2 research outputs found

    Perceptual Quality Evaluation of 3D Triangle Mesh: A Technical Review

    Full text link
    © 2018 IEEE. During mesh processing operations (e.g. simplifications, compression, and watermarking), a 3D triangle mesh is subject to various visible distortions on mesh surface which result in a need to estimate visual quality. The necessity of perceptual quality evaluation is already established, as in most cases, human beings are the end users of 3D meshes. To measure such kinds of distortions, the metrics that consider geometric measures integrating human visual system (HVS) is called perceptual quality metrics. In this paper, we direct an expansive study on 3D mesh quality evaluation mostly focusing on recently proposed perceptual based metrics. We limit our study on greyscale static mesh evaluation and attempt to figure out the most workable method for real-Time evaluation by making a quantitative comparison. This paper also discusses in detail how to evaluate objective metric's performance with existing subjective databases. In this work, we likewise research the utilization of the psychometric function to expel non-linearity between subjective and objective values. Finally, we draw a comparison among some selected quality metrics and it shows that curvature tensor based quality metrics predicts consistent result in terms of correlation

    A perceptual quality metric for dynamic triangle meshes

    No full text
    A measure for assessing the quality of a 3D mesh is necessary in order to determine whether an operation on the mesh, such as watermarking or compression, affects the perceived quality. The studies on this field are limited when compared to the studies for 2D. In this work, we aim a full-reference perceptual quality metric for animated meshes to predict the visibility of local distortions on the mesh surface. The proposed visual quality metric is independent of connectivity and material attributes. Thus, it is not associated to a specific application and can be used for evaluating the effect of an arbitrary mesh processing method. We use a bottom-up approach incorporating both the spatial and temporal sensitivity of the human visual system. In this approach, the mesh sequences go through a pipeline which models the contrast sensitivity and channel decomposition mechanisms of the HVS. As the output of the method, a 3D probability map representing the visibility of distortions is generated. We have validated our method by a formal user experiment and obtained a promising correlation between the user responses and the proposed metric. Finally, we provide a dataset consisting of subjective user evaluation of the quality of public animation datasets.Çipiloğlu Yıldız, Z., Capin, T. (2017). A perceptual quality metric for dynamic triangle meshes, Almanya: Springer International Publishing
    corecore