tion, research on the structure and development of the UCs in all three network
functional areas of configuration, optimization and healing has been undertaken in
a number of projects involving both industrial and academic researchers [3][4][5].

Concurrently, in working towards inclusion of SON functionality in the Long Term
Evolution (LTE) standards, the Third Generation Partnership Project (3GPP)
generated an informative list of UCs which could be considered priority for devel-
opment [6]. Published as part of the LTE SON standard in [6], the list included
nine priority UCs. For each one of the nine UCs, the 3GPP defined concepts and
requirements for their development and in some cases generated solution ideas on
how they can be realized. In this context, a SF represents any network function-
ality that can be made self-organized. Some major examples of SFs are:

• Mobility Robustness Optimization (MRO) that adjusts handover (HO) con-
trol parameters – Hysteresis(HO) and Time to Trigger (TTT) – so as to
optimize HO performance

• Mobility Load balancing (MLB) that adjusts the HO Cell specific Offset
(CIO) in order to balance load distribution among neighbor cells and even-
tually improve user satisfaction in terms of data throughput

• Coverage and Capacity Optimization (CCO) that manages the trade off be-
tween increasing cell coverage and the effects that such an action would have
on the cell/system capacity

• Inter Cell Interference Coordination (ICIC) that manages the relative inter-
ference caused by one cell to another

As shown in Fig. 1.1, Each SF is characterized by a trigger condition that initiates
execution of an associated SON algorithm. The algorithm adjusts or configures a
set of network parameters in order to optimize a particular network metric.

Since SFs operate on the same network adjusting the same or related radio pa-
rameters, conflicts arise during their operation. Two major conflicts types are
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Figure 1.1: Operational Structure of a Self-Organized Network Use Case.

observed: Parameter Value Conflicts (PVCs) and Metric Value Conflicts (MVCs).
PVCs arise when multiple SFs adjust the same control parameter(s) and so the
SFs conflict on their desired value for those parameter(s). For MVCs, the SFs
adjust different parameters but a parameter adjusted by one SF affects a metric
of another SF. In either cases, the network may experience instability as different
SFs act to restore desired values for either parameters or metrics. Moreover users
may experience deteriorated QoS when a setting assumed to have been configured
by one SFs has actually been altered by another SF. It is then necessary to devise
means to either eliminate or at least minimize these conflicts.

1.2 Thesis Objectives and Scope

SON being a new concept, most work has been done on the development of SFs,
with few studies, and only recently, having considered the coordination of SFs.
These early studies have focused on ideas related to avoiding the conflicts or on
how rules can be designed to schedule execution of SFs in a way that minimizes
their cross effects. A number of questions and approaches however remain open:

1. The management of SON conflicts through the design paradigms of individ-
ual SFs can be investigated. General principles can be developed on how
SFs should be designed so as to ease the management of their conflicts.

2. Opportunities do exist in the scheduling of SFs as a means of minimizing
conflicts. These could be evaluated further especially given the multitude of
operating conditions in which cellular radio systems are operated.

3. It is also possible to apply generic concepts of multi-agent systems to the
SON environment. Considering individual SFs as agents, the coordination
challenge becomes a multi agent coordination challenge. In that case, ideas
that have been developed in such areas as control theory and multi-agent
learning could be applied.

1.2.1 Problem Delineation

The core problem in this work is to devise solutions through which SON conflicts
can be coordinated in an automated and preferably distributed manner. Part of
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the problem is to implement SON solutions for the candidate SFs designed in a
way that eases their coordination. The next step then is to develop coordination
approaches and apply them to the developed SFs. The thesis does not address all
SON conflicts but focuses on coordination of SFs which demonstrate MVCs. We
review the design paradigms for SON functions to identify challenges to effective
coordination, and then propose and evaluate different coordination approaches.

1.2.2 Proposed Solutions

The ideas that have been investigated towards SON coordination can be classified
into two major packages:

1. Design and development of SFs: The ease of coordinating SFs highly
depends on how SFs are designed. As such, the first work package con-
centrated on studying how SFs should be designed so as to simplify their
coordination. A single development framework based on QL has been con-
sidered. Performance results for two SFs developed based on this framework
prove the feasibility of using QL for developing SFs.

2. SON Coordination: With a unified development framework, generic ap-
proaches have been sought for coordination. Constrained to ensuring system
stability, we require generic approaches that can easily be reapplied to any set
of SFs. The two approaches considered - one based on Space-Time schedul-
ing and another applying multi-agent cooperative learning - have been tested
on the conflicts between MRO and MLB with very good results.

1.2.3 Research Plan

In line with the proposed solutions, activities were structured and followed as listed
in the plan below. This is also reflected in the layout of the thesis:

1. Developing individual SFs to be used in the study, where two SFs for MRO
and MLB were developed as QL agents

2. Justifying the study by investigating the nature and quantitative measures
of conflicts among the SFs

3. Developing the coordination architecture constrained to ensuring that the
system remains stable and that it can be scaled by adding new SFs as they
are developed

4. Validating the coordination architecture by applying the suggested proposals
on the MRO-MLB conflict

5. Generalizing the coordination architecture by evaluating what changes would
be required for multiple SFs
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1.2.4 Research Methodology

SON functions optimize parameters in different network layers and sub-layers of
the OSI model, each parameter affecting one or multiple layers. It is therefore dif-
ficult to derive strictly closed-form mathematical solutions that describe system
performance. The interaction among multiple SFs further complicates the mathe-
matical modeling and theoretical estimation of system performance. Consequently,
performance in this thesis is evaluated relying on system-level simulations. Simple
theoretical analyses are however made where possible, especially as a means to
verify the simulation results.

1.3 Contributions of the Thesis

In line with the research activities in 1.2.3, the contributions of the thesis can be
categorized in three major groups: the development of SFs, the coordination ar-
chitecture for SFs and the application of learning methods to general optimization
problems in communication systems.

1.3.1 Development of SON Functions

A framework for developing SON functions as Q learning agents was proposed
including its mapping to the major optimization problems. Three of these are im-
plemented and validated with simulations based on an LTE system-level simulator.
The following articles have been published based on this work:

• S. Mwanje, N. Zia, A. Mitschele-Thiel, “Self-Organized Handover Parameter
Configuration for LTE”, in Proc. ISWCS 2012, Paris, France.

• S. Mwanje, A. Mitschele-Thiel, “Q-Learning for LTE Self-Organized Mobil-
ity Load balancing”, in Proc. PIMRC 2013 in London, UK.

• S. Mwanje, A. Mitschele-Thiel, “Distributed Cooperative Q-Learning for
LTE for Mobility-Sensitive Handover Optimization in LTE SON”, in Proc.
ISCC 2014 in Madeira, Portugal.

• U. Sallakh, S. Mwanje and A. Mitschele-Thiel, “Multi-Parameter Q-Learning
for Downlink Inter-Cell Interference Coordination in LTE SON”, in Proc.
ISCC 2014 in Portugal.

1.3.2 Coordination of SON Functions

Concepts for coordinating multiple SFs both within and across cells have been
studied. The core of the solution is to allow the SFs to communicate with each
other so that each SF accounts for its cross effects to the other SFs. Owing to the
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need for the SFs to observe and quantify the effects of each action without any
superposition of other SFs’ actions on top, a space-time scheduling mechanism
was developed to separate the SFs’ actions in space and time. This ensures that
no two SFs take actions that may concurrently affect the same environment or
parameters. The following articles have been published on this work:

• S. Mwanje, A. Mitschele-Thiel, “Minimizing Handover Performance Degra-
dation due to LTE Self-Organized Load Balancing”, in Proc. VTC spring
2013, Dresden, Germany.

• N. Zia, S. Mwanje, A. Mitschele-Thiel, “A Policy Based Conflict Resolution
Mechanism for MLB and MRO in LTE Self-Optimizing Networks”, in Proc.
ISCC 2014 in Portugal.

1.3.3 Learning in control and optimization problems

The ideas and concepts learned during this work have also been investigated in
cooperation with other researchers working on other topics. The following papers
have been published from these collaborations:

• E. Roth-Mandutz, S. Mwanje and A. Mitschele-Thiel, “RSS based Cell
Fingerprint Patterns and Algorithms for Cell Identification in the Context
of Self-organized Energy Saving”, Proceeding of Mobiquitous 2014, Tokyo,
Japan.

• A.H. Mahdi, Z. Ansar, S. Mwanje, O. Artemenko, A. Mitschele-Thiel, ”im-
proving performance of a Self-Organized Cognitive Engine using Q-Learning”,
Proceeding of WCNC 2014, Istanbul, Turkey.

1.4 Thesis Organization

The previous sections presented material that introduces the problem and the
approaches that have been taken towards solving the problem. They also summa-
rized the contributions of the thesis on different areas. This section summarizes
the contents of the rest of the thesis and lays out a map indicating how its reading
could be undertaken by different audiences in consideration of their backgrounds.

1.4.1 A Review of the Chapter Contents

Chapter 2 reviews the fundamental literature required to fully understand the
rest of the thesis. It gives a brief review of the LTE radio system with emphasis
on Radio Resource Management, the understanding of which is crucial to the
discussion on the SFs. It then presents the previous work on SON highlighting the
state of art on SON coordination and the design criterion that have been applied
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in SON. It concludes with a discussion of Learning in Multi Agent Systems and
how it could be applied to SON coordination.

In chapter 3 we describe the simulation environment and modeling of the critical
radio system precesses and events. Unlike in typical research reports where the
simulation scenario and parameters are presented after a discussion of the solu-
tions, I present this before since foregoing chapters present different aspects of
the solutions with their results. The chapter begins with the high level system
structure followed by the cellular radio models. It then discusses the mobility
and handover models highlighting the events that result from different control set-
tings of the handover parameters. It concludes with a discussion of the snapshot-,
event-based simulation model concentrating on the deployment process of the dif-
ferent network components and the subsequent snapshot processing during the
simulation.

The proposed framework for QL as the design structure for the SFs is presented
in chapter 4. The chapter begins with a review of QL, then summarizes how QL
has been applied in SON and justifies how QL can be used for any generic SF.
The discussion then turns to the application of this framework to the two selected
SFs, starting with MRO and followed by MLB. For each SF, I highlight the design
requirements and constraints as well as the possible solutions to these constraints.
Finally, the expected performance results are presented, in each case comparing
the observed performance to that of a reference system that does not apply any
automation or SON solution.

Chapter 5 discusses the coordination problem by evaluating the performance degra-
dation that results when the multiple SFs are operated concurrently without co-
ordination. We discuss the expected sources or causes of the conflicts and demon-
strate the degree of conflicts through results of a set of simulations. Since the
objective is only to demonstrate that conflicts do happen and not to show all
forms of conflicts, the chapter only focuses on the results that show that conflicts
exist and not on the detailed evaluation of their nature.

The SON coordination proposals on Space-Time Scheduling procedures and Con-
current Cooperative Games are presented in chapter 6. Considering the MRO -
MLB conflict in both cases, I highlight the benefits of the coordination solutions
through simulation evaluations. The evaluations compare results of the two SFs
when operated with the coordination solutions against results of the independent
SFs as obtained in chapter 4 and also against the degradation results of chapter
5. We conclude with a discussion of the potential limitations of the methods in
question and where possible how such limitations can be addressed or managed in
a real deployment.

Chapter 7 presents the concluding remarks of the thesis and an outlook to what
future studies on the subject should entail. It begins with a summary of the
general philosophy to the considered approaches and obtained results. It then
discusses potential areas in which the proposed solutions could be improved and
other approaches that could be taken, not only towards SON integration but
also for the general SON philosophy. In particular it highlights the concept of
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Bayesian QL that applies a combination of game theory and QL to allow SFs
to independently learn of the potential conflicts instead of such possible conflicts
being configured into the Q-learner as is the current approaches. It also proposes
reworking the approach to SON. I propose to change the focus from the 4 functional
areas of network operation (planning, configuration, optimization and healing) and
instead focus on the natural layering of network functions in terms of Physical
resources, logical resources and quality of experience.

1.4.2 Proposed Reading Order

Fig. 1.2 presents the proposed order of reading the thesis for different audiences.
For one working on SON in LTE/LTE-A, it may be adequate to go direct to the
core content in chapters 4 and 6. Otherwise chapter 2 gives a quick, albeit steep
introduction to the basic background on LTE and SON that would be required
for the further chapters. Chapter 3 is critical for a reader interested in evaluating
the soundness of the ideas and as to whether they have been tested in a realistic
environment. Otherwise one can still follow the discussions on the SFs in chapter
4 without the detailed understanding of the simulation environment.

For those who need to appreciate the nature of the conflicts among the two SFs,
these are discussed in chapter 5 laying the foundation for evaluating the benefit
of the coordination as presented in chapter 6. Those who however are working on
SON should be able to follow directly from the discussion of the SFs in chapter 4
to the discussion of the solutions to SON conflicts in chapters 6.

Figure 1.2: Proposed thesis reading order for different audiences.
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Studying the coordination of SFs in Cellular Systems requires the understanding
of not only the structure and operation of the SFs but also of the underlying
cellular radio technology. Only then can potential approaches be evaluated in
consideration of the foundational constraints. This chapter reviews these founda-
tions, setting a basis for understanding the rest of the content in the thesis. It
begins with a brief discussion of the fundamental technological ideas behind the
LTE radio system. These are important not only for the discussions on individual
SFs, especially where the discussion references the standardized LTE features, but
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also for the understanding of the reference system on which the ideas have been
validated. The discussion then turns to SON and describes the critical develop-
ments to date and the SON coordination challenge. It also justifies the need to
study this subject and highlights the potential benefits that would be expected.
With the observation that SON exemplifies a Multi-Agent System (MAS), the
last section discusses MASs focusing on their coordination and control aspects. It
provides insight into existing work on MAS as undertaken in other fields and then
highlights how such ideas could be applicable to the SON environment.

2.1 The LTE Radio System

LTE was developed to provide users with rich-content such as High Definition
TV (HDTV) broadcast, movies on demand, and voice-over-IP (VoIP). The LTE
E-UTRA was designed with the main objectives being: 1) development of an opti-
mized packet-based access system with high data rate and low latency; 2) provid-
ing common base-band support for Time Domain Duplex (TDD) and Frequency
Domain Duplex (FDD) modes; 3) reducing capital and operating expenditure;
and 4) reasonable system and terminal complexity [7]. The resultant physical
layer (PHY) performance requirements are as summarized in Table 2.1 while the
critical radio system specifications are described in the subsequent subsections.

2.1.1 OFDM Downlink Transmission

In the downlink, Orthogonal Frequency Division Multiplexing (OFDM) was se-
lected to efficiently meet E-UTRA throughput requirements. OFDM systems do

Table 2.1: Physical layer requirements for LTE E-UTRA.

Requirement LTE E-UTRA Specification

Peak data rate 100 Mbps DL /50 Mbps UL

Spectral Efficiency 3-4x DL / 2-3x UL of HSxPA Rel-6

5% packet call throughput 3-4x DL / 2-3x UL of HSxPA Rel-6

Averaged user throughput 3-4x DL / 2-3x UL of HSxPA Rel-6

U-Plane Latency less than 10 msec from UE to server

C-Plane Latency 50 – 100 msec to establish U-plane

Call setup time 50 ms

Broadcast data rate 6-8x improvement

Mobility Optimized for low speeds (<15 Kmph)
High performance at speeds up to 120 Kmph
Maintain link at speeds up to 350 Kmph

Multi-antenna support 4x2, 2x2, 1x2, 1x1 DL / 1x2, 1x1UL

Bandwidth Scalable: 1.25, 2.5, 5, 10, 20 MHz

Coverage Full performance up to 5 km
Slight degradation 5 km – 30 km
Operation up to 100 km also possible
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Figure 2.1: OFDM eliminates ISI via longer symbol periods and a cyclic prefix.

not rely on increased symbol rates in order to achieve higher data rates. Instead
they break the available bandwidth into many narrower sub-carriers and transmit
the data in parallel streams. Each subcarrier is modulated using varying levels of
QAM modulation, e.g. QPSK, QAM, 64QAM or possibly higher orders depend-
ing on signal quality. Each OFDM symbol is therefore a linear combination of the
instantaneous signals on each of the sub-carriers in the channel.

Consider the time-domain representation of an OFDM symbol shown in Fig. 2.1.
The OFDM symbol consists of two major components: the cyclic prefix (CP), and
a FFT period. The duration of the CP is determined by the highest anticipated
degree of delay spread for the targeted application [8]. When transmitted signals
arrive at the receiver by two paths of differing length, they are staggered in time
as shown in Fig. 2.1. Consequently, within the CP, it is possible to have distortion
from the preceding symbol. However, with a CP of sufficient duration, preceding
symbols do not spill over into the Fast Fourier Transform (FFT) period (TFFT)
so that interference is only due to time-staggered “copies” of the current symbol.
Once the channel impulse response is determined (by periodic transmission of
known reference signals), distortion can be corrected by applying an amplitude
and phase shift on a subcarrier-by-subcarrier basis.

2.1.2 OFDMA and the LTE Generic Frame Structure

Orthogonal Frequency Division Multiple Access (OFDMA) is employed as the
multiplexing scheme in the LTE downlink. In OFDMA, users are allocated a
specific number of subcarriers for a predetermined amount of time. These are
referred to as Physical Resource Blocks (PRBs) in the LTE specifications. PRBs
thus have both a time and frequency dimension, allocation of which is handled by
a scheduling function at the 3GPP base station (eNodeB).

Consider the LTE PHY layer generic frame structure of Fig. 2.2. This structure is
used with FDD but alternative frame structures are defined for use with TDD. As
shown in the figure, LTE frames are 10 msec in duration. They are divided into
10 subframes, each being 1.0 msec long. Each subframe is further divided into two
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Figure 2.2: LTE Generic Frame Structure.

slots, each of 0.5 msec duration and consisting of either 6 or 7 OFDM symbols,
depending on whether the normal or extended cyclic prefix is employed.

To provide great operational flexibility, E-UTRA physical layer specifications are
bandwidth agnostic and designed to accommodate up to 20 MHz system band-
width so that the total number of available subcarriers depends on the overall
system transmission bandwidth as shown in Table 2.2. The smallest element of
resource allocation assigned by the base station scheduler is the PRB. It is de-
fined as consisting of 12 consecutive sub-carriers for one slot (0.5 ms) in duration.
Sub-frames with one of two cyclic prefix (CP) durations may be time-domain mul-
tiplexed, with the longer designed for larger cells. The useful symbol duration is
constant across all bandwidths and the 15 kHz sub-carrier spacing is large enough
to avoid degradation from phase noise and Doppler effects up to 250km/h at 2.6
GHz with 64QAM modulation [9].

The transmitted downlink signal consists of NBW subcarriers for a duration of
Nsymb OFDM symbols as represented by the resource grid in Fig 2.3. Each box
within the grid represents a single subcarrier for one symbol period and is referred
to as a resource element. Note that in Multiple Input Multiple Output (MIMO)
applications, there is a resource grid for each transmitting antenna.

Table 2.2: OFDMA parameters for LTE E-UTRA.

Bandwidth (MHz) 1.25 2.5 5.0 10.0 15.0 20.0

Subcarrier bandwidth (kHz) 15

Subcarrier duration (ms) 1.0

PRB bandwidth (kHz) 180

Sampling Frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72

FFT Size 128 256 512 1024 1536 2048

Number of available PRBs 6 12 25 50 75 100

CP Length (µS) - Normal 4.69 x 6, 5.21 x1

CP Length (µS) - Extended 16.6
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Figure 2.3: Downlink Resource Grid.

2.1.3 SC-FDMA Uplink Transmission

LTE up-link requirements differ from down-link requirements in several ways, the
most important being power consumption for UE terminals. The high Peak to Av-
erage Power Ratio (PAPR) and related loss of efficiency associated with OFDM
signaling are major concerns. Single Carrier Frequency Division Multiple Ac-
cess (SC-FDMA) was selected as best suited to the LTE uplink requirements.
The basic transmitter and receiver architecture (Fig. 2.4) is however very similar
(nearly identical) to OFDMA, and it offers the same degree of multipath protec-
tion [8]. Importantly, because the underlying waveform is essentially single-carrier,
the PAPR is lower.

In the transmitter / receiver arrangement, many of the functional blocks are com-
mon to both SC-FDMA and OFDMA. As such, there is a significant degree of
functional commonality between the uplink and downlink signal chains. The func-
tional blocks in the transmit chain are:
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Figure 2.4: SC-FDMA and OFDMA Signal Chains [8].

Figure 2.5: SC-FDMA Subcarriers in Localized and Distributed Mode [8].

• Constellation mapper: This converts the incoming bit stream to single carrier
(SC) symbols as BPSK, QPSK or 16 QAM depending on channel conditions.

• Serial/parallel (S/P) converter: This formats time-domain SC symbols into
input blocks to the FFT engine.

• M-point DFT: This converts time domain SC symbol block into M discrete
tones.

• Subcarrier mapping: It maps DFT output tones to specified subcarriers for
transmission. SC-FDMA systems either use contiguous tones (localized) or
uniformly spaced tones (distributed) as shown in Fig. 2.5.

• N-point IDFT: This converts mapped subcarriers back into the time domain
for transmission.

• Cyclic prefix (CP) and pulse shaping: As in the case of OFDM, the CP is pre-
pended to the composite SC-FDMA symbol to provide multipath immunity
while pulse shaping is employed to prevent spectral regrowth.

• RF Front End (RFE): It converts digital signals to analog and then upcon-
verts to RF for transmission.

In the receive side chain, the process is essentially reversed, although as in OFDM,
SC-FDMA transmissions can also be considered linear summations of discrete sub-
carriers. Multipath distortion is also handled in the same manner i.e. removal of
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CP, conversion to the frequency domain, then applying the channel correction on a
subcarrier-by-subcarrier basis. Unlike OFDM however, the underlying SC-FDMA
signal represented by the discrete subcarriers is - not surprisingly - single carrier.
This is distinctly different because SC-FDMA subcarriers are not independently
modulated. As a result, PAPR is lower than for OFDM transmissions [8].

2.1.4 Multi-Antenna Subsystem and MIMO

The LTE physical layer can optionally exploit multiple transceivers at both the
base-station and UE in order to enhance link robustness and increase data rates. In
particular, Maximum Ratio Combining (MRC) is used to enhance link reliability
in challenging propagating conditions e.g. when the signal strength is low and/or
multipath conditions are challenging. MIMO is a related technique that is used
to increase system data rates.

With MRC, a signal is received via two (or more) separate antenna/transceiver
pairs (Fig. 2.6). The antennas are physically separated, and therefore have distinct
Channel Impulse Responsess (CIRs). Channel compensation is applied to each
received signal within the baseband processor before being linearly combined to
create a single composite received signal. The result is that the received signals
add coherently but the thermal noise from each transceiver is uncorrelated. Thus,
linear combination of the channel compensated signals at the baseband processor
results in an increase in SNR, i.e. up to 3 dB on average for a two-channel MRC
receiver in a noise-limited environment [8].

Figure 2.6: MRC under AWGN and Frequency Selective Fading.
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Figure 2.7: MIMO Operation and A Priori Knowledge of all CIRs [8].

MRC enhances link reliability, but does not increase the nominal system data rate.
In MRC, data is transmitted by a single antenna and is processed at the receiver
via two or more receivers. MRC is therefore a form of receiver diversity rather
than more conventional antenna diversity. MIMO on the other hand does increase
the system data rates, by using multiple antennas at both the transmitting and
receiving ends. Referring to the 2 x 2 MIMO system in Fig. 2.7, there are a total
of four CIRs (CAC , CAD, CBC and CBD). Once the CIRs are known, data can
be transmitted from both antennas simultaneously. The linear combination of the
two data streams at the two receiver antennas results in a set of two equations
and two unknowns, which is resolvable into the two original data streams.

2.2 SON in LTE/LTE-A

Following the brief introduction to LTE as given in 2.1, this section reviews the
work on SON especially as has been applied in LTE and its advancement (LTE-A).

Most work on SON in LTE has been on three major fronts: 1) The network
operators’ perspective on SON benefits; 2) standardization of SON in LTE; and
3) research on the requirements, nature and implementation of SON functions.
The Next Generation Mobile Networks (NGMN) consortium, the cooperation of
mobile network operators from all over the world, justified the need for SON and
presented the operators’ SON requirements to the standardization bodies [2]. As
part of the LTE standard both in the initial release 8 and in the subsequent release
9, the 3GPP included descriptions of the required SON functionality as part of
the standard.

Various research projects have been undertaken to define, prototype and test SON
functionality, among them being: the Monotas project (Mobile Network Opti-
mization Through Advanced Simulation) and the Gandalf project (Monitoring
and self-tuning of RRM parameters in a multi-system network). The Monotas
project examined the feasibility of decreasing the time taken to optimize mobile
networks by ”using simulation techniques to match network performance with pa-
rameter settings” [3]. The Gandalf project studied the application of large scale
network monitoring, Radio Resource Management (RRM) rules and quality of
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service evaluation towards automation of network management tasks in a multi-
system environment [4].

Most SON related work has however been undertaken within the SOCRATES
project (a European Union FP7 Project undertaken by a number of major research
institutions and equipment vendors across Europe). The project expanded the list
of SFs as published by NGNM and proceeded to develop solutions for some of the
most critical ones [10]. SEMAFOUR, the currently running follow up project to
SOCRATES aims to develop a ”unified self-management system, which enables the
network operators to holistically manage and operate their complex heterogeneous
mobile networks” [11].

2.2.1 SO Functions and Development Efforts

The NGNM defined SON use cases as foreseen by operators [12]. The underly-
ing objective was not only to maximize the users quality of experience but to do
so at the least possible cost to the operators, both financially and operationally.
However, even current second and third generation networks involve hundreds of
parameters that can be tuned as well as hundreds of Key Performance Indica-
tors (KPIs) that must be monitored in normal network operation. With this level
of complexity the underlying objective could not be addressed with a single au-
tomation function, but it had to be broken into multiple sub objectives (called use
cases) each of which could then be solved with a single function.

The definition of the use cases, including the operators’ guidelines and recom-
mendations for implementation, covered the typical areas of network operation
classified under 5 themes:

• SON enablers

• Self-configuration

• Self-optimization

• Fault Management and Fault Correction

• Operation and maintenance (O&M) Related SON

In the LTE SON standard, the 3GPP selected nine use cases/SFs that are ex-
pected to be critical to network operations and highlighted them as priority for
implementation. Defined in [6], these nine SFs cover the three SON paradigms of
configuration, optimization and healing as summarized by Table 2.3.

As stated earlier, the biggest output related to SON has to date come from the
Socrates Project. The Project described 25 SFs related to the LTE air interface,
classifying each as belonging to one of the three network functional areas - config-
uration, optimization and healing [13],[14]. Socrates also defined the criteria for
evaluating self-organization methods [15] and identified the need for integrating
these methods [16] [17].
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Table 2.3: Critical SON Use cases as proposed by 3GPP.

Use Case acronym SON area

Coverage and capacity optimization CCO Optimization, Healing

Reduction of energy consumption REC Optimization

Interference Reduction IR Optimization

Automated Configuration of Physical Cell Identity PCI Configuration

Mobility Robustness Optimization MRO Optimization

Mobility Load Balancing Optimization MLB Optimization

RACH Optimization RACH Optimization

Automatic Neighbor Relation Function ANR Configuration, Optimization

Inter Cell Interference Coordination ICIC Optimization

Individual SFs have been studied, albeit to varying depths and results, with the
most famous being handover optimization [17][18][19][20][21], admission control
optimization [22][23] and load balancing [24][25]. However, other functions have
also been studied including RACH self-tuning in [26] as well as packet schedul-
ing parameter optimization, self-optimization of home eNodeBs, cell outage man-
agement, X-map estimation, and automatic generation of initial parameters for
eNodeB insertion in [5].

2.2.2 Design Paradigms for SON Functions

SON algorithms have been designed using a number of different control and op-
timization structures. To fully appreciate the coordination challenge, we need
to understand these different structures and their implication towards SON coor-
dination. This section reviews these structures and then highlights some of the
works where they have been applied towards SON and automated management of
cellular networks. We describe the four major categories of meta-heuristic, rule-
based, gradient-based and machine learning algorithms. We then conclude with
a qualitative comparison of the different approaches and justify our selection of
reinforcement learning for the studies in this thesis.

2.2.2.1 Meta-Heuristic Algorithms

Meta-heuristic algorithms (MHA) are optimization algorithms that iteratively try
to improve the solution based on some measure of quality. These algorithms can
quickly search large portions of the solution space but do not guarantee to find
the optimal solution. A number of SFs have been designed using meta-heuristic
algorithms since they can quickly find a reasonably good solution.

The simplest MHA is Local Search (LS) which starts with one of the possible
solutions and then iteratively checks the quality of the neighboring solutions. If
the neighbor solution performs better than the previous solution, it is selected as
the best solution. This process repeats until a certain quality of solution is achieved
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or a fixed number of iterations is completed. LS has been used for Antenna tilt
optimization in [27] and Handover parameter configuration in [28]. Simple LS
algorithms however suffer from the local maxima problem where the optimizer
gets locked in a specific solution when all its neighbor solutions are worse yet
there could be a better solution away from its neighbors.

Simulated Annealing (SA) tries to solve the local maxima problem by selecting
neighbor solutions as best solution with some probability. This is done even when
the neighbor solutions have lesser quality of measure. In order to ensure conver-
gence of the optimization, this probability of selecting neighbor solutions decreases
with increasing number of iterations. SA approaches have also been utilized for
antenna tilt optimization in [29] [30] [31] [32] [33]; for optimizing micro cell base
station locations in [34] and for self-optimization of handover parameters in [35].
Performance of these techniques highly depends on the algorithm’s parameter set-
ting for example the probability of selecting a bad solution or the definition of a
neighbor solution. This is critical to the extent that an appropriate definition of
neighbor solutions can enhance the quality of the final solution as well as reduce
the computational complexity [36].

Tabu Search (TS) is another local search algorithm which tries to overcome the
problem of local maxima by maintaining a list of recently tested solutions. The
solutions in this list remain tabu (prohibited) for some time to ensure that the
optimizer does not remain stuck in a specific region of the solution space. This has
been applied for antenna tilt optimization in [37] [38]; for generic radio coverage
optimization in [39] and for the automated design of LTE Access networks in [40]

Another class of meta-heuristic algorithms are Genetic Algorithms (GA). These
mimic the process of natural evolution to find the best solution for the problem.
Instead of getting a neighboring solution that is a slight variation of the current
solution, GA combine two solutions from a population of solutions to create a
child solution that inherits the best qualities of the two parent solutions. GA
have been proposed for automation of cell planning tools [41][42], for automated
LTE resource allocation [43][44], for PCI planning [45] and for improving energy
efficiency in LTE [46].

Another population-based approach, Particle Swarm Optimization (PSO) has also
been applied in SON. In this case, a population of candidate solutions moves in
the solution space in a way that their movement is influenced by their own best
known solution and the global best known solution at any time. Corresponding to
parallel search, this has been used for antenna tilt optimization [47] and for load
balancing [48].

2.2.2.2 Rule-Based Algorithms

Some rule-based techniques have also been proposed for SFs. Relying on network
and cell statistics, rules are defined to describe how cells react in case certain
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events are observed. Such techniques have been applied for handover optimization
[18], antenna tilt optimization [49] [50] [51], and load balancing [24] [52] [53].

2.2.2.3 Gradient-Based Algorithms

Gradient methods are algorithms that solve problems of the form described by
equation 2.1. The solution is defined such that at any point during the optimiza-
tion, the search direction follows the gradient of the function at that point.

min
x∈Rn

f(x) (2.1)

As evident, the utility function f(x) whether continuous or discrete over x, must be
available or defined for these methods to be used. This makes gradient methods
less useful in SON where such functions are in many cases unavailable and yet
synthesizing them requires operation over long periods of sub-optimal performance
so as to obtain adequate sample values of the function. Nevertheless, gradient-
based schemes have been exploited for antenna tilt optimization in [54] and [55].

2.2.2.4 Machine Learning

Machine learning is a scientific discipline in which a system automatically learns
and improves solutions through experience. The learning methods can be mainly
classified into:

1. supervised learning where known input-output pairs are supplied to the
learning agent so as to learn patterns that can then be used to deduce solu-
tions for inputs with unknown outputs;

2. unsupervised learning where the agent is supplied with un-categorized data
so that the agent learns to categorize the data;

3. reinforcement learning where an agent acts in an environment in which effects
of actions are unknown but where with the experience of acting, the agent
learns and improves its knowledge of the goodness of solutions.

Machine learning has been applied in many network automation problems among
then: interference management [56], handover management [57] and coverage and
capacity optimization [58].

2.2.2.5 Benefits and Challenges of Optimization Approaches

All the approaches discussed above have been quite effective for the different au-
tomation problems where they have been applied. Meta-heuristic algorithms are
the most widely used optimization approaches as they can provide solutions with
significant performance improvements in short intervals of time even for very large
networks. However, they can only be run in an off-line manner because of the
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requirement to test different candidate solutions for the specific quality of mea-
sure. This implies that the quality of the solutions derived with Meta-heuristic
algorithms will highly depend on the network and environmental models used in
the off line modeling and planning tools.

Rule-based algorithms can be applied online within an operational network, al-
though their performance gains have typically been proved using simulations. Nev-
ertheless, most of these approaches have only considered synthetic scenarios, like
uniform cell structures, static mobility profiles and deterministic or statistical load
offers, for which rules are easier to derive and design. In reality, the number of
possible network configurations increases exponentially with network sizes which,
in case of non-uniformly structured rules, would require an extremely large rule
base to fully address all configurations.

Another major problem with these approaches is that the optimization intelligence
remains heavily concentrated in the design phase of the algorithms. Additionally,
these algorithms are not able to learn from their experience of previous optimiza-
tion steps. Instead, they rely on network optimization engineers to either fine
tune their results in the operational network or to adjust the parameters of the
optimization algorithms. Gradient methods which may not require fine tuning
instead require the optimization functions which are also not typically known.

The above challenges are overcome with the use of machine learning algorithms
which allow the system to use its gained experience to improve solutions. Addition-
ally, using a distributed architecture for the learning mechanism, the optimization
can be adjusted according to the local requirements of the individual cells. More
importantly however, to coordinate multiple control agents each of which is based
on a different optimization structure inherently complicates the challenge further.
Consequently, a single optimization structure should as much as possible be ap-
plied for all SFs. Given the benefits of machine learning, we have thus selected it
as the best control structure for designing the optimization functions. Specifically,
we use Reinforcement (Q-) learning for all SFs so that the coordination problem
is reduced to a multi-agent Q-learning problem.

Details on the example designs and implementations of Q-learning for SON func-
tion is the subject matter for chapter 3 but we briefly review the literature on
multi agent system in section 2.4.

2.2.3 SON Conflicts - The Need for SON Coordination

Individually, each of the SFs described in 2.2.1 optimizes only a very small part
of a network’s operation. To achieve the desired global goals, all the SFs must
be operated on the same radio network and in many cases multiple SFs must
be simultaneously operated. However, because they are operating on the same
network on which they adjust the same or related parameters, the SFs Conflict
with one another. As shown in Fig. 2.8, two (2) major conflicts have been identified
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(a) Parameter Value conflict. (b) Metric Value conflict.

Figure 2.8: Examples of the two Major SON conflicts.

– PVCs and MVCs [17][5], although other non distinct conflicts and interactions
here classified as Fuzzy and Combined Conflicts (FCC) may also be observed.

2.2.3.1 Parameter Value conflicts (PVC)

To achieve the desired metric values for a given SF, a number of parameters have to
be tuned. The same parameters may however be tuned by a different SF to achieve
a different metric. In this case the two SFs are said to experience a parameter
value conflict. An example of this is the possible conflict for antenna tilts by
both Inter-Cell Interference Coordinations (ICICs) and Coverage and capacity
Optimizations (CCOs) as shown in Fig. 2.8a.

2.2.3.2 Metric Value conflicts (MVC)

In the case of MVCs, a SF optimizes its own parameters but inadvertently affects
a metric of another SF although the two SFs may be adjusting different parame-
ters. An example MVC is when the MLB-adjusted Cell Individual Offset (CIO),
affects MRO metrics as shown in Fig. 2.8b. Another example is that Interference
Coordination can change transmit data rates within cells which would have effects
on load conditions within the cells. This will as such affect overload related SFs
like MLB or admission control optimization.

2.2.3.3 Fuzzy and Combined Conflicts (FCC)

Besides PVCs and MVCs, other relationships may exist but would not require
integration activity during SON development. An example is having multiple SFs
that share inputs. In that case coordination may not be necessary unless the two
SFs also exhibit PVCs and/or MVCs. Similarly there could be situations where
the effective conflict is an indirect combination of both PVCs and MVCs. Such a
case is where two parameters that have the same effect are controlled by two SFs
aimed at different metrics. Although this may be considered a MVC, the fact that
the two parameters are highly related makes it exhibit a PVC. The case of MLB
adjusting CIO is such a conflict. In effect, the CIO has exactly the same effect
as the HO hysteresis controlled by MRO only that the CIO is specific to a single
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neighbor while the Hysteresis is uniform for all neighbors. A clear boundary may
therefore not be easy draw in some circumstances between PVCs and MVCs.

Although PVCs present an interesting problem that arises from toggling of a pa-
rameter’s values between two SFs, their nature indicates that a single optimization
function has actually been split into multiple small functions. Consequently, quick
solutions can be developed for PVCs either by considering the two conflicting SFs
as a single SF or by jointly optimizing them. MVCs on the other hand pose an
interesting problem. Given that they do not conflict on the parameter values
indicates two different objectives that can not easily be combined. Instead the
conflicts represent competing objectives for which either smart solutions would be
required to decouple the competition or compromises would need to be developed
in ways that maximize all the competing objectives. As such, this thesis focuses
more on MVCs or the fuzzy cases in which the MVCs is more prominent.

2.3 SON Coordination: The State of the Art

In demonstrating the need and potential benefits of SON integration within the
SOCRATES project, some interdependent SFs were simulated together. In one
such case, handover performance is compared for MRO both in the presence and
in the absence of self-organized admission control [22]. Results show, as would be
expected, that the admission control parameter optimization algorithm consider-
ably improves the HO performance, since admission control blocks the would-be
cell-edge users. In doing so, it reduces the amount of calls that would have been
dropped prior to or during HO. There is however little negative interaction be-
tween the two algorithms [5].

In another study, interaction between a MRO algorithm and a MLB algorithm is
simulated with a coordinator that controls the two base algorithms. Results show
that by combining the strengths of the two algorithms, the coordinator is able
to achieve better performance, that for the individual SFs is in some cases even
better than any of two separately [25].

Another study evaluated the effect of HO optimization between macro and Home
eNBs [5]. Simulation results do not however show any performance improvement
for the scenario of a simplified, trend based, macro HO optimization algorithm,
although improvements may be expected in other scenarios.

In general, although significant SON-related work exists, most has focused on in-
dividual SFs and little has considered the need to coordinate multiple SFs. There
are as such multiple challenges that need to be addressed. The two major SON
research projects – SOCRATES and UNIVERSELF – have however provided a
sound starting point for further work on the problem. The following sections de-
scribe some of the ideas that have been investigated and highlight their limitations.
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(a) Functional Parameter Groups. (b) Control and Coordination Planes.

Figure 2.9: State of the Art SON Control and Coordination Approaches.

2.3.1 Functional Parameter Groups

In [5] and [16] an idea was presented to classify radio parameters into groups -
called functional parameters groups (Fig. 2.9a) - which are created in a way that
parameters in any one group contribute to the satisfaction of the same goal(s). It
was expected that parameters in one group would not be coupled with the goals of
other groups, which would allow for the identification of SFs that can be developed
in parallel and that would not need to be coordinated and/or simulated together.

However, it was found that a majority of the parameters fell under a single func-
tional parameter group which would lead to impractical results, as the majority
of the algorithms would need to be simulated together. An alternative attempt to
reduce the complexity considered the relation between the parameters by intro-
ducing a metric interrelation weight (IW). High IWs between parameters would
suggest that the associated parameter pair be jointly investigated and optimized.
This has however not been demonstrated as an applicable solution to the problem.

2.3.2 Control and Coordination

The authors in [5] and [16] also suggested handling conflicts by introducing a
control plane and and a coordination plane as shown in Fig. 2.9b. The control
plane would compare the measurements against operator defined thresholds and
decides on the activation of triggers while the coordination plane would process
the parameter changes proposed by concurrent functionalities before real network
parameter adjustments are executed. The authors specify the requirements for the
control and coordination planes as well as the challenges including identification
of possible conflicts. They also specify the functionality that may be part of the
coordinator, among them autognostics, super operator policy functionality, guard
functionality against extreme behavior due to SON, arbitration as well as SON
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parameter execution. They however leave the details of the specification and
implementation of coordination functions to future work.

Efforts to derive the control and coordination framework have been undertaken
in [59] where, a flexible, operator policy-based decision coordination is developed.
In [60] an experimental system for SON function coordination based on the above
framework is presented. It however only considers coordination of instances of a
single SF as has been demonstrated for CCO.

A case study for a coordination function has also been implemented in [25] [5] to
evaluate the Integration of MROand MLB. The study implements an alignment
function that prevents handover optimization from adjusting the hysteresis of a
cell that has previously been often overloaded. The SON coordination combines
the benefits of both algorithms to significantly improve the call drop rate and to a
small extent the HO failure rate. This comes however at the cost of slight increases
in number of unsatisfied customers and HO ping-pong rate.

The studies above demonstrate the benefits of a coordination function in inte-
grating multiple SFs. These algorithms are however specific to the SFs under
consideration and cannot be generalized to any other SFs. Besides only a few sub-
functions of the coordinator have been implemented and not the full functionality.
This therefore needs to be studied further to generate the required solutions.

2.3.3 Impact Time

In [61] an Impact-time concept towards coordination of SFs was presented. The
concept defines a set of time intervals describing the pair-wise temporal interde-
pendency of SFs. Based on these temporal relations, each SF would be allocated
the appropriate time whenever scheduled by a SON Coordinator. Although the
solution addresses the concurrency of operation of SFs, it does do not address the
coupling of parameters and metrics as is likely to happen for many SFs.

2.3.4 Combination of multiple approaches

A coordination function of a larger management framework is presented in [62].
The solution describes a set of approaches enforced using a coordination block.
One such approach has been implemented as a hierarchical structure for SFs with
the SFs having different operating time scale that allow the SFs to be separated
in time. Similar to the impact time concept in 2.3.3, the published solution does
not (at the time of publication) protect the SFs against metric value conflicts as
described in section 2.2.3.

The discussion in this section has shown that some solutions have been proposed
towards SON coordination but mainly as proposals. Where such proposals have
been tested, the solutions are also incomplete and so more approaches need to be
evaluated. A possible promising approach is the consideration of the SONs system
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as a MAS which can be managed using MAS approaches as have been developed
in other scientific fields. The subsequent section briefly discusses MASs especially
as applied to a learning environment.

2.4 Multi-Agent Systems

Multi-Agent Systems (MAS) in contrast to Single-Agent Systems (SAS) deal with
control problems involving multiple agents acting within a shared environment but
constrained by: 1) that the agents have some degree of interaction and 2) that
the overall performance of the system depends on the joint behavior of all agents.
Given this definition, the operation of multiple SFs in multiple cells in a network
results into a real MAS. In effect though, each SF is actually a MAS, since each
version of the SF in a cell is in principle an agent. The constraints characterize
MAS problems such that [63]:

1. In the event that there is no interaction among the agents, the problem ceases
to be a MAS since it can be decomposed into independent SAS problems
each solvable by a separate agent.

2. the solution space for a MAS problem grows enormously, often exponential
in the number of agents.

3. having multiple interacting agents each adapting state makes the environ-
ment non-stationary i.e. parameter and metric values as observed by any one
agent continuously change in tandem with peer agents’ actions. This contin-
uous variation violates the basic assumption of numerous SAS approaches.

4. owing to the combined activity of the multiple-agents, a small change by one
agent can often result in unpredictable changes in the overall behavior of the
whole system.

Solutions for managing and coordinating agents in MAS problems can be classified
among four major categories as described in the subsequent sections:

• SAS Decomposition

• Single Coordinator

• Peer Modeling

• Concurrent Games

2.4.1 SAS Decomposition

Where the interactions among agents are not strong, the MAS problem may be de-
composed into separate SAS problems as shown in Fig 2.10. This is done with the
assumption that the optimum solution can still be found despite the interactions
or that the suboptimal solution is also appropriate for the application. Owing to
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Figure 2.10: Coordination
through SAS decomposition.

Figure 2.11: Coordination using a sin-
gle coordinator / through team learning.

the simplicity of dealing with separate SAS problems, many state-of-the-art SON
coordination solutions have applied this kind of approach. Among these are the
solutions in 2.3.3 and 2.3.4

2.4.2 Single Coordinator /Team Learning

In this case, a single coordinator learns and decides the behavior for a team of
agents. In MAS problems involving machine learning, this can also be refereed to
as team learning. The single coordinator agent (e.g. agent B in Fig 2.11) makes all
the decisions about which and when agents can take actions; evaluates the effects of
these actions and decides the appropriate responses to the actions. To accomplish
this, the coordinator requires the behavioral models of all team members (the dark
bubbles in Fig 2.11) which it uses for coordination. The control and coordination
solution in section 2.3.2 [5], is an example of such a coordinator. in the SON
environment, this coordinator could be local to the eNB or central to the network.
In learning problems, three approaches to team learning may be considered:

1. Homogeneous Team Learning: This tries to learn a single agent’s behav-
ior for all the agents in the team, even if the agents have different capabili-
ties. By learning the same behavior, the search space is drastically reduced,
which is particularly important for problems where the heterogeneous solu-
tion space is infeasible to explore. Additionally, for problems that do not
require agent specialization for better results, homogeneous team learning
would perform better with less complexity. This is applicable for single SFs
if such an SF’s activity in each cell is considered an agent. It would however
not be applicable for different SFs even within a single cell.

2. Heterogeneous Team Learning: Here a single learner learns different
behaviors for the different members of the team while improving the perfor-
mance of the team as a whole. This allows agent specialization within the
team at the expense of an increased search space. An application of this
would be the case of having a single learning agent for all SFs in a cell.
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3. Hybrid Team Learning: This combines the benefits of both homogeneous
and heterogeneous team learning. It divides the team into multiple squads,
with each agent belonging to only one squad and each squad then taken as an
agent within the system. With all agents in a squad having the same behavior
with squads having similar or differing behaviors, it applies homogeneous
Team Learning within the squad and heterogeneous Team Learning among
squads to achieve specialized characteristics. This would be an appropriate
candidate for system-wide learning where all agents for the same SF but in
different cells can be taken as one squad applying Homogeneous learning.
The entire system would then be a set of squads applying heterogeneous
learning among the SFs.

The advantages of team learning are that with a single coordinator, it can utilize
the better understood SAS techniques with good convergence and stability char-
acteristics [64] and that it tries to improve the performance of the entire team and
not just that of a single agent. However, team learning suffers from scalability
challenges on three fronts:

1. In an environment where agents are not all implemented at once, as is the
case with SON, the coordinator will require to be revised and/or reimple-
mented each time a new agent is added. This is because, before a new SF is
added, the coordinator does not have a model of that SF and thus needs to
be extended with the model of that new SF.

2. The number of possible states that the team can have increases exponentially
with the increasing number of agents. This can make it infeasible to main-
tain the state-value function or it would extremely slow-down the learning
process.

3. Its centralized nature implies that the single learning agent needs to have
information from all agents of the system in order to make a decision and
that all the computational resources must be concentrated at a single place.

2.4.3 Peer Modeling

In peer modeling, each agent focuses on optimizing its objective but models the
behavior of its peers so as to account for their actions (Fig 2.12). Using the models
(the dark bubbles in Fig 2.12), the agent evaluates its actions and determines the
effects that such actions would have on the peers. It then predicts how peers are
also likely to behave in response to its actions. Two kinds of agents are observed
- cooperative and competitive agents.

A cooperative agent ensures to select actions that not only maximize its benefits
but that have the least possible negative effects on its peers. On the other hand a
competitive agent focuses only on maximizing its objective with the expectation
that each of the other agents is doing exactly the same for its respective objectives.
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Figure 2.12: Coordination
through peer modeling.

Figure 2.13: Coordination as
multi-agent concurrent games.

The challenge however is that peer modeling would also suffer from scalability
challenges in the SON environment since models in all SFs must be updated each
time a new SF is added to the system. Besides such models are very complex owing
to the complexity of the individual SON functions. As such the modeling processes
would make each SF very complex. In effect each SF will be as complex as the
heterogeneous team learner in Fig 2.11. In concurrent games, multiple learners try
to partly solve the MAS problem, especially where some decomposition is possible
and where each sub-problem can to some degree be independently solved [65].
CGs reduce the search space and the associated computational complexity of the
agents by projecting the large team-wide search space onto smaller separate search
spaces. In a learning environment where it is refereed to as concurrent learning,
with each agent free to learn individually, heterogeneity or homogeneity becomes
an emergent behavior of the system.

However, learning is more difficult in concurrent learning because of the presence
of multiple learners. Each learner interacts with the environment and tries to learn
the behavior that improves its performance. At the same time, other learners are
also co-learning and co-adapting their behavior. Each change by any agent can
make the assumptions of other learning agents obsolete and ruin their learned
behavior. This makes the whole environment non-stationary and the learning
agents can at best try to keep track of these changes in the environment and
their optimal behavior [63]. Basing on the behavior of the agents within the CG,
concurrent learning may be categorized as cooperative games, competitive games
or a mixture of the two.

2.4.3.1 Cooperative Games

Fully cooperative games utilize global reward to divide the reinforcement equally
among all the learning agents. All agents have the same goal to maximize the com-
mon utility. With differing utilities, a further coordination structure is required
to decompose observed rewards into the different utilities.
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2.4.4 Concurrent Games (CGs)

Also where no single utility exists, cooperation may also be realized through the
sharing of information during the optimization process as shown in Fig. 2.13. In
this case, as independent entities and without modeling peers, agents communicate
observed effects to each other. In effect, after taking an action, an agent is informed
of the actual effects of its action as observed by the peers instead of trying to
predict the effects from the built-in internal models as in the case Peer Modeling.
In this case, each coordination episode becomes a Concurrent Cooperative Game
in which the agents are in competition with each other for the shared parameter
or metric but where they are willing to cooperate on what the best compromise
value should be.

2.4.4.1 Competitive and Mixed Games

In competitive games agents compete against each other and the reward of one
agent acts as a penalty for the other agents i.e. only one wins and the others
lose. In that case agents learn to avoid losing strategies and to chose the winning
strategies. Such games would be inapplicable in SON where we require all SFs
to win. Mixed games are the ones, which are neither fully cooperative nor fully
competitive. These may be applicable to SON but the degree of competition would
have to be developed.

Given its potential for a fully distributed solution that would easily scale, Con-
current Cooperative Games (CCG) have been considered to be at the core of
the coordination solutions presented in this thesis. A detailed discussion of the
implementation and validation is given in Chapter 6.

2.5 Summary

As preparation for the detailed discussion of the thesis contributions, this chapter
has reviewed the fundamental literature that relates to the rest of the thesis.
We started with a steep review of the most important concepts related to the
LTE radio system focusing mainly on understanding the available radio resources,
how they are allocated and they can maximized. We then discussed SON related
literature to date delving into some example SFs that have been developed and
discussing the generic approaches through which SFs can be designed. We also
discussed the coordination problem not only to clearly map out the scope of the
work in this thesis but to also appreciate why it needs to be studied. The last
section discussed multi-agent systems highlighting the different generic approaches
that can be employed to deal with multi-agent control problems.
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Owing to the dynamic nature of the cellular radio environment, SON coordination
ideas can not be fully validated analytically; so that performance is best evaluated
using system-level simulations. In this case, the system-level simulator, in contrast
to a link-level simulator, does not focus on the simulation of all link-level proce-
dures, but abstracts such procedures so as to focus on the end-end performance.
Such a simulator models in as much abstract form as possible: the link-level pro-
cedures and processes; the trigger and outcome events; as well as the protocols
involved in setting up, managing and tearing down data sessions. In this thesis, all
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the proposed ideas and algorithms have been evaluated using studies simulating
the operation of such ideas in an LTE network. The system-level LTE network
simulator used is based on the C++ software libraries provided by Alcatel-Lucent
Bell Labs, Germany (ALU) and the Institute of Communication Networks and
Computer Engineering at the University of Stuttgart, Germany (IKR) [66]. The li-
braries enable simulation of the down-link radio environment of a 3GPP-compliant
LTE radio network.

For the work in this thesis, the simulator was extended so as to implement the
proposed Q-Learning algorithms and the coordination approaches. The basic fea-
tures of the simulator especially those critical for radio network modeling of SFs
under study are explained in the following sections.

3.1 Simulator Structure

This section describes the end-end organization of the simulation environment.
We briefly describe the fundamental components of the simulator as provided by
ALU and IKR. We then describe the extra novelty required to implement our
SON solutions and their coordination. In both cases the focus is on the high-level
logic of the components and not on the specific details of each of the components.

3.1.1 LTE RAT Simulator

The high-level design of the base simulator as provided by ALU can be described
by the Universal Modeling Language (UML) model in Fig. 3.1. The base simulator
implements a factory class whose object creates all the necessary objects for the
simulation. For each simulation functionality, different versions (classes) of the
function can be provided so that based on the input simulation configuration, the
factory loads the required object at runtime from the object pool. For example,
if we defined an omni-directional BS, a tri-sector BS and a 6-sector BS, we can
select to run a simulation with any of the three. The desired BS kind is selected
at the start of the simulation and will be dynamically created by the factory from
the BS object pool. For the LTE RAT, the basic factory is extended so that it is
able to create objects with characteristic LTE behaviors.

The factory creates a playground and a desired Radio Access Technology (RAT),
in this case the LTE RAT. It then attaches the RAT to the playground. Mo-
bile groups each of which is expected to have User Equipments (UEs) (or simply
mobiles) with the same characteristics are also created and attached to the play-
ground. The factory then creates the different kinds of UEs and Base Stations
(BSs), attaching UEs to the mobile groups and BSs to the RAT. Each BS is then
populated with the right transceivers e.g. 3 LTE transceivers in the case of the
tri-sector LTE BSs used in the studies in this thesis. Characteristic models are
also added to each of the devices as needed. For example, handover process-
ing, mobility and traffic models are added to the UEs while resource allocation (or
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——————————————————————————————–

Figure 3.1: UML model of the LTE down-link system level simulator.

scheduling) is added to the transceivers. After all devices are added, channels that
connect UEs to the transceivers(cells) are created with the specific characteristics
of the respective RAT.

The simulator also implements general-purpose simulation tools from IKR that can
be called by any object. These can be used e.g. to initialize the objects, to model
probabilistic and statistical distributions or for deriving descriptive statistics on
general metrics like user distribution or throughput.

3.1.2 SON Extension for the Simulator

To implement the SFs and coordination, the extended Simulator described by Fig.
3.2 is used. The extension provides for independent classes that define functionality
for SFs. For example, as in the figure, separate classes are added for each of the
SFs: HO optimization(MRO) and load balancing (MLB). For each considered SF,
a local instance of the SF object is added to each cell to ensure that each cell is
able to maintain local state of the optimization.

A separate class called RLagent, that defines a generic Q-learning agent is added
so that each learning-based SF can instantiate its own learning agent as an object
of RLagent. For distributed learning, such an agent would be local at each cell
while for centralized learning, it is added to the RAT to simulate a situation where
the agent is shared among all cells. In a real network, such a centralized agent
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——————————————————————————————

Figure 3.2: The LTE system simulator with SON extensions.

could be placed in the LTE serving Gateway (SGW) for the cells under a single
SGW.

For the studies in this thesis, we consider only distributed coordination approaches
that do not have a specific coordinator, be it as a central agent in the network or
as separate agents in the cells. As such, no specific coordination class is added but
where necessary the required logic is added to the existing classes. For example
any required global properties e.g. allocation of identities or clustering of cells
would be a part of the RAT while individual coordination logic between SFs and
cells would be added to the transceivers and the SFs themselves.

After all objects and instances are created, the simulation is initialized to run
a specific number of batches each lasting a specified batch period. The detailed
processing of the simulation and the batches is described in 3.5.

3.1.3 Network Structure

The basic cellular network used for our evaluations consists of 7 LTE base stations
(eNBs) as shown in Fig. 3.3a. Each eNB operates 3 cells, where the term cell refers
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(a) Hexagonal grid network. (b) Effective network with wraparound and playground.

Figure 3.3: Simulation network structure with and without wraparound.

to the coverage area of a single radio transceiver (TRx). The eNBs are deployed in
a regular hexagonal structure, such that one center eNB is surrounded by one layer
of eNBs with an inter-site distance of 500 m. In the foregoing sections, reference
is made to a center cell which in effect is cell 12 as highlighted in Fig. 3.3a

3.1.4 Wrap-around

A wrap-around is implemented for better interference calculation and to avoid
border effects due to discontinuity of coverage. This replicates the simulation area
six times around the original area such that the original area is in the center and
the replicates form a layer around it as shown in Fig. 3.3b. However, movement
of the UEs is restricted to the area within the playground which is big enough
to encircle the desired coverage area but not so big to encircle the replicates.
Effectively, the replicates are used only for calculation purposes to ensure that
as the UEs gets to the edge of the playground it can still calculate interference
accurately. When it reaches the playground boarder it has to turn direction to
ensure that further movement is still with in the playground. Other than that,
the UEs would either continuously move away from the study network or circle
around in one path throughout the simulation.

3.2 Radio and Propagation Models

In wireless communications, the received power depends not only on the transmit
power, but also on a number of environmental factors and device characteristics.
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For useful simulation studies, accurate propagation models for the calculation of
received power are required, especially as all other system performance metrics
like Signal to Interference and Noise Ratio (SINR) , load, Radio link failures, etc
are calculated based on the received power. The relation between transmit power
PTx and received power PRx (both in dBm) is:

PRx = PTx − PL− LFS +GAnt +GDir +GMob (3.1)

where PL in dB is the pathloss; LFS in dB is the slow fading also known as shadow
or large scale fading; GAnt in dBi is the maximum antenna gain; while GMob also
in dBi is the mobile’s antenna gain and GDir in dB is the directional gain of
transmitter antenna depending upon the position of the receiver with respect to
the transmitting antenna. Equation 3.1 ignores fast fading specifically because
the effects studied in SON are at such large time scales that the effects of fast
fading are assumed to be averaged out. The calculation of the individual terms in
equation 3.1 are described in the following sections

3.2.1 Signal Loses and Fading

Fading is the variation in the attenuation, experienced by a signal over a propaga-
tion medium. Typically modeled as a random process, fading may vary with time,
radio frequency, or the geographical location of the transmitter and receiver. The
total signal degradation experienced is a combination of the pathloss and fading.

3.2.1.1 Pathloss

Pathloss (PL) defines the degradation in power with respect to the distance be-
tween the transmitter and the receiver. For a distance of d meters between the
transmitter and the receiver, 3GPP defines PL for LTE simulation studies as [67]:

PL = 128.1 + 37.6xlog(d) (3.2)

with the carrier frequency assumed to be 2GHz and the Base Station height above
the average rooftop assumed to be 15 meters.

3.2.1.2 Shadow Fading

Shadow fading is caused by large obstacles, e.g. buildings or hills, that obscure
the line-of-sight signal between the transmitter and the receiver. The result-
ing amplitude variations are often modeled as a log-normal distribution with an
environment-dependent standard deviation [68][69]. Shadow fading exhibits a slow
variation, such that, for moving users, the successive fading values are correlated.
The normalized autocorrelation between two successive values is given as [70]:

R(∆d) = e−
∆d
dcor

ln2 (3.3)
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where, ∆d is the distance between the two mobile positions and dcor is the envi-
ronment dependent decorrelation distance in meters. For example, if the shadow
fading value at position D1 is LFS1. At the next position D2, which is ∆d meters
away from D1, the shadow fading value LFS2 is normally distributed with mean
R(∆d) · LFS1 and variance (1−R(∆d)2) · σ2, where σ is the standard deviation.

3.2.2 Antenna Gains

All BS transceivers in the simulator utilize directional antennas. These allow
transmission of signals in a particular direction with higher gain thereby reducing
inter-cell interference in the other directions. The maximum antenna gain GAnt,
is the gain of the directional antenna relative to that of an isotropic radiator. The
directional gain GDir, is the relative strength of the radiated power at a particular
angle with respect to antenna bore-sight (axis of maximum gain). This depends on
the vertical and horizontal location of the receiver from the transmitter antenna.

Our studies utilize the 3D antenna model of equation 3.4 defined by 3GPP [71].
The model includes both horizontal and vertical antenna radiation patterns with
the gain at any position calculated as the sum of the two patterns.

GDir = G(φ, θ) = min {−[GH(φ) +GV (θ)], FBR} (3.4)

GH(φ) and GV (θ) are respectively the horizontal and vertical antenna gains in dB
while φ and θ are respectively the angles in the horizontal and vertical directions
between the antenna’s bore-sight and the UE’s direction. FBR is the front to
back ratio or the backward attenuation. It defines the ratio between the power
of an antenna in the main lobe to the power in the back lobe. Both radiation
patterns as defined in [71] are normalized to the maximum antenna gain so that the
maximum value that GH(φ) and GV (θ) can have is 0 dB. As such, the directional
gain decreases as the mobile moves away from the bore-sight.

All the UEs in the simulations use omni directional antennas. In comparison to
directional antennas, these radiate with an equal gain GMob in all directions. In
particular a Gain of GMob = 0 dBi is assumed.

3.2.3 Signal to Interference plus Noise Ratio

Each UE receives signals from its serving cell as well as from other cells that use
the same frequency resources. The received power is thus the combination of the
signals from the serving cell and the interfering cells. The ability of the receiver
to correctly interpret the desired signal from its serving cell depends on the Signal
to Interference plus Noise Ratio (SINR). The SINR is the ratio of the power in
the desired signal to the sum power of all interfering signals and the local noise in
the receiver.
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Assume that in a network with N cells (transceivers), a UE u connected to a cell c
receives power Pc watts from its serving cell and Pi watts from the i’th interfering
cell. If the UE has thermal noise power PNoise watts, its SINR in dB will be:

SINR(dB) = 10.log10

 Pc∑
∀i∈N,i6=c

Pi + PNoise

 (3.5)

The thermal noise in dBm can be calculated for a UE with a receiver noise figure
of NFRx dB and a noise band-width of NBW Hz as [72]

PNoise(dBm) = −174 + 10.log10(NBW ) +NFRx (3.6)

where, 174 is the thermal noise density in dBm/Hz.

3.3 Resource Management

Each cell manages allocation of resources (the OFDM frequency-time resources)
to its associated UEs. The cell determines each UE’s throughput and allocates
the appropriate resources based on demand and the applied scheduling policies.

3.3.1 User Throughput

The user throughput, Th, defined as the maximum transmission data rate that
the user can achieve on a given channel depends on the user’s SINR . The upper
bound expressed in bits per second (bps) for a given bandwidth BW Hz can be
calculated from the Shannon formula as:

Th(bps) = BW.log2(1 + SINR) (3.7)

This upper bound assumes availability of perfect Modulation and Coding Schemes
(MCS). Using realistic MCS that are available for LTE, an approximate function
can also be developed for realistic throughput calculations [73][74]. In this thesis
for a given SINR S, we use the approximate function in [74] that estimates Thsymbol
the number of bits that can carried per symbol using the realistic MCS as:

Thsym =


0; S < 7.04

−0.0001S3 + 0.0074S2 + 0.1397S + 0.6218; −7.04 < S < 20.2
Thsym(20.2); S > 20.2

(3.8)

In LTE users are allocated resources in terms of the number of Physical Resource
Blocks (PRBs). Given that each PRB has 7 symbols (as discussed in 2.1.2), the
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achievable throughput per PRB ThPRB is:

ThPRB(bps) = 7xThsym (3.9)

3.3.2 Resource Allocation and System Load

We consider that the network applies the Guaranteed Bit rate (GBR) traffic model
for each user, wherein the user must always be allocated resources that ensure it
achieves the specified rate. Then the number of PRBs, NPRB, per scheduling
interval Ts required for data transmission is the ratio of the total data to be
transmitted in the interval Ts to the achievable rate per PRB i.e.

NPRB =
GBR · Ts
ThPRB

(3.10)

LTE defines different system bandwidths Bsys as shown in table 2.2, where Bsys

defines the total spectrum available in the cell. The offered load ρ can be defined
as the ratio of the required number of PRBs to the total number of available PRBs.
Given the PRB bandwidth BPRB of 180 KHz, the number of PRBs for a given
system bandwidth will be constant, with the corresponding offered load given as:

ρ =

∑
NPRB

Bsys/BPRB

(3.11)

Cell overload occurs when the offered load ρ exceeds a preset threshold ρmax for
the given cell bandwidth. Accordingly, ρ can be greater than 1, representing the
case when the total required PRBs exceed the maximum PRBs available within
Bsys.

The actual distribution of resources to users depends on the applied scheduler. In
these studies, because we have assumed GBR traffic but with all UEs belonging
to one class, the allocation is influenced by the order of selection and allocation.
We use the simple round robin selection that continuously allocates resources to
users ensuring that each achieves the desired GBR before allocating the next user.
The scheduler does this either until all resources are exhausted or until all users
are allocated.

3.4 Mobility and Handover Management

For accurate results, simulations require that user behavior is modeled in a way
that mimics their realistic behaviors in a real environment. This section describes
the modeling of user movement and the handover procedures when users move from
one cell to another. In particular it describes the mobility model, the handover
procedure and related parameters as well as the modeling of handover events.
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Figure 3.4: Sequence of events for the Random Walk mobility model.

3.4.1 Mobility Model

A mobility model characterizes the patterns of mobile users, describing how a
user’s location, velocity and acceleration change over time. In this thesis, the
random walk mobility model is used. In the random walk model, a UE selects a
random direction which it follows until some control event is fulfilled. When that
happens, the UE stops for a specified amount of time before repeating the process.
The general algorithm can be broken down into the seven steps in Fig. 3.4 [75].

In these studies, the random selection of speed is continuous even while the UE
is moving. This is intended to model the fact that UEs never move at perfectly
constant velocities even for very short intervals. Instead the actual velocity at any
instant differs by a small variation from a generic desired velocity. Consequently,
at each snapshot, the velocity is allowed to increase or reduce by some small value
(≤ 5%).

The selection of the direction in step 2 follows a uniform distribution over all
directions. In step 3, the UE is not time limited but moves until it reaches the
border of the playground. When this happens, it turns in a new randomly selected
direction and continues to move as before.

3.4.2 Handover Modeling

As UEs move within the network, they need to change serving cells using the
handover (HO) process. In this thesis, HOs are triggered according to the A3
condition [76]. Using A3 HOs could be initiated based on either the Reference
Signal Received Power (RSRP) or the SINR in the two cells. For HO from a
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serving cell s towards a target cell t the A3 event is

Ft +Ot
s,t −Hys > Fs +Os

s,t. (3.12)

Ft,Fs are respectively the RSRP or SINR in dBm of the respective mobile in t and
s cells, without any offsets. Ot

s, Os
t are the Cell Individual Offsets (CIOs) in dB in

t and s respectively for HOs between the two. Hys is the hysteresis in dB which is
uniform for the serving cell. The Handover Hysteresis (Hys) is specified for LTE
to be 0 to 15 dB in steps of 0.5 dB [76].

If A3 is fulfilled for a critical time called Time To Trigger (TTT), the UE is said
to have entered the A3 and is ready to initiate a HO. The UE initiates HO by
sending a measurement report of the values Fs and Ft. However, before sending
the report, Fs and Ft are filtered by a Layer 1 averaging filter (L1) and a Layer 3
Infinite Impulse Response (IIR) filter (L3). L1 averaging which is not standardized
and can be vendor-specific, is implemented as a simple moving average of the
most recent values. The averaging window which must be updated every 200ms
is selected to be 100 samples. This is required to be long enough to average fast
fading yet not so long to affect the results of L3.

L3 filtering is standardized in the LTE Radio Resource Control (RRC) specifica-
tions [76]. For a measurement quantity F (RSRP or SINR), it is defined as:

Fn = (1− 0.5K/4)Fn−1 + 0.5K/4Mn (3.13)

where Mn is the latest L1 measurement, Fn the updated L3 measurement required
for reporting and Fn−1 the old filtered measurement result, which for F1, F0 = M .
K, the filter coefficient for the quantity F, controls the length of the IIR filter used
to filter the effects of fast fading. The possible K values are specified in [76] to be
the values from 1 to 18 in steps of 1.

The optimum TTT for any UE also depends on the UE’s mobility. The range of
TTT values is also specified as the 16 values (0, 40, 64, 80, 100, 128, 160, 256,
320, 480, 512, 640, 1,024, 1,280, 2,560, and 5,120) in ms.

3.4.3 Handover Events

From the foregoing discussion, it is evident that the outcome of any HO depends
on Hys, TTT and K. All three parameters have the effects of either initiating
HOs early or delaying them. The possible outcomes are either a HO success, a
Ping-Pong HO (PP) or a Radio Link Failure (RLF).

3.4.3.1 HO success

A HO is considered successful if a HO Confirm RRC message is delivered to the
target cell, following success of four prerequisites [77]:
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1. delivery of the HO measurement report to the serving cell;

2. preparation for HO between the serving and target cells over the X2;

3. delivery of HO command RRC message from the serving cell to the UE;

4. successful completion of random access procedure to the target cell

The entire process must last for less than a critical time T304 [76] otherwise the
HO is considered to have failed. We model this entire process using a HO-success
timer over which the SINR of both the source and target cells must be above the
threshold required for all the messaging described above to be successful. If any
of the SINR values falls below the threshold, a RLF occurs and the HO fails. The
range of values for T304 in seconds is 0.1, 0.2, 0.5, 1, 2, 4, 8 [76], but here the most
stringent value 0.1s is used to ensure that we evaluate the cases with the highest
possibilities of HO failures.

3.4.3.2 Ping-Pong Handover

A Ping-Pong HO, also refereed to as a Handover oscillation, is registered where
for a user u, a successful HO from a cell B to another cell A occurs in a time less
than the “PP time” after another successful HO had already occurred from A to
B. In our model, the PP Time is set to 5 seconds implying that any back and forth
HO in less than 5 seconds is considered a PP.

3.4.3.3 Radio Link Failure

A RLF occurs if the UE SINR stays below a threshold for a duration equivalent to
the critical time (T310)[76]. Two kinds of RLFs are modeled - Radio Link Failure
due to Early Handover (RLFE) and Radio Link Failure due to Late Handover
(RLFL). A RLFL occurs if the RLF condition is fulfilled within the serving cell
and, after RLF, the UE connects to another cell different from the serving cell.
A RLFE occurs when the RLF condition is fulfilled in the target cell and the UE
reconnects to the serving cell after the RLF. In either cases, to model them, a RLF
timer (T310) is started if any of the SINR goes below the threshold and the RLF
is registered if the SINR does not improve before the time runs out. The range of
values for T310 in seconds is 0, 0.05, 0.1, 0.2, 0.5, 1, 2 [76] but the median value
of 0.2s is applied in these studies.

3.5 Simulation Model

The section above have described the structure of the simulator and the modeling
applied to the individual processes and protocols. After all the necessary objects
are created in the simulator with the respective models, the simulation is initial-
ized to run a number of ”batches”. With in each batch, the simulation follows a
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snapshot-based evaluation, where a snapshot of the entire network is taken after
every “snapshot interval”. This section describes the processes that the simula-
tion follows, starting with the deployment of the different entities followed by a
description of the processing of the batches and the individual snapshots.

3.5.1 Deployment

Each simulation starts with the deployment of cells according to the scenario
explained in Section 3.1. Mobile devices or UEs are then deployed to generate user
traffic and to obtain SINR measurements. The deployment of mobiles follows a
random distribution that distributes the total number of users TotalUsers, among
the cells in such a way that the average number per cell is the ratio of TotalUsers
to the number of cells.

For studies involving load balancing, a hot-spot-induced overload is artificially
created by deploying an extra number of static users (i.e. UEs with velocity = 0
m/s) in a cell belonging to the center eNB. Specifically, they are deployed in cell
12 (in Figure 3.3a), which is hereafter referred to as the center cell. Fig. 3.5 shows
an example distribution of the users after deployment.

3.5.2 Batch Processing

The simulation runs multiple batches each lasting a specified batch period and
within which the snapshot are taken as shown in Fig. 3.6. At the beginning
of each batch, all users are re-introduced in the network following the random
deployment model in 3.5.1. The intention here is to ensure that as many of the

Figure 3.5: Initial Network with deployed users.
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possible radio conditions have been experienced by the users as possible. With
the random deployment is employed, the assumption is that each is placed at a
different location in each batch and that the user follows a different path during
the simulation. As such the aggregate scenario-independent simulation results will
be indicative of all the possible radio conditions in the network and not specific
to only a few limited scenarios.

Within each batch, we desire to evaluate all the events and procedures that each
user experiences at each point in time. Such events have varying interval periods
including the infinitesimal-time (in reality continuous) variations in the radio sig-
nal. This would thus require a simulator that can evaluate events in continuous
time, which is not possible. As such, the simulation is periodically triggered to
execute a snapshot of the network as indicated in 3.6 i.e. the simulation evaluates
the state of the network at periodic points in time. A single snapshot represents
the aggregated effects of all the events that would have happened in the network
since the last snapshot was taken. For example based on the velocity and direc-
tion of movement, each UE is moved to the point where it would have reached
if it were continuously moving. Similarly, if the UE was evaluating a HO and its
success time has expired during the snapshot interval, the HO is registered at the
snapshot.

The snapshot is taken every ”snapshot interval” whose length is selected based on
the desired accuracy of the events and scenarios being evaluated. For example a
simulation that evaluates HO events must use a snapshot interval that is smaller
than the shortest HO events (HO success at 60 ms) while a simulation that eval-
uates user throughput without concern for HO events can consider intervals as
longs as 1-2 s. In these studies, the snapshot interval is selected to be 50 ms to
ensure that the necessary events are accurately registered. In each snapshot, all
events ranging from variation of radio signals to movement of users, allocation of
resources and to collection of (quasi-) instantaneous statistics should be scheduled.
The detailed processing of these events is described in the next section.

Figure 3.6: Batch and snapshot processing during the simulation.
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3.5.3 Snapshot Processing

The processing of each snapshot runs though an open- event loop containing three
major events. All other activities are scheduled within these three events:

1. TriggerInitial: Here the UEs are caused to move and they update their
position depending on their mobility as described in section 3.4.1. UEs then
measure their received power on the pilot signal from all the cells and perform
HO evaluation as described in section 3.4.2. Where a HO event such as a ping
pong or RLF occurs, the UE reports such an event to the serving cell and in
case of RLF the UE initiates re-connection to the network. Similarly, each
UE calculates its aggregate throughput over the previous 1 second period
and where the UE achieves less than the expected throughput, it reports an
“un-satisfied user” event to the cell.

2. TriggerSchedule: In this step, schedulers in the transceivers are triggered
to distribute resources to the UEs based on the updated SINR conditions.
In our studies, the round robin scheduling described in 3.3.2 is applied al-
though even then SINR values are used to determine both the resources to
be allocated to each selected user and the remaining unallocated resources.

3. TriggerEvaluate: In this part, the necessary evaluations in the UEs, cells
and the entire RAT are undertaken. Among such evaluations are the inter-
ference and load conditions in the cells and network counter statistics for
HO events. SON related evaluations are also done during this period. After
accomplishing the resource allocation, each transceiver then evaluates the
events for which SON could be triggered and where needed, the appropriate
SON algorithm is triggered.

3.5.4 Simulation Parameters

As described in the preceding sections, users are deployed as described in 3.5.1,
and simulation processed according to 3.5.2 and 3.5.3. The “BatchPeriod” has
to be selected long enough to ensure that for the particular deployment, ade-
quate statistics are obtained for all the necessary parameters. However to obtain
deployment-independent statistics, multiple batches are executed, in each rede-
ploying the users. Based on test studies that showed that counter statistics for
HO events are stable after at most 80 batches of 200 s each, MRO related results
are based on simulations of 120 batches each simulating 200s of operation. Load
statistics on the other hand are stable after at most 20 batches and so MLB-only
results are based on simulations of 30 batches each simulating 200 s of operation.
The major simulation parameters are summarized in Table 3.1.
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Table 3.1: Simulation Parameters.

Parameter value

System bandwidth 10 MHz

Inter-site distance 500 m

Time between snapshots 50 ms

Number of users 240 mobile, 40 static

User velocity
variable, mean = 3, 10, 30, 60 or 120
Kmph

Mobility Model random walk

Pathloss A + B · log10[max(dKm, 0.035)];
A=128.1 and B=37.6

Shadowing
Standard deviation = 6 dB;
Decorrelation distance = 50 m

eNB Tx power 46 dBm

eNB Tx antennas 1 per sector, gain 15 dBi, at height = 32 m

UE receive antennas 1 Omni, gain 2 dBi, at height = 1.5m

Data rate 512 Kbps

3.6 Summary

This chapter has discussed the simulation environment that has been used to
evaluate the ideas presented in this thesis. This was selected to be presented before
the ideas and proposals since foregoing chapters present different aspects of the
solutions with their corresponding results. We have presented the generic structure
of the LTE simulator and the extra extensions that have been made to simulate
SON algorithms and their coordination. We then presented the underlying cellular
radio models in the simulator and the related modeling of the radio resources.
We discussed the mobility and handover models as well as the handover events
that result from the different control settings of the handover parameters. The
last section discussed the snapshot-, event-based simulation model in which we
described the simulation structure and how the results are derived for the different
SFs.
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A number of approaches have been applied in developing SON solutions as dis-
cussed in 2.2.2. Of these, Machine Learning (ML) and specifically Reinforcement
Learning (RL) offers the best promise since for a specific environment, it allows
the system to automatically learn and improve its solutions through experience
in that environment. An RL agent interacts with its environment and learns the
optimal behavior for particular states in the environment [78]. The learning prob-
lem can modeled as a Markov Decision Process (MDP) and solved using Dynamic
Programming (DP) techniques.

An MDP is a quadruple (X;A;P ; r), where, X and A are respectively the sets
of all possible states and actions, P : X ·A ·X ′ → [0; 1] is the state transition

47



Chapter 4. Q-Learning Framework for SON Functions 48

probability function and r : X ·A ·X ′→R is the reward function. P represents
the environmental behavioral model that defines P (xt; at;xt+1), the probability of
ending in state xt+1 when the agent takes action at in state xt. The need for this
environmental behavioral model implies that DP techniques would be inapplicable
in SON where such models are unavailable. A solution that does not require such
models is thus required for SON.

Q-learning (QL) is an RL algorithm that does not require a model of its environ-
ment to learn the optimum actions[79]. Instead it learns the abstract model of the
environment by learning the best actions for specific states of the environment.
This makes QL a good candidate for on-line optimization problems as is required
in SON. We have thus selected to implement our SFs as Q-learning problems.
This chapter describes our proposed QL framework for SON. It begins with a
review of QL highlighting how the QL approach can be mapped to SON problems
especially for Self Optimization problems. It then describes the application of QL
to two such problems - MRO and MLB.

4.1 Q-Learning in SON

This section discusses Q-learning with a focus on its use in cellular systems and
SON. We begin with a brief review of Q-learning and its relation to generic RL
followed with a discussion on the policies for selection of actions. We then discuss
the possible approaches to learning in a multi-agent environment i.e. cooperative
versus distributed learning. We conclude with a discussion of the application of
QL in SON highlighting on how QL can be mapped to a general SON problem.

4.1.1 Q-Learning (QL)

Q-Learning (QL) is a model-free RL algorithm which, using the Temporal Differ-
ence (TD) method can solve learning problems even without models. QL promises
a realistic way of implementing SON and other automation functions in cellular
systems especially where the dynamic behavior of the problem can not be easily
synthesized. Instead of the MDP quadruple, QL is a triple (X;A; r), where as
before, X is the set of all possible states, A is the set of all possible actions and
r :X·A·X ′→ R is the reward function. The difference is that we no longer require
the environment model which for the MDP was the state transition probability.

4.1.1.1 Model free RL with QL

Assume that a learning agent (Q-learner) needs to determine the optimum action
for a problem. As shown by figure 4.1, assume that at time t when the world is in
state xt ∈ X, the Q-learner chooses an action at ∈ A. Based on the effect of this
action the Q-learner receives an immediate reward rt ∈ R and the environment
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Figure 4.1: the QL process.

undergoes a transition into a new state xt+1 ∈ X. The objective of the learner
is to choose actions that maximize the discounted cumulative rewards over time.
More precisely, let γ be a specified discount factor in the range [0 1). The total
discounted return (or simply return) received by the learner starting at time t is
given by :

r(t) = rt + γ · rt+1 + γ2 · rt+2 + γ3 · rt+3 + .....γm · rt+m + ..... (4.1)

γ is used to balance immediate rewards against futuristic rewards such that the
closer γ is to 1 the greater the weight of future reinforcements. In general the
individual rewards at each time step is not deterministic, so that the value of a
state x under the policy π is given by:

V π(xt) = E[r(xt) + γ · r(xt+1) + γ2 · r(xt+2) + .....+ γmr(xt+m) + .....]

= E[rt + γrt+1 + γ2 · rt+2 + γ3 · rt+3 + .....+ γm · rt+m + .....]

= E[rt +
inf∑
m=1

γm · rt+m]

= E[rt + γ ·
inf∑
m=0

γm · rt+1+m] (4.2)

This is the Bellman Equation also known as the equation of Dynamic Program-
ming. It can be re-written as:

V π(xt) = E[r(xt) + γ · V π(xt+1)] (4.3)

Equation 4.3 represents the value of the state x at time t as dictated by the policy
π. The objective is to find π, the policy of selecting actions, so that the expected
value of the return is maximized. The policy in this case represents a rule (or set
of rules) for selecting actions. For stationary policies, those that select actions
based only on the current state, we can define a value function (the Q-value) for
every state action pair. For a policy π, the Q-value (Qπ(x, a)) is the expected
total discounted return received when starting in state x and following the policy
π thereafter. Since the policy selects actions in the different states, the Q-value
is similar to the value function in 4.2. However, instead of the value of the state
(which is the value of the best action), the Q-value considers the value of each
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action in each state. Thus,

Qπ(xt, at) =E[r(xt, at) + γ · r(xt+1, at+1) + γ2 · r(xt+2, at+2)

+ γ3 · r(xt+3, at+3) + .....+ γm · r(xt+m, at+m) + .....] (4.4)

The corresponding Bellman equation for the Q-value is

Qπ(xt, at) = E[r(xt, at) + γ ·Qπ(xt+1, at+1)] (4.5)

For the optimal policy π∗, the Q-value of action a in state x, Qπ∗
(x, a) is the

expected total discounted return received when action a is taken in state x and
after that continuing with the optimal policy π∗, i.e.

Qπ∗
(xt, at) = E[r(xt, at) + γ ·Qπ∗

(xt+1, at+1)] (4.6)

The optimal Q-value defines the expected rewards of taking action a in state x
when following the optimal policy.

Qπ∗
(xt, at) = max

π
Qπ(xt, at) = max

at
Q(xt, at) (4.7)

This can be calculated iteratively over the sequence of actions as:

Qπ∗
(xt, at) = E

[
r(xt, at) + γ ·max

at+1

{Qπ(xt+1, at+1)}
]

(4.8)

4.1.1.2 The QL Algorithm

The Q-learning algorithm works by maintaining an estimate of the Q function,
denoted here by Q̂, and adjusting Q̂ values (often just called Q-values) based on
actions taken and rewards received. This is done using the TD error e(xt, at)
[78] which is the difference between the actual Q-value (Q(xt, at)) and its current
estimate (Q̂(xt, at)), i.e:

e(xt, at) = Q(xt, at)− Q̂(xt, at) (4.9)

For any actions taken at time t, the algorithm updates the estimate at time t+1
by adding a small portion of the error (difference) to the current estimate as:

Q̂t+1(xt, at) = Q̂t(xt, at) + αt · e(xt, at)

= Q̂t(xt, at) + αt ·
{
Q(xt, at)− Q̂(xt, at)

}
= Q̂t(xt, at) + αt ·

{
r(xt, at) + γ ·max

at+1

Q(xt+1, at+1)− Q̂∗(xt, at)
}

= (1− αt)Q̂t(xt, at) + αt ·
{
r(xt, at) + γ ·max

at+1

Q(xt+1, at+1)

}
(4.10)
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Algorithm 4.1: The Q-Learning Algorithm

initialize: Q-value estimates as Q̂(xt, at) := 0 ∀x ∈ X, a ∈ A
1. Observe the current state x = xt

2. Select and execute an action at

3. Receive the immediate reward rt

4. Observe the new state x = xt+1

5. Update the estimate Q̂(xt, at) according to equation 4.10

6. update time t← t+ 1 and current state x← xt+1

7. Repeat steps from 2 to 6 until the terminal condition is fulfilled

where α in the range (0, 1] is the learning rate parameter that balances new infor-
mation against previous knowledge. A value of α = 0 implies that no learning is
undertaken while α = 1 means that only the latest information is considered with
complete disregard to the old knowledge.

The step-by-step flow of the algorithm can be summarized by the procedure in
Algorithm 4.1.

4.1.2 QL Process and the Exploration of Actions

It is important to note that the Q-learning method does not specify what actions
the agent should take in each state as it updates its estimates. To find the optimal
Q function eventually, however, the agent must try out each action in every state
many times. It has been shown [80] that if each state-action pair’s Q-value is
updated infinitely often, then Q̂∗ will converge to Q∗ with probability 1 as long as
α is reduced to 0 at a suitable rate. Multiple approaches for finding the compromise
between exploration and exploitation exist, the most common being ε-greedy. In
this thesis, we have used the ε-first strategy which can be considered a special
form of the ε-greedy strategy.

4.1.2.1 ε-greedy strategy

In this case the policy π(x) = argmax
a
Q̂∗(x; a) is only used a part of the time in

order to be able to explore the state-action space completely. At each iteration i,
the agent chooses to take either a random action ai = random with a probability
ε or the optimal action ai = π(xi) with a probability 1−ε. At the beginning of the
learning ε must be huge (near 1), but at the end of the learning, when Q̂∗ ≈ Q∗,
the agent should set ε = 0 to always use the optimal policy. An appropriate
method must be found for reducing ε. A constant ε has the properties that when
ε is small, the agent does not explore wide enough at the beginning yet when ε is
large the agents explores widely even when it has learned enough.
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4.1.2.2 ε-first strategy

The ε-first is in general similar to ε-greedy but with a step change between explo-
ration and exploitation. It begins by exploring all the actions without exploiting
until all actions have been tested a given number of times. At that points it
changes to exploitation of the learned knowledge. We apply the näıve (ε, δ) algo-
rithm that explores all the actions N times before exploiting [81]. The solution
gives with probability 1− δ an ε-optimal action for each state with

N =
2

ε2
ln

2n

δ
. (4.11)

where: n is the number of actions; δ the probability of an action being non-optimal;
and ε is the greed or desired speed of convergence to optimality. Small ε values
give more accuracy at the cost of delayed convergence. In this work, we have
selected ε=0.4 and optimality probability of 80%(δ = 0.2) which represent mid
ground greed while allowing good accuracy.

4.1.3 Multi Agent Q-Learning

This thesis focuses on Distributed SON solutions where optimization decision are
made for each cell individually as opposed to centralized SON that seeks solutions
for an entire network as a whole. The QL algorithm as presented so far focused on
a single agent learning to optimize a problem. The Distributed SON environment
on the other hand is a multi agent system even for a single SF since optimization
decisions are made by each cell individually. Consequently, for each SF, each cell
is a learning agent and the entire system is a multi agent learning environment.
In such a case, it should be decided whether to apply cooperative learning or
fully-distributed learning.

4.1.3.1 Cooperative Learning

Assuming for a given multi agent QL problem that an observed state at one
agent will at some time be observed by another agent, it makes sense to allow
the agents to share their observations and learn a single shared policy instead of
learning independent policies. The result is a Cooperative QL problem in which
the agents take actions and update a single Q-table. An example of a cooperative
QL MAS is the cellular network MAS in Fig.4.2a where each cell represents a
QL agent. Besides the benefit of enabling cells to share experiences, Cooperative
QL also speeds up the learning processes. Each cell does not necessarily need to
experience each state for it to learn the optimum action to take in the state since
it is has access to communal policy as learned by the other cells. The challenge
here is that all agents have the same Q table (same policy), which may not be
optimal for all agents in all states. Having different policies would allow agents
to explore the state space differently, enforcing the small differences that are due
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(a) Cooperative Learning. (b) Fully distributed Learning.

Figure 4.2: Distributed learning strategies.

to specific conditions for each cell. Nevertheless, where the QL states are defined
in a way that they are fairly consistent across different agents (cells), Cooperative
QL can significantly improve the overall performance.

4.1.3.2 Fully-Distributed Learning

The alternative to cooperative QL is distributed QL in Fig.4.2b with, as expected,
the reverse merits and demerits. In this case each agent in the MAS learns and
updates an independent Q table, which may result in different policies in case of
differences environment behaviors observed by the agents.

Implementing QL in a cellular environment even for a single SON function is
equivalent to a MAS problem which needs to be treated accordingly. In problems
where different cells observe similar states i.e. where states can re-occur from one
cell to another, cooperative QL solutions are preferred. This is the case also in
the QL problems considered in this thesis, the challenges mentioned above not
withstanding.

4.1.4 Application of QL to SON functions

Reinforcement learning and specifically Q-learning has been applied in a number
of works on Self-Organization or generally on automation of network functions in
cellular networks. In this section we highlight of few of such publications.
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4.1.4.1 Coverage and Capacity Optimization

In [82], the authors present an antenna tilt based CCO solution which proved ro-
bust to noisy feedback information from mobile users yet remains responsive to the
changes in the environment. Their simulation results show that the solution con-
verges to the global optimal settings and that the proposed solution can provide
up to 20% performance improvement when compared with another already exist-
ing fuzzy-logic-based reinforcement learning approach. In [83], different learning
strategies for a Fuzzy Q-Learning based solution for CCO were presented. Results
show that the network is able to autonomously optimize system-wide capacity
while ensuring good coverage at all points. The solutions are also able to au-
tonomously recover a single eNB failure by adjusting the cell antenna tilt.

4.1.4.2 Interference Management

In [84] a Cooperative Q- Learning Approach for ICIC was proposed. Simulation
results showed that due to improved interference management, improvements were
realized in system capacity and file transfer times. A distributed Q-learning al-
gorithm for Interference Management in a Femto cell environment was proposed
in [85] where the Femto Base Stations learn and adapt their channel selection
strategies. The problem was separated into two subproblems, the frist to find the
channel allocation through Q-learning in a decentralized way, while the second
computes the optimal power allocation. Results showed that femtocells were able
to self-organize with only local information and were also able to mitigate their
interference towards the macrocell network.

4.1.4.3 Load Balancing

The authors in [86] proposed a fuzzy Q-Learning algorithm to find the optimal
set of fuzzy rules in a Fuzzy Logic Controller (FLC) for traffic balancing in GSM-
EDGE Radio Access Networks. Undertaking load balancing through modification
of Handover Margins (HOMs), their simulation results show that the optimized
FLC provides a significant reduction in call blocking.

Authors in [87] proposed several methods for load balancing in an enterprise LTE
femtocell scenario. Based on tuning HOMs and femtocell transmit power, they
evaluated different strategies implementing FLCs and fuzzy rule-based Q-learning
systems (FRLS). Their results showed that performance is better when Q-Learning
is applied to transmit power instead of HOMs, since the network is more sensitive
to transmit power, and therefore, better solutions can be achieved by some explo-
ration of the algorithm. Instead, when Q-Learning is applied to HOMs, typically
only suboptimal solutions are reached.
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4.1.4.4 Handover management

The authors in [57] used a self-organizing map (SOM) to allow a femtocell to
learn the HO performance in an indoor environment. The Femtocell notes the
locations of the indoor environment from where HO requests have occurred and,
based on previous experience, decides whether to permit or prohibit these HOs.
By prohibiting unnecessary HOs, the algorithm could reduce the total number of
HOs by up to 70% while still permitting the necessary HO requests to proceed.

4.1.5 Generalization of QL for SON functions

Section 4.1.4 has showed that a lot of work has been done towards implementing
network automation functions as RL or specifically QL agents or systems of agents.
This thesis generalizes this approach by considering all SON functions as QL
problems some of which are presented in the subsequent sections. A typical SF is a
controller that observes its environment, takes an action based on the observations
and in many cases receives feedback on the suitability of the actions. This is the
same structure as for a typical learning agent depicted in Fig. 4.3. As such we
consider each SF to be a Q-learning agent given the appropriate elements.

Essentially, with the radio network acting as the environment for each SF’s learning
agent, we define the state(s) for which actions are required. These are typically
related to the observations or measurements that are supposed to trigger the SFs.
For example, since the MLB SF is triggered by cell overload, MLB states could
be set according to the degree of overload. Then, given the states, we define the
action set as the different possible actions that can be taken in such state. Owing
to the need to quantify the quality of the actions, a feedback mechanism in form
of a reward system for the actions is added. Then for each action taken, a reward
is derived for the SF QL agent from which the agent learns the best actions over
multiple interactions with the network. Table 4.1 summarizes how some of the
most common SFs can be mapped to the QL framework.

The biggest benefit of the QL framework is that each SF can designed to learn
based on all metrics influenced by its actions. As such each SF may be able to
learn to minimize its effects on peers metrics. In table 4.1 for example, since it is
known that MLB affects MRO, the QL agent for MLB can be designed to learn
based on MLB’s metrics (load and user dissatisfaction) as well as based on HO

Figure 4.3: Abstract SON Controller is structurally similar to a learning agent.
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Table 4.1: Mapping SFs to QL Framework.

SF States Solution:
Adjust ..

Action to
learn

QL agent
rewards

QL agent
penalizes

MRO Mobility state
e.g. average UE
speed in cell

Hys, TTT Hys-TTT tuple
e.g. (2.5,0.64);
. . . .. (dB,s)

change in no. of RLFs
and ping-pong HOs

MLB serving & neigh-
bor cell load,
user distribution

CIO by δ sizes of δ e.g. [δ
=0.5,1.0, ..]

change in
load

HO effects

CCO serving & neigh-
bor cells’ spec-
tral efficiency,
Tx Power

Antenna
Tilt by δ

sizes of δ e.g. [δ
=0,1,2, . . . ]

change in
spectral
efficiency

User dissat-
isfaction

ICIC serving & neigh-
bor cells’ spec-
tral efficiency,
Tx Power

Tx Power,
spectrum
allocation
policy

change in or
the absolute Tx
power, spec-
trum allocation,
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metrics (ping pongs and Radio Link failures). In the next sections, we describe the
two SFs (MRO and MLB) that have been implemented using this QL framework.

4.2 QL for Mobility Robustness Optimization

One of the major activities in network operations is determining the optimum
handover (HO) settings. Hys and TTT are the main control parameters and it is
necessary that they are configured according to the prevailing user speeds within
the cell or the network. This need to have different settings for different user
speeds translates into both a large state-space and a large parameter-space which
can not be effectively evaluated manually. In the context of SON, MRO seeks to
mitigate this manual operation. This section discusses our proposed approach to
MRO using Q-learning.

4.2.1 Mobility Robustness Optimization

For each HO, depending on the Hys-TTT tuple, hereafter called the Trigger point
(TP), either a HO success, a Ping-Pong (PP), or a RLF occurs. To optimize
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the relative occurrence of these HO events, MRO was proposed in the LTE SON
standard [6]. The MRO objectives are [6]: 1) to minimize RLFs that are due to
either too early HOs, too late HOs or HO to the wrong cell; and 2) to reduce PPs
and unnecessary HOs while achieving objective 1.

4.2.1.1 State of the Art MRO solutions

Multiple studies have been done on MRO. The authors in [18] presented a rule-
based HO optimization algorithm that adjusts both the control parameters and
the performance targets. Evaluating one metric at a time, while tracking periods
of good or bad performance, the algorithm selects the optimization action based
on the absolute Hys and TTT values at that time.

The authors in [88] proposed constraining the valid parameter values to the set
of Hys-TTT combinations that lie along a diagonal line in a 2-dimensional Hys-
TTT grid. They then proposed an algorithm that searches through this set to
determine the Optimum Trigger Point (OTP). The obtained value is then applied
thereafter regardless of the velocity in the cell. Then in [89], an enhancement to
[88] was presented. The enhancement applies a threshold to control the change
of parameter search direction so as to improve convergence time. In both cases
however, a lot of manual effort would be required if the search space is to be
selected for each applicable velocity in the network.

Meanwhile, the authors in [28] removed the restriction on the parameter space in
[88] and proposed a local search algorithm for the optimum point.

Then, in another attempt to improve convergence time, the authors in [19] applied
soft metrics to reduce the time required to obtain adequate evaluation statistics
so as to deduce appropriateness of parameter settings. Instead of relying on the
typical HO metrics like ping-pongs and HO failures, the authors rely on statistics
of other soft metrics that have demonstrated some correlation with the handover
reliability. Examples of such soft metrics are the handover command transmission
time or the number of Hybrid Automatic Repeat Request (HARQ) transmissions
required to send the handover command to the UE. Based on these statistics, the
designed HO algorithm adjusts the target values of the soft metrics that would
guarantee the desired HO success and HO failure targets.

4.2.1.2 Proposed Approach for MRO

Virtually all the approaches as reviewed above have mainly relied on expert knowl-
edge control loops to search through the parameter space. These approaches make
two fundamental assumptions that are unlikely to hold in real systems:

1. that the mobility profile in the network is static to the extent that a single
search is adequate to get the best settings. This is never the case, while



Chapter 4. Q-Learning Framework for SON Functions 58

the alternative of re-initiating the parameter search each time the velocity
profile changes is also impractical;

2. that, when designing search rules, the designer fully understands the under-
lying dependence of HO metrics on the control parameters. Besides being
prone to error in case of wrong assumptions about this dependence, the re-
quired rules would be very complex even with the right dependence model.

To counter these challenges, we propose a solution that does not rely on expert
knowledge or rules in selecting the OTP. Instead, it learns the OTPs as would be
derived from the perfect dependence model. The solution, QMRO, is a Q-Learning
approach that abstracts UE velocities into a finite set of mobility states, so as to
learn the OTP for each state. As cells apply different settings (also called actions)
in the different states, their observed performance for the state - action pairs are
used to update a central learning agent. Subsequent to learning, the cells reference
the agent to select the appropriate TP in different observed mobility states.

4.2.2 HO Performance Metrics

Increase in Hys and/or TTT delays HO triggering, subsequently reducing HOs
and PPs. Over delayed however, the SINR degrades so much that a RLF occurs,
specifically the RLFLs. The reverse happens when the Hys and/or TTT are made
so short in a bid to trigger the HO earlier. In that case the HO is made to a cell
whose signal is not consistently good that the UE re-initiates a HO back to the
original cell resulting into a PP. In the extreme case, the SINR in the new cell is
so poor that the UE loses its link before triggering or during the reverse HO to
the source. In that case a RLFE is said to have occurred. Consequently, for HO
performance, 3 metrics need to be considered i.e. 2 RLF rates and the PP rate.

4.2.2.1 Radio Link Failure Rate (F)

A RLF is assumed to occur if the SINR stays below a threshold for a duration
of the critical time (T310 )[76]. The RLF rate (denoted by F), either due to HOs
being triggered too early (FE) or due to HOs being triggered too late (FL), is the
number of RLF events per second evaluated for the cell or the network.

4.2.2.2 Ping-Pong rate (P)

A PP occurs when a user successfully handed from a cell A to another cell B is
handed back from B to A in a time less than the critical time, PP-Time. The PP
rate (P) can then be defined as the rate of occurrence of PPs per second in the
cell or the network. The PP-Time is are not standardized and has in this work
been set to be approximately equal to the longest TTT (i.e. PP-Time= 5 s).
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4.2.2.3 HO candidates (NH)

Note should be taken that all rates above are ratios of the events to time and are
not normalized to the number of active calls. This is because we require statistics
that compare HO performance yet the number of calls include those call sessions
for users in the cell center. In that case a cell that has many center users may
seem to be performing well if its events are normalized to the number of active
calls. For learning purposes however, the rates are normalized to the number
of HO candidates (NH) in the cell. This is intended to ensure that all cells use
comparable statistics in evaluating their actions. On the network scale where we
evaluate the global performance, this condition is not necessary since in that case
we consider the same number of users with the same mobility patterns.

The conclusions drawn from the network-wide performance results would be the
same whether or not Number of HO Candidates (NH) is considered. This is
not the same for short term (quasi instantaneous) statistics. In this case the
HO candidates may not actually match with the HO events, since the two may
occur in different evaluation periods. Take for example results calculated every 5
seconds and assume the HO candidate is counted the first time the UE sends a
measurement report. If an initiated HO succeeds 2 seconds before the statistics
are recorded and its ping-pong occurs 2 seconds after the statistics record, the two
events get registered in different records yet they are related. In that case, the
recorded statistics would be wrong and yet such events can easily occurs for any
of the metrics. It is as such better to rely on the event counts or their rates per
unit time when evaluating instantaneous statistics.

As stated, when evaluating the effects of actions during the learning phase, the
metrics are normalized to the NH in the cell. In reality, the number of real HO
candidates (those who are ready for HO) also depends on the two HO parameters
i.e. the decision of whether a UE is due for HO or not is governed by the Hys
and TTT. This creates a cyclic dependence as Hys and TTT determine NH yet
we need NH to evaluate the right Hys and TTT. To avoid the cyclic dependence,
we redefine a HO candidate as one who has either initiated a HO or experienced
a RLF within the evaluation time interval. Consequently, NH is the sum of all
users who have either initiated a HO or experienced a RLF ensuring that within
the evaluation time interval, each is counted only once especially where a single
user experiences multiple events.

4.2.2.4 HOAP metric

In order to effectively compare trigger points so as to select the best one, a single
metric is needed and any comparison using the 3 metrics would be impractical.
As such, we translate the 3 metrics P, FE and FL into an aggregate metric, the
HOAP, as a weighted combination given by equation 4.12.

HOAP = w1P + w2FE + w3FL;
∑

wi = 1 (4.12)
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Two questions could be raised about the HOAP - the exclusion of HO failures and
the policy of selecting the weights.

Basically, one could consider including either the HO rate, the HO success rate
or the HO failure rate in the HOAP evaluation. However, since minimizing PPs
directly also minimizes unnecessary HOs and HO successes, HOs and HO successes
are not directly included in the HOAP. On the other hand, a HO failure is just a
RLF that occurs during the HO process. As such HO failures being special cases
of RLFs, they are indirectly included in the HOAP evaluation as part of RLFs.
Note however, that RLFs could also be due other radio related problems in the
network e.g. coverage problems. We assume in this case that such do not exist or
their effects are so small that they can be ignored. This is a justified assumption
based on test results that showed that if we do the HO adequately early (Hys=0
dB and TTT=0 s), RLFs will be eliminated (with excessively high PPs).

Meanwhile, although the selection of weights is subjective and could be done
differently, the weights wi are selected so as to equally balance effects of early HOs
(P, FE) against effects of late HO (FL). That means that w3 should be equal to the
other two weights combined i.e. w3 =0.5 if

∑
wi = 1. Then, since RLFs are less

desirable compared to PPs, w2 should be larger than w1, in this case respectively
selected as 0.3 and 0.2. The corresponding weight vector is w = (0.2, 0.3, 0.5) and
is the one used in all cases where HO performance is evaluated.

4.2.2.5 HO Control Parameters Sensitivity

The core MRO goal is to dynamically select the optimum settings (OTP) even for
a network with a dynamic mobility profile. To design an apt learning strategy, we
investigate the sensitivity of the parameters to UE velocity. We do so by sweeping
a selected range of the parameter space for four velocity scenarios. With UEs
moving at constant velocity in each scenario, we observe that the OTP changes
with velocity as shown in Fig. 4.4. Fig. 4.4a gives the linear variation of the
HOAP with both Hys and TTT while Fig.4.4b describes the detailed variation
with TTT using a log scale for the TTT.

From Fig. 4.4a, we observe that at all velocities, very high values of Hys are
unacceptable although a combination of moderately high Hys and low TTT could
be acceptable. High TTTs are only acceptable at low velocities and in combination
with low to medium Hys values (Fig. 4.4a). Even then, the optimal settings at
low velocity should be the medium Hys and low-to-medium TTT. In effect HOs
can moderately be delayed without great penalty since the risk of RLF is low yet
even the possibility of PPs is low owing to the low velocity. This is evident in the
10 Kmph environment where for most of the TTTs the performance is good at a
Hys of 2dB.

As the velocity increases, the HO delay needs to reduce especially using the TTT.
The HOAP is more susceptible to change in TTT, that the OTP continuously
grazes the Hys axis, i.e. the performance changes with TTT but is fairly constant
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(a) Linear variation of HOAP with Hys and TTT.

(b) Detailed (log scale) variation of HOAP with TTT for 30 and 60 Kmph.

Figure 4.4: Handover Control Parameter Sensitivity.
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with Hys. At high velocity, even the Hys has major effect and so both parameters
should be low. This is evident in the 60 and 90 Kmph environments in Fig. 4.4a
where the OTPs are restricted to the lower left corners of the grid i.e. the part
where TTT are within the range of 0-0.64 s. In Fig. 4.4b we observe that with
in this small range, although there is major variation in the HOAP with TTT for
most Hys, this variation is blurred at points near the optimum point. In that case
adjacent TTTs will have practically similar performance. next The most obvious
conclusion from Fig. 4.4 is that the OTPs do not lie along any one diagonal for
the different velocities as was assumed in [88] and [89]. Any MRO algorithm must
as such scan the entire parameter-space or at least more than half the space in
order to determine the required trigger point.

4.2.3 QMRO: Q-Learning based MRO

QMRO wishes to determine the optimum Hys-TTT action to apply in any mobility
state in a cell. Since the actions only affect the performance of the cells and do
not change the environment (network) from one state to another, i.e. they do not
change the UEs’ mobility states, it is adequate to learn an action a in state x that
maximizes the expected instantaneous reward r at time t. As derived in equation
4.10, the corresponding Q-update algorithm for instantaneous rewards is equation
(4.13)

Qt+1(xt, at) = (1− α)Qt(xt, at) + α[rt(xt, at)] (4.13)

where α is the learning rate as previously defined in section 4.1.1.2. The following
sections discuss the components of the QMRO algorithm.

4.2.3.1 QMRO State Space

The required HO settings in a cell depend on the mobility of the UEs in the cell
as shown in the discussion on parameter sensitivity in 4.2.2.5. Consequently, the
states x are defined to be the degree of mobility in the cell evaluated as the average
velocity over the SON interval. Since the average velocity is a continuous variable,
we discretize the states x into bands for which the appropriate HO settings must be
learned. Table 4.2 describes how the different velocity environments are grouped
into mobility states. It also shows, based on the results of the parameter sensitivity
in Fig. 4.4, the estimates of the expected default settings that would be used in a
manual optimization process.

We assume here that the velocities are known or at least can be estimated by the
cells. A simple estimate can be obtained as the ratio of the approximate cell size
to the average time that a UE stays in the cell. The velocity can also however be
more accurately estimated using the UEs Doppler power spectrum as proposed in
[90]. Either way, with a good estimate of the velocity, QMRO can then learn the
best configuration for the given cell.
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4.2.3.2 QMRO Action Space

Actions are defined as the Hys-TTT tuples that are signaled by the cells to their
associated UEs in any observed mobility state. Without a SON solution, an oper-
ator configures a cell with default parameter settings obtained through trial and
error, while with a local search based SON solution, a fixed set of settings similar
to those shown in Table 4.2 are applied. Here, based on the observation that
optimum settings depend on speed, we need to change the configuration based on
the instantaneous speed in the cell.

It is evident from the parameter-sweep results in Fig. 4.4 that for all practical
speeds, performance at Hys>5 dB is almost always sub optimal. We thus consider
Hys values only up to 6 dB. Meanwhile differences in HOAP for some TTT settings
are unresolvable especially at low TTT values. For example for most Hys values
at all velocities, the performance at TTT= 0.08 s, 0.1 s or 0.16 s is practically the
same. As such not all TTT values are considered, i.e. the possible TTT actions
are the 11 values 0.040, 0.100, 0.128, 0.256, 0.320, 0.480, 0.512, 0.640, 1.02, 1.28,
2.56, 5.12 in s. The resulting action space (total number of actions) for each state
is 143 possible combinations of the considered Hys and TTT .

4.2.3.3 QMRO Reward function

We desire to minimize RLFs without excessively increasing PPs and HOs. Since
the learner is a rewards-maximizing agent, the reward rx,t should be the negative
HOAP evaluated over the SON interval. As stated in 4.2.2.3, the individual rates
are normalized to the number of HO candidates, NH as given in equation 4.14.

rx,t = −(w1P + w2FE + w3FL)/NH; (4.14)

Table 4.2: QMRO Mobility States and their default actions.

Average Velocity (Kmph) State (x) Default Hys (dB) Default TTT (s)

0-4 0 3.0 0.0-5.2

4-8 1 2.5 0.0-2.56

8-12 2 2.0 0.0-1.25

12-17 3 2.0 0.0-1.02

17-22 4 1.5-2.0 0.0-0.64

22-28 5 1.5-2.0 0.0-0.48

28-34 6 1.5-2.0 0.0-0.256

34-41 7 1.5 0.0-0.52

41-48 8 1.0 0.0-0.52

48-56 9 0.5 0-0.48

56-65 10 0.5 0.0-0.256

65-75 11 0.0-0.5 0.0-0.16

75+ 12 0.0-0.5 0.0-0.16
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The weight vector as applied during the learning may need to be adjusted to
enforce particular results especially given the small evaluation period (i.e. the SON
interval). For example, there may be instances in which no RLFEs are observed
during the SON interval which could tilt the result in favor of too many PPs. In
this case this is as w = (0.2, 0.3, 0.5) for the typical results and to w = (0.4, 0.0, 0.6)
when no RLFEs are observed.

4.2.3.4 QMRO Cooperative Learning

HOs triggering could be affected by the channel conditions that dictate the re-
spective RSRP. However using the A3 condition for control of the HO trigger
point minimizes this dependence on the absolute RSRP values, since decisions are
made based on RSRP differences among the cells. In that case, HO performance
depends only on the mobility of the users and the values of the control parameters
Hys and TTT.

With mobility based HO states, it is possible that a state observed in one cell
reoccurs in another cell at some other time. As such, cells do not need to learn
independent policies but can learn a single policy function based on the abstract
mobility states. The result is a cooperative QL problem in which individual cells
take actions but update a single Q-table that represents the shared learned policy.

The cooperative learning solution holds if all other critical parameters are compa-
rable among the cells. For example the cells in the considered network are assumed
to be of similar size and applying comparable transmit powers. Other than this,
the RSRP profiles at the cell edges may be different resulting in differing behaviors
for different cells or cell pairs. Similarly if individual cells concurrently have users
with differing behavioral patterns, the solution may break down. For example, the
assumption that a state in one cell will be observed in another will not hold for
cell that covers a highway crossing through an office park. Such a cell concurrently
has 2 groups of users - the slow-moving office users and the fast-moving highway
users, each of which will requires different settings. Nevertheless, for the major-
ity of networks that do not have such special conditions, cooperative learning as
considered in these studies would be fully applicable.

4.2.3.5 QMRO Parameter Search Strategy

Given the Hys and TTT values in section 4.2.3.2, each cell has up to 143 possible
actions to consider for each velocity state. Although learning is accelerated by the
cooperative strategy, the need to consider each action multiple times, would still
require a long time to converge to the desired solutions.

To accelerate convergence, we subgroup the 143 actions so that for any state, 3
learning regimes R1-R3 are executed as shown in Fig. 4.5. At R1, actions are
selected from different regions of the grid in order to determine the area in which
the desired action lies. From the parameter sensitivity analysis in section 4.2.2.5,
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Figure 4.5: QHO action space within the three learning regimes R1, R2, R3.

combinations of low Hys and high TTT are never optimal. As such this region is
excluded from the possible candidates that are denoted by ”R1 actions” in Fig.
4.5. The outcome trigger point of R1 (TP1) specifies the region in which the
optimum point lies. This outcome is thus used to define the search space for the
next regime R2.

At R2, actions along the diagonal that goes through TP1 are explored to obtain the
approximate delay that is acceptable for the observed mobility state. In this case,
subsequent actions differ in Hys by 1 dB to enable a large enough action space to
be explored. As an example, if at R1 TP1 is obtained as TP1 = (2.0dB, 0.256s),
at R2 the agent explores the region marked R2 Actions in Fig. 4.5. The obtained
TP (TP2) is then used to define the search space for the next regime R3.

R3 refines the learned TP2 by exploring points in TP2’s vicinity. It compares
TP2 with its four neighbor points to the left, right, top or below i. In Fig.4.5,
’R3 Actions ’ shows the exploration region for R3 assuming that at R2, TP2 =
(5.0dB, 0.128s).

4.2.3.6 The QMRO Optimization Algorithm

For any setting that is applied in a cell, the cell needs to observe the performance
over a SON interval at the end of which the cell determines the quality of the
applied setting. Each optimization decision is a comparison of the number and
type of events that result from the different parameter combinations. As such fair
comparison of the trigger points requires that comparable statistics are consid-
ered for each point, i.e. that all trigger points are evaluated based on comparable
numbers of events. However, the occurrence of events depends on the number of
users in the cell as well as their velocities, so that within the same fixed time inter-
val, cells may observe different statistics which may give contradicting conclusions
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about the parameter settings. Consequently, instead of setting the SON interval
based on a fixed time period, it is based on a minimum number of HO events that
must occur following the application of any action or configuration. This mini-
mum number is the sum of the disjoint HO related events (i.e. HOs, RLFEs and
RLFLs). In this case, this number is set to 100 events although any value that
ensures that adequate counts of all the necessary statistics (i.e. for NHs, PPs and
RLFs) are observed would be appropriate.

Then, given the Q-learner’s elements as discussed above, the optimization algo-
rithm can be described by the procedure of Algorithm 4.2, i.e: For each possible
state, the action set is initialized with R1 actions and the Q-table entries initialized
to 0. The learning is then triggered to be executed after every SON interval. Each
cell c observes its environment over the SON interval and at the end of interval t,
the cell determines if an optimization is necessary. During the learning phase, c
selects an action as described in Section 4.2.3.5, otherwise it selects the best action
that would have been learned. It then signals that action to all its associated UEs
and starts the monitoring period (interval t + 1) to collect the necessary perfor-
mance statistics. At the end of interval t + 1, c evaluates its HOAP and derives

Algorithm 4.2: QMRO - The Q-Learning HO Algorithm

Require: UE velocities during SON interval, action set a
1. Initialize action set Ax,R1 for learning regime 1 in all states x

Repeat for each SON interval t
2. if HO action was taken in at SON interval t− 1 do
3. determine HOAP and derive reward rt−1(xt−1, at−1)
4. update Q-table according to 4.13

end if
5. evaluate current mobility state xt (table 4.2)
6. if learning complete for state x do
7. select ax,t = aoptx , the absolute optimum value for state x
8. else if regime Ri exploration is incomplete do
9. select ax,t (sequentially after ax,t−1) from Ax,Ri
10. else do
11. select ax,t = aoptx,Ri, the optimum value for state x at Ri
12. if all learning regimes complete for state x do
13. record all regimes complete for state x
14. record ax,t as best action in state x
15. else do
16. use ax,t to set Ax,Ri+1

i.e. reconfigure the action set A for regime Ri+ 1
end if

end if
17. Signal selected action ax,t to all UEs in the cell.
18. t← t+ 1 , start monitoring

end loop
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the reward rt for the action at t. It then updates the learning agent (the Q-table)
before repeating the process.

4.2.4 Simulation Results and Discussion

Simulation studies were done using the LTE down-link system simulator as de-
scribed in chapter 3. Multiple simulations each evaluating a different velocity
environment are considered. Each scenario considers an environment in which the
velocity continuously varies as described in the next section. In all cases, the pa-
rameters introduced in chapter 3 are considered with multiple batches executed
for each simulation. The most critical parameters are however restated in table
4.3.

4.2.4.1 Realistic, Dynamic, Mobility Environments

The crux of MRO is to adjust the HO parameters in line with varying mobility
profiles. We evaluate the performance in the 5 different velocity scenarios shown
in Table 4.4 to prove that the algorithm is applicable to any network. The 3
’normal’ environments (10, 30, 60 Kmph) would for example represent 3 typical
city districts - a city center, city edge and residential suburb. We however also
consider two extreme environments (3 & 120 Kmph) which could respectively
represent an office park and a highway.

In each mobility scenario, all UEs have independent randomly varying velocities
of up 40 % below or above the mean. We implement this by allocating random
velocities to the UEs at the start of the simulation and also randomly adjusting the
velocities at the start of every batch as well as during the simulation. For example,
each of the 240 mobile users in the city suburb (60 Kmph) network would have
individually assigned and continuously changing velocities during the simulation
as shown in Fig. 4.6 for the average velocity in each of three selected cells over a
period of 10 batches.

Table 4.3: QMRO-specific Simulation
Parameters.

Parameter value

Inter-site distance 500 m

Time between snapshots 50 ms

No. of mobile users 240

User velocity variable

Data rate 512 Kbps

Table 4.4: QMRO Velocity
scenarios.

City Area
Velocity (Kmph)

Mean range

Office park 3 2 - 4

City Center 10 6 -14

City Edge 30 18 - 42

City Suburb 60 36 - 84

Highway 120 72 -168
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Figure 4.6: Typical average velocity variation in 3 cells in the 60Kmph sce-
nario.

4.2.4.2 Performance in terms of HOAP

To evaluate the benefits of the QL solution, we compare its resulting performance
for each velocity scenario against the reference network denoted by Ref. Ref rep-
resents the case when all cells in the network apply the best static settings as
obtained from the parameters sensitivity analysis in section 4.2.2.5. The analysis
of the results is done is terms of the average of the metric(s) values throughout
the network although cell-specific results would demonstrate the same trends.

Fig. 4.7 summarizes the performance in the different velocity environments. Fig
4.7a shows the comparison of the average HOAP values for QMRO and Ref in
two typical velocity cases, while Fig. 4.7b describes the differences in performance
between QMRO and Ref for all the five velocity cases. We observe in both figures,
that at the beginning QMRO performs poorly as it executes the first learning
regime R1. The performance then improves in regimes R2 and R3 as QMRO
focuses in on the OTP, to the extent that it is eventually equivalent to that of
Ref.

Meanwhile, in cases where user velocities widely spread, QMRO actually performs
better since it is able to set the right setting for each observed velocity range as
opposed to a single setting for all velocities. This is evident for the 120 Kmph case
in Fig. 4.7b where, after learning, QMRO is consistently better than Ref.

We observe that the convergence time is different for different velocities - typically
smaller at higher velocities. This is mainly because the SON interval is shorter at
higher velocities. Remember that the SON interval depends on a minimum number
of events that need to be registered. At high velocity, each user undertakes more
HOs than at low velocity. Consequently, it takes a much shorter time for a cell to
reach the minimum event count i.e. a shorter SON interval. Thus, within the same
time, the network evaluates more actions at higher velocity than at low velocity
resulting into faster learning.
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(a) HOAP comparison for two velocity scenarios.

(b) HOAP gains for all velocities.

Figure 4.7: QMRO Performance:Average network-wide HOAP for QMRO in
comparison to the reference network.

4.2.4.3 QMRO Learning Trend

Fig. 4.8 evaluates the time variation of the individual metrics (P , FE and FL)
when applying QMRO in two velocity scenarios (30 and 120Kmph). We observe
in both cases, that the agent learns to minimize RLFLs (FL) by trading them
with Ping-pongs (PPs) which have less effect on the user’s quality of experience.
This is all while ensuring that RLFEs (FE) remain low. In both velocity scenarios,
QMRO suffers many RLFs at the beginning as it considers settings across a large
parameter space. Over time however, the agent continuously reduces FL by trading
such reduction with increase in PP . It then stops this trend as soon as it registers
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(a) Performance Trend at 30 Kmph. (b) Performance Trend at 120 Kmph.

Figure 4.8: QMRO Performance: Variation of average rates for all 3 core
metrics in 30 and 120 Kmph environment.

decreasing returns, i.e. when each extra reduction in FL translates into an excessive
increase in PPs or if it instead causes RLFEs to occur.

The foregoing results demonstrate that given a good definition of states that ap-
propriately capture the UEs’ mobility and also given adequate learning time, a
QL based MRO algorithm is able to learn the appropriate Hys-TTT settings for
any mobility environment.

4.3 QL for Mobility Load Balancing

Users are rarely uniformly distributed in cellular networks. This becomes a prob-
lem when a serving cell s gets overloaded at a time when free resources exist in
neighbor cells. Although for SINR maximization s is the best cell to serve the
associated users, it cannot efficiently do so while in overload. A solution is then
required to automatically redistribute the load among cells - thus the Mobility
Load Balancing(MLB) use case of SON. This section describes our QL proposal
for such a self-organized MLB solution.

4.3.1 Mobility Load Balancing

To lower the serving cell’s load ρs, MLB moves some of the edge users in cell s
towards one or more neighbor cells or so called target cells. Let us denote the
set of all target cells as T, any one cell in the set as t and all cells together as
T-cells. Then consider the A3 HO entry condition earlier defined in equation 3.12
and reproduced in 4.15 for completeness. MLB undertakes load re-distribution by
virtually shrinking s while concurrently expanding the T-cells. As proposed in the
LTE SON standard [6], this can be achieved by adjusting the relative HO margins
of the respective cells using the CIOs (Ot

s,t and Os
s,t;∀t ∈ T ). In principle, the two
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offsets Ot
s,t and Os

s,t define the applicable HO boundary between the respective
two cells s, t.

Ft +Ot
s,t −Hys > Fs +Os

s,t. (4.15)

As stated the set T for which CIOs are adapted may contain all of s’s neighbor
cells or only a few, which in principle could also be a single neighbor. Considering
all neighbors is straight forward while for the case of few of the neighbors, the set
elements could be selected as those neighbor cells that fulfill a certain condition
e.g. neighbor cells in very low load. Selecting a single neighbor is however not
as obvious since a choice would be required as to which of the neighbors is best.
Such a neighbor would be the one that achieves the highest reduction of load in s,
yet without itself getting highly overloaded. This then requires s not only to have
access to load information in all neighbors but to also be able to predict what that
load would be after users have been transfered to any selected target. Moreover,
in a highly dynamic network, such a prediction would very quickly change with
the mobility of the users. In that case, a simple decision to adapt CIOs for all
neighbor cells may achieve better results.

4.3.1.1 State of the Art MLB Solutions

Load Balancing (LB) is a major area of interest in SON. A LB solution that
estimates required resources in t before LB action is presented in [24]. In [91],
network wide LB is expressed as a single integer optimization problem to be solved
centrally. While it ensures to uphold network-wide throughput, its centralized
nature may lead to suboptimal solutions in some cells and may limit its speed
of convergence especially due to network wide signaling and processing. Besides,
simulations were only done for up to 3 Kmph, a small part of the expected velocity
spectrum in real network deployments.

For a fully SO solution, a distributed automated approach is required as described
here. The basic solution is a Reactive MLB algorithm (RLB) that symmetrically
adjusts the CIO by a value φ between s and all low loaded neighbor cells. With
different φ values for user speeds of up to 30 Kmph, we observe that the optimum
φ depends on the offered load in cell s, ρs; the average load of the cells in set T ,
and the geographic user distribution in s. We thus apply Q-Learning (QL) for a
distributed fully self organized MLB algorithm, called QLB that learns the best φ
required for any such load conditions.

4.3.1.2 Evaluation Parameters and Performance Metrics

When a cell is overloaded, its users are unsatisfied, i.e. they are allocated fewer
PRBs resulting in lower data rates than expected. Due to scheduling variations, a
user is considered unsatisfied (an un-satisfaction event occurs) only if the user’s to-
tal achieved data rate in a continuous 1 second period is less than the Guaranteed
Bit Rate (GBR). We evaluate the overload situation in a cell or the network in
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terms of the “Number of unsatisfied users” (Nus), which is the average number of
un-satisfaction events in the cell/network per second over the evaluation period.
Such an evaluation period could be 5s for the quasi-instantaneous performance in
the cell or network or a batch period for the long-term results evaluating the im-
provements achieved by the optimization algorithm(s). Meanwhile, where actions
are taken to reduce overload, we evaluate the effectiveness of the actions in terms
of their change in offered load in serving cell.

As presented in chapter 3, to evaluate the effectiveness of the MLB solution,
extra overload is artificially created in one cell - the so called “center cell”. This
is achieved by randomly placing a number of static GBR users, Ns, within the
boarders of this center cell. With Ns = 40 users, each user (static or otherwise)
who then does achieve the desired GBR rate is considered unsatisfied.

4.3.2 Static, Reactive MLB Solution: RLB

We have observed that load redistribution may be easier to managed by changing
the generic boundary of a cell to all its neighbors. This section describes our
proposed approach, RLB, that applies this strategy. We justify the need to use
this approach and describe how such a solution can be implemented. This solution
then sets the basis on which the subsequent learning based solution is built.

4.3.2.1 Structure of the Static RLB Solution:

Although it is not so obvious, the minimum MLB action is to select an edge user of
cell s for HO to a cell t and then appropriately reducing the offset Os

s,t. To avoid
the user from moving right back to s, an opposite value (to Os

s,t) is applied on
Ot
s,t. This shifts the s− t HO boundary with the specific cell t which however does

not guarantee that overload will not quickly reoccur due to a user at a boundary
to another cell.

To manage the general load in the cell, the proposed approach,RLB, adjusts the
generic boundary with all low-load neighbor cells. This excludes higher load neigh-
bors as shown in Fig. 4.9, where boundaries are adjusted for all cells except t4
which is highly loaded. Adapting boundaries for multiple neighbors ensures that
overload does not quickly re-occur in s. Cell s applies the RLB algorithm to adjust
CIOs to all T-cells (the low load neighbors) by a fixed value as in equation 4.16.

all t ∈ T .
Ot
s,t = Ot

s,t − φ
Os
s,t = Os

s,t + φ
(4.16)

In the simplest form, CIOs could be gradually changed, each time by a small step
over multiple iterations. Although this avoids unnecessary load transfer to the
T-cells, it takes too long to remove the s overload. To improve convergence speed,
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Figure 4.9: Reactive change of CIOs.

CIOs are adjusted in a single precise step φ that removes s’s overload without
overloading T-cells.

A large change of CIOs may however cause oscillations, where after load transfer
from s to t, t gets overloaded and also initiates LB towards s, causing s to restart
the process once again. RLBs does not explicitly control this LB induced T-cell
overload, but we mitigate it using an oscillation control timer Toc. Following s-t
LB , Toc has to expire before a LB HO can be triggered from t to s. The size of Toc
is set equal to the SON interval although higher values could also be applicable.

Note however that minimal T-cell overload after LB HO may be a good result,
as it allows the extra load to propagate outwards from the “center” cell to outer
cells over subsequent LB actions in different cells. This is especially so if combined
with the timer Toc. In this case the new s (original T-cell) would not move load
back to the original s. Instead it moves the load to other cells in its neighborhood,
which are further away from the original s.

4.3.2.2 Dependence of RLB Gains on Load

As a manual solution, the optimal φ could be determined by operating different
step sizes and selecting the best which is used thereafter. The achieved change in
ρs, ∆ρs for any φ applied on the s− t boundaries is however dependent on ρs the
load in s as well as ρn the average load in t. To investigate this dependence, we
define a set of load scenarios and evaluate E[∆ρs], the expected change in s load for
each scenario Γ and applied CIO change φ. Note that ∆ρs is not deterministic for
each combination of φ, ρs and ρn. The dependence can as such only be expressed
in terms of the expected outcome E[∆ρs].

Each load scenario Γ is a combination of ranges of ρs and ρn as shown in Table
4.5, e.g. Γ=3 is the tuple [0.9≤ρs<1.1; ρn<0.45]. For each φ in a given Γ, if ∆ρs
is observed, E[∆ρs] is updated according to equation 4.17.

E[∆ρs] = γ · E[∆ρs] + (1− γ)∆ρs. (4.17)
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Table 4.5: Cell Load Scenarios (Γ).

Mean T-cell Load ρn
<0.45 [0.45-0.60) 0.60+

ρs

[0-0.9) 0 1 2

[0.9-1.1) 3 4 5

1.1+ 6 7 8

ρs - serving cell load

Figure 4.10: Dependence of RLB gain on cells load.

The forgetting factor γ is selected as 0.95 to ensure that any one observation does
not unexpectedly skew the average.

Fig. 4.10 evaluates the dependency of E[∆ρs] on Γ for different φ values. The φ
values are evaluated in a network having 240 mobile users and where the ‘centre
cell’ is loaded with 40 static users. We observe that the best φ, φopt is different for
each Γ e.g. φopt is 0.6, 1.0 and 0.4 for Γ3, Γ4 and Γ7 respectively. This justifies the
need for a learning solution that learns the best φopt for each of the load conditions.

4.3.3 QLB: Learning the Optimum Actions

With RLB, a fixed φ is found that guarantees good average performance, but not
the best in each load scenario. For optimal performance in each scenario, different
φ values would be required for the different scenarios. Moreover, for any change
in CIO, the resultant ∆ρs also depends on the user distribution within the serving
cell s, i.e. more load can be offloaded from s if there are more users at the cell edge.
The solution then is to apply QLB so as to learn the required CIO change for each
combination of the three - the serving cell load ρs, the average neighborhood load
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ρn and the user distribution in s. The user distribution denoted by uD describes
how many of the users in cell s are close to the cell boarder, with the expectation
that if there are more users at the edge, only a small change in the CIO would be
required in order for these users to be handed over to neighbor cells.

QLB learns the action that instantaneously removes overload, constrained to en-
suring that target cells are not overloaded as a result of its actions. From 4.1.1.2,
the corresponding Q-update equation for the instantaneous rewards is:

Qt+1(xt, at) = (1− α)Qt(xt, at) + α[rt(xt, at)]. (4.18)

where α is the learning rate as previously defined in 4.1.1.2. The following sections
discuss the structure and components of the QLB learning algorithm.

4.3.3.1 State-space

As we expect that the size of φ in equation 4.16 depends on ρs, ρn and uD, each
state is constructed as the vector [ρs, ρn, uD]. We defined 27 states to be the 9
load scenarios in Table 4.5 for each of 3 uD cases. In this case, uD represents the
fraction of s users at the edge, with the 3 uD cases considered being uD < 20%;
uD = [20 − 35]% and uD ≥ 35%. Note that since the idea is to change the
boarder to all neighbors, uD is evaluated not specifically to any one neighbor but
generically within the serving cell s.

4.3.3.2 Action-space

Actions are the possible values that φ can take, i.e. the amount in dBs by which
the CIO should be changed. Guided by RLB results, actions are selected as the
discrete φ values [0.2, 0.4, . . . .. 1.0] dB.

4.3.3.3 Rewards

QLB aims to determine the action φ that instantaneously removes overload from
the serving cell, but without overloading the target cell(s). As such the rewards,
as set in equation 4.19, consider ∆ρs (the achieved reduction in ρs the serving cell
load) and the extra load created in neighbor cells.

r =


∆ρs + 1 ; ∆ρn = 2 and Γ < 3

∆ρs ; ∆ρn < 1
∆ρs − 1 ; otherwise

(4.19)

Positive ∆ρs represents reduction in the offered ρs that results from users having
moved to neighbor cells. Positive ∆ρs is thus rewarded while the reverse is pe-
nalized. Since ρn is expected to increase as a result of adding users at the very
edge of the cells, only ∆ρn of more than 1 is penalized. In general, larger ∆ρs
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values receive greater reward, but are accompanied by penalties for unrestrained
actions taken in LB-states with high ρn. This allows high load t cells to overload
just enough so as to propagate the load outwards but not so much as to counter-
productively cause further un-satisfaction after LB. However, special consideration
is taken in cases where a large reduction in ρs can be achieved without overloading
the target cell. In those cases, e.g. for the change from scenario 9 to scenarios 1
or 2, the reward is increased by 1.

4.3.3.4 QLB algorithm

Each load state that is observed in one cell can reappear in any of the other cells
in the network. As such, cells do not need to learn independent policies but can
learn a single shared policy in a cooperative learning process. QLB thus applies a
single Q-table which is updated by all cells during the learning process.

During operation, each cell s observes its environment and at the end of a SON
interval of τ = 5s, the cell evaluates its load conditions. The cell applies the
procedure in Algorithm 4.3 to either take actions that reduce overload, learn from
its previous actions or both. In case of overload, s selects an action as described
in Section 4.3.3.2 and signals the new HO settings that include the revised CIO
to all its associated UEs. Since the CIO change is symmetric for any two cells at
a given boundary, s also sends the revised CIOs to its affected neighbor cells via
the LTE X2 interface. At the end of interval τ + 1, s evaluates the changes in load
and derives the reward. It then updates the learning agent (the Q-table) before
repeating the process.

4.3.4 QLB Simulation Results

Simulation studies were undertaken using the LTE down-link system level simu-
lator of chapter 3. The results consider two perspectives - load variation in indi-
vidual cells to evaluate the dynamic performance of the solution and the number
of unsatisfied users (Nus) evaluating the global the effect of the algorithm and its
actions on user satisfaction. As earlier defined in 4.3.1.2, the Nus in a cell or in the
network is the average number of user un-satisfaction events in the cell/network
per second over the evaluation period. In this case, a user is considered unsatisfied
(i.e. an un-satisfaction event occurs) only if the user’s total achieved data rate in
the continuous 1 second period is less than the GBR.

The load related studies consider the network at 3 Kmph while two other velocities
- 10 and 30 Kmph are also considered to evaluate the Nus. The corresponding
results are given by Figs. 4.11 and 4.12.
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Algorithm 4.3: QLB - The Q-Learning MLB Algorithm

Require: T-List, the list of s neighbors, action set a

1. if LB action was taken in previous SON interval i do

2. determine ∆ρs and derive reward

3. update Q-table according to 4.18

end if

4. evaluate ρs
5. if overloaded do

6. determine load state l = [ρs, ρn, uD]

7. if exploration incomplete do

8.
from set a, select φ = ai+1

l i.e. in sequence of last

selected value ail in state l
9. else do

10. select φ = aoptl , the optimum value learned for state l

end if

11. for each cell t in T-List with timer TOC expired

12. reduce Ot
s by φ and increase Os

t by φ

13. start timer TOC for t LB HO towards s

end for

end if

14. Restart SON interval timer i.e. t← t+ 1

4.3.4.1 Learning towards load redistribution

Fig. 4.11 shows the dynamic behavior of the load balancing solutions in terms of
variations of cell load during the simulation, with the load evaluated every second
for each cell. For clarity, the figure considers simulations at 3 Kmph for which the
dynamic behavior is slow enough to be analyzed.

We observe that both solutions RLB and QLB are able to lower the load in cell
12 by transferring it to the neighbors cells (e.g. cell 14) and eventually to the
outer cells (e.g. cell 6). After learning however, QLB achieves better response to
overload compared to RLB. This can be seen for the period after 3000 s where
cell 12 consistently has slightly lower load for QLB as compared to RLB. This is
the direct consequence of having learned the best CIO change for each load state
in the case of QLB, which is not the same for RLB. The drawback here is that in
a low mobility network, the extra load added to the neighbor cells may take long
to move outwards. In that case we need to evaluate performance in terms of the
Number of unsatisfied users, Nus.
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Figure 4.11: QLB and RLB load redistribution (load moved from cell 12 to
neighbor cells e.g. 14 and 6).

4.3.4.2 QLB Effect on User satisfaction

Fig. 4.12 compares the performance of RLB and QLB against the reference case
(Ref) in terms of the Nus in the network for different velocity scenarios. Subfigure
4.12a shows the quasi-instantaneous variation of network-wide Nus in the 3 Kmph
network scenario for the same period considered in Fig. 4.11. With user satisfac-
tion evaluated every 15s and each point capturing the total un-satisfaction events
over the 15s interval, it is evident in the figure that both RLB and QLB reduce
the Nus through the load redistribution.

Subfigure 4.12b evaluates the global benefit of solutions for two velocity scenarios
across the simulation. It evaluates the gains of each of the two solution in terms of
the percentage reduction in Nus when compared to Ref in the different batches of
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(a) Variation of Nus at 3 Kmph. (b) QLB’s reduction in Nus.

Figure 4.12: Effect of QLB on user satisfaction.

the simulation. We observe that for both mobility scenarios, both RLB and QLB
improve user Quality of Experience (QoE) by reducing the Nus. The reduction
in user dissatisfaction is comparable at low velocity since there is not much dy-
namism to be exploited by varying the CIO change. At higher velocity however,
by adjusting CIOs for each instantaneous state that is observed, QLB achieves
better user satisfaction.

The results above prove that Q-learning can easily and successfully be applied
towards a dynamic autonomous solution for Mobility Load balancing.

4.4 Summary

In this chapter, we have discussed the proposed Q-Learning (QL) framework as
the development structure for the SON functions. Beginning with a review of QL,
the discussion highlighted how QL has so far been applied in SON and justified
how it can be used for any generic SON Function. The chapter then discussed the
application of this framework to two selected SFs: MRO and MLB. Critical to
note here is that, although all SFs apply the same framework, special adjustments
are required for each SF as dictated by its specific constraints. For example each
SF required a different strategy on how to explore its action space. In general
however, comparing the performance of the developed solutions to a system that
does not apply any automation or SON solution, both solutions had positive results
that proved that Q-Learning (QL) provides a good framework for developing SON
functions.

The QL solution for MRO, QMRO, presented an algorithm that learns the best
HO Hys and TTT settings which would need to be applied in any mobility state
observed by a cell. With actions defined as the Hys - TTT combinations, each cell
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takes an action in the network and, based on the observed quality (performance)
of the action, the cell updates a cooperative learning agent (single Q-table) which
learns the right actions. Performance was evaluated in a realistic network with UEs
having distinct and dynamically varying velocities. Considering diverse velocity
environments, results showed that QMRO is able to learn the required parameters
in any environment.

QLB, the QL solution for MLB presented a learning algorithm built on top of a
reactive solution, RLB. RLB responds to overload in a cell by adjusting the generic
HO boundary between the overloaded cell and all its low load neighbors. Using the
CIO for adjusting the HO boundary, it was observed that the required change in
CIO depends on the load state that is characterized by the load in both the serving
and neighbor cells as well as the user distribution in the serving cell. Based on
this observation, the QL solution then evaluates different CIO changes and learns
the best for each load state. QLB performance was evaluated in different velocity
environments in each case comparing it to a reference network, Ref, that does not
apply any load redistribution as well as to the same network when applying RLB,
the reactive manually optimized solution. It was observed that, compared to the
Ref and RLB, QLB achieves better distribution of load among cells. In particular
QLB achieves better results in a more dynamic environment e.g. where users move
at higher velocities. The result of the load re-distribution is that the number of
users who would otherwise be unsatisfied, owing to low data rates induced by the
overload, is reduced.

In both SFs considered here, results showed that the QL solutions are able to
achieve their objectives. The learning strategy in both cases considered the naive
approach of trying all the available actions a number of times and thereafter in-
definitely applying the best action. Using such a simple exploration strategy,
convergence - measured in terms of the time required to learn the optimum so-
lutions - would depend on how often the states re-occur in the cells. This was
however improved by the combination of distributed exploration and centralized
cooperative learning. In practice some variant of this approach would be required
since in a large network, cells operate in diverse environments and would require
specific handling. Moreover human intelligence could improve the performance
especially during the learning phase, e.g. by limiting the applicable parameter
space to a range known to have good performance. It may also be worth inves-
tigating methods through which states and actions can be automatically derived.
This would reduce the design time and possible the human subjectivity that is
typically included in the solutions. However, the combination of these results with
the state of the art solutions presented in section 4.1.4 confirms that QL provides
a good approach to developing SON solutions especially where the dependence of
metrics to the control parameters is not perfectly known.



Chapter 5
Characterizing Conflicts among SON
Functions

Contents
5.1 Scenario, Parameters and Metrics . . . . . . . . . . . . 81
5.2 MRO Effect on Load and User Satisfaction . . . . . . . 83
5.3 MLB Effects on HO performance . . . . . . . . . . . . . 84
5.4 Cross Effects of Combined MLB and MRO . . . . . . . 86

5.4.1 Ref Performance . . . . . . . . . . . . . . . . . . . . . . 87
5.4.2 QMRO Performance . . . . . . . . . . . . . . . . . . . . 88
5.4.3 QLB Performance . . . . . . . . . . . . . . . . . . . . . 89
5.4.4 QLH: Uncoordinated operation of QMRO and QLB . . 89

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

In Chapter 4, we presented Q-learning as an appropriate approach for develop-
ing SON functions with the achieved results re-affirming the hypothesis. Acting
independently within their environment, each of the SON functions fulfilled its
objectives, i.e. QMRO optimized the occurrence of HO events (RLFs against
PPs) and, QLB minimized user dissatisfaction resulting from cell overload. When
combined however, SON functions affect each others’ metrics and may cause sys-
tem instability. This chapter explores the extent of these conflicts. Specifically, it
evaluates the different cross conflicts between MRO and MLB.

5.1 Scenario, Parameters and Metrics

The MLB-MRO interaction exhibits a special form of conflict since it has charac-
teristics of both PVCs and MVCs. The PVC results from the fact that both SFs
adjust the relative HO margin between cells albeit to different extents. As such
they will conflict on the desired optimal level of margin for any two neighbor cells.
On the other hand, considering the specific parameters as separate (in this case
Hysteresis for MRO and CIO for MLB), the SFs exhibit an MVC conflict since

81
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Table 5.1: Optimum HO settings in three mobility scenarios.

Average Velocity (Kmph) Optimum Hys (dB) Optimum TTT (s)

3 1.5 1.0

10 1.0 0.64

30 1.0 0.48

any change in one parameter by the respective SF affects the performance of the
other SF. The following sections characterize the effects of these conflicts.

We begin in section 5.2with an evaluation of the effect of a generic MRO on load
and user satisfaction. without considering any learning, we apply different HO
settings and evaluate the respective degree of user satisfaction. Then in section
5.3, we evaluate the effect MLB on HO performance by evaluating the degradation
in HO metrics that results from the application of the learning solution (QLB)
earlier presented in 4.3. Finally, in section 5.4, we evaluate the cross effects that
arise when the two learning solutions are concurrently executed.

In all cases, we consider the network described in 3.1.3 with mobile users randomly
placed anywhere in the network. The users move at individually varying velocities
but with an average velocity of either 3,10, 30 or 60 Kmph. The specific velocity
considered in each case is selected so as to ensure that results are clear and easy
to understand. The default HO settings,which are applied in cases where no
MRO solution is considered, are set as described by table 5.1. These are the
best HO settings for the respective velocities as derived from the HO parameter
sensitivity results in 4.2.2.5. To simulate overload, 40 static users are randomly
placed in a cell in the center of the network to create a localized load hotspot of
approximately 50 m in radius. Simulations are repeated over multiple batches,
each batch simulating 200 seconds of operation. In each batch users are placed in
the network using the same approach i.e. mobile users randomly placed anywhere
in the network and a static user hotspot placed in the center of the network.
Different numbers of batches are used in the 3 studies owing to the nature of the
solutions - e.g. considering that QMRO requires more learning time compared to
QLB. Section 5.2 where no learning is considered applies very few batches while
section 5.3 that has only QLB has more batches although still less than section
5.4 in which MRO learning is involved.

In all cases performance is evaluated using the metrics introduced in chapter 4.
HO performance is quantified using the HOAP which is the weighted combination
of the HO events as defined in 4.2.2.4. Meanwhile, MLB performance is evaluated
in a cell or in the network for given evaluation period in terms of the Nus. This
as earlier defined in 4.3.1.2, is the average number of user un-satisfaction events
in the cell/network over that period. In this case, a user is considered unsatisfied
(i.e. an un-satisfaction event occurs) only if the user’s total achieved data rate in
the continuous 1 second period is less than the GBR. The network is configured
with HO settings as [0.5dB, 0.1s], which were obtained as the best fixed settings
for an environment in which move at 60 Kmph. All users are connected to the
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network throughout the simulation, and in case of a RLF, a user is reconnected
to the best available cell as expected for LTE.

5.2 MRO Effect on Load and User Satisfaction

MRO may not cause load imbalance but it may result in increased user dissatisfac-
tion. MRO implements actions aimed at minimizing RLFs and PPs, essentially by
delaying HOs as much as may be necessary. This is done without concern to the
load that any such users may cause in the concerned cells. As such, by delaying or
advancing HOs, MRO may increase load imbalance subsequently increasing Nus.

To study this effect, we consider a network having a hotspot as described above
and having 240 mobile users moving at different velocities but with the overall
average of 10Kmph. We apply different HO settings to this network and evaluate
the resulting performance in both HO and user satisfaction. Fig. 5.1 evaluates
how the HOAP and Nus change with HO settings. The result evaluates, for the
different HO settings in the network, the average HOAP and Nus over a period of
10 batches each of 200 seconds.

We observe in the figure that the more HOs are delayed to minimize RLFLs, the
more the Nus increases. In effect the optimum HO settings -those that minimize
the HOAP- can result in a higher Nus.

This result suggests that if MRO learns the required actions with consideration of
their likely effect on the Nus, a different outcome could be observed. The solution
would ensure to minimize Nus even as RLFLs are minimized, i.e. the HO delay
would have to be reduced in the case of an overloaded cell.

Figure 5.1: Variation of network-wide HOAP and Nus for different HO set-
tings.
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Figure 5.2: Possible reduction in Nus based on MRO weight vectors.

Consider the furthermost users at the very edge of a cell. These users could be
in the radio sense nearer to the neighbor cell (target cell) than to their current
serving cell. They may as such cause less load if they were in the target cell than
when in their current serving cell. Then, by initiating HOs earlier in a bid to
minimize RLFLs, MRO reduces the load in the serving cell with only a small load
increase in the target cell, which may reduce Nus in the network. Consequently,
MRO can actually minimize Nus by just increasing the degree of un-desirability
of RLFLs. This is possible by increasing the weight given to RLFL in comparison
to the other metrics i.e. PPs and RLFEs as showed in Fig. 5.2.

Fig. 5.2 compares the variation of the HOAP and Nus when using two different
MRO weight vectors - the default vector W1=[0.2, 0.3, 0.5] as used in Fig. 5.1
and a revised weight vector W2=[0.1, 0.2, 0.7]. We observe that in case of W2,
the optimum point would be selected as [1.5dB, 0.4s] for which Nus is lower than
that at the optimum point of [2.0dB, 0.4s] at W1. This shows that by giving more
focus on minimizing early failures and PPs, MRO may inadvertently increase user
un-satisfaction that could have been avoided.

5.3 MLB Effects on HO performance

MLB redistributes load among cells by delaying or advancing HOs. By doing so,
MLB affects HO metrics since users get connected to cells where, as per their
mobility states, they should not be connected to.

To evaluate the MLB effects we consider a network with the best HO settings as
derived from the HO parameter sensitivity results in section 4.2.2.5. In particular
we evaluate three velocity scenarios (3, 10 and 30 Kmph) with optimum HO
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settings as given in table 5.1. In all cases, we apply the load hotspot as described
5.1 to artificially introduce overload and to allow the load balancing SF to react on
the load. We consider the Q-learning LB solution presented in section 4.3. Then,
for each velocity, we compare the system applying QLB against the reference
network Ref, that does not apply any MLB solution.

We evaluate the results in terms of the related gain and cost of applying QLB. The
gain is the percentage reduction in Nus while the cost is the percentage increase
in the HOAP. This is important since we need to evaluate not the absolute values
of Nus and HOAP, which are dependent on the scenario, but the relative values
which communicate the underlying benefit and costs regardless of the considered
scenario.

Figures 5.3 and 5.4 compare the steady state gains and costs of QLB for the
different velocity environments over a period of one batch. Evaluating the steady
state performance after learning is complete, the Fig. 5.3 evaluates the effect on
the weighted HO metric (HOAP). The subfigure 5.3a compares the gains and cost
for the different velocity environments while 5.3b highlights the absolute values of
the HOAP and Nus. Meanwhile Fig. 5.4 evaluates the effects on the individual
HO metrics i.e. the PP, RLFE and RLFL rates.

As would be expected, we observe in all three velocity cases in Fig. 5.3a that, QLB
achieves its objective of reducing the Nus, e.g. approximately 67 % reduction at
30 Kmph and 93 % reduction at 3 Kmph. This however comes at the cost of
increased HOAP, where we observe that the cost of applying QLB is more than
100 % increase in HOAP for all velocities. The relative cost (measured by the
percentage change) is higher for lower velocities mainly because the HOAP (and
its constituent HO) events are lower at lower velocities as seen in Fig. 5.3b.
As such small changes in the number of HO have major effects on the resulting
performance when compared to higher velocities. Meanwhile, the particular results
in Fig. 5.3 show a direct correlation between the achieved gain and the resulting

(a) MLB gains and costs. (b) Effect of MLB on HOAP.

Figure 5.3: Effect of MLB on HO Performance.
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Figure 5.4: Effect of MLB on individual HO metrics.

effect on HOAP. This however is not always the case since the effect depends on
the changes in all the three HO metrics shown in Fig.5.4.

We observe from the detailed charts in Fig.5.4 that the major effect comes from
the change in the number of RLFEs. In all cases, the increase in the RLFEs rate
is higher than that in the other two metrics. This is the direct consequence of
triggering HOs too early. In effect a UE is handed over to a cell in which the
signal not only fluctuates a lot but is not consistently able to sustain the session.
As such, shortly after being handed over to the new cell, the UE’s SINR degrades
resulting in a link failure. Since the previous serving cell still had a good signal
for this UE, the UE reconnects to that original cell indicating that the HO was
triggered too early.

Fig. 5.4 also gives an explanation for the excessive relative increase in HOAP at
low velocities. We observe that without QLB, all three types of HO events are
practically inexistent at low velocities yet their number becomes noticeable on
applying QLB.

The above results suggest that, if the QLB solution learns with consideration of the
effects of its actions on HO performance, a better outcome could be observed. This
may however be at the cost of reduced Nus gains. The challenge then becomes how
to determine the required compromise between minimizing the Nus and minimizing
the subsequent increase in RLFEs and HOAPs.

5.4 Cross Effects of Combined MLB and MRO

Sections 5.2 and 5.3 have considered only one dynamic agent to be active at
a time i.e. MRO and MLB respectively. Given the observed effects, a much
more adverse result should be expected when the two SFs act concurrently in the
same network. This section evaluates these effects. First, we consider a reference
network (Ref) that does not apply any SON solution. We then consider the same
network when both QMRO and QLB are concurrently active which we denote with
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QLH. Meanwhile, for reference and completeness, we compare the results above to
the cases with the individual SFs - respectively denoted with QMRO) and QLB.

In each case, the network considers mobile users moving with dynamic continuously
varying velocities, which enables us to evaluate the effect of MRO in the network.
With mobile users moving at an average velocity of 60Kmph (i.e. individually
between 36 and 84 Kmph), we set the HO settings in the scenarios without QMRO
to [0.5dB, 0.1s]. These are obtained from the HO parameter sensitivity results in
4.2.2.5 as the best fixed settings for an environment in which users move at an
average of 60 Kmph. Meanwhile, as described in 5.1, we consider for all scenarios
that overload occurs in one cell in the network where the load hotspot of static
users is placed at the beginning of the simulation.

The different solution require different learning periods but simulation trace files
have shown that the longest learning time is approximately 16000 s. Nevertheless,
to give all solutions ample learning time and allow a long steady state period,
the simulation is repeated for 150 batches each batch simulating 200 s seconds
of operation. The corresponding HO and LB performance for all the 4 scenarios
are given by Fig. 5.5. Figs. 5.5a and 5.5b present the transient performance
throughout the simulation while Fig. 5.5c compares the steady state performance
after learning has been completed. The results track the HOAP and Nus variation
by recording the respective values for each batch of the simulation. For clarity
however, since we wish to evaluate the effect of the QL solutions on the network,
the transient charts in Figs. 5.5a and 5.5b present results:

1. as percentage differences between the reference network values and respective
values for the QL solutions (% reductions inHOAP and Nus)

2. as Simple Moving Averages (SMAs) of the resulting differences in 1 above,
with each point indicating the SMA of the previous 10 values (10 batches)
of the simulation up to that instant.

For example, if at time t = τ the Nus for Ref and QLB are respectively N t
us,ref and

N t
us,QLB, the transient Nus chart will record

τ

E
t=τ−9

[100 ·(N t
us,ref−N t

us,QLB)/N t
us,ref ].

Meanwhile, Fig. 5.5c compares the steady state performance of the solutions
by considering the averages of the very last 20 batches for each solution. We
observe that in both dimensions (HOAP and Nus), all solutions perform poorly
at the beginning as they test different configurations. They then improve over
time but achieve different steady state performances as described in the following
subsections.

5.4.1 Ref Performance

The performance in the Reference network (Ref) in Fig. 5.5c sets the starting
point that requires to be improved by the QL functions. This network applies
static settings that remain unchanged throughout the simulation. This network
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(a) Transient HOAP performance. (b) Transient Nus performance.

(c) Steady State Performance.

Figure 5.5: Performance of uncoordinated QL functions for 50 m hot-spot in
a 60 Km/hr environment.

has an inherent Nus that results from the load imposed on the network by the
specific user deployment. Similarly, the HOAP basis is the expected performance
when configured with the reference HO settings of [0.5dB, 0.1s].

5.4.2 QMRO Performance

As initially explained in 4.2, objective of QMRO is to determine the best HO
settings for any mobility state. Thus with the assumption that Rfe settings are
optimal as determined in 4.2.2.5, QMRO needs to learn HO settings that achieve
the same or even better performance as Ref. We observe in Fig. 5.5a that QMRO
endeavors to achieve this objective. It starts out with poor performance as it spans
the entire parameter space but improves its performance as it refines the search
towards the area that minimizes HOAP. Eventually, it achieves a steady state
performance that is close in performance to Ref as shown in Fig. 5.5c.

The failure to achieve exactly the same performance is due to the fact that not all
cells contain a single velocity group as was intended. QMRO was designed based
on the assumption that all users within a cell have close to the same velocity so
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that when a configuration is selected, it would be adequate for all. In the current
configuration however, although most cells have only fast moving users at or near
60Kmph, some cells in middle of the network have both fast moving users and
slow moving users that cause the hotspot. As such a configuration selected based
on fast moving users will cause some poor performance for slow moving users.

We observe in this case however that QMRO has only a small effect on Nus (Figs.
5.5b) specifically because no load redistribution has been undertaken. Effectively,
QMRO tries to maintain all users in the receptive cells where they are connected
in accordance with the aim of maximizing their SINR.

5.4.3 QLB Performance

QLB undertakes action to minimize user dissatisfaction resulting from overload in
some cells. We observe in Fig. 5.5b that QLB is able to re-distribute the load in
a way that the number of unsatisfied users is reduced - in some batches by more
than 50 %. This however comes at the cost of increased HOAP across the network
(Fig. 5.5a). Consistently as Nus reduces, the HOAP increases. This results in
a significantly different steady state performance for QLB as compared to Ref in
Fig. 5.5c.

5.4.4 QLH: Uncoordinated operation of QMRO and QLB

The two subsections above have showed that each SF is able to achieve its objective
when acting alone in the network even though this may affect the other SF. When
combined, a different result is observed, as denoted by QLH in the figures. Without
coordination the performance of both SFs degrades. Effectively, during learning,
each SFs observes effects that are not strictly due to its actions but that are also
due to the peer’s actions. As such, the action perceived as optimum for any state
is actually worse than what that SF would select when acting alone. In the end it
results in the worse performance for both SFs.

In effect the actions selected as optimum instead cause more RLFs in case of
QMRO. And for QLB that the actions move users to more loaded cells instead of
moving them to less load cells. This is the direct effect of each of the SFs learning
based on rewards computed based on events that are not only due to the actions
of that SF but that are also due to the actions of the peer SF. Fig. 5.5c gives
a simple evaluation of the degree of degradation. While the desire is to have a
solution that achieves the standalone performances of QMRO and QLB (i.e. one
that follows the directions of the arrows), QLH instead registers worse performance
for both SFs. This justifies the need for coordination among MRO and MLB if
the respective solutions are to act concurrently within the same network.
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5.5 Summary

In this chapter we endeavored to quantify the coordination problem by evaluating
the performance degradation that results when multiple SFs are concurrently op-
erated without coordination. Considering the MRO-MLB conflicts, we observed
that owing to their nature i.e. being a combination of parameter value conflicts
and metric value conflicts, MRO and MLB affect each others performance. We
have demonstrated the effects of the SFs on other SF’s metrics when acting indi-
vidually, and then quantified the net conflicts when the two act concurrently. We
observed that:

1. that if MRO learns optimum actions with more focus on reducing RLFEs,
it could reduce Nus in case of an overloaded cell.

2. that by focussing on reducing Nus, QLB leads to degradation of HO per-
formance mainly because it significantly increases the number of RLFEs.
Consequently, if QLB learns with consideration of the effects of its actions
on HO performance, the degree of degradation could be reduced.

3. that by acting concurrently, the SFs degrade each other’s performance so
much that their combined operation could have worse results that the indi-
vidual SFs or the manually optimized network.

These observations suggest that the objective of SON may be lost if the parallel
operation of multiple SFs leads to worse performance. This justifies the need for
solutions to manage conflicts among SFs. Two such solution categories (based on
scheduling and cooperative games) will be the subject of the next chapter.
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Consider a system in which multiple SFs are concurrently active. The individual
SON solutions assume that each agent acts separately within the environment
i.e. that each agents observes effects that are due to only its actions and no
actions of other actors. In reality however, the different agents act and observe the
same environment – either within a single cell or among neighbor cells. Without
coordination, each agent observes effects that are due to both its actions and the
peers’ actions. Coordination then provides a mechanism of accounting for each
SF’s effects on the peers or of separating such effects.

The entire SON system can be considered as a MAS in which the agents are the in-
dividual SFs within each cell. Then, the generic approaches as discussed in section
2.4 would be the candidate alternatives to coordinate the multiple agents. In par-
ticular we consider some form of SAS decomposition achieved through scheduling
of SFs in space and time as well as a MAS concurrent games approach. This chap-
ter discusses these approaches and compares their relative performance gains. We
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begin with a discussion of the three candidate approaches with in Space - Time
Decoupling (STD) followed with a discussion of CCG. We end with a general
discussion of their performance limits and limitations.

As was the case with the individual SFs in chapter 4 and conflicts among SFs
in chapter 5, we evaluate the performance of the coordination solutions using the
LTE system simulator described in chapter 3. For fair comparison we ensure to
use the same simulation settings. However, parameters that are of specific concern
to this chapter are described as follows:

The network assumes mobile users randomly placed anywhere in the coverage area
and moving at an average velocity of 60 Kmph (i.e. individually between 36 and
84 Kmph). This network is configured with HO settings as [0.5dB, 0.1s], the best
fixed settings for an environment in which UEs move at 60 Kmph. To simulate
overload, a hotspot of approximately 100 m in radius is placed in a cell in the
center of the network. Simulations are repeated over multiple batches, specifically
175 batches, each simulating 200 seconds of operation. In each batch users are
placed in the network using the same approach, i.e. mobile users randomly placed
anywhere in the network and a static user hotspot placed in the center of the
network. All users are connected to the network throughout the simulation, and
in case of a RLF, a user is reconnected to the best cell as expected for LTE.

In all the evaluations, the MRO weight vector of (0.2, 0.3, 0.5) is applied. The
respective metrics have been selected first to balance opposing metrics (i.e. RLFLs
against the combination of RLFEs and PPs), and then owing to the more unde-
sirable effects of RLFs compared to Ping-pongs, RLFEs are weighted higher than
PPs. Other critical parameters are summarized in table 6.1.

Table 6.1: Simulation Parameters.

Parameter value

System bandwidth 10 MHz
Inter-site distance 500 m

Time between snapshots 50 ms
Number of users 420

Mobile users’ velocity variable, mean 60 Kmph
Mobility Model random walk

Pathloss 128.1 + 37.6 log10[max(dKm, 0.035)]
Shadowing standard deviation, 50m

Decorrelation distance 50m
eNB Tx power 46 dBm

eNB Tx antennas 1 per sector at height = 32 m
UE receive antennas 1 Omni at height = 1.5m

eNB max. antenna gain 15 dBi
UE max. antenna gain 2 dBi

Data rate 512 Kbps
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For each of the solutions that have been considered, performance is evaluated from
two dimensions:

1. the temporal variation of the metrics throughout the simulation. Consider-
ing gains as the reduction in HOAP and Nus for each batch, the temporal
variation tracks the Simple Moving Average (SMA) of the gains in each of
the two metrics using an SMA window of 10 values (i.e. 10 batches).

2. the steady state performance when all SFs are considered to have completed
learning. This considers the average of the very last 20 batches for each of
the two metrics, plotting them on a 2-dimensional grid.

6.1 Spatial-Temporal Decoupling

As discussed in section 2.4, the simplest coordination solutions typically consider
some form of SAS decomposition. This section discusses our SAS decomposition
approach which is based on STD. To minimize the conflicts among the SFs, STD
procedures separate the execution of the different SFs or SF instances in space
and time, i.e. the different SF instances are executed at different points in either
time, space or both. The three approaches that have been evaluated are:

1. Temporal Separation during Learning (TSL)

2. Concurrent learning with Spatial Separation (CSS)

3. Space - Time Scheduling (STS)

The following sections describe the concepts in each of the three cases where their
relative performance of is evaluated using the two QL SFs (QMRO and QLB) as
described in chapter 4.

6.1.1 Temporal Separation during Learning (TSL)

If two conflicting SFs concurrently take actions in the same cell, they cannot fully
differentiate the effects of their actions on the cell, i.e. the learning agents get
”confused”. For this reason a number of studies have proposed separation of the
SFs such that at any time only one is allowed to act. However, any SFs is likely to
under perform during the time when it is deactivated. For example consider that
MLB is deactivated so as to wait for completion of an MRO episode. Typically,
MRO requires time for at least 1000 HOs in order to obtain adequate statistics on
HO metrics. With MLB deactivated during this period, even if free resources exist
in the neighbor cells, any affected cell will not take any action even if it experiences
excessive overload. This is even worse if the SF is deactivated not only in one cell
but throughout the whole network. To counter this, we have proposed that for
learning agents, the time based separation of execution should be undertaken only
during the learning period, thus TSL.
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Figure 6.1: Time Separation during Learning between QMRO & QLB.

6.1.1.1 Operation of TSL

The idea behind TSL is that different SFs are scheduled to operate at different time
during their learning period. All SFs are then fully activated after the learning
is completed. Effectively, only 1 SF learns at a time. Prioritizing the SF that
should learn first before the other is assumed to be an operator policy. In general
however, this should consider which SF is likely to be more affected by the other.
For MLB and MRO, since MLB adjusts the HO boundary between cells, it should
do so in an environment of optimum HO performance. As such, QMRO is selected
to learn first so that QLB learns only after HO triggering is assumed optimized as
shown in (Fig. 6.1).

Given the cooperative learning among cells, each cell executes the MRO algorithm
at the start of the optimization and updates the shared QMRO-policy function
(the QMRO Q-table). This continues until QMRO learning is completed (i.e. until
the Q-table is fully updated for observed mobility states). When that happens,
QLB learning is then activated. In that case the cells take actions and update
the shared QLB-policy function (the QLB Q-table). When the QLB Q-table is
fully updated, both SFs are let to freely run concurrently. The assumption here
is that each SF would have had a chance to learn alone on the network without
interference from the other.

6.1.1.2 TSL Performance Results and Discussion

Fig. 6.2 compares the performance of the two SFs for: 1) the independent SFs
when each is acting alone in the network, 2) the combined but uncoordinated
operation and 3) the coordinated operation using TSL. Specifically Figs. 6.2a
and 6.2b show the performance throughout the simulation using the SMAs of the
metrics while Fig 6.2c evaluates the stead state results, which consider the averages
over the last 20 batches.

We observe from Figs. 6.2a and 6.2b that at the start performance of TSL matches
that of QMRO since QMRO is the only active SF. However, when QLB is acti-
vated, TSL’s performance begins to follow QLB and the two moving average curves
move towards the QLB curves. The end result is that there is major degradation
in HO performance to the extent that the HO steady state result is far worse
than both QMRO and Ref, although it is better than the uncoordinated case
represented by QLH.
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(a) Transient HOAP performance. (b) Transient Nus performance.

(c) Steady State Performance.

Figure 6.2: TSL Performance for 50 m hotspot in a 60 Kmph environment.

The challenge with TSL is that the last SF to learn changes the environment for
the first SF(s). For example QMRO learns in an environment where its the only
actor, yet after it has finished learning, QLBs joins that environment. The initial
policy learned by QMRO is thus no longer applicable in this new environment,
implying that it may be better for the SFs to learn concurrently. Moreover this is
made worse by the fact that execution is undertaken concurrently in all cells. This
implies that when one SF evaluates the effects of an action, its environment would
have been affected by that action, the action(s) of the other SF(s) with in the same
cell as well as the actions of other SFs in neighbor cells. The alternative approach
then is to consider separating SFs in space as described in the next section.

6.1.2 Concurrent learning with Spatial Separation (CSS)

Among neighbor cells, actions of a SF in one cell A can affect metrics of a similar
or different SF in another cell B. In general, consider two SFs SF 1 and SF 2 active
in the two cells A and B. SF 1 that is active in A can have effects on SF 1 in B
and on SF 2 in both A and B. For example MLB in cell A affects MLB in the



Chapter 6. Multi-agent SON Coordination 96

neighbor cell B as well as MRO metrics (HO performance metrics) in both cells
A and B. In that case if either SF 1 or SF 2 is active in B and it takes an action
from which it is supposed to learn, the observations made on its metrics will have
been affected by both SF 1 in A and the active SF in B. The SFs then make the
wrong deductions and learn the wrong functions. In that case, execution in the
two cells A and B should be separated so as to minimize these effects. We consider
the case of CSSs, where one cell out of a set of neighbors is active but with all SFs
concurrently running within this active cell.

It should be noted that there could be two SFs that do not conflict across cells,
which could without negative effects concurrently run in neighbor cells. This
however requires that such knowledge is available which is generally not the case.
As such the discussion here considers the generic case in which all SFs are assumed
to have effect across cells however small such effects may be.

The minimum requirement for CSS is that actions should only be taken concur-
rently in two cells, if there exists at least 1 other cell in between the two. This
is based on the assumption that besides the effects on self actions within a cell,
effects from other cells would only be due to action of the first tier neighbors.
There could as well be effects from further neighbor tiers but this seems to be
an overly cautious assumption without a justified cause. Given the assumption
above, the result is a reuse-3 concurrency structure among the cells as shown in
Fig. 6.3. Essentially only 1 out of every 3 cells will be active in any one time
interval. The set of active cells, referred to here as a cluster, is then rotated over
time. Each cluster of cells is allocated a time-frame within a single multi-frame as
shown in Fig 6.4. Each cell then schedules SFs within the frame according to its
local requirements.

Figure 6.3: Cell clustering for spacial scheduling.

Figure 6.4: CSS Multi-frame.
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Algorithm 6.1: Clustering cells for CSS

Require: Seed cell a; sets Xi, i = 1, 2, 3 for the 3 colors

1. add seed a to X1

2. Select c = any neighbor of a i.e. any cell with exactly1

colored neighbor

3. add c to X2

4. Repeat while not all cells colored / allocated

5. for each uncolored cell c with exactly 2 colored neighbors; do

6. given neighbors’ colors as Xi=j, Xi=k

7. Allocate c to third color Xi=l

done

6.1.2.1 Clustering Cells for CSS

The clustering structure in Fig. 6.3 requires that cells are pre-associated with the
clusters. The following procedure describes a clustering scheme that allows one of
any 3 neighbor cells to act. It assumes that the clustering is executed centrally as
part of the network configuration. Essentially each time, a new eNB is added, the
clustering scheme of Algorithm 6.1 is executed to allocate cluster indices (or colors)
to the cells. The algorithm requires a seed which can be selected randomly or by
the operator. The seed is allocated to the first cluster index and the subsequent
cells colored depending on their neighbors’ colors. In the uniform hexagonal grid
as here considered, the clustering scheme achieves the same cell distribution of
Fig. 6.3 among the cells regardless of the applied seed.

6.1.2.2 CSS Performance Results and Discussion

Fig. 6.5 compares the performance in the two SFs when coordinated using CSS
with the performance of all the previous solutions i.e. 1) the independent SFs
when each is acting alone in the network, 2) the combined but uncoordinated
operation and the coordination using TSL. As before Figs. 6.5a and 6.5b evaluate
the entire simulation including the transient state while Figs. 6.5c evaluates the
steady state performance using the last 20 batches.

We observe from Figs. 6.5a and 6.5b that unlike with TSL, CSS performance does
not follow that of any of the SFs because in this case both SFs are concurrently
active. Instead, CSS seeks a compromise performance between the independent
solutions and the uncoordinated environment. However, the most visible effect
of the space separation is that both solutions take longer to converge. This is
the direct effect of having only a few of the cells learning and contributing to the
shared Q-function. In the end however, CSS achieves a better compromise but
is also unable to achieve equivalent performance to the standalone SFs. This is
owing to the fact that within an active cell, both SFs are still operational and as
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(a) Transient HOAP performance. (b) Transient Nus performance.

(c) Steady State Performance.

Figure 6.5: CSS Performance for 50 m hotspot in a 60 Kmph environment.

such will affect each other’s observations. The next alternative then is to fully
separate the SFs both in space and in time.

6.1.3 Space - Time Scheduling (STS)

Sections 6.1.1 and 6.1.2 have considered separation of the SFs in one of the two
dimensions - space and time. They each make small improvement but are unable
to achieve results that are comparable to those achieves by the independent SFs.
The challenge in both cases is that SFs are unable to independently observe their
metrics yet this is very important during the learning period. In the case of TSL,
each observation is affected by action in the neighboring cell, while for CSS the
observation is affected by the other SF within the same cell. To counter these
degradations, we combine time separation and special scheduling, thus STS, to
ensure that during any observation period, each cell is affected by the action of
only one SF.
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6.1.3.1 Operation of STS

As earlier proposed, we apply separation only during the learning and reactivate
all SFs in all cells after learning. This ensures that SFs learn functions that are
only due to their actions and that after learning SFs do not under perform as a
result of having been deactivated to wait for other SFs. We apply CSS among the
cells and apply TSL among the SFs in each cell.

As was done in CSS, cells are clustered as in Fig. 6.3 using algorithm 6.1. Each
cluster is allocated a time frame as shown in Fig. 6.6, such that each cell has 1 out
of the 3 frames of the multi-frame within which to take actions. For example, in
Fig. 6.6, cluster 1 cells a and k always take action in frame 1. Within each frame,
the cells apply time division scheduling to allocate time to each of the active SFs.

It is imaginable that all cells in a cluster will have the same SF acting. We however,
do not consider this. Instead, we assume the generic case that cells could be having
different optimization needs so should schedule SFs accordingly. As such, each cell
will determine how to schedule SFs within its allocated time-slot based on those
optimization needs but also based on the timing requirements of the different func-
tions. For example in Frame 1 in Fig. 6.6, cells a and k respectively schedule MRO
and Coverage-Capacity Optimization (CCO). Contrarily, cell k schedules multiple
SFs (e.g. twice MLB and once Inter-Cell Interference Coordination (ICIC)) at a
time when cell a schedules CCO.

For the MRO-MLB conflicts, we assume as before that MRO learns first to ensure
that MLB adjusts HO boundaries within an environment of optimum HO settings.

Figure 6.6: STS Frames in CSS Multi-frame.



Chapter 6. Multi-agent SON Coordination 100

6.1.3.2 STS Performance Results and Discussion

As was the case with TSL and CSS, we evaluate STS’s performance over the
entire simulation using SMAs (Figs. 6.7a and 6.7b) and evaluate the steady state
performance as averages of the last 20 batches(Fig. 6.7c). Again we compare
STS’s performance to: 1) the independent SFs, 2) the combined but uncoordinated
operation and 3) the previous coordination solutions (i.e. TSL and CSS).

By separating both in space and time, STS enables SFs to learn the strictly inde-
pendent behaviors that are free of peers’ actions. This results in better compromise
compared to TSL and CSS as seen in Fig. 6.7c. In general, because each SF is
given a chance to learn its independent policy function, STS achieves good per-
formance even when multiple SFs act concurrently in the network. This can be
seen better in a lower velocity environment as shown in Fig. 6.8 for a network
with mobile users moving at 30Kmph. The lower velocity translates into a smaller
effect of load balancing on HO performance (see QLH in Fig. 6.8 compared to
that in Fig. 6.7c). STS then allows the SFs to learn better solutions that allow
the effect to be reduced further, resulting in a better compromise compared to
CSS. However, because during operation each SF’s actions are superimposed onto

(a) Transient HOAP performance. (b) Transient Nus performance.

(c) Steady State Performance.

Figure 6.7: STS Performance for 50 m hotspot in a 60 Kmph environment.



Chapter 6. Multi-agent SON Coordination 101

Figure 6.8: Steady State STS Performance for 50 m hotspot in a 60 Kmph
environment.

peers’ actions, the performance gains will still not be equivalent to those achieved
when the SFs act independently in the network.

6.2 Multi-Agent Concurrent Cooperative Games

The scheduling of SFs assumes that conflicts occur during the execution of actions,
i.e. that if two SFs act within the same environment but at different times, that
the SFs would not have any effect on one another. This may however not always
be the case since there would be SFs that conflict e.g. on the metric values even
though they are executed at different times.

As described in chapter 5, even when acting individually, SFs can affect each
others’ metrics. Consider for example that MLB changes the CIO in a cell. Even
if that action is taken independent of any MRO action at that time, its effect on
HO performance will be observed even at later points in time. This then requires
that such an action should have been taken with concern for HO metrics. In this
case Spatial-Temporal Scheduling may be inadequate to the task. Each SF needs
to account for its effects on all other SFs even if the are not competing at the same
space-time coordinate. This is what CCG aim to accomplish.

Moreover, CCG may also allow operator to decide how much compromise to be
undertaken between the competing SFs /metrics. STS’s scheduling does not offer
the operator any control on the actions of the SFs in accordance with the desired
level of compromise. This can to some degree be implemented through CCG.

6.2.1 Concurrent Cooperative Games in SON

Consider a network with a set of cells, C, such that when a SF i in cell j (SFji)
takes an action, it affects its peer SFjl, l 6= i and SFci. SFjl, l 6= i are the other
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SFs in cell j while SFci are SFs in the other cells c∈C, c 6= j. Consider also that
SFji acts alone in the respective environment.

With STS, SFji takes an action and at the end of the monitoring period, it eval-
uates the effect of the action on its own metrics without concern on the effect of
the action on other SFs. With CCG however, SFji wishes to learn the action that:
1) has the best performance considering SFji’s metrics and 2) also has the least
possible effects on the other SFs. To achieve this SFji must be able to determine
any such effects of its actions on the peers.

To learn the effects, after selecting an action to execute in the environment, SFji
communicates that action to all its peers who at the end of the monitoring period
report back their observed effects. SFji then aggregates these effects in evaluating
the quality of its actions. An example of this procedure is described by Fig. 6.9
for the generic CCG between two SFs SF1 and SF2.

When SF1 takes an action it informs SF2 of the action taken, prompting SF2 to
monitor and evaluate its metrics. Then at the end of the observation period SF2
informs SF1 of the effect of the action on SF2 ’s metrics, which SF1 considers
in evaluating the quality of the action. In principle SF1 and SF2 could each be
an instance of the respective SF or the full SF with all its multiple instances e.g.
with one instance in each cell. In either cases, each SF instance that receives
the message from the active SF must report back its observed effect, so that the
penalty is derived from the aggregation of the reports. Consider two cells each
with an instance of MLB and an instance of MRO as shown in Fig. 6.10. For a
MLB action in cell A, we expect to receive responses from MRO in both cells A
and B as well as MLB in cell B.

Meanwhile, to achieve effective coordination with CCG, two critical issues must
be addressed: 1) how to differentiate actions from multiple concurrent SFs and 2)
how to structure and aggregate information from multiple affected peers. These
concerns are addressed in the foregoing sections.

Figure 6.9: CCG principle.
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Figure 6.10: Message exchanges in 2 cells.

6.2.2 Managing Concurrency of Actions

Consider that SFji has taken an action and expects a report from a peer SFcl.
We require that during the observation interval SFcl’s metrics are not affected by
any other agent except SFji, otherwise SFcl’s report would be misleading. It is
appropriate to assume that each SF affects only SFs within its cell and the first tier
neighbor cells and not any other cells further out. This is a justified assumption
except for a few radio propagation based SFs like interference management where
the signal may propagate beyond the first tier neighbor cells. Even then, compared
to the effect in the first tier neighbors, the effects in the second and higher tier
neighbors is so small that it can be neglected. Given this assumption and the
requirement that SFcl is only affected by SFji (at least during the learning period),
it follows that, SFs should only be scheduled in a way that no two SFs concurrently
affect the same environment during the learning.

6.2.2.1 Spatial-Temporal Scheduling

To address the need to separate actions among SFs, consider the subnetwork
represented by Fig. 6.11a. We wish to ensure that an SF executed in cell A is
able to learn the effects of its actions on: 1) all SFs in cell A and 2) all SFs in
the neighbor cells. To achieve this none of A’s neighbor cells should execute any
SON activity and none of the others SFs in A should also run, otherwise this
would negate requirement 1. Moreover, to fulfill requirement 2, none of A’s tier-2
neighbor cells (e.g. C) should execute any SON activity since such activity would
affect A’s tier one neighbors’ SFs (SFs e.g. in B). In effect the nearest SON activity
should be within A’s tier-3 neighbors (e.g. D) since such activity would only affect
tier-2 neighbors which are outside A’s reporting area.
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Figure 6.11: CSS: Spacial scheduling in cell.

Correspondingly, spatial scheduling for GGC should ensure that there are at least
2 inactive cells between any two active cells as shown in Fig. 6.11a. This requires a
reuse-7 structure, which in a network with a uniform hexagonal grid is equivalent
to Fig. 6.11b. In Fig. 6.11b, concurrent activity is only allowed among cells with
the same color, which are the cells that are exactly 2 cells apart. In this case, each
cell is able to measure its effects on the SFs in neighbor cells without influence
from any action in the other concurrently active cells. For example when cell 12
takes action, it can measure independent reports from cells 1,14,16,23,22 and 20,
none of which would have been affected by ongoing activity in cells 4 and 8.

6.2.2.2 Spatial Scheduling Algorithm

To achieve the reuse-7 scheduling, we have designed the clustering scheme of Algo-
rithm 6.2 for spatial scheduling. Assumed to be executed centrally as part of the
network configuration (each time a new eNB is added), the scheme selects only one
of any 7 neighbor cells to act. The set of all cells that will be concurrently active
is referred to as a Cluster List, identified by a Cluster List index (CLI), while each
cell that is allocated to an index is refereed to as having been colored. The algo-
rithm allows the operator to select a seed (the starting cell) which is allocated to
the first CLI. Then, beginning with the first ring around the seed and proceeding
outwards, the cells are allocated to CLIs depending on the CLIs allocated to their
neighbors.

To allocate the first cell in the first ring, the CLI is first incremented to 2. The
algorithm then randomly selects the first cell in the first ring and allocates it to
that CLI (i.e. CLI 2). Subsequent cells in the first ring are also selected randomly
and allocated to the subsequent index up to the seventh index.

In the outer rings, any cell that has at least 2 colored neighbors is selected for
coloring. The cell is supposed to have a color that is different from those within
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Algorithm 6.2: Clustering for Spatial Scheduling in CCG

Require: Seed cell a; sets Xi, i = 1, 2, ..7; for each cell, Lists

T1, T2 for Tier1, Tier2 Neighbors CLIs respectively

1. Add seed a to X1

2. Add i=1 to T1j for each of seed’s neighbor j

3. Repeat for each i’s neighbor j - first ring around seed

4. i← i+1

5. Add j to Xi

6. Add i to T1k for each j’s neighbor k, k 6=i
7. Add T1j to T2k for each j’s neighbor k, k 6=i

end loop

8. Select any second ring cell m

9. i = first CLI that is not used among m’s neighbors

10. Add m to Xi

11. Add i to T1j for each m’s neighbor j

12. Add T1m to T2j for each m’s neighbor j

13. Repeat while not all cells allocated

14. for each cell m not allocated do

15. i = first CLI that is not used among m’s neighbors

16. Add m to Xi

17. Add i to T1j for each m’s neighbor j

18. Add T1m to T2j for each m’s neighbor j

done

end loop

its first two neighbor tiers. A list of forbidden indices (colors) is created for the
cell and populated with the indices of the cell’s first two tiers of neighbors. The
cell is then randomly allocated to any index that is not within its forbidden-index
list. This continues until all cells have been colored.

The output of the Clustering scheme is the cell distribution of Fig. 6.3b for
a network with a uniform hexagonal grid. This is always the same for such a
network regardless of the applied seed.

6.2.3 Type and Aggregation of Reported Information

The complexity of the CCG algorithm can be controlled by the structure of the
communication especially the response sent to the active SF, SFji. Even the way
the information in the reports from the peers is aggregated will highly depend on
how that information is structured.
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6.2.3.1 Type of Shared Information

The return message sent by the peers to the active SF, SFji, could contain either
the metrics of the peer SFs directly or a penalty value based on some function
that measures the effects. The structures of the two approaches significantly differ
and so do their relative merits:

1. Communicating the metrics: Here, following an action from SFji, each
affected SF communicates its observed metrics to SFji. So to derive the quality
of the action, SFji requires, for each peer, a local model of the goodness of
the peers’ metrics i.e. a model that describes which metric values are good or
otherwise. Thus, using these local models on the received metric values, SFji
derives the associated quality of the action it took. For the example in Fig.
6.10, both MRO instances would directly report the PP and RLF rates while
MLB in cell B would report the unsatisfied user rate observed over the SON
interval. SFji would then have to use these rates to evaluate the aggregate effect
on the peers. Note should be taken that the structure is the same if, instead
of reporting the metric values, the peers reported changes in metric values, i.e.
between the start and end of the SON interval. SFji would still require models
that interpret how much change is good, acceptable or otherwise.

One challenge here is that need for local models in SFji for each of the peers
makes SFji very complex, in principle almost as complex as the entire set of
SON functions. It would require a lot of expert knowledge to be added to each
SF as a result of the need to include the peer models. The biggest concern
however would be that this structure is not easily scalable. Since each SF
requires models of all peers, each time a new SF is added, its model must be
included in all existing SFs. This makes the integration of new SFs very complex
and the entire solution undesirable. Moreover, ensuring that the interpretation
of the metrics is consistent among all SFs would be challenging too. This is
especially the case where SFs are implemented by different vendors or teams.

2. Communicating the quality of effects: In this case, instead of communi-
cating the metrics, the affected SFs only report a metrics quality indicator. A
generic report structure that allocates credit for observed effects would as such
be required. An example of such a generic structure for grading the appropri-
ateness of an action on the metrics can be a scale of 5 values between -2 and +2
that respectively corresponds to the grades ’very bad’, ’bad’, ’neutral’, ’good’
and ’very good’. Such a structure allows each SF to define its internal meanings
of the 5 grades offering the aggregating SF a single scale on which to compare
effects across all peers. Using such a reporting structure, after the monitoring
period, peers signal these grade reports to the offending SF who then aggregates
the grades to determine how good or bad the action was to the peers.

Reporting effects based on a metrics quality indicator eases the integration of SFs
in an environment where SFs are gradually added to the network. This is because
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no extra refinement is required for the existing SFs in order to be able to account
for effects on the new SFs and vice versa. This therefore is the preferred option
and is the considered form of reporting among SFs in the foregoing studies.

6.2.3.2 Aggregating Peer Information

Besides designing a good reporting structure, an appropriate objective function
for aggregating the quality indicators from the multiple affected SFs must be also
designed. Learning the actions with the least effects on peers, highly depends on
how those quality indicators from the multiple SFs are combined during SFji’s
learning. In general this would be operator policy, typically as a weighted multi
objective optimization function, for which the operator sets the weight vector.

In our studies, to reduce complexity and evaluate the benefit of the proposed
solution, we have only considered coordination of SFs that are within the same
cell. For example considering the CCG in Fig. 6.10, it means that if MRO takes
an action in cell A, it only receives feedback from MLB within the same cell A,
and does not consider effects on MRO and MLB in the neighbor cell although in
principle the neighbor cell is also affected.

6.2.4 CCG Algorithm

The reuse-7 spatial scheduling combined with time scheduling and the reporting
structure in 6.2.3.1 enable SFs to independently act in a given area and measure
their effects on all peers within that area. To ensure concurrent separation in time,
the time division concept represented by Fig. 6.12 is applied. This is similar to the
STS frame structure in Fig. 6.6 except that the composition of clusters changes

Figure 6.12: Reuse-7 STS Frames in a Multi-frame.
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Figure 6.13: CCG activity flow.

according to Algorithm 6.2. In this case, each cell cluster is allocated to one of
seven frames of the multi-frame in which to take actions. Within each frame, the
cells apply time division scheduling to allocate time to each of the active SFs. As
before, we assume a generic case in which cells in any cluster do not all have the
same active SF at any given time. Instead we assume that each cell schedules SFs
according to its own requirements.

Considering the two cells A and B each with an instance of MLB and an instance of
MRO as originally introduced in Fig. 6.10, the operation of CCG may be described
by the Time line chart in 6.13. Consider that the MLB instance in A (MLBA) is
to take an action and learn from that action. After selecting the action, MLBA

informs the other SF instances that it has taken an action, which triggers the SFs to
monitor their respective metrics. At the end of the observation period (equivalent
to the designated SON interval for MLB), each of the SF instances reports the
effect of the MLB action using the reporting structure in 6.2.3.1. Then, to obtain
the reward to be applied during learning, MLBA aggregates the effects based on
the function designed according to 6.2.3.2. This reward is then used in updating
the Q-learning policy function.

6.2.5 Simulation studies and Performance Results

As in the STS studies, to study the performance of CCG, we consider the two SFs
that were developed in chapter 4 i.e. QMRO and QLB. The studies here consider
only the case in which the SFs account for effects on co-located peers. This means
that each MLB instances only considers the effects on MRO within the same cell
and vise versa. This may definitely not be sufficient to ensure that all effects are
accounted for. However, accounting for all effects requires a detailed study of how
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metric effects from all affected SFs should be combined. Such a study could not fit
in the scheduled time for this project and has as such been left to future research.

Meanwhile, to account for the cross effects, the reward functions for both MLB
and MRO as presented in chapter 4 are revised. The revised reward functions are
described below followed by the observed results.

6.2.5.1 QMRO Reward Function

Besides minimizing RLFs and PPs, QMRO now intends to also minimize the
occurrence of unsatisfied users by reducing the load in an overloaded cell. As such
the reward function should also consider the load reduction that results from any
action that is selected. Since the number of unsatisfied users and the load are on
different scales compared to RLFs and PPs, a simple addition of Nus or load to the
original reward function may be counterproductive. A simple alternative that has
been selected is to scale the reward by a small bias value, called the load bonus,
that depends on whether the cell load was significantly reduced or not. The load
bonus makes the reward appear slightly better for actions that reduce load in an
overloaded cell. The revised reward rx,t is thus given as in equation 6.1.

rx,t =− Loadbonus ∗ (w1P + w2FE + w3FL)

and Loadbonus =

{
0.9 ; significant load change

1 ; otherwise
(6.1)

The condition of ”significant load change” is fulfilled: 1) if the concerned cell
was overloaded at the time the action was taken and 2) if the reduction in load
(difference between the previous and current load) is more than 20 %. The previous
and current load are respectively the offered load in the cell at the time when the
action is taken and that at the end of the evaluation period. In both cases, the
load is evaluated as the average over the SON interval. The alternative of taking
the instantaneous load value at the end of the SON interval would not necessarily
reflect the effect of the MRO action in all cases, since the load may significantly
vary e.g. owing to some sudden movement of one or more users.

Note should be taken that the parameter values applied here are subjective having
been obtained through informed trial and error. The principles behind them are
however straight forward, i.e:

1. in order to produce the result that actions which lead to load reduction have
better quality, the loadbonus for such actions has to be less than the default
loadbonus applied to all actions

2. when rewarding load reduction, the reward should not be so high that the
intended focus of the SF is lost i.e the MRO objective of minimizing RLFs
and PPs should still be paramount.
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Following these principles ensures that QMRO continues to focus on optimizing
MRO but with an eye to reducing load in case of an overloaded cell.

6.2.5.2 QLB Reward Function

The initial objective of QLB was to select the action φ that instantaneously re-
moves overload from the serving cell, but without overloading the target cell(s). In
order to account for effects on MRO, QLB now requires to also include a penalty
to penalize actions that cause excessive degradation of HO performance. Thus,
for each of the load scenarios Γ as defined in 4.3.2.2 (Table 4.5), the reward for an
action taken in scenario Γ will be as given in equation 6.2

r =


∆ρs + 1−HOpenalty ; ∆ρn = 2 and Γ < 3

∆ρs −HOpenalty ; ∆ρn < 1
∆ρs − 1−HOpenalty ; otherwise

(6.2)

∆ρs is the achieved reduction in serving cell offered load ρs, while ∆ρn is the change
in average target cells offered load. The HO penalty (HOpenalty) is derived based
on some estimated cost (called the HOcost) of taking the respective LB decision.
Consider that for an action taken, the respective numbers of HO, PPs, RLFEs
and RLFLs are H, P, FE and FL. The HOcost and the respective penalty for the
action are given as

HOcost =
P + 2 ∗ FE
H + FE + FL

(6.3)

and HOpenalty =


0.0 ; HOcost < 0.2
0.5 ; 0.2 ≥ HOcost < 0.5
1.0 ; 0.5 ≥ HOcost < 0.9
1.5 ; 0.9 ≥ HOcost < 1.4
2.0 ; otherwise

(6.4)

In the HOcost, FEs are given a higher weight compared to PPs since FEs are less
desirable than PPs. Meanwhile the range of the HOcost values that are considered
for the different HOpenalty values are selected subjectively but with the intention
that actions that lead to more undesirable HO events should be penalized more.
The penalty then lowers the effective reward awarded to an action that severely
affects HO performance. In doing so, QLB learns not only to remove overload but
to minimize the resulting effects on HO performance while removing the overload.

6.2.5.3 Performance Results

Considering the MRO-MLB conflicts and applying the reward function above, sim-
ulation studies were undertaken with the corresponding results shown in Fig 6.14.
The figures compare the performance of CCG against that of the independent SFs
as well as that of the combined but uncoordinated operation represented by QLH.
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For a comparative discussion, we also include the STS results. In particular Figs.
6.14a and 6.14b evaluate the transient state in terms of the SMAs of the HOAP
and Nus, while Fig. 6.14c evaluates the steady state performance as averages the
last 20 batches.

Comparing CCG with the uncoordinated cases, we observe that CCG achieves
good compromise between the two conflicting SFs. However, CCG may not always
perform as good as STS. During the learning phase, the performance of CCG and
STS are exactly the same since the same SFs are active and are exploring in the
same way. After learning is completed however, the performance diverges since
the learned functions are different.

In the case of CCG, each SF is not only given a chance to learn its independent
policy function, but is also required to learn the solutions that have minimal effect
on the peers. This cooperative competition minimizes trigger oscillations in the
sense that one SFs does not have to be triggered as a result of action of a peer since
the peer will have ensured that its actions cause the least possible negative effect
on all other SFs. Herein however lies also the challenge. Mixing metrics from
different network perspectives implies comparing dissimilar items. For example

(a) Transient HOAP performance. (b) Transient Nus performance.

(c) Steady State performance.

Figure 6.14: Performance of CCG based SON coordination.
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comparing PPs to unsatisfied users whose dissatisfaction is caused by low data
rates may be similar to comparing apples to mangoes.

Conversely, using a goodness scale e.g. in the range [-2,+2] as proposed in 6.2.3.2,
is also not obvious. A goodness scale can be created for the cell load since the
target is clear, i.e. to maintain cell load below 100 %. In that case positive
values can be assigned to cell load below 100% with the negative values assigned
otherwise and 0 assigned to cell load ≈ 100%. For HO however, the objective is
to minimize the events and there is no specific target value since such a target
would vary with degree of mobility. In that case the goodness scale can not be
used. Consequently mixing load targets with HO events minimization in a single
optimization may not always give positive results.

In general, by allowing QLB to consider the effects of its actions on MRO during
learning, QLB ensures to select actions that have minimal negative impact on
HO metrics. In the same way MRO also learns to select actions that will reduce
the load in case such an action is taken in an overloaded cell. Further work can
however be done to define the aggregation functions that would guarantee good
performance.

6.3 Discussion Point: Limits and Constraints

The coordination solutions both for STD and CCG as presented here do not ad-
dress all concerns. There are as such constraints that remain - partly due to the
structure of the solutions but also due to the nature of the problem. The sub-
sections below highlight these limits and constraints and where possible suggest
appropriate candidate solutions.

6.3.1 Scenario Dependent Performance

The results presented in both solutions categories considered one typical opera-
tional environment. In general multiple variations of this scenario will occur in
any network with significant variations mainly expected in user numbers, veloc-
ity profiles and distribution; hotspot locations and sizes, as well as in physical or
propagation characteristics like Shadowing. It is thus necessary to ensure that the
proposed coordination solutions will at the least not degrade the performance in
case of such scenario variations.

For the scenario and the two SFs considered in this thesis, variations that may be
of concern are: 1) the hotspot size which could be smaller or larger, 2) the average
velocity which could be higher or lower or 3) the number of users. The number of
users may have a small impact on HO performance, where it only changes the rate
of occurrence of events without altering the relative comparison of the events. User
count may however have more effect on MLB since it directly affects the offered
load. Meanwhile, hotspot size and velocity are expected to have major effects both
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on load and HO metrics. To evaluate these dependences, we re-execute the STS
and CCG simulations in two variations of the initial scenario.

The results, shown in Fig 6.15, compare the steady-state performance for the co-
ordination solutions against the reference network, the independent SFs, as well
as the combined SFs without coordination (QLH). The figure shows the perfor-
mance of the initial scenario (i.e. 50 m hotspot and 60 Kmph velocity) in Fig
6.15a. It then respectively shows a smaller-hotspot scenario in Figs 6.15b (i.e. 20
m hotspot, 60 Kmph velocity) and a lower-velocity scenario (i.e. 50 m hotspot,
30Kmph velocity) in Fig 6.15c.

We observe that in case of a small hotspot (in this case 20 m radius in Fig. 6.15b),
the degradation in the LB metric that results from combined un-coordinated oper-
ation (QLH) may be smaller owing to reduced load. This is however not the case
for MRO metrics where degradation may still be significant. Coordination, using
STS and CCG, still achieves good compromise by giving up some MLB gains in
order to reduce MRO effects. In this case, CCG achieves a better compromise

(a) 50 m hotspot, 60 Kmph. (b) 20 m hotspot, 60 Kmph.

(c) 50 m hotspot, 30 Kmph.

Figure 6.15: Performance of SON coordination solutions in various network
hotspot and velocity scenarios.
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compared to STS. The result is not the same in case of a lower velocity where
both solutions achieve the exact same performance. The general observation how-
ever is that STS and CCG will always give good compromise results but their
comparative performance may differ depending on scenario.

Meanwhile the inability of CCG to ever be better than STS may be an indication
that STS is actually on the Pareto curve of the competition between MRO and
MLB. If so, it would be that no better performance can be expected regardless
of the design used for CCG. This however is not conclusive and may need to be
studied further.

6.3.2 Design Challenges

The values of many of the parameters introduced in the coordination solutions
have been determined heuristically through trial and error. For other parameters,
compromises have been taken in order to expedite results. All such parameters
require detailed studies but two are absolutely critical - the sizing of the frames
and multi-frames as well as the design of the objective functions.

6.3.2.1 Sizing the Frames

All the coordination solutions require a frame period (and a related multi-frame
period) within which an SF is scheduled to execute. Caution is required to ensure
that SFs are allocated the appropriate lengths of time in order to obtain conclusive
results. This requires that frame periods be designed from the inside outwards,
first by establishing the SF requiring the longest interval so that the frame length
is greater or equal to this interval. Shorter SFs would then either use part of the
frame with some time within the frame remaining unused or such SFs would be
cascaded one after another if their combined time can fit within the frame (e.g.
cell k in multi frame n+1 in Fig. 6.12 cascades multiple SFs within the allocated
frame).

6.3.2.2 Generic Aggregate Objective Functions

As previously stated, the presented implementation of CCG considers only local
effects within a single cell, implying that better performance may be achieved if the
effects across neighbor cells are also considered. For this, an appropriate objective
function must be designed that ensures that the different effects in different cells
will be combined in a way that enables the SF to minimize the conflicts. The
challenge with such a function is design of the weights that appropriately define
the relative importance of the different effects i.e. on the active SF, on the local
cell and on neighbor cells
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6.3.3 Performance Limits

Besides design challenges, the separation of actions thorough scheduling, i.e. de-
activation of SFs at some space-time points, places limits on the performance of
the solutions. These periods of inactivity have major effects on the instantaneous
performance of the solutions and their convergence periods.

6.3.3.1 Sub-optimality during Learning

As SFs use only short portions of the space-time resources during learning, there
will be long periods of suboptimal performance where SFs rely on stale config-
urations while waiting for their execution periods. For example consider CCG
in a network with 7 clusters. MLB may be required to run every minute, but if
the cluster frame period is say 5 minutes as may be dictated by say MRO, MLB
may have to wait for 30 minutes before reacting, which compromises the intended
benefits of dynamic optimization. This however is the cost of ensuring accuracy
of measurements taken in each cell following any SON action. Incidentally this is
required in both learning and rule based algorithms since they all require feedback
on which to base their next actions. Learning methods however are able to handle
this better since after a good amount of learning, they may cease to require the
feedback.

6.3.3.2 Time to Convergence

The biggest challenge with the proposed space and time separation schemes is
that solutions would take long to converge since the SFs are only allocated small
portions of the space-time resources. As earlier stated however, this is the cost
for ensuring that accurate policy functions are learned. A compromise would be
to consider a double (or multiple) TDM multi-frame structure where very long
interval SFs are considered quasi-static by the short interval SFs. In that case,
the two multi-frames can be executed concurrently either as a generic multi-multi-
frame structure or as a local decision made by each cell depending on the local
requirements.

6.4 Summary

In this chapter, we have presented the proposed SON coordination solutions based
on Space-Time Decoupling procedures and Concurrent Cooperative Games. STD
solutions attempt to minimize negative cross effects among SON functions by
separating the execution of the SFs in space and time. On the other hand CCGs
assume an environment in which all affected SFs are able to measure the effect
of each action taken and that the SFs are able to communicate these effects to
each other so that the offending SF is able to learn to minimize these effects. We
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have evaluated the performance of the solutions using the developed Q-learning
SFs that were presented in chapter 4.

Our results have shown that separating the SFs in one dimension (i.e. either
space or time) still leads to some degree of degradation in the metrics of the SFs.
However, combining spatial and temporal separation ensures that SFs are able to
learn the effects of their actions without interference from other actors. Each SF
is able to act and measure the effect of its action in its cell without another SF
(either in the same cell or in a neighbor cell) superimposing its action on top. The
result is that SFs end up with more accurate Q-tables and thus achieve better
compromises amidst each other.

With the success of STS, we applied CCG on top to ensure that besides measuring
individual effects accurately, SFs can attempt to also consider their effects on the
peer SFs. This is especially important given the inclusion of temporal separation,
i.e. some SFs learning after others. We require that the SFs that learn later causes
as little degradation in the metrics of the earlier SFs as possible. With simulations
only considering effects among SFs in the same cell, our results when compared to
STS registered improvements in some scenarios but not all. The results however
demonstrated that the solution is promising. We observed that extra improve-
ments could possibly be achieved if reports of the effects of the actions across cell
boundaries are considered. We observed that the major challenge in undertaking
these improvements would be determining how best the reports from the different
SFs in different cells should be aggregated so as to ensure that the final policy
function will always give positive results.

Besides the limitations of the CCG solution, the chapter ends with a discussion of
the potential limits to the performance gains and the dependency of the absolute
gains on the specific scenario in the network. It also gave a glimpse into what
it would require to generalize these solutions especially CCG to an environment
of multiple SFs. These are open questions that could be undertaken by future
research work. The next chapter discusses other such open questions and hints at
other possible approaches besides giving a high level summary of the thesis.



Chapter 7
Conclusion and Future Work

Contents
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Improvements to the Q-learning Solutions . . . . . . . . 118
7.2.2 Q-learning for Combined Optimization . . . . . . . . . . 119
7.2.3 Autonomic Optimization Objectives . . . . . . . . . . . 119
7.2.4 Bayesian Q-learning for SON Coordination . . . . . . . 119
7.2.5 Work-flow Decomposition Versus Layering in SON . . . 121

This chapter attempts to enclose all the work that has been undertaken in this
thesis into a single enclosing box. This however is no mean task given the scope of
the content in the different chapters, i.e. from radio models to system-like UML
models and from LTE technology specifications to protocols and process flows.
Consequently, the chapter focuses more on the high-level conceptual discussion
that surrounds the contents and contributions of the thesis.

7.1 Contributions

The thesis has studied the problem of coordinating SFs with special focus on
SFs that affect each others’ metrics. The ideas have been evaluated using net-
work/system level simulations of an LTE network. However even though LTE was
considered, it is expected that the ideas presented can be easily extended to other
systems, e.g. LTE-Advanced. Building on to SON as proposed by earlier research
activity, the thesis set out to answer two questions: 1) that how should SFs be
designed and implemented in order to ensure that their coordination is simplified
and 2) how then should SFs be coordination across space (in different cells) and
across time (within one or multiple cells).

To ensure an appropriate grounding for a reader to be able to follow the discussions,
the thesis included a steep but complete guide to the fundamental background

117
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material. This related to LTE, its simulation environment and the state of research
on SON in LTE, on which the thesis contributions were the overlaid.

The major contributions of this thesis are in 2 areas:

1. A framework for developing SON functions as Q-Learning agents:
Q-Learning (QL) was proposed and justified as an appropriate framework for de-
veloping SON functions. The framework is based on the generalization of the QL
algorithm to ensure that any SF can be mapped to the algorithm. Then, two SFs
were developed based on this framework and their performance evaluated using
the LTE simulation environment. The achieved positive performance results fur-
ther justified the proposed framework allowing the 2 SFs to be used in studying
the coordination problem.

2. Multi Agent Systems approaches to coordinating SFs: Considering
each instance of each SF as an agent that interacts with its environment, it was
observed that the multi-SF SON environment is a multi agent system. In fact it
could be considered a multi-multi-agent system in which each SF is a MAS whose
instances are the agents. First, we demonstrated that conflicts do happen and we
highlighted the different kinds of metric value conflicts between the two SFs. We
then presented two coordination approaches and compared the resulting perfor-
mance to that of the individual SFs and that of the combined but uncoordinated
operation of the SFs. The first approach was based on multi agent scheduling
with the SFs and their instances as agents, while the second evaluated concurrent
cooperative games among the SF instances.

7.2 Future Work

A number of extensions can be undertaken from this work. We highlight here a
few that we consider to be absolutely critical.

7.2.1 Improvements to the Q-learning Solutions

The QMRO solution is able to determine the right parameter settings for a cell in
which all users have velocities within the same range. In other words, the solution
works if the mobility profiles of all users in a cell are comparable e.g. if the cell
is within a city district, or if the cell covers a highway where all users are either
always moving fast or if they slow down, their velocities are still comparable to
each other. The solution however breaks down if a single cell has multiple velocity
groups at the same time. Such can be the case when: 1) on a highway one side
moves fast but the other side has slowed down owing to some traffic condition; or
2) the highway moves through an office district so that the cell concurrently has
fast moving users (e.g at ≥ 60Kmph) and slow moving users (at say ≤ 5Kmph).
This failure may to some extent explain the inability of QMRO to achieve exactly
the same performance as the Reference network in simulation studies in Chapters
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5 and 6. In the simulated scenario some cells in the network have static hot-spot
users concurrent with other fast moving users. The configuration learned in such
cells are thus misleading to the other cells where only one velocity group exists.
It is therefore necessary to devise a solution for such special scenarios. Such a
solution may involve redefining the states in a way that we can capture the fact
that two velocity groups exist. This would then require that the resulting HO
events are appropriately accorded to the respective velocity groups.

7.2.2 Q-learning for Combined Optimization

In this thesis, MRO and MLB have been studied as separate functions owing to
their different objectives. Since both SFs however focus on adjusting the logical
handover boundary, they would be good candidates to be studied as one. We
expect that a QL solution can be designed to concurrently optimize MRO and
minimize the cell load in a dynamic format. The major challenge to such a solution
may lie in the different optimization intervals expected for the two SFs. A study
can however be executed that determines a compromise interval that would ensure
that both are managed at once. Our expectation is that success of such a combined
optimization would imply reduced need to coordination. This however does not
negate the results achieved in the thesis since the ideas are generic and can be used
for other conflicts including the conflict between the combined MRO-MLB solution
and other SFs like self-organized admission control or interference management.

7.2.3 Autonomic Optimization Objectives

As discussed under the performance limits for the coordination solutions, methods
of combing multiple objectives still remain an open problem. The success of CCG
between any SFs will depend on how the measured effects of a single action on
multiple metrics can be combined. Expert knowledge will be required at the begin-
ning to design such objective functions but automated solutions should be sought
to find ways in which high level definitions of the objectives can be decomposed
into the objective functions to used by the SFs in evaluating the actions.

7.2.4 Bayesian Q-learning for SON Coordination

An area of direct improvement to the coordination of QL solutions is the combi-
nation of Bayesian game theory and QL to ensure that SFs learn not only over the
state space of a single SON problem but over the state space of the combined set
of SON problems. Such an approach would combine basic game theory, Bayesian
theory and Q-learning in a single solution.

Game theory can be defined as the study of rational decision-making in situations
of conflict and/or cooperation”. It generally deals with games of complete infor-
mation i.e. players have common knowledge of the structure of the game and the
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payoffs. In such games, each information set consists of a single decision node, i.e.
the players in the game learn strategies of how to win, where a pure strategy si
for player i consists of a choice for each of player i’s information sets.

In case of imperfect information where the players do not know some of the param-
eters of the game, Bayesian theory is applied, thus such games are called Bayesian
Games [92]. In this case, the unknown information for each player is bunched up
into a ’type’ X for the player for which a probability distribution P(X) is known.
The type X represents the states of nature for each player and the strategies can
then be determined using Bayesian theory by maximizing utilities over all types.

There are two instances however where Bayesian games also break down:

1. the probability distribution P(X) over the possible states of nature X is
unknown, even though the consequence of an action a is still a deterministic
function C(a, X) of the action a and the state X;

2. both P(X) and C(a, X) are not known

In such a case a learning solution can be employed to act in the environment and
learn the distribution over the type and/or the utility from which it derives the
strategies. Such an approach would also be applicable for the learning towards the
coordination of SON solutions.

In principle, SON coordination would be equivalent to learning over a number of
Bayesian games. Each SF is a player competing with the peers. The SF/player
has a set of internal/known states for which strategies need to be learned. Each
of the known states however represents an extensive state of nature that includes
all the unknown states of the peer SFs. The candidate SF can thus learn the
distribution over the states of nature concurrently with the appropriate strategies
for those states. The solution would be characterized by:

• A list of players i = 1 · · ·n. which are the QL agents

• A finite set of types Θi for each player i, which are equivalent to the states
as used in QL. These capture all information about the state of nature in
which the player finds itself including all information about other players
that he may not know.

• A finite set of actions Ai for each player i.

• A utility function ui for each player i, where ui :A x Θ→R, i.e. for a player
i, ui maps a combination of the player’s actions and types to its payoff

• A distribution on types, P (θ),∀θ ∈ Θ which is to be learned.

Note should be taken however that it may not be easy to derive a priori all the
possible types of nature or that it may not be desirable to do so owing to the size
of the state space. In that case, it would require that the agents learn long enough
to ensure that each decision taken maximizes over all the known and unknown
states of nature. This is a promising approach that can be evaluated for a set of
coupled SON functions.
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7.2.5 Work-flow Decomposition Versus Layering in SON

SON functions have been proposed and designed following the traditional ’work
flow’ model of network operations and management. They are grouped into four
categories i.e. planning, configuration, optimization and healing. The challenge is
that this grouping breaks up related functionality into different SFs. Correspond-
ingly, parameters are then required to be adjusted by different SFs for different
and in many cases competing objectives. We propose that the structuring of SON
should in general be revisited to minimize the duplication and the need for coor-
dination. One strategy is to break up SON into the natural layering of network
functions in three areas of reducing priority: 1) optimization of physical network
resources, 2) optimization of logical network resources and 3) the optimization of
user quality of experience.

The allocation of priorities is based on the expectation that lower priority functions
can never be achieved without the higher priority functions. Area 1 would focus
on the availability of system resources and would include problems such as CCO,
Interference avoidance and minimization of energy consumption, all optimized as
one SON functional block. Area 2 focuses on ensuring availability and robustness
of user connectivity and should be done after the first. This is because there
is no need to undertake logical optimization if and when physical resources are
unavailable. This level would cover SFs as MRO, admission control and Random
Access Channel (RACH) optimization. The third level then focuses on user quality
optimizing the user throughput, fairness of scheduling, and minimization of latency
and jitter.

In the same sense we propose that the optimization goals should not be designed
based on low level KPIs without clear higher-level abstract objectives. Generic
higher-level objectives to which the lower level KPIs contribute should be set for
each priority area. In that case optimization is done based on the higher level
objectives which requires that concurrent adjustments are done on all parameters
that influence lower level KPIs needed to achieve the desired higher level objective.





Bibliography

[1] L. Schmelz, J. V. D. Berg, R. Litjens, A. M. Amirijoo, O. Linnell,
C. Blondia, T. Kürner, N. Scully, and J. Oszmianski, “Self-configuration,
-optimisation and -healing in wireless networks,” in WWRF, December 2008,
pp. 4477–4479. [Online]. Available: http://link.aip.org/link/?RSI/72/4477/1

[2] N. G. M. Networks, “Use cases related to self organising network,
overall description,” May 2007. [Online]. Available: http://www.ngmn.org/
technology.html

[3] Monotas, “Mobile network optimisation through advanced simulation.”
[Online]. Available: http://www.macltd.com/monotas/index.php

[4] Gandalf, “Monitoring and self-tuning of rrm parameters in a multi-system
network.” [Online]. Available: http://www.celtic-initiative.org/Projects/
Celtic-projects/Call2/GANDALF/gandalf-default.asp

[5] SOCRATES, “Deliverable d5.9: Final report on self-organisation and its im-
plications in wireless access networks,” EU STREP SOCRATES (INFSO-
ICT-216284), Tech. Rep., December 2010.

[6] 3GPP, “Evolved Universal Terrestrial Radio Access Network (E-UTRAN);
Self-configuring and Self-Optimizing Network (SON) use cases and solutions,”
3GPP, Technical Report 36.902 version 9.3.1 Release 9, May 2011. [Online].
Available: http://www.3gpp.org

[7] ——, “Requirements for evolved utra (e-utra) and evolved utran (e-
utran),” TR 25.913 V7.3.0, Tech. Rep., 2009. [Online]. Available:
http://www.3gpp.org

[8] W. M. Jim Zyren, “Overview of the 3gpp long term evolution
physical layer,” Freescale semiconductor, 2001. [Online]. Available: http:
//link.aip.org/link/?RSI/72/4477/1

[9] Motorola, “Long term evolution (lte): Overview of lte air-interface
technical white paper,” Motorola, Tech. Rep., 2001. [Online]. Available:
http://link.aip.org/link/?RSI/72/4477/1

123

http://link.aip.org/link/?RSI/72/4477/1
http://www.ngmn.org/technology.html
http://www.ngmn.org/technology.html
http://www.macltd.com/monotas/index.php
http://www.celtic-initiative.org/Projects/Celtic-projects/Call2/GANDALF/gandalf-default.asp
http://www.celtic-initiative.org/Projects/Celtic-projects/Call2/GANDALF/gandalf-default.asp
http://www.3gpp.org
http://www.3gpp.org
http://link.aip.org/link/?RSI/72/4477/1
http://link.aip.org/link/?RSI/72/4477/1
http://link.aip.org/link/?RSI/72/4477/1


Bibliography 124

[10] SOCRATES, “Self-optimisation and self-configuration in wireless networks.”
[Online]. Available: http://www.fp7-socrates.org/

[11] SEMAFOUR, “Self-management system for heterogeneous radio access
networks.” [Online]. Available: http://fp7-semafour.eu/

[12] N. G. M. Networks, “NGMN Recommendation on SON and OandM
Requirements,” 2008. [Online]. Available: http://www.ngmn.org/technology.
html

[13] SOCRATES, “Deliverable d2.1: Use cases for self-organising networks, eu
strep socrates,” EU STREP SOCRATES (INFSO-ICT-216284), Tech. Rep.,
March 2008. [Online]. Available: http://www.fp7-socrates.org/?q=node/10

[14] ——, “Deliverable d2.2: Requirements for self-organising networks, eu strep
socrates,” EU STREP SOCRATES (INFSO-ICT-216284), Tech. Rep., June
2008. [Online]. Available: http://www.fp7-socrates.org/?q=node/10

[15] ——, “Deliverable d2.3: Assessment criteria for self-organising networks, eu
strep socrates,” EU STREP SOCRATES (INFSO-ICT-216284), Tech. Rep.,
June 2008. [Online]. Available: http://www.fp7-socrates.org/?q=node/10

[16] ——, “Deliverable d2.5: Review of use cases and framework,” EU STREP
SOCRATES (INFSO-ICT-216284), Tech. Rep., March 2009. [Online].
Available: http://www.fp7-socrates.org/?q=node/10

[17] ——, “Deliverable d2.6: Review of use cases and framework ii,” EU STREP
SOCRATES (INFSO-ICT-216284), Tech. Rep., December 2009. [Online].
Available: http://www.fp7-socrates.org/?q=node/10

[18] T. Jansen, I. Balany, I. Moermanz, and T. Kürner, “Handover parameter
optimization in lte self-organizing networks,” in COST2100 TD(10)10068,
Athens, Greece,, 2010, p. February.

[19] G. Hui and P. Legg, “Soft metric assisted mobility robustness optimization
in lte networks,” in International Symposium on Wireless Communication
Systems (ISWCS 2012), Paris France, August 2012, pp. 1–5.

[20] J. Alonso-Rubio, “Self-optimization for handover oscillation control in lte,”
in IEEE/IFIP Network Operations and Management Symposium, Osaka,
Japan,, 2010.

[21] I. Balan, T. Jansen, B. Sas, I. Moerman, and T. Kürner, “Enhanced weighted
performance based handover optimization in LTE,” in Proceedings of FNMS,
Warsaw, Poland,, 2011.

[22] B. Sas, K. Spaey, I. Baran, K. Zetterberg, and R. Litjens, “Self-optimisation
of admission control and handover,” in Proceedings of IEEE 73rd Vehicular
Technology Conference (VTC-Spring), Budapest, Hungary,, May 2011.

[23] K. Spaey, B. Sas, and C. Blondia, “Self-optimising call admission control for
lte downlink,” in Joint COST 2100 / SOCRATES workshop, February 2010.

http://www.fp7-socrates.org/
http://fp7-semafour.eu/
http://www.ngmn.org/technology.html
http://www.ngmn.org/technology.html
http://www.fp7-socrates.org/?q=node/10
http://www.fp7-socrates.org/?q=node/10
http://www.fp7-socrates.org/?q=node/10
http://www.fp7-socrates.org/?q=node/10
http://www.fp7-socrates.org/?q=node/10


Bibliography 125

[24] A. Lobinger, S. Stefanski, T. Jansen, and I. Balan, “Load balancing in down-
link lte self-optimizing networks,” in VTC 2010-Spring, Taipei, Taiwan, May
2010.

[25] L. A. S. S., J. T., and B. I., “Coordinating handover parameter optimization
and load balancing in lte self-optimizing networks,” in IEEE 73rd Vehicular
Technology Conference (VTC-Spring), Budapest, Hungary, 2011.

[26] M. Amirijoo, P. Frenger, F. Gunnarsson, J. Moe, and K. Zetterberg, “To-
wards RACH Self Tuning in LTE,” in IEEE Vehicular Technology Conference,
Spring, 2009.

[27] I. Siomina, “P-cpich power and antenna tilt optimization in umts net-works,”
in In Telecommunications, 2005. advanced industrial conference on telecom-
munications/service assurance with partial and intermittent resources con-
ference /e-learning on telecommunications workshop, aict/sapir/elete 2005.
proceedings, july 2005, pp. 268 – 273.

[28] S. Mwanje, N. Zia, and A. Mitschele-Thiel, “Self organised handover param-
eter configuration for lte,” in International Symposium on Wireless Commu-
nication Systems (ISWCS 2012), Paris France, August 2012, pp. 26–30.

[29] I. Siomina, P. Varbrand, and D. Yuan, “Automated optimization of service
coverage and base station antenna con
guration in umts net-works,” in Wireless Communications, IEEE,, 2006, pp.
16 –25.

[30] U. Turke and M. Koonert, “Advanced site configuration techniques for au-
tomatic umts radio network design,” in In Vehicular Technology Conference,
VTC-Spring. 2005 IEEE 61st, Vol. 3, june 2005, pp. 1960 – 1964.

[31] I. Siomina and D. Yuan, “Enhancing hsdpa performance via automated and
large-scale optimization of radio base station antenna configuration,” in In
Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE, may 2008,
pp. 2061 – 2065.

[32] A. Temesvary, “Self-configuration of antenna tilt and power for plug and play
deployed cellular networks,” in In Wireless Communications and Networking
Conference, 2009. WCNC 2009. IEEE, april 2009, pp. 1–6.

[33] S. Allen, S. Hurley, and R. Whitaker, “Automated decision technology for
network design in cellular communication systems,” in In System Sciences,
2002. HICSS. Proceedings of the 35th Annual Hawaii International Confer-
ence on, jan 2002, p. 8.

[34] J. M. H.R. Anderson, “Optimizing microcell base station locations using simu-
lated annealing techniques,” in Vehicular Technology Conference, 1988, IEEE
38th In proceeding of:Vehicular Technology Conference, 1994 IEEE 44th, 07
1994.



Bibliography 126

[35] V. Capdevielle, A. F. A., and A. Fakhreddine, “Self-optimization of handover
parameters in lte networks,” in Modeling and Optimization in Mobile, Ad Hoc
and Wireless Networks (WiOpt), 2013 11th International Symposium on, May
2013, pp. 133 – 139.

[36] M. Garcia-Lozano, S. Ruiz, , and J. Olmos, “Umts optimum cell load bal-
ancing for inhomogeneous traffic patterns,” in In Vehicular Technology Con-
ference, 2004. VTC2004-Fall. 2004 IEEE 60th, Vol. 2, sept 2004, pp. 909 –
913.

[37] I. Siomina, P. Varbrand, and D. Yuan, “An effective optimization algorithm
for con
guring radio base station antennas in umts networks,” in In Vehicular Tech-
nology Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th, sept 2006, pp.
1–5.

[38] M. N. ul Islam, R. Abou-Jaoude, C. Hartmann, , and A. Mitschele-Thiel,
“Self-optimization of antenna tilt and pilot power for dedicated channels,”
in In Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks
(WiOpt), 2010 Proceedings of the 8th International Symposium on, june 2010,
pp. 196 – 203.

[39] E. Amaldi, A. Capone, , and F. Malucelli, “Radio planning and coverage
optimization of 3G cellular networks,” in Wireless Networks, 2008, pp. 435–
447.

[40] F. Gordejuela-Sanchez and J. Zhang, “Lte access network planning and op-
timization: A service-oriented and technology-specific perspective,” in Global
Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, Dec 2009,
pp. 1 – 5.

[41] L. Du, J. Bigham, L. Cuthbert, C. Parini, , and P. Nahi, “Using dynamic
sector antenna tilting control for load balancing in cellular mo-bile commu-
nications,” in In International Conference on Telecommunications, ICT2002,
Beijing, Citeseer, 2002, pp. 344– 348.

[42] S. Jamaa, Z. Altman, J. Picard, , and B. Fourestie, “Combined coverage and
capacity optimisation for umts networks,” in In Telecommunica-tions Network
Strategy and Planning Symposium. NETWORKS 2004, 11th Internationa,
june 2004, pp. 175 – 178.

[43] D. Z. C. Xu Yang/Yapeng Wang, “Resource allocation in lte ofdma systems
using genetic algorithm and semi-smart antennas,” in in proceedings of Wire-
less Communications and Networking Conference (WCNC), 2010 IEEE, April
2010, pp. 1 – 6.

[44] M. E. Aydin, R. Kwan, W. Ding, and J. Wu, “A genetic algorithm approach
for multiuser scheduling on the lte downlink,” in Proceedings of the World
Congress on Engineering 2012, Vol II, July 2012.



Bibliography 127

[45] H. Sun, N. Li, Y. Chen, J. Dong, N. Liu, Y. Han, and W. Liu, “A method of
pci planning in lte based on genetic algorithm,” in Progress in Electromag-
netics Research Symposium Proceedings, August 2012, pp. 1575 – 1578.

[46] K. Lin, “Improving energy efficiency of lte networks by applying genetic algo-
rithm (ga),” in Dependable, Autonomic and Secure Computing (DASC), 2011
IEEE Ninth International Conference on, Dec 2011, pp. 593 – 59.

[47] H. Elkamchouchi, H. Elragal, , and M. Makar, “Cellular radio network plan-
ning using particle swarm optimization,” in In Radio Science Conference,
2007. NRSC 2007. National, 2007, pp. 1–8.

[48] Z. Altman, S. Sallem, R. Nasri, B. Sayrac, and M. Clerc, “Particle Swarm
Optimization for Mobility Load Balancing SON in LTE Networks,” arXiv
preprint arXiv:1401.6621, 2014. [Online]. Available: http://arxiv.org/abs/
1401.6621

[49] A. Gerdenitsch, S. Jakl, Y. Chong, , and M. Toeltsch, “A rule-based algo-
rithm for common pilot channel and antenna tilt optimization in umts fdd
networks,” in ETRI journal, 2004, pp. 437–442.

[50] J. Wu, J. Bigham, P. Jiang, and J. Neophytou, “Tilting and beam-shaping
for traffc load balancing in wcdma network,” in In Wireless Technology, 2006.
The 9th European Conference on, sept 2006, pp. 63–66.

[51] M. Pettersen, L. Braten, , and A. Spilling, “Automatic antenna tilt control for
capacity enhancement in umts fdd,” in In Vehicular Technology Conference,
. VTC2004-Fall. 2004 IEEE 60th, Vol. 1, . 2004, sept 2004, pp. 280 –284.

[52] N. Zia and A. Mitschele-Thiel, “Performance evaluation of intra-lte mobility
load balancing for hotspot clustering,” in 30th Meeting of Wireless World
Research Forum (WWRF30), April 2013.

[53] ——, “Self-organized neighborhood mobility load balancing for lte networks,”
in 6th IFIP/IEEE Wireless Days Conference (WD’13), November 2013.

[54] G. Calcev and M. Dillon, “Antenna tilt control in cdma networks,” in In
Proceedings of the 2nd annual international workshop on Wireless internet,
2006, p. 25.

[55] H. Eckhardt, S. Klein, and M. Gruber, “Vertical antenna tilt opti-mization
for lte base stations,” in In Vehicular Technology Conference (VTC Spring),
2011 IEEE 73rd, may 2011, pp. 1–5.

[56] S. Deb and P. Monogioudis, “Learning based uplink interference
management in 4g lte cellular systems.” [Online]. Available: http:
//arxiv.org/abs/1309.2543

[57] N. Sinclair, D. Harle, I. A. Glover, J. Irvine, and R. C. Atkinson, “An ad-
vanced som algorithm applied to handover management within lte,” IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 5, pp.
1883–1894, JUNE 2013.

http://arxiv.org/abs/1401.6621
http://arxiv.org/abs/1401.6621
http://arxiv.org/abs/1309.2543
http://arxiv.org/abs/1309.2543


Bibliography 128

[58] J. Li, J. Zeng, X. Su, W. Luo, and J. Wang, “Self-optimization of coverage
and capacity in lte networks based on central control and decentralized fuzzy
q-learning,” International Journal of Distributed Sensor Networks, Volume
2012, 2012.

[59] T. Jansen, M. Amirijoo, U. Türke, L. Jorguseski, K. Zetterberg, R. Nasci-
mento, L. C. Schmelz, J. Turk, and I. Balan, “Embedding multiple self-
organisation functionalities in future radio access networks,” in 69th Vehicular
Technology Conference, VTC-Spring 2009, Barcelona, Spain, 2009.

[60] T. Bandh, H. Sanneck, and R. Romeikat, “An experimental system for
SON coordination,” in IWSON IEEE 73rd Vehicular Technology Conference,
Spring, 2011.

[61] T. Bandh and L. C. Schmelz, “Impact-time Concept for SON-Function Coor-
dination,” in International Symposium on Wireless Communication Systems
(ISWCS 2012), Paris France, August 2012, pp. 16–20.

[62] K. Tsagkaris, N. Koutsouris, P. Demestichas, R. Combes, and Z. Altman,
“SON Coordination in a Unified Management Framework,” in 77th Vehicular
Technology Conference, VTC-Spring, Dresden, Germany, 2013.

[63] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of the
art,” in Autonomous Agents and Multi-Agent Systems, 2005, pp. 387–434.

[64] L. Busoniu, R. Babuska, and B. D. Schutter, “A comprehensive survey of
multi agent reinforcement learning,” in Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on, 2008, pp. 156–172.

[65] T. Jansen and R. Wiegand, “Exploring the explorative advantage of the co-
operative coevolutionary (1+ 1) ea,” in in Genetic and Evolutionary Compu-
tation IGECCO, 2003, pp. 197–197.

[66] Institute of Communication Networks and Computer Engineering (IKR),
“Ikr simulation and emulation library,” Universität Stuttgart, Tech. Rep.,
Sept 2013, v.4.0. [Online]. Available: http://www.ikr.uni-stuttgart.de/en/
Content/IKRSimLib/

[67] 3GPP, “Evolved Universal Terrestrial Radio Access Network (E-UTRAN);
Further advancements for E-UTRA physical layer aspects (Release 9),” 3GPP,
Technical Report 36.814 version 9.0.0, March 2010.

[68] T. Rappaport, Wireless communications: principles and practice. Pren-tice
Hall, 2002.

[69] E. SMG, “Universal mobile telecommunications system (umts); selection pro-
cedures for the choice of radio transmission technologies of the umts,” ETSI
Document TR, vol. 101, p. 112, 1997.

[70] M. Gudmundson, “Correlation model for shadow fading in mobile radio sys-
tems,” Electronics letters, vol. 27, no. 23, pp. 2145–2146, 1991.

http://www.ikr.uni-stuttgart.de/en/Content/IKRSimLib/
http://www.ikr.uni-stuttgart.de/en/Content/IKRSimLib/


Bibliography 129

[71] 3GPP, “Physical layer aspect for evolved universal terrestrial radio access
(utran),” 3GPP TR 25.814, Tech. Rep., October 2006. [Online]. Available:
http://www.3gpp.org

[72] ——, “Selection procedures for the choice of radio transmission technologies
of umts (release 1999),” 3GPP TR 30.03, Tech. Rep., April 1998.

[73] ——, “Radio Access Network;Evolved Universal Terrestrial Radio Access
(E-UTRA);Radio Frequency (RF) system scenarios (Release 8),” 3GPP TR
36.942, Tech. Rep., October 2010.

[74] A. M. Rao, A. Weber, S. Gollamudi, , and R. Soni, “Lte and hspa+: Revo-
lutionary and evolutionary solutions for global mobile broadband,” Bell Labs
Technical Journal, vol. 13, no. 4, p. 7–34, 2009.

[75] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc
network research,” Wireless Communications and Mobile Computing: Special
issue on Mobile AdHoc Networking: Research, Trends and Applications, vol. 2,
no. 5, pp. 483–502, 2002.

[76] 3GPP, “E-UTRA Radio Resource Control (RRC) Protocol specification (Re-
lease 8),” 3GPP, Technical Report 36.331 version 8.16.0, December 2011.

[77] K. D. et al., “Handover within 3gpp lte: Design principles and performance,”
in in Proceedings of IEEE VT-cell 2009-Fall, September 2009.

[78] R. Sutton, Reinforcement Learning: An Introduction. MIT Press, 1998.

[79] C. Watkins, “Learning from delayed rewards,” PhD Thesis, Kings College,
Cambridge, England, May 1989.

[80] C. J. Watkins and P. Dayan, “Q,-learning,” MachineLearning, vol. 8, pp.
279–292, 1992.

[81] E. Even-Dar, S. Mannor, and Y. Mansour, “Pac bounds for multi-armed
bandit and markov decision processes,” in in Proceedings of 15th Conference
on Computational Learning Theory, July 2002, pp. 258–259.

[82] R. Razavi, S. Klein, and H. Claussen, “Self-optimization of capacity and
coverage in lte networks using a fuzzy reinforcement learning approach,” in
Personal Indoor and Mobile Radio Communications (PIMRC), 2010 IEEE
21st International Symposium on. IEEE, 2010, pp. 1865–1870.

[83] M. N. ul Islam and A. Mitschele-Thiel, “Reinforcement learning strategies for
self-organized coverage and capacity optimization,” in Wireless Communica-
tions and Networking Conference (WCNC), 2012 IEEE. IEEE, 2012, pp.
2818–2823.

[84] M. Dirani and Z. Altman, “A cooperative reinforcement learning approach for
inter-cell interference coordination in ofdma cellular networks,” in Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2010
Proceedings of the 8th International Symposium on. IEEE, 2010, pp. 170–176.

http://www.3gpp.org


Bibliography 130

[85] M. Bennis and D. Niyato, “A q-learning based approach to interference avoid-
ance in self-organized femtocell networks,” in GLOBECOM Workshops (GC
Wkshps), 2010 IEEE. IEEE, 2010, pp. 706–710.

[86] P. Munoz, R. Barco, I. de la Bandera, M. Toril, and S. Luna-Rami?rez, “Op-
timization of a fuzzy logic controller for handover-based load balancing,” in
Vehicular technology conference (VTC Spring), 2011 IEEE 73rd. IEEE,
2011, pp. 1–5.

[87] P. Munoz, R. Barco, J. M. Ruiz-Aviles, I. de la Bandera, and A. Aguilar,
“Fuzzy rule-based reinforcement learning for load balancing techniques in en-
terprise lte femtocells,” Vehicular Technology, IEEE Transactions on, vol. 62,
no. 5, pp. 1962–1973, 2013.

[88] T. Jansen, I. Balan, S. Stefanski, I. Moerman, and T. Kurner, “Weighted
performance based handover parameter optimization in lte,” in Vehicular
Technology Conference (VTC Spring), 2011 IEEE 73rd. IEEE, 2011, pp.
1–5.
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