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Abstract Mesh geometry can be used to model both ob-1 Introduction

ject shape and details. If texture maps are involved, it is

common to let mesh geometry mainly model object shape$extured three-dimensional (3D) objects are widely used in
and use texture maps modelling most object details, optimany graphics applications, including 3D games [44,22],
mising data size and complexity of an object. To supporbnline 3D object virtual exhibition and virtual environmien
efficient object rendering and transmission, model simplifi Model simplification is a key approach to reduce modelling
cation can be applied to reduce the modelling data. Howelata of 3D objects, improving object rendering and trans-
ever, existing methods do not well consider how object feamission performance, which is particularly useful when a
tures are jointly represented by mesh geometry and textuttet of objects are involved in an application.

maps, having problems in identifying and preserving impor-  Most existing model simplification methods are designed
tant features for simplified objects. To address this, we profor 3D meshes, where they implicitly assume that object
pose a visual saliency detection method for simplifying tex shapes and details are only modelled by meshes. Common
tured 3D models. We produce good simplification results byapproaches include minimising local surface distorticseoa
jointly processing mesh geometry and texture map to genesn error metrics [10], preserving salient regions thatétan
ate a unified saliency map for identifying visually importtan out from their surrounding context [20], and applying per-
object features. Results show our method offers a better olgeptual principles [6]. However, texture maps are popuwlar t
ject rendering quality than existing methods. involve in object modelling for the sake of improving real-
ism, taking the responsibility for modelling most of the ob-
ject details and letting mesh geometry focus on modelling
object shapes. Therefore, mesh-based model simplification
methods may become ineffective for reducing modelling.data
A naive approach to address this problem is adopting tex-
ture map simplification methods. However, popular meth-
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— An inverse mapping method is developed to allow mestuser to perceive an object in either its original or simptifie
geometry, texture map, and the projection between therform, when the environment lighting is very low in contrast.
to be jointly processed, and that all captured saliency inTherefore, researchers turned their focuses on generating
formation can be consolidated into a unified visual saliersiynilar rendered results for simplified objects againsirthe
map to control textured 3D object simplification. original ones rather than focusing only on geometric differ

— A new local filter window is introduced to capture ge- ence minimisation. Luebke and Hallen [26] adopted the con-
ometrically and topologically sufficient local mesh ver- trast sensitivity function (CSF), developing an empirjgat-
tices for saliency evaluation, in which local features fromceptual model to measure the human perceived quality of the
both geometry and texture map domains can be properigendered output from a simplified object. Qu and Meyer [34]
captured even when objects are well simplified. developed a visual masking technique based on the Sarnoff

— We have introduced a local entropy feature identifyingvisual discrimination metric and the visual masking tool in
local saliency based on colour changes to enable captwWPEG 2000, supporting mesh reduction according to surface
ing of visual features without complex signals. texturing, light variation, surface reflectance, etc. Manz

— A novel relaxation and regularisation algorithm is de-and Guthe [28] alternatively developed a perceptual model
veloped to redistribute texel information allocating moreby measuring vertex-based BRDF parameterisation of a ren-
texture map space to visually salient regions. This supdered model. It also considered contrast as a key factor to
ports texture map optimisation, in which important fea-adjust the acceptable visual difference of a local regioa of
tures are preserved and induced distortion are minimisedimplified object from its original one.

) ) _ In terms of texture maps simplification, a de facto stan-

. The rest of thg paper is organl_zed as follows. Sgcnon Zard DXTC (S3TC) [14] divides an image intox 4 pixel
discusses the existing work. Section 3 and 4 describes ogfocks, where all pixels in each block are approximated by
new sallgncy detection method ar!d depicts how it is applieg|yo pase and two derived colours. SimilaipACKMAN
to ;lmpl|fy textured meshes. Section 5 and 6 shows our ©{38], being a part of the OpenGL ES AP, reduces image
periment results and concludes our paper. data by approximating each pixel in a block with certain
base colours. It additionally stores luminance informatio
for modulation in order to enhance outputimage quality. Al-
ternatively, texture map simplification can be done by down-

L , L __sampling. A popular method is mip-mapping, which reduces
Model IS|mpI|f|cat|on r,ed@es object complexity, IMPToving i size of an image with simple fixed ratios regardless the
rendering and transmission performance and offering 'bem?mage content. In contrast, [4] conducted user studies-to de
user response time for graphics applications. As objeets ac}&

2 Related Work

ermine the proper amount of down-sampling applying on
typically modelled by 3D meshes and texture maps, metho prop PIng apping

h b developed implify th giff ifferent images. Besides the global methods as described
ave been developed to simpliy these two difterent reF)reélbove, texture map simplification can also be performed to

sentation_s accqrdingly, which ”?a"?'y compri_se_mechanism%cal regions. [13] recursively resized texture map region
for reducing object data and criteria for minimising the de-by balancing the amount of frequency content in each re-

V|at||(_)n o1;a Slmﬁ.“f'ed object Lromk;ts ongmal one. 'IA‘S wstu; &:on. [1] determined the frequency signal in local texture
quality of graphics outputs has been increasingly catchin ap regions, stretching or shrinking a region based on its

peoplg’s attent.lon, researchers recgntly focus more on ,d'ﬁhportance indicated by the frequency signal. [27] consid-
vglppmg technlqges to preserve objecF features during SIMbred the projected model-space area of a texture map region
plification according to human perception. to decide its degree of down-sampling and additionally per-
formed a perceptual down-sampling process to reduce re-
gions with less varied image content. Interestingly, altjto

the texture map distortion induced by simplification may

N . significantly affect a model’s visual appearance, this tws n
To simplify 3D meshes, progressive meshes [12] propose een studied extensively. In addition, existing methodg on

edge collapse and vertex split operations to modify the data.

. . . . §|rectly relate the importance of a texture map region to the
size of a 3D mesh by adding or deleting mesh vertices an|ma e colour and complex (or high frequency) content, but
adjusting the connectivity of the affected vertices. Qiadr g P 9 9 y ’

error metric [10] was then developed to efficiently measurethIS may not always be the case as revealed in Fig. 8.(c).
cumulative surface distortion introduced by mesh simplifi-

cation. Methods developed at this stage focused on minimi.2 Visual Saliency

ing the geometric error induced by simplification. However,

such an approach does not consider how human perceivésual saliency detection is a bottom-up (stimulus-driven
an object. For instance, it may make no difference for approach to model human visual attention. It analyses the

2.1 Model Simplification
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(d) Gray entropy feature map (e) Final saliency map (f) Simplified textured model

Fig. 1 A bunny model and its visual saliency. (a) Texture coloueswsed to model eyes, mouth and black dapples on the body.e@né&tric
curvature variation is used to model eyes, mouth and ley3hg geometry feature map generated from the 3D mesh shaisldtk dapples are
not captured. (d) Gray entropy feature map can clearly iffeeyes, mouth and black dapples. (e) The final saliency neq@ted can capture
both features modelled by mesh geometry and texture magsewarmer colours (reds and yellows) indicate higher seji@nd cooler colours
(blues) indicate lower saliency. (f) A simplified texturednmy model is generated with our method.

visual characteristics of each element in a content domaibased feature maps for the texture map in order to support
to locate important parts [5]. It is rooted in image processmodel simplification. Recent methods [21,37, 3] attempted
ing [32,16] and has been extended to mesh processing [20p detect mesh saliency by incorporating global features,
Specifically, visual saliency detection methods look feallo  which analyse vertex distance, object structure (lime-li&.
features, which stand out from their surrounding context. round shape), shape characteristics through log-Lapiacia

To detect salient regions of a 3D mesh, mesh salienc§Pectrum, and user selected schelling points. Alternigtive
[20] applied the center-surround mechanism [16]. It is dondl1] made use of the number of visible texture map segments
by evaluating distinct parts of a local region in a domain@nd their projected sizes to formulate visual saliency.
with multiple scales to identify important domain featyres  Saliency detection has many applications. It can improve
together with applying the feature integration theory to-pr 3D model examination by evaluating view-points through
cess surface curvature information. To enhance the resuliensen-Shannon divergence [7] to reveal important model
Gal et al. [9] additionally incorporated shape parameterdeatures. It can also identify and emphasise importanspart
such as variance in curvature, number of curvature changed a volumetric model [18], or can modify the normal vector
and size of a salient region relative to the entire mesh, to peof each mesh vertex according to the variation in its lumi-
form saliency detection. Thereafter, Liu et al. [24] applie nance in order to enhance the visual appearance of important
Morse theory to handle animated or noisy meshes. Bulbuhesh features [30]. One step further beyond important fea-
et al. [2] considered motion, colour and luminance infor-ture identification is applying saliency detection to ithage
mation of a mesh for evaluating saliency. However, som@bjects with the extracted features, supporting objeat-vis
object features may come from texture maps, such as thedisation. For instance, [29] extracts view-dependergeid
black dapples of the bunny model shown in Fig. 1. To provalley feature lines to form object illustration. On the eth
cess texture maps, Balmelli et al. [1] designed a local frehand, saliency detection can be generalised to identify im-
quency map based on wavelet analysis to extract textunggortant 3D scene parts by processing model space motion
map saliency and carried out relaxation to optimize a texand depth information as well as image space colour and
ture map. Tang et al. [39] considered texture mapping distuminance information [25]. A further application is real-
tortion, texture sample reusability and saliency inforiorat time tracking of visually attended 3D scene models, where
generated from texel colour and luminance to compress @4] performed this based on both image features (colour
texture map. Yang et al. [43] considered texture map as padand luminance) and 3D model features (depth, model size,
of the features of a textured 3D model and defined saliencyand model motion).
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Fig. 2 Saliency region detection for textured model.

Saliency-based approach is attractive as existing methsuilds on top of the mesh geometry, we inversely project the
ods demonstrated its possibility of identifying importéed- 3D mesh to the texture map, determining the distortion in-
tures from both the mesh and the texture map domains. Hovaduced by texture mapping. The result is encoded as a texture
ever, it is challenging to properly perform model simplifica distortion map. As shown at the bottom part of the figure,
tion on textured objects, as mesh and texture map informawe determine object features from the texture map based on
tion should be treated as an integral part rather than seeparantensity, colour and local entropy [17] and produce corre-
components for identifying important object features prop sponding feature maps. Finally, we apply nonlinear normali
erly. In addition, we should be aware that object featuresation, combining all the above feature maps and generating
may come from either mesh geometry or texture maps athe final saliency map. We implement model simplification
their combinations, and how much features come from eachy adapting the QSlim algorithm [10] to support mesh re-
type of modelling data is object dependent, which is decideduction and introducing a new relaxation and regularisatio
by an object designer. Finally, important object featuragm algorithm to support texture map optimisation.
not be necessarily represented by complex signals.

3.2 Local Feature Extraction
3 Our Method

Identifying locally distinct object features is the core&of
3.1 Overview a visual saliency based method. Such features can be prop-

erly determined if sufficient local object information can
Our method aims to simultaneously process mesh geomethe collected for processing. In image processing, a simple
and texture map, generating a unified saliency map for propsquare filter window is sufficient for identifying locallysdi
erly identifying important object features to support miode tinct colour features, due to the regular connectivity of im
simplification. Fig. 2 depicts the saliency map constructio age pixels. Existing mesh saliency methods, such as [20],
process. As shown in the upper part of the figure, we perextend such an idea to collect local mesh features using a
form center-surround difference on the mean curvature ofpherical filter window, where the radiuss determined by
mesh vertices to produce a geometry feature map. To caphe diagonal length of the object bounding box. However,
ture how the object features modelled by the texture mapince mesh connectivity is usually irregular, where lond an



Visual Saliency Guided Textured Model Simplification

narrow triangles may exist (ref. Fig. 3), a spherical window
may fail including all topologically connected neighbagi
verticesN S (V') of a candidate verteX for processing. For V' = niz W -V
example, only the three blue vertices in Fig. 3 are included 2 Wi i=1

and the green vertices are not, even they are directly COMhereV/; are the one-ring neighbouring verticesiof Each
nected tol”. Consequently, local geometry fgatures, such a§veightWi — —kdl representing the contribution of each
mean curvature, cannot be properly determined. neighbouring vertex t&’/, and is inversely proportional to
the distancel; betweenV; andV’. In our implementation,
the Gaussian coefficieitare empirically set to 1, 1.2, 1.5
and 2 at four scales for generating good results. Our new
local filter window ensures sufficient local information can
always be captured for processing, particularly when a mesh
is simplified, having relatively sparse vertices.

n

! )

3.3 Geometry Feature Computation

To capture important geometry features from a mesh, we
perform Gaussian-weighted average on mean curvatures of
mesh vertices under different mesh scales, producing-scale
dependent feature maps and combining them into a geome-
try feature map. With the new local filter window, the geom-
etry feature map construction is summarised as follows:

Fig. 3 Filter window construction

— Step 1:Compute the mean curvatug€l;) at each ver-

To address this problem, we define a new local filter win-
dow W,.(V) based on both geometric distance and mesh
connectivity to capture sufficient vertex samples for each

texV; (i = 1...n, where n is the number of mesh ver-
tices) based on [40].
— Step 2:Determine the neighbouring vertex S€15(V;)

V. As shown in Fig. 3, besides the three direct connected for each verte; by the local filter window, comprising

vertices (blue vertices) captured by a typical spherical fil
ter window, W,.(V') additionally captures the intersection
points (yellow vertices) between the spherical filter wiwdo
and the edges connecting ¥g and the topologically con-
nected neighbouring vertices (green vertices). The neal loc
filter window allows us to capture more relevant local model
information. This improves the quality of the locally dis-
tinct mesh features being determined. More importantly, th
also allows the new local filter window to properly capture
locally distinct features from both the texture map and its
distortion induced by texture mapping. Despite our new fil-
ter window can capture local object features more precisely
which is optimal for simplification purpose, as it is mesh tri

all vertices embraced in the filter window, intersection
points between the filter and the mesh, and all topologi-
cal directly connected neighbouring vertices/f

— Step 3:Calculate the Gaussian-weighted aver&gg (;)
of NS(V;) at different scales.

— Step 4:Compute a scale-dependentfeature @apn, n)
by taking the difference between tw&@iV (V;), which
are generated at two scalesandn.

— Step 5:Apply the nonlinear normalisation [16] to com-
bine allG;(m, n) forming the final geometry feature map
G. This step preserves only features that are important
throughout all different mesh scales.

consistent in saliency computation on different detaileg v ture atV; is computed by:

sions of an object from the perceptual point of view. This

issue is not fundamental to our proposed method, but it is
GW(Vi,r) =
To estimate an intersection point, we take a Gaussian

worth investigating further.

length-weighted average on its one-ring neighbouring ver-
tices, e.g. the one-ring neighbouring vertices of the gger
tion pointV’ areV, V4, Vs, V5. Such an average produces
better estimated intersection points than using a simple in
terpolation [19], as it assigns higher weights to verticéh w
higher proximity. An intersection poifit’ is computed as:

Gi(m,n) = |GW(V;,rm) — GW (V1)

Ysenswv E@exp[—lz — Vi[[?/(2r?)]
Y wens(vy eXpl=lle = Vill2/(2r?)]

(2)

and the absolute difference between the Gaussian-weighted
average of a pair of fine and coarse scales, ), in w is:

3)
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Since many 3D objects are not sphere-like or even ex3.4 Texture Feature Computation
tremely irregular in shape, it is not satisfactory if we fol-
low [20], simply using the bounding box diagonal of a 3D Texture map adds visual features to a 3D object by using
mesh as the radiusto define the spherical filter window. colours and patterns. For example, in Fig. 6, several celour
Instead, we computebased on the triangle sizes of a mesh.are used to form circular patterns on the texture map rep-

We determinecr, which is the radius of the circumcircle resenting the eyes of the girl model, while the correspond-
of the equilateral triangle with are4(T;), whereA(T;) is  ing mesh geometry underneath does not make obvious con-
the average area of all triangles in the mesh. Consequentlyjbution to represent the eyes. On the other hand, there is
we definer = 2! - ¢r as the radius of the spherical filter @ white fur stripe characterising the wolf model as shown
fur stripe as important, since they consider region impor-
tance is mainly characterised by local colour differenee. T
address the problem, we propose using both colour informa-
tion and local entropy to identify object features. We also a
a texture map is not always continuous in content but is usu-
ally constituted of separate sub-textures as shown on the
) left hand side of Fig. 5, making typical saliency detection
\ methods incapable to properly identify salient regions. On
Fig. 4 Comparison among different salient region detection nagho the. right hand side of the Sam.e flgpre, it shows that Itti's
based on two 3D meshes: Armadillo and Laurana. The first aolum saliency method [16] can only identify horse eyes and legs
shows the original meshes. The other columns show the selsath ~ as salient, which is far from enough. Besides texture con-

Inverse Mapping: Our method treats 3D mesh vertices
as the basis reference when computing saliency maps from
different domains (mesh geometry or texture map) or be-
tween domains (projection between mesh and texture im-
tion for evaluating model saliency.

Inverse mapping is an operation for computing how a
texture map is being referred by the relevant 3D mesh ver-
tices. As depicted in Fig. 6, for each vertgx we capture

Fig. 5 Left: The texture map of a horse model. Right: Corresponding.
3D space shows on the top-left, where its inverse mapping
. . ) to the 2D texture space shows on the top-right. The close-up
Fig. 4 shows the saliency maps generated by differe r‘(}lews of the left eye of the girl model in its 3D space and the

methods. It shows applying mean curvature alone cann } versely mapped 2D texture space are shown at the bottom
demonstrated by the detected armadillo’s knee and the ey ;?utatlon is done as follows:
mouth and nose of the Laurana model, our method identifies
object features more precisely since we involve more lgcall — Step 1:For each candidate verté%, we apply a sphere
relevant vertices for saliency computation. S with centerV and radius- to capture a set of inter-

A YAV

window wherel € 1..4, and obtain four filter window pairs in Fig. 7. The stripe is surrounded by areas with compli-
w:{2¢r,4cr}, {4er, 8cr}, {8cr, 16¢cr}, {16¢r, 32¢r}. cated patterns but itself is simple in colour. Most existing
low people to control the weight of each type of these infor-
mation when detecting saliency against objects with differ
Mean Curvature, Lee’s method [20], and our method, resedgti tent, our method also consider texture mapping distortioon a
a factor to determine saliency of texture map regions, which
age). This makes producing a final unified saliency map fea-
sible when different domains of information are involved,
region saliency detected by Itti's method [16]. Regionkedt out by its corresponding texdl' vy, together with the surrounding
red circles have stronger saliency, being higher in briessn texelsT'E, by performing inverse mapping through the lo-
c;(;ature s(;)m? salient rebglor:? etg thebkr:?r? of tre at\rmadlllgf the figure. These views show that the triangl@s + 7. }
[20] can identify more object features, but the salientoegi enclosed by the spheware inversely projected to become

saliency detection methods [16] fail identifying the white
\ ent designs. Introducing local entropy is also criticatcsi
is particularly critical when an object is being simplified.
and particularly helps incorporate texture mapping distor
cal filter window. In the figure, a textured girl model in the
obtained are usually too large to be precise. In contrast, A tnangles{T +T } enclosed by the ellipse The com-
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section points, using these points to generate a set of Visual Saliency: We compute visual saliency by both
triangles{T,,}. We also obtain a set of triangldd.}  attributes associated with individual texels and pattéats
connecting verte¥'. tribute changes) within a local region into account. To im-
— Step 2:We then inversely projedtl,,} and{T.} from  plement, we pick intensity and colour as the individual texe
3D geometry space to 2D texture space, forming a newttributes to collect, while we evaluate pattern by local en
triangle set{T,'L + Te'}, which is embraced by the ellipse tropy. We also perform bilinear interpolation to compute al
e with centerV” (ref. Bottom-right of Fig. 6). saliency values across the surface of each projected keiang
— Step 3:For each triangle” in {7}, + 7'}, we apply The intensityl of eachtexelid (T Ey,) = %9“’, where
the classical edge walking algorithm [8], which is usu-r, g, andb are the red, green and blue colour values of each
ally used in the rasterisation procedure of a 3D graphicgexel, respectively. The colodr is represented by red-green
pipeline, to obtain texel samples. Number of texel sam{RG) and blue-yellow (BY) opponencies [4ARG(TE,,) =
ples obtained increases with the triangle area. As shown—r=2, BY (T'E,,) = %’m which can better in-
at the bottom-right of Fig. 6, the red o!ots represent someerpret how human perceive colours. To avoid large fluc-
obtained texel samples of the triandle tuations of the texture colour opponency values at low lu-
— Step 4:We then obtain all texel samples inside the el-minance, whilemaz(r, g,b) < 0.01, the RG(TEy;) and
lipse e by repeating Step 3, and perform the GaussiarBY (T Ey; ) are set to be zero.
weighted filtering operation on these texel samples. To capture pattern, we introdud@exel Gray Entropy (GE)
based on the Shannon entropy, which evaluates signal com-
plexity by measuring the gray colour homogeneity of the
texels surrounding a given texglEy;, . It is defined as:

Inverse

Mapping GE(TEy,) = — Z P(gc)log, P(gc), 4

gce CG

_ ETEjENT(GR(TEj) == gc)

ZNTEVi

P(ge) ®)

whereT' E; is a neighbouring texel arouriE,, and NT

is then x n neighbouring texel se}_ ., is the number

of NT associated witlT'E,,,. There exist different gray

colour values, forming the gray colour S8t:. Supposeyc

is a gray colourirCG, P(gc) is the probability oycin NT,

andGR(TE;) = 0.30r + 0.59¢ + 0.11b representing the

gray value of eacli’' E/;. We do not separately compute local
- ) entropy against each g, b, avoiding slow computation.

3D Geomictry Space 2D Texture Space Texture feature map: Texture feature map is constructed

Fig. 6 Inverse mapping and texture sampling. as follows:

Firstly, we apply a3 x 3 Gaussian filter to smooth a
texture image, making it robust to noise.

Secondly, we perform inverse mapping to obtain both
the corresponding texdl E,, and surrounding texel§ E,
for each mesh vertex, using the local filter window. In con-
trast to typical methods, such as [16], the filter is applaed t
the original texture map instead of its scaled-down version
for obtaining high quality features [31].

Thirdly, we compute the Gaussian-weighted average for
each of the intensity, colour RG + BY and local gray
entropyEG of each texel E,, under different scales using
the following equation:

Fig. 7 Textured wolf model: In the highlighted pait} is a candi-
date vertex andAV, V;V; 41 (¢ € 1...7) are its connecting triangles, _
where texture colour arbitrarily varies over each triangle XW(TEy,rlr,s1) =

Srpew,, . ICT(TE,)EXP
ZTE:E eWr,lr,sr EXP
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(6) role in object modelling. We set the values bdf and A,
. similar to those used for setting and~s,.

whereEX P = exp[—||TE, — TE(v:)|?/(2r")], andr’ is Discussions:Setting the above weights is not straight-
the distance frorl' 5, 0 T, _ forward. For example, the bunny model in Fig.1 is dom-
~ XW(T'Ey,,r,lr,sr) represents a function for comput- inated by its geometry features, such as ears, mouth and
ing the Gaussian-weighted average, which can be subsiiigh regions, while its texture map does not significantly
tuted byl W(T Ey, 7, Ir, sr), CW(T Ey,, 1, Ir, sr) O contribute to the final model representation, despite tgavin
GEW(TE,,,r,lr, sr), which evaluates the Gaussian-weight@fne pirthmarks on its body. In this case,should be in-
average of intensity, colour or local gray entropy, respeCereased. In contrast, it is popular for online games to gain
tively. r is the radius of the local filter window (sphere)  ntime performance by representing objects with simpli-
andlr, sr are the long and short radius of the projected fil-fieq meshes but with good quality texture maps. Similarly,
ter window (eclipse} (ref. Fig. 6). ICT(TE.) is a func- g6 to model design, if object features are mainly modelled
tion of texel attributes, which can be substituted[@Em), by texture maps, e.g. the eyes of the girl model in Fig. 6,
RG(TE;)+BY(TE,) or GE(TE;) when evaluatindW, it means features from the texture map is more important
CW or GEW, respectively. than mesh features. In both cases, we have tosktrger.

Fourthly, we use the following equation calculating theAIternativer, mesh and texture map importance may vary
sub-feature maps, including Intensity Feature Midp, 1), according to user attention, such as light-of-sight or cbje
colour Feature Mayt(m,n) and Local Entropy Feature ser view distance. Therefore, generating weighting facto
Map E;(mn,n). ICE is a function of Gaussian-weighted av- 5ytomatically may be complicated. Itti et al. [15] had intkes
erage, which can be substituted BY’, CW or GEW when  gated this problem and suggested using supervised learning

evaluatingl;(m, n), Ci(m,n) or E;(m, n), respectively. as an approach to combine saliency information properly.
However, it also found that achieving a good result in com-
TCE(m,n) = [ICE(TEy,, rm rm, 57m)— bining saliency information is scenario or application elep

(7)  dent. As we want to keep the generality of our method and a
good application performance, we therefore adopt a simple
weighted linear sum approach for combining saliency infor-
mation. In addition, introducing the above weights makes
our method capable in handling different types of textured
objects. Future work should be carried out to investigate an
automatic way setting the values of these weights.
Experiment outputs: Fig. 8 shows some experiment
4 4 4 outputs from our method. For each of the girl and the horse
T=yn(NO_T)+N(O_C)+%.N( _E),(m+72=1) models as shown in Figs. 8(a) and (b), starting from left
=1 =1 =1 to right, we show the original textured model, the under-
(8)  neath mesh model, the generated geometry feature map, the
texture feature map and final saliency map. For each of the
vase and wolf models as shown in Figs. 8(c) and (d), we
show in the first row the original textured model, the under-
S = MN(T) + A N(G@), (M + Ao = 1) ) neath mesh_ model, the genera’_[ed geometry feature map and
the final saliency map, respectively. The second row shows
To produce proper texture feature mapsor different ~ the saliency maps for intensity feature, colour feature and
textured objects, we may manipulate the weights in Eq. glocal gray entropy feature, respectively.
If an object mainly relies on colour information stored at ~ Fig. 8(a) shows that the head of the girl model is mod-
individual texels modelling its details, e.g. the girl mbote ~ elled by a smooth 3D mesh, not possessing rich curvature
Fig. 8(a), we should increase the weightyf In contrast, if ~ variance. If we simply consider the geometry feature map,
attribute changes play an important role of object modgJlin we cannot capture the eyes, nose and mouth parts as impor-
e.g. the vase model in Fig. 8(c) has a distinguished whitéant. Instead, our final visual saliency map, which incorpo-
horse pattern, which stands out from its surroundings, wéates texture features, can successfully identify thests pa
should increase, instead. In our experiments; and -, as important. Similarly, for the horse model as in Fig. 8(b),
are set with one of the values 0.25,0.5 or 0.75. On the otheve have identified the black mane on its back and a white
hand, if the 3D mesh constructing an object does not posse&ggion on its head as salient regions.
too much object details, we should increase the weight of When we consider the vase model in Fig. 8(c), which
in Eq. 9, as texture map consequently plays a more importalias a white horse pattern at the center over the vase’s surfac

ICE(TEy, 10,1y, 87|

where pair(r,,, r,) is one of the pairs ino.

Then, each of the ), T;, /-, C; and Y, E; is
normalised (denoted a¥()). These normalised items are
summed up forming the texture feature niap

Finally, we combine the texture feature mé&pand the
geometry feature ma forming the final saliencys:
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3

(a) Girl

(b) Horse

¥
&

(c) Vase

» A

(d) Wolf

Fig. 8 Experiment results on four models. The figure shows the sasdured model, its 3D mesh and different feature mapsrgtste

surrounding by a complex background, since the white horsé Saliency-Driven Model Simplification
is not complex in signal, it cannot be detected as salient if
only intensity and colour features are considered as in ex-

isting methods. We additionally consider the local gray en—Our method jointly considers features from 3D mesh and

. . . texture map for data reduction. To simplify the mesh ge-
tropy feature, successfully detecting such a salient regio o
Our method is also successful in detecting the white fupmetry, we extend the model simplification method [10] by

stripes on the back and at the left groin of the wolf modefncorporating a visual §ahe_ncy factor to determme.theeord
o . . of edge collapse. To simplify the texture map, we introduce
in Fig. 8(d) as salient regions.

a novel texture relaxation and regularisation method for re
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ducing the texture map resolution, which is guided by ourprojected triangle. The outputis a gray image called Sajien
saliency detection method. Texture Map §7'M) as shown in Fig. 9(a).
Texture deviation is measured byax 2 Jacobian ma-
trix [35], which produces singular values representing the
4.1 Mesh Simplification amount of parameterisation distortions. When a singulaeva
is smaller than 1, it indicates the parameterisation of tire ¢
We modify QSlim [10], weighting the quadrics by mesh responding texture domain part is contracted and its sam-
saliency. Compute the weight’ of each verte¥; as: pling frequency being reduced. Here we denote a singular
value as¢. The smaller the value af is, the greater the
sampling frequency should be arranged for a triangle in the
texture domain. We obtain the smallest singular value for
each corresponding triangle of a vertexaveraging these
values to form the final singular value for We then ex-
kS(VD), if S(Vi) >, ecute a pilinear ipterpolgtion operation over the ;urfa‘ce 0
(Vi) = SV, if SV (11)  each projected triangle in the texture map domain, obtain-
i)l S < ing all singular values to form the Texture Distortion Map
(T'DM) as shown in Fig. 9(b).
Finally, we combine bott$T' M andT DM, forming a
visual Importance MapI(M) with normalised weights as
shown in Fig. 9(c). We can get the importance value of each
texel byo (u,v) = N(p(u,v)) - N(é(u,v)). Fig. 9(c) shows
dhat our final visual Importance Map of the horse model can
recognise salient regions, such as the mouth, eyes, feet and
mane on the back of the horse. We also recognise the mouth,
nose and eyes of the human head model as visually impor-
tant as shown in Fig. 10(e).

W (Vi) = L0+ N(w(Vy)* (10)

wherew(V;) is calculated as:

S(V;) is the saliency of each vertd%. In order to pre-
serve vertices with larger saliency values throughouttbe p
cess,S(V;) is amplified nonlinearly, and that whest(V;) of
some vertices exceed certain valugghey will be ampli-
fied by a factors. In addition, we can changé to adjust
the importance of geometry saliency in the final weight. Th
weight W will increase with the geometry saliency value
w(V;). If the parameters:, n and ¢ are set larger, more
salient vertices can be preserved during simplificatioacPr
tically, their values cannot go very large, otherwise theeba
mesh vertices cannot be preserved due to their low saliency
values. We empirically sej, ¢ andx to be 30th percentile 4.2.2 Relaxation and regularisation
saliency, 3, and 20, respectively, for obtaining good tssul
In addition,W (V;) is normalised to withirf0 . . . 1]. A relaxation algorithm was proposed in [1] to reorganise

texture image content by balancing the content frequency

distribution. Fig. 10 (a) shows visually important regions
4.2 Texture Map Optimisation and Simplification are evenly distributed over the frequency map of the texture

image of the human head’s model, where texture parame-
Texture map optimisation is a process to arrange more texerisation produced is supposed not to deform severely. We
ture space holding visually importantregions, allowings@  attempted to perform relaxation following [1] with our im-
regions to preserve longer during texture map simplificaportance map (ref. Fig. 10(e)) describing the model sajienc
tion. The texture feature map introduced in the last sectionfortunately, as shown in Fig. 10(d), severe artifacts are
determines such important regions. However, a texture magroduced around the mouth part of the human head model,
can be distorted as its texels may be nonuniformly samplegecause some regions of the texture parameterisation pro-
across the mesh surface due to parameterisation. We theliced are deformed heavily after relaxation (ref. Fig. 10(b
take texture map distortion into account, forming anothefeading unfavourable results.
factor to determine region importance. We have also devel- Tg ogvercome this problem, we have developed an effec-
oped a novel Relaxation & regularisation algorithm, whichtjye Relaxation & Regularisation algorithm, guiding by our
deforms a texture map allocating proper space to hold diffefyisual importance mag). Prior to relaxation, we divide
ent texture map regions based on their importance, avoidingxture map into several regular grids and obtain a visual

unexpected distortions as those appeared in [1]. importance value of each texel from tfi@/. As shown in
Fig. 10(e), our importance map can obtain far more accurate
4.2.1 Synthesis of Visual Importance Map salient regions, including the eyes, nose and mouth, than us

ing the frequency map from [1] (ref. Fig. 10(a)). For relax-
To evaluate the saliency valyeof each texel, we inversely ation, we shrink grid cells with visually unimportant tesel
project all mesh triangles onto the 2D texture map domaimnd stretch those cells with visually important texelseres
and perform bilinear interpolation over the surface of eacling more space to visually important regions. At this point,
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() ST™M (b) TDM © M

Fig. 9 STM, TDM and IM for the horse texture map.

(a) Frequency map by [1] (b) Relaxed parameterisation (c) Relaxed texture map (d) Rendered model obtained
by [1]; Saliency is guided by (e)

L 4 "
¥ " ’ L

(e) Ourimportance map (f) Relaxed and regularised pa- (g) Relaxed texture map (h) Our rendered model
rameterisation

Fig. 10 This figure shows the frequency and the importance map of &hpodduced by Balmelli’s method [1] and our method. It alsovgs the
produced texture map parameterisation and image from bethads. Rendered models indicated our method producesea tesult.

grid cells holding visually extremely important or unimpor In our relaxation method, each grid cell of a texture map
tant texels may still be heavily deformed. To avoid such acomprises some texels and four boundary vertices. The im-
problem, we introduce a geometrically motivated shape regsortance valuer for each boundary vertex can be obtained
ularisation method. For regularisation, we treat the mdax from I M. To relax the texture image, we minimise the fol-
rectangular grid cells as rigid areas and carry out an ad-rig lowing objective function:

as-possible deformation for the relaxed grid. As a redust, t

deformed grid cells will be adjusted making the entire grid

more regular. As shown in Fig. 10 (f)-(h), grid cells after F = Z WL ||lvi — vj||2 (12)
Relaxation & Regularisation did not severely deform, pro- {i,j}ee

ducing a better rendering result. We now describe the entire

process in detail. wherev; andv; are two boundary vertices of a grid cell,

forming an edge. W1, is the weighting factor determined
by averaging the importance valueof the quads sharing
1) Relaxation the edgee. While ¢ is constant, the energy function is a
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quadratic function of the grid cell vertex positions. Minim

sation of this energy function can be transformed into & clas

sical least-squares minimization problem. In our implemen

tation, the relaxation algorithm is a successive approxima

tion algorithm, such that the new position of a vertQ?(Jrl
is determined by adding a displacemeti{l,,); to the cor-
responding current positior”:

VPl —vr L A(V,): i=1...N (13)

AWV)i = Y pag (s =) ={> ps (v —vi)IQ}Z;((Z%))
JeEnt jENI v

(14)

wherep;; = a;o(v)/ > i @i (v)).

2) As-Rigid-as-Possible regularisation

For regularisation, we define a nonlinear energy function

to preserve the rigidity of regular grid cells while approx-

imating the deformed grid cells with their original shapes

before relaxation. The algorithm is as follows:

Given a quadrilateral grid cetDG, the initial and de-
formed positions of its four vertices arg; andwvg;, where
i € {1...4}. If the deformation of this grid cell is rigid,
the optimal rigid transformatiod is found by matching all
initial vertex positionsp; against the deformed vertex po-
sitionswvg;, such that:

vg; — vgl = A(vp; — vpl) (15)

wherevp! andvq’. are the initial and deformed rotation cen-
ters. As we knew, the deformation could not be rigorousl
rigid. We find an optimal rigid transformatio# that fits Eq.
15 in a least-squares sense, i.e. we minimise:

E(QG)= > |vai—vq. — A(vp; —vph)|?
1€QG(7)

(16)

Y,

— Initialisation : Take the texture map imagél with size
ixj as aregular mesi and divideT'I intom xn small
regular grid cells7, where each cove(s x j)/(m x n)
texels. In our implementation, the sizef x n is as-
signed to bd /16 of (z x 7).

Relaxation Relax each grid cellf of meshM/. For each
vertexv! of cell G, its relaxed positiom! is determined
by Egs. 13-14 above. If th&(V},); is not changed sig-
nificantly, we perform thélesh Adjustment operation,
otherwise we performegularisation.

Regularisationt After getting the relaxed mesh, we mod-
ify the positions of boundary vertices of each grid cell
G with the as-rigid-as-possible regularisation method in
Egs. 16-18. In addition, we take the regularised grid as
an input into the Relaxation phase.

Mesh Adjustment According to the alteration of grid
cell vertices, adjust the regular mesh forming an ir-
regular mesir M.

Texel Projectior Inversely project all texels covered by
IrM into M through sampling. The sampling frequency
for each single grid cell is equal {6 x j)/(m x n). We
can then obtain the new relaxed texture map inmBge
Note that we should record the mapping relation of the
source imagé'I and the relaxed imaggI’.

5 Experimental Results

We firstly compare the simplification results for 3D geom-
etry models without texture maps obtained by QEM[10],
mesh saliency [20] and our method. We then show the visual
quality for textured models when we simplify the geometry
and resize the texture image using three different textewe r
sizing methods: 1) appl) EM and direct texture image
resizing without texture space optimizatiap £ M RD), 2)
apply mesh saliency [20] and texture image resizing with
texture space optimization [Lf(ALOPT), and 3) our method.
To our knowledge, there is no existing work directly compa-
rable to our method due to its uniqueness, and that we alter-

In fact, this energy function is a shape matching problem. "?1atively compare our method with QEMRD and SALOPT,

the 2D caseA has the analytical expression [36],

1 —qu;TF

A=— " (vp, —vb#)( ALT) 17)
Hs i€QG (i) —vq;
where
s = \/ O vg vp)? + O vgl vp)? (18)

A i

with vp, = vp; — vpl andvg, = vg; — vq’ , where L is a
2D vector operator such that, y) L= (—y, x).

3) Implementation The Relaxation and Regularisation al-
gorithm is implemented as follows:

which are based on combining a mesh and a texture map
simplification methods, in order to improve the fairness of
the comparison. Table 1 shows geometry face number and
texture image resolution for the original and the reducesd ve
sion of the testing models. Note that the vase, horse, gil, a
wolf are textured models while the last two, Armadillo and
Laurana, are purely mesh models without texture map.

5.1 Simplification for Mesh Model
Fig. 11 shows the simplification results of two mesh mod-

els obtained from: QEM [10], mesh saliency [20] and our
method. The Laurana and Armadillo models are simplified
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to contain only 3% and 1% of polygons of their original quite significant artifacts since it simply resizes textime
models, respectively. The results shows that visually impo ages without considering any saliency information. In gen-
tant regions, such as armadillo’s mouth and knee, and Lawral, SALOPT induces less error thaQ EM RD because
rana’s eyes, nose and mouth, are better preserved by omitakes saliency into account. However, the artifact$ atit
method, while the results from QEM [10] are the worst. Thispear in the horse model whe$ALOPT is applied. This
is because our method can successfully detect visually ims because the texture optimization operatiosadfLO PT
portant regions as shown in Fig. 4. Our method also allowcauses severe deformation to the texture image due to a re-
adjustments to the saliency weighting factoas in Eq. 11, laxation process and that some texels are lost as mentioned
making salient regions to preserve much longer than othen section 4.2.2. In contrast, we have introduced a geometri
model parts during simplification. cally motivated shape regularisation method to adjustehe r
sults obtained from our relaxation process, minimisinghisuc
S a deformation problem. In addition, our method has reor-
5.2 Simplification for Textured Model ganised a texture map making more texture space to hold vi-
sually salient texels. This helps reduce possible textise d
tortion as well as allowing visually salient texels presetv
r?éenger during model simplification.

This part presents results of a visual quality comparis@h an
an objective measurement on the rendered outputs of so
reduced textured models producedp¥ M RD, SALOPT

and our method.
Table 1 Geometry face numbers and texture image sizes (pixels) of

5.2.1 Visual Quality Comparison the original and reduced versions of the test models
Original Model | Reduced Model| Ratio(Reduced/Orignal
For the comparison, we present screenshots of the rendering| Vase 210 1890 Al
o ) - 1024x 1024 64%x64 0.4%
results of three different model reduction methods against 18363 1181 6.4%
: Horse 5I2x512 3232 0.4%
four textured models (ref. Fig. 12). We found that our new o 76368 2178 ~ 3%
method achieves better visual appearance for the textured 10332;(2)24 6;;5%4 3;‘2//0
models than the other two methods. In the vase and wolf | wolf 10251007 5IG6a e
models (ref. Fig. 12(a) and (d)), the white horse pattern at | armadilio 346K 3445 1%
the center of the vase model and the white furs on the back P 20K 3870 3%
of the wolf model are simple in colour. Since our salient

detection method takes into account the local entropy fea-
ture, we successfully detect such a pattern as visually im-
portant. Consequently, the boundary of this horse patters.2.2 Objective Comparison
in vase model and the white furs on the back of the wolf
model are well preserved even after model simplificationWe adopt the peak signal-to-noise ratid{N R) and multi-
For the horse model (ref. Fig. 12(b)), we can also capturecale structural similarity indeX{.S — SSIM) [42] to ob-
the white hair on the head as a salient region. In additiorjectively measure the rendered quality of the textured mod-
for the horse, girl and wolf models (ref. Figs. 12(b)-(dhro els.PSN Ris still the most commonly used metric for judg-
method also obtains eyes more clearly tiiai M RD and  ing visual fidelity of images, bud/S — SSIM, a kind of
SALOPT, mainly because the curvature around the eyes ddtatistical metric, is considered the most accurate [38]. T
the girl, horse and wolf models does not vary significantlyprovide a more comprehensive measurement, we take sev-
SinceQEMRD andSALOPT rely only on geometry in- eral images of each model from different viewpoints, com-
formation to capture salient areas, they do not regard thegating PSN R andM S — SSIM values for all images and
features as visually important and they will be easily lostaveraging thes®SN R andM S — SSIM values to form a
during model simplification. single error measurement for each model.

For texture image reduction, when appli@¥ M RD Before computingPSNR, MS — SSIM and H, we
and SALOPT, mapping errors appear on the legs of theshould assign the reference model and the reference image
horse model (ref. Fig. 12(b)) if texture image is resized agset. In our experiment, we use the original model as the
gressively, since such resizing will get rid of some texelsreference model. The reference image set is captured from
The mapping error is more serious for the horse model sincthis reference model. We carefully arrange the viewpoints,
the reduced versions of their corresponding texture imagesuch that an even coverage of image samples is collected.
are small. As shown in Table 1, the texture image’s size ofWe adopt the small rhombicuboctahedron [23] to evaluate
the reduced horse model is jB& x 32 pixels. PSNRandMS — SSIM values.

Specifically, as shown at the leg of the horse model (within We also measure the colour distributi@n) of the tex-
the two red rectangles) (ref. Fig. 12 (b M RD induces ture image used in a model, where a high&b value in-
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Fig. 11 Compare simplification results on the two models, LaurartbAmadillo (column 1), by running QEM [10], Lee’s [20] and romethod
(columns 2 to 4, respectively).

dicates that the texture image comprises a wider range @& Conclusion
colours, i.e. more complicated. For example, the vase model

has a highe€ D than the girl model, while th€'D value is . : . .
. This paper has presented a salient region detection method
low for the horse and raptor models. To compute@ie, in L .
. : ) to support textured model simplification. The method relies
the implementation, we scan through a whole texture image e . .
) . on a unified visual saliency map that we have developed to
and find out all the colours on it. . o : .
identify important model features, which are jointly formu
lated by meshes, texture maps and the projection between

them, guiding how a model is to be simplified. We have

Table 2 shows the models produced by our method havalso improved the quality of local saliency identification b
larger PSN R and MS — SSIM values than those gener- & newly developed local filter window. In terms of model

ated by the other two methods, meaning that our method Ioe§_imp|ification, we have introduced a novel relaxation and

forms better, as the rendered outputs of the simplified tex€gularisation algorithm to preserve important visual-fea
tured models produced by our method are very similar to th&!"€S from a texture map longer during model simplifica-
reference image set. Experiment results for the horse modBfn- Results show that we can well preserve salient regions
show thatPSN R of our method is just 0.13 higher than V€N When_ models are extremely 5|_mpl_|f|ed. In the future,
that of SALOPT and much higher than that S EM RD. W€ would I|I§e to take into account lighting and -ther sur-
Similarly, theM.S — SSTM for our horse model is also just facc_e properties, such as norma_ll map, for determln!ng dalien
0.0121% higher than that SiALOPT. This is because the "€9ions of a textured model, since they also play important
C'D value of the horse model is relatively low, since most of"©!es in modelling the appearance of a 3D object in modern
the texture space is occupied by similar colours. As such graphics applications. We also plan to extend this saliency
texture image is not complicated in terms of either the coloud€tection method to identify visually important objects in
information or the pattern on the image surface, its feature
are unlikely to be lost significantly, even after simplifica-
tion. Therefore, our method makes no significant improve-
mentoverS ALOPT in such a situation. Unlik6 ALOPT,
QEMRD does not consider saliency information of a tex-

large-scale virtual environments.

Table 2 PSNRandM S — SSIM of three different methods

. . . . , QEMRD | SALOPT | Our Method| CD
tu_re image but s_lmp_ly reduce_s the texture image directly — PENE 207443 | G22861 | SAIML | o —
with the bilinear filtering operation. Consequently, texet MS — SS*I MM(%) | 0.8661 0.8870 0.9325

. . . . g PSNR 38.6988 40.9702 41.1091
a texture image are unlikely to be retained after simplificar \yorse Fr75=sTA7R779%) T0.9010 09951 09347 | 7894
tion, making such a method difficult to obtain good results] PSNR 39.0627 | 41.5688 42.9627 | 99473
. .. . Girl MS — STM M (%) 0.9295 0.9584 0.9793
For the wolf model, we achieve similar experimental results PINE 381002 | 397663 | 406375 |
forboth PSNR andMS — SSIM. Wolf MS — S1M M (%) 0.9142 0.9761 0.9979
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(a) Vase

i

(b) Horse

(c) Girl

(d) Raptor

Fig. 12 Visual quality comparison among four different reducedused models. For each model, screenshots obtained frooritfiral textured
model,QEM RD ,SALOPT and our method, are shown respectively.
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