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Abstract Mesh geometry can be used to model both ob-
ject shape and details. If texture maps are involved, it is
common to let mesh geometry mainly model object shapes
and use texture maps modelling most object details, opti-
mising data size and complexity of an object. To support
efficient object rendering and transmission, model simplifi-
cation can be applied to reduce the modelling data. How-
ever, existing methods do not well consider how object fea-
tures are jointly represented by mesh geometry and texture
maps, having problems in identifying and preserving impor-
tant features for simplified objects. To address this, we pro-
pose a visual saliency detection method for simplifying tex-
tured 3D models. We produce good simplification results by
jointly processing mesh geometry and texture map to gener-
ate a unified saliency map for identifying visually important
object features. Results show our method offers a better ob-
ject rendering quality than existing methods.
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1 Introduction

Textured three-dimensional (3D) objects are widely used in
many graphics applications, including 3D games [44,22],
online 3D object virtual exhibition and virtual environments.
Model simplification is a key approach to reduce modelling
data of 3D objects, improving object rendering and trans-
mission performance, which is particularly useful when a
lot of objects are involved in an application.

Most existing model simplification methods are designed
for 3D meshes, where they implicitly assume that object
shapes and details are only modelled by meshes. Common
approaches include minimising local surface distortion based
on error metrics [10], preserving salient regions that stand
out from their surrounding context [20], and applying per-
ceptual principles [6]. However, texture maps are popular to
involve in object modelling for the sake of improving real-
ism, taking the responsibility for modelling most of the ob-
ject details and letting mesh geometry focus on modelling
object shapes. Therefore, mesh-based model simplification
methods may become ineffective for reducing modelling data.
A naı̈ve approach to address this problem is adopting tex-
ture map simplification methods. However, popular meth-
ods such as DXTC (S3TC) and down-sampling (e.g. mip-
mapping) only consider the pixel information of a texture
map without taking into account its relation to a 3D mesh.
Even if we further consider mapping distortion [1] or pro-
jected size [11] of texture maps for simplification, as how
mesh and texture map features jointly represent an object is
not being considered, important object features may still not
be able to identify and preserve. Therefore, significant visual
distortion may be induced to simplified objects.

To support textured 3D object simplification with im-
portant features preserved, we have developed methods for
identifying visual saliency and simplifying both mesh ge-
ometry and texture maps. Our main contributions include:
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– An inverse mapping method is developed to allow mesh
geometry, texture map, and the projection between them
to be jointly processed, and that all captured saliency in-
formation can be consolidated into a unified visual saliency
map to control textured 3D object simplification.

– A new local filter window is introduced to capture ge-
ometrically and topologically sufficient local mesh ver-
tices for saliency evaluation, in which local features from
both geometry and texture map domains can be properly
captured even when objects are well simplified.

– We have introduced a local entropy feature identifying
local saliency based on colour changes to enable captur-
ing of visual features without complex signals.

– A novel relaxation and regularisation algorithm is de-
veloped to redistribute texel information allocating more
texture map space to visually salient regions. This sup-
ports texture map optimisation, in which important fea-
tures are preserved and induced distortion are minimised.

The rest of the paper is organized as follows. Section 2
discusses the existing work. Section 3 and 4 describes our
new saliency detection method and depicts how it is applied
to simplify textured meshes. Section 5 and 6 shows our ex-
periment results and concludes our paper.

2 Related Work

Model simplification reduces object complexity, improving
rendering and transmission performance and offering better
user response time for graphics applications. As objects are
typically modelled by 3D meshes and texture maps, methods
have been developed to simplify these two different repre-
sentations accordingly, which mainly comprise mechanisms
for reducing object data and criteria for minimising the de-
viation of a simplified object from its original one. As visual
quality of graphics outputs has been increasingly catching
people’s attention, researchers recently focus more on de-
veloping techniques to preserve object features during sim-
plification according to human perception.

2.1 Model Simplification

To simplify 3D meshes, progressive meshes [12] proposed
edge collapse and vertex split operations to modify the data
size of a 3D mesh by adding or deleting mesh vertices and
adjusting the connectivity of the affected vertices. Quadric
error metric [10] was then developed to efficiently measure
cumulative surface distortion introduced by mesh simplifi-
cation. Methods developed at this stage focused on minimis-
ing the geometric error induced by simplification. However,
such an approach does not consider how human perceive
an object. For instance, it may make no difference for a

user to perceive an object in either its original or simplified
form, when the environment lighting is very low in contrast.
Therefore, researchers turned their focuses on generating
similar rendered results for simplified objects against their
original ones rather than focusing only on geometric differ-
ence minimisation. Luebke and Hallen [26] adopted the con-
trast sensitivity function (CSF), developing an empiricalper-
ceptual model to measure the human perceived quality of the
rendered output from a simplified object. Qu and Meyer [34]
developed a visual masking technique based on the Sarnoff
visual discrimination metric and the visual masking tool in
JPEG 2000, supporting mesh reduction according to surface
texturing, light variation, surface reflectance, etc. Menzel
and Guthe [28] alternatively developed a perceptual model
by measuring vertex-based BRDF parameterisation of a ren-
dered model. It also considered contrast as a key factor to
adjust the acceptable visual difference of a local region ofa
simplified object from its original one.

In terms of texture maps simplification, a de facto stan-
dard DXTC (S3TC) [14] divides an image into4 × 4 pixel
blocks, where all pixels in each block are approximated by
two base and two derived colours. Similarly,iPACKMAN
[38], being a part of the OpenGL ES API, reduces image
data by approximating each pixel in a block with certain
base colours. It additionally stores luminance information
for modulation in order to enhance output image quality. Al-
ternatively, texture map simplification can be done by down-
sampling. A popular method is mip-mapping, which reduces
the size of an image with simple fixed ratios regardless the
image content. In contrast, [4] conducted user studies to de-
termine the proper amount of down-sampling applying on
different images. Besides the global methods as described
above, texture map simplification can also be performed to
local regions. [13] recursively resized texture map regions
by balancing the amount of frequency content in each re-
gion. [1] determined the frequency signal in local texture
map regions, stretching or shrinking a region based on its
importance indicated by the frequency signal. [27] consid-
ered the projected model-space area of a texture map region
to decide its degree of down-sampling and additionally per-
formed a perceptual down-sampling process to reduce re-
gions with less varied image content. Interestingly, although
the texture map distortion induced by simplification may
significantly affect a model’s visual appearance, this has not
been studied extensively. In addition, existing methods only
directly relate the importance of a texture map region to the
image colour and complex (or high frequency) content, but
this may not always be the case as revealed in Fig. 8.(c).

2.2 Visual Saliency

Visual saliency detection is a bottom-up (stimulus-driven)
approach to model human visual attention. It analyses the
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(a) Original textured model (b) The underneath 3D mesh(c) Geometry feature map

(d) Gray entropy feature map (e) Final saliency map (f) Simplified textured model

Fig. 1 A bunny model and its visual saliency. (a) Texture colours are used to model eyes, mouth and black dapples on the body. (b) Geometric
curvature variation is used to model eyes, mouth and legs. (c) The geometry feature map generated from the 3D mesh shows that black dapples are
not captured. (d) Gray entropy feature map can clearly identify eyes, mouth and black dapples. (e) The final saliency map generated can capture
both features modelled by mesh geometry and texture maps, where warmer colours (reds and yellows) indicate higher saliency and cooler colours
(blues) indicate lower saliency. (f) A simplified textured bunny model is generated with our method.

visual characteristics of each element in a content domain
to locate important parts [5]. It is rooted in image process-
ing [32,16] and has been extended to mesh processing [20].
Specifically, visual saliency detection methods look for local
features, which stand out from their surrounding context.

To detect salient regions of a 3D mesh, mesh saliency
[20] applied the center-surround mechanism [16]. It is done
by evaluating distinct parts of a local region in a domain
with multiple scales to identify important domain features,
together with applying the feature integration theory to pro-
cess surface curvature information. To enhance the result,
Gal et al. [9] additionally incorporated shape parameters,
such as variance in curvature, number of curvature changes
and size of a salient region relative to the entire mesh, to per-
form saliency detection. Thereafter, Liu et al. [24] applied
Morse theory to handle animated or noisy meshes. Bulbul
et al. [2] considered motion, colour and luminance infor-
mation of a mesh for evaluating saliency. However, some
object features may come from texture maps, such as the
black dapples of the bunny model shown in Fig. 1. To pro-
cess texture maps, Balmelli et al. [1] designed a local fre-
quency map based on wavelet analysis to extract texture
map saliency and carried out relaxation to optimize a tex-
ture map. Tang et al. [39] considered texture mapping dis-
tortion, texture sample reusability and saliency information
generated from texel colour and luminance to compress a
texture map. Yang et al. [43] considered texture map as part
of the features of a textured 3D model and defined saliency-

based feature maps for the texture map in order to support
model simplification. Recent methods [21,37,3] attempted
to detect mesh saliency by incorporating global features,
which analyse vertex distance, object structure (limb-like vs.
round shape), shape characteristics through log-Laplacian
spectrum, and user selected schelling points. Alternatively,
[11] made use of the number of visible texture map segments
and their projected sizes to formulate visual saliency.

Saliency detection has many applications. It can improve
3D model examination by evaluating view-points through
Jensen-Shannon divergence [7] to reveal important model
features. It can also identify and emphasise important parts
of a volumetric model [18], or can modify the normal vector
of each mesh vertex according to the variation in its lumi-
nance in order to enhance the visual appearance of important
mesh features [30]. One step further beyond important fea-
ture identification is applying saliency detection to illustrate
objects with the extracted features, supporting object visu-
alisation. For instance, [29] extracts view-dependent ridge-
valley feature lines to form object illustration. On the other
hand, saliency detection can be generalised to identify im-
portant 3D scene parts by processing model space motion
and depth information as well as image space colour and
luminance information [25]. A further application is real-
time tracking of visually attended 3D scene models, where
[24] performed this based on both image features (colour
and luminance) and 3D model features (depth, model size,
and model motion).
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Fig. 2 Saliency region detection for textured model.

Saliency-based approach is attractive as existing meth-
ods demonstrated its possibility of identifying importantfea-
tures from both the mesh and the texture map domains. How-
ever, it is challenging to properly perform model simplifica-
tion on textured objects, as mesh and texture map informa-
tion should be treated as an integral part rather than separate
components for identifying important object features prop-
erly. In addition, we should be aware that object features
may come from either mesh geometry or texture maps or
their combinations, and how much features come from each
type of modelling data is object dependent, which is decided
by an object designer. Finally, important object features may
not be necessarily represented by complex signals.

3 Our Method

3.1 Overview

Our method aims to simultaneously process mesh geometry
and texture map, generating a unified saliency map for prop-
erly identifying important object features to support model
simplification. Fig. 2 depicts the saliency map construction
process. As shown in the upper part of the figure, we per-
form center-surround difference on the mean curvature of
mesh vertices to produce a geometry feature map. To cap-
ture how the object features modelled by the texture map

builds on top of the mesh geometry, we inversely project the
3D mesh to the texture map, determining the distortion in-
duced by texture mapping. The result is encoded as a texture
distortion map. As shown at the bottom part of the figure,
we determine object features from the texture map based on
intensity, colour and local entropy [17] and produce corre-
sponding feature maps. Finally, we apply nonlinear normali-
sation, combining all the above feature maps and generating
the final saliency map. We implement model simplification
by adapting the QSlim algorithm [10] to support mesh re-
duction and introducing a new relaxation and regularisation
algorithm to support texture map optimisation.

3.2 Local Feature Extraction

Identifying locally distinct object features is the core idea of
a visual saliency based method. Such features can be prop-
erly determined if sufficient local object information can
be collected for processing. In image processing, a simple
square filter window is sufficient for identifying locally dis-
tinct colour features, due to the regular connectivity of im-
age pixels. Existing mesh saliency methods, such as [20],
extend such an idea to collect local mesh features using a
spherical filter window, where the radiusr is determined by
the diagonal length of the object bounding box. However,
since mesh connectivity is usually irregular, where long and
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narrow triangles may exist (ref. Fig. 3), a spherical window
may fail including all topologically connected neighbouring
verticesNS(V ) of a candidate vertexV for processing. For
example, only the three blue vertices in Fig. 3 are included
and the green vertices are not, even they are directly con-
nected toV . Consequently, local geometry features, such as
mean curvature, cannot be properly determined.

Fig. 3 Filter window construction

To address this problem, we define a new local filter win-
dow Wr(V ) based on both geometric distance and mesh
connectivity to capture sufficient vertex samples for each
V . As shown in Fig. 3, besides the three direct connected
vertices (blue vertices) captured by a typical spherical fil-
ter window,Wr(V ) additionally captures the intersection
points (yellow vertices) between the spherical filter window
and the edges connecting toV , and the topologically con-
nected neighbouring vertices (green vertices). The new local
filter window allows us to capture more relevant local model
information. This improves the quality of the locally dis-
tinct mesh features being determined. More importantly, this
also allows the new local filter window to properly capture
locally distinct features from both the texture map and its
distortion induced by texture mapping. Despite our new fil-
ter window can capture local object features more precisely,
which is optimal for simplification purpose, as it is mesh tri-
angle size dependent, there might be a concern of being in-
consistent in saliency computation on different detailed ver-
sions of an object from the perceptual point of view. This
issue is not fundamental to our proposed method, but it is
worth investigating further.

To estimate an intersection point, we take a Gaussian
length-weighted average on its one-ring neighbouring ver-
tices, e.g. the one-ring neighbouring vertices of the intersec-
tion pointV ′ areV , V4, V5, V6. Such an average produces
better estimated intersection points than using a simple in-
terpolation [19], as it assigns higher weights to vertices with
higher proximity. An intersection pointV ′ is computed as:

V ′ =
1

∑n

i=1 Wi

n
∑

i=1

Wi · Vi (1)

whereVi are the one-ring neighbouring vertices ofV ′. Each
weightWi = e−kd2

i , representing the contribution of each
neighbouring vertex toV ′, and is inversely proportional to
the distancedi betweenVi andV ′. In our implementation,
the Gaussian coefficientk are empirically set to 1, 1.2, 1.5
and 2 at four scales for generating good results. Our new
local filter window ensures sufficient local information can
always be captured for processing, particularly when a mesh
is simplified, having relatively sparse vertices.

3.3 Geometry Feature Computation

To capture important geometry features from a mesh, we
perform Gaussian-weighted average on mean curvatures of
mesh vertices under different mesh scales, producing scale-
dependent feature maps and combining them into a geome-
try feature map. With the new local filter window, the geom-
etry feature map construction is summarised as follows:

– Step 1:Compute the mean curvatureξ(Vi) at each ver-
tex Vi (i = 1...n, where n is the number of mesh ver-
tices) based on [40].

– Step 2:Determine the neighbouring vertex setNS(Vi)

for each vertexVi by the local filter window, comprising
all vertices embraced in the filter window, intersection
points between the filter and the mesh, and all topologi-
cal directly connected neighbouring vertices ofVi.

– Step 3:Calculate the Gaussian-weighted averageGW (Vi)

of NS(Vi) at different scales.
– Step 4:Compute a scale-dependent feature mapGl(m,n)

by taking the difference between twoGW (Vi), which
are generated at two scalesm andn.

– Step 5:Apply the nonlinear normalisation [16] to com-
bine allGl(m,n) forming the final geometry feature map
G. This step preserves only features that are important
throughout all different mesh scales.

Note that the Gaussian-weighted average of the mean curva-
ture atVi is computed by:

GW (Vi, r) =

∑

x∈NS(Vi)
ξ(x)exp[−‖x− Vi‖

2/(2r2)]
∑

x∈NS(Vi)
exp[−‖x− Vi‖2/(2r2)]

(2)

and the absolute difference between the Gaussian-weighted
average of a pair of fine and coarse scales,(rm, rn), in ̟ is:

Gl(m,n) = |GW (Vi, rm)−GW (Vi, rn)| (3)
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Since many 3D objects are not sphere-like or even ex-
tremely irregular in shape, it is not satisfactory if we fol-
low [20], simply using the bounding box diagonal of a 3D
mesh as the radiusr to define the spherical filter window.
Instead, we computer based on the triangle sizes of a mesh.
We determinecr, which is the radius of the circumcircle
of the equilateral triangle with areaA(Ti), whereA(Ti) is
the average area of all triangles in the mesh. Consequently,
we definer = 2l · cr as the radius of the spherical filter
window wherel ∈ 1..4, and obtain four filter window pairs
̟:{2cr, 4cr}, {4cr, 8cr}, {8cr, 16cr}, {16cr, 32cr}.

Fig. 4 Comparison among different salient region detection methods
based on two 3D meshes: Armadillo and Laurana. The first column
shows the original meshes. The other columns show the results from
Mean Curvature, Lee’s method [20], and our method, respectively.

Fig. 5 Left: The texture map of a horse model. Right: Corresponding
region saliency detected by Itti’s method [16]. Regions picked out by
red circles have stronger saliency, being higher in brightness.

Fig. 4 shows the saliency maps generated by different
methods. It shows applying mean curvature alone cannot
capture some salient regions, e.g. the knee of the armadillo.
[20] can identify more object features, but the salient regions
obtained are usually too large to be precise. In contrast, as
demonstrated by the detected armadillo’s knee and the eyes,
mouth and nose of the Laurana model, our method identifies
object features more precisely since we involve more locally
relevant vertices for saliency computation.

3.4 Texture Feature Computation

Texture map adds visual features to a 3D object by using
colours and patterns. For example, in Fig. 6, several colours
are used to form circular patterns on the texture map rep-
resenting the eyes of the girl model, while the correspond-
ing mesh geometry underneath does not make obvious con-
tribution to represent the eyes. On the other hand, there is
a white fur stripe characterising the wolf model as shown
in Fig. 7. The stripe is surrounded by areas with compli-
cated patterns but itself is simple in colour. Most existing
saliency detection methods [16] fail identifying the white
fur stripe as important, since they consider region impor-
tance is mainly characterised by local colour difference. To
address the problem, we propose using both colour informa-
tion and local entropy to identify object features. We also al-
low people to control the weight of each type of these infor-
mation when detecting saliency against objects with differ-
ent designs. Introducing local entropy is also critical, since
a texture map is not always continuous in content but is usu-
ally constituted of separate sub-textures as shown on the
left hand side of Fig. 5, making typical saliency detection
methods incapable to properly identify salient regions. On
the right hand side of the same figure, it shows that Itti’s
saliency method [16] can only identify horse eyes and legs
as salient, which is far from enough. Besides texture con-
tent, our method also consider texture mapping distortion as
a factor to determine saliency of texture map regions, which
is particularly critical when an object is being simplified.

Inverse Mapping: Our method treats 3D mesh vertices
as the basis reference when computing saliency maps from
different domains (mesh geometry or texture map) or be-
tween domains (projection between mesh and texture im-
age). This makes producing a final unified saliency map fea-
sible when different domains of information are involved,
and particularly helps incorporate texture mapping distor-
tion for evaluating model saliency.

Inverse mapping is an operation for computing how a
texture map is being referred by the relevant 3D mesh ver-
tices. As depicted in Fig. 6, for each vertexVi, we capture
its corresponding texelTEVi

together with the surrounding
texelsTEx by performing inverse mapping through the lo-
cal filter window. In the figure, a textured girl model in the
3D space shows on the top-left, where its inverse mapping
to the 2D texture space shows on the top-right. The close-up
views of the left eye of the girl model in its 3D space and the
inversely mapped 2D texture space are shown at the bottom
of the figure. These views show that the triangles{Tn+Te}

enclosed by the spheres are inversely projected to become
new triangles{T

′

n+T
′

e} enclosed by the ellipsee. The com-
putation is done as follows:

– Step 1:For each candidate vertexV , we apply a sphere
S with centerV and radiusr to capture a set of inter-
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section points, using these points to generate a set of
triangles{Tn}. We also obtain a set of triangles{Te}

connecting vertexV .
– Step 2:We then inversely project{Tn} and{Te} from

3D geometry space to 2D texture space, forming a new
triangle set{T

′

n+T
′

e}, which is embraced by the ellipse
e with centerV

′

(ref. Bottom-right of Fig. 6).
– Step 3: For each triangleT

′

in {T
′

n + T
′

e}, we apply
the classical edge walking algorithm [8], which is usu-
ally used in the rasterisation procedure of a 3D graphics
pipeline, to obtain texel samples. Number of texel sam-
ples obtained increases with the triangle area. As shown
at the bottom-right of Fig. 6, the red dots represent some
obtained texel samples of the triangleT

′

.
– Step 4:We then obtain all texel samples inside the el-

lipse e by repeating Step 3, and perform the Gaussian
weighted filtering operation on these texel samples.

Fig. 6 Inverse mapping and texture sampling.

Fig. 7 Textured wolf model: In the highlighted part,V0 is a candi-
date vertex and∆V0ViVi+1 (i ∈ 1 . . . 7) are its connecting triangles,
where texture colour arbitrarily varies over each triangle.

Visual Saliency: We compute visual saliency by both
attributes associated with individual texels and patterns(at-
tribute changes) within a local region into account. To im-
plement, we pick intensity and colour as the individual texel
attributes to collect, while we evaluate pattern by local en-
tropy. We also perform bilinear interpolation to compute all
saliency values across the surface of each projected triangle.

The intensityI of each texel isI(TEVi
) = r+g+b

3 , where
r, g, andb are the red, green and blue colour values of each
texel, respectively. The colourC is represented by red-green
(RG) and blue-yellow (BY) opponencies [41]:RG(TEvi) =

r−g

max(r,g,b) , BY (TEvi) = b−min(r,g)
max(r,g,b) , which can better in-

terpret how human perceive colours. To avoid large fluc-
tuations of the texture colour opponency values at low lu-
minance, whilemax(r, g, b) < 0.01, theRG(TEVi

) and
BY (TEVi

) are set to be zero.
To capture pattern, we introduceTexel Gray Entropy (GE)

based on the Shannon entropy, which evaluates signal com-
plexity by measuring the gray colour homogeneity of the
texels surrounding a given texelTEVi

. It is defined as:

GE(TEVi
) = −

∑

gc∈ CG

P (gc) log2 P (gc), (4)

P (gc) =

∑

TEj∈NT (GR(TEj) == gc)
∑

NTEVi

(5)

whereTEj is a neighbouring texel aroundTEvi andNT

is then× n neighbouring texel set.
∑

NTEvi
is the number

of NT associated withTEvi . There existC different gray
colour values, forming the gray colour setCG. Supposegc
is a gray colour inCG,P (gc) is the probability ofgc in NT ,
andGR(TEj) = 0.30r + 0.59g + 0.11b representing the
gray value of eachTEj. We do not separately compute local
entropy against eachr, g, b, avoiding slow computation.

Texture feature map:Texture feature map is constructed
as follows:

Firstly, we apply a3 × 3 Gaussian filter to smooth a
texture image, making it robust to noise.

Secondly, we perform inverse mapping to obtain both
the corresponding texelTEvi and surrounding texelsTEx

for each mesh vertex, using the local filter window. In con-
trast to typical methods, such as [16], the filter is applied to
the original texture map instead of its scaled-down versions
for obtaining high quality features [31].

Thirdly, we compute the Gaussian-weighted average for
each of the intensityI, colourRG + BY and local gray
entropyEG of each texelTEvi under different scales using
the following equation:

XW (TEvi, r, lr, sr) =

∑

TEx∈Wr,lr,sr
ICT (TEx)EXP

∑

TEx∈Wr,lr,sr
EXP
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(6)

whereEXP = exp[−‖TEx − TE(vi)‖
2/(2r′2)], andr′ is

the distance fromTEx to TEvi .
XW (TEvi , r, lr, sr) represents a function for comput-

ing the Gaussian-weighted average, which can be substi-
tuted byIW (TEvi , r, lr, sr), CW (TEvi , r, lr, sr) or
GEW (TEvi , r, lr, sr), which evaluates the Gaussian-weighted
average of intensity, colour or local gray entropy, respec-
tively. r is the radius of the local filter window (sphere)s,
andlr, sr are the long and short radius of the projected fil-
ter window (eclipse)e (ref. Fig. 6).ICT (TEx) is a func-
tion of texel attributes, which can be substituted byI(TEx),
RG(TEx)+BY (TEx) orGE(TEx) when evaluatingIW ,
CW orGEW , respectively.

Fourthly, we use the following equation calculating the
sub-feature maps, including Intensity Feature MapIl(m,n),
colour Feature MapCl(m,n) and Local Entropy Feature
MapEl(m,n). ICE is a function of Gaussian-weighted av-
erage, which can be substituted byIW ,CW orGEW when
evaluatingIl(m,n), Cl(m,n) orEl(m,n), respectively.

ICEl(m,n) = |ICE(TEvi , rm, lrm, srm)−

ICE(TEvi , rn, lrn, srn)|
(7)

where pair(rm, rn) is one of the pairs in̟ .
Then, each of the

∑4
l=1 Il,

∑4
l=1 Cl and

∑4
l=1 El is

normalised (denoted asN()). These normalised items are
summed up forming the texture feature mapT ,

T = γ1(N(

4
∑

l=1

Il)+N(

4
∑

l=1

Cl))+γ2N(

4
∑

l=1

El), (γ1+γ2 = 1)

(8)

Finally, we combine the texture feature mapT and the
geometry feature mapG forming the final saliencyS:

S = λ1N(T ) + λ2N(G), (λ1 + λ2 = 1) (9)

To produce proper texture feature mapsT for different
textured objects, we may manipulate the weights in Eq. 8.
If an object mainly relies on colour information stored at
individual texels modelling its details, e.g. the girl model in
Fig. 8(a), we should increase the weight ofγ1. In contrast, if
attribute changes play an important role of object modelling,
e.g. the vase model in Fig. 8(c) has a distinguished white
horse pattern, which stands out from its surroundings, we
should increaseγ2 instead. In our experiments,γ1 andγ2
are set with one of the values 0.25,0.5 or 0.75. On the other
hand, if the 3D mesh constructing an object does not possess
too much object details, we should increase the weight ofλ1

in Eq. 9, as texture map consequently plays a more important

role in object modelling. We set the values ofλ1 andλ2

similar to those used for settingγ1 andγ2.

Discussions:Setting the above weights is not straight-
forward. For example, the bunny model in Fig.1 is dom-
inated by its geometry features, such as ears, mouth and
thigh regions, while its texture map does not significantly
contribute to the final model representation, despite having
some birthmarks on its body. In this case,λ2 should be in-
creased. In contrast, it is popular for online games to gain
runtime performance by representing objects with simpli-
fied meshes but with good quality texture maps. Similarly,
due to model design, if object features are mainly modelled
by texture maps, e.g. the eyes of the girl model in Fig. 6,
it means features from the texture map is more important
than mesh features. In both cases, we have to setλ1 larger.
Alternatively, mesh and texture map importance may vary
according to user attention, such as light-of-sight or object-
user view distance. Therefore, generating weighting factors
automatically may be complicated. Itti et al. [15] had investi-
gated this problem and suggested using supervised learning
as an approach to combine saliency information properly.
However, it also found that achieving a good result in com-
bining saliency information is scenario or application depen-
dent. As we want to keep the generality of our method and a
good application performance, we therefore adopt a simple
weighted linear sum approach for combining saliency infor-
mation. In addition, introducing the above weights makes
our method capable in handling different types of textured
objects. Future work should be carried out to investigate an
automatic way setting the values of these weights.

Experiment outputs: Fig. 8 shows some experiment
outputs from our method. For each of the girl and the horse
models as shown in Figs. 8(a) and (b), starting from left
to right, we show the original textured model, the under-
neath mesh model, the generated geometry feature map, the
texture feature map and final saliency map. For each of the
vase and wolf models as shown in Figs. 8(c) and (d), we
show in the first row the original textured model, the under-
neath mesh model, the generated geometry feature map and
the final saliency map, respectively. The second row shows
the saliency maps for intensity feature, colour feature and
local gray entropy feature, respectively.

Fig. 8(a) shows that the head of the girl model is mod-
elled by a smooth 3D mesh, not possessing rich curvature
variance. If we simply consider the geometry feature map,
we cannot capture the eyes, nose and mouth parts as impor-
tant. Instead, our final visual saliency map, which incorpo-
rates texture features, can successfully identify these parts
as important. Similarly, for the horse model as in Fig. 8(b),
we have identified the black mane on its back and a white
region on its head as salient regions.

When we consider the vase model in Fig. 8(c), which
has a white horse pattern at the center over the vase’s surface
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(a) Girl

(b) Horse

(c) Vase

(d) Wolf

Fig. 8 Experiment results on four models. The figure shows the source textured model, its 3D mesh and different feature maps generated.

surrounding by a complex background, since the white horse
is not complex in signal, it cannot be detected as salient if
only intensity and colour features are considered as in ex-
isting methods. We additionally consider the local gray en-
tropy feature, successfully detecting such a salient region.
Our method is also successful in detecting the white fur
stripes on the back and at the left groin of the wolf model
in Fig. 8(d) as salient regions.

4 Saliency-Driven Model Simplification

Our method jointly considers features from 3D mesh and
texture map for data reduction. To simplify the mesh ge-
ometry, we extend the model simplification method [10] by
incorporating a visual saliency factor to determine the order
of edge collapse. To simplify the texture map, we introduce
a novel texture relaxation and regularisation method for re-
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ducing the texture map resolution, which is guided by our
saliency detection method.

4.1 Mesh Simplification

We modify QSlim [10], weighting the quadrics by mesh
saliency. Compute the weightW of each vertexVi as:

W (Vi) = 1.0 +N(ω(Vi))
ζ (10)

whereω(Vi) is calculated as:

ω(Vi) =

{

κS(Vi), if S(Vi) ≥ η,

S(Vi), if S(Vi) < η
(11)

S(Vi) is the saliency of each vertexVi. In order to pre-
serve vertices with larger saliency values throughout the pro-
cess,S(Vi) is amplified nonlinearly, and that whenS(Vi) of
some vertices exceed certain valuesη, they will be ampli-
fied by a factorκ. In addition, we can changeζ to adjust
the importance of geometry saliency in the final weight. The
weight W will increase with the geometry saliency value
ω(Vi). If the parametersκ, η and ζ are set larger, more
salient vertices can be preserved during simplification. Prac-
tically, their values cannot go very large, otherwise the base
mesh vertices cannot be preserved due to their low saliency
values. We empirically setη, ζ andκ to be 30th percentile
saliency, 3, and 20, respectively, for obtaining good results.
In addition,W (Vi) is normalised to within[0 . . . 1].

4.2 Texture Map Optimisation and Simplification

Texture map optimisation is a process to arrange more tex-
ture space holding visually important regions, allowing these
regions to preserve longer during texture map simplifica-
tion. The texture feature map introduced in the last section
determines such important regions. However, a texture map
can be distorted as its texels may be nonuniformly sampled
across the mesh surface due to parameterisation. We then
take texture map distortion into account, forming another
factor to determine region importance. We have also devel-
oped a novel Relaxation & regularisation algorithm, which
deforms a texture map allocating proper space to hold differ-
ent texture map regions based on their importance, avoiding
unexpected distortions as those appeared in [1].

4.2.1 Synthesis of Visual Importance Map

To evaluate the saliency valueρ of each texel, we inversely
project all mesh triangles onto the 2D texture map domain
and perform bilinear interpolation over the surface of each

projected triangle. The output is a gray image called Saliency
Texture Map (STM ) as shown in Fig. 9(a).

Texture deviation is measured by a3 × 2 Jacobian ma-
trix [35], which produces singular values representing the
amount of parameterisation distortions. When a singular value
is smaller than 1, it indicates the parameterisation of the cor-
responding texture domain part is contracted and its sam-
pling frequency being reduced. Here we denote a singular
value asφ. The smaller the value ofφ is, the greater the
sampling frequency should be arranged for a triangle in the
texture domain. We obtain the smallest singular value for
each corresponding triangle of a vertexv, averaging these
values to form the final singular value forv. We then ex-
ecute a bilinear interpolation operation over the surface of
each projected triangle in the texture map domain, obtain-
ing all singular values to form the Texture Distortion Map
(TDM ) as shown in Fig. 9(b).

Finally, we combine bothSTM andTDM , forming a
visual Importance Map (IM ) with normalised weights as
shown in Fig. 9(c). We can get the importance value of each
texel byσ(u, v) = N(ρ(u, v)) ·N(φ(u, v)). Fig. 9(c) shows
that our final visual Importance Map of the horse model can
recognise salient regions, such as the mouth, eyes, feet and
mane on the back of the horse. We also recognise the mouth,
nose and eyes of the human head model as visually impor-
tant as shown in Fig. 10(e).

4.2.2 Relaxation and regularisation

A relaxation algorithm was proposed in [1] to reorganise
texture image content by balancing the content frequency
distribution. Fig. 10 (a) shows visually important regions
are evenly distributed over the frequency map of the texture
image of the human head’s model, where texture parame-
terisation produced is supposed not to deform severely. We
attempted to perform relaxation following [1] with our im-
portance map (ref. Fig. 10(e)) describing the model saliency.
Unfortunately, as shown in Fig. 10(d), severe artifacts are
produced around the mouth part of the human head model,
because some regions of the texture parameterisation pro-
duced are deformed heavily after relaxation (ref. Fig. 10(b)),
leading unfavourable results.

To overcome this problem, we have developed an effec-
tive Relaxation & Regularisation algorithm, guiding by our
visual importance mapIM . Prior to relaxation, we divide
texture map into several regular grids and obtain a visual
importance value of each texel from theIM . As shown in
Fig. 10(e), our importance map can obtain far more accurate
salient regions, including the eyes, nose and mouth, than us-
ing the frequency map from [1] (ref. Fig. 10(a)). For relax-
ation, we shrink grid cells with visually unimportant texels
and stretch those cells with visually important texels, reserv-
ing more space to visually important regions. At this point,
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(a) STM (b) TDM (c) IM

Fig. 9 STM, TDM and IM for the horse texture map.

(a) Frequency map by [1] (b) Relaxed parameterisation
by [1]; Saliency is guided by (e)

(c) Relaxed texture map (d) Rendered model obtained

(e) Our importance map (f) Relaxed and regularised pa-
rameterisation

(g) Relaxed texture map (h) Our rendered model

Fig. 10 This figure shows the frequency and the importance map of a model produced by Balmelli’s method [1] and our method. It also shows the
produced texture map parameterisation and image from both methods. Rendered models indicated our method produces a better result.

grid cells holding visually extremely important or unimpor-
tant texels may still be heavily deformed. To avoid such a
problem, we introduce a geometrically motivated shape reg-
ularisation method. For regularisation, we treat the relaxed
rectangular grid cells as rigid areas and carry out an as-rigid-
as-possible deformation for the relaxed grid. As a result, the
deformed grid cells will be adjusted making the entire grid
more regular. As shown in Fig. 10 (f)-(h), grid cells after
Relaxation & Regularisation did not severely deform, pro-
ducing a better rendering result. We now describe the entire
process in detail.

1) Relaxation

In our relaxation method, each grid cell of a texture map
comprises some texels and four boundary vertices. The im-
portance valueσ for each boundary vertex can be obtained
from IM . To relax the texture image, we minimise the fol-
lowing objective function:

E =
∑

{i,j}∈e

WIij‖vi − vj‖
2 (12)

wherevi andvj are two boundary vertices of a grid cell,
forming an edgee. WIij is the weighting factor determined
by averaging the importance valueσ of the quads sharing
the edgee. While σ is constant, the energy function is a
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quadratic function of the grid cell vertex positions. Minimi-
sation of this energy function can be transformed into a clas-
sical least-squares minimization problem. In our implemen-
tation, the relaxation algorithm is a successive approxima-
tion algorithm, such that the new position of a vertexV n+1

i

is determined by adding a displacement∆(Vn)i to the cor-
responding current positionV n

i :

V n+1
i = V n

i +∆(Vn)i i = 1 . . .N (13)

∆(Vn)i =
∑

j∈ni

µij(vj−vi)−{
∑

j∈ni

µij |(vj−vi)|
2}

∇σ(vi)

2σ(vi)

(14)

whereµij = αjσ(vj)/
∑

j∈ni αjσ(vj).

2) As-Rigid-as-Possible regularisation
For regularisation, we define a nonlinear energy function

to preserve the rigidity of regular grid cells while approx-
imating the deformed grid cells with their original shapes
before relaxation. The algorithm is as follows:

Given a quadrilateral grid cellQG, the initial and de-
formed positions of its four vertices arevpi andvqi, where
i ∈ {1 . . . 4}. If the deformation of this grid cell is rigid,
the optimal rigid transformationA is found by matching all
initial vertex positionsvpi against the deformed vertex po-
sitionsvqi, such that:

vqi − vqic = A(vpi − vpic) (15)

wherevpic andvqic are the initial and deformed rotation cen-
ters. As we knew, the deformation could not be rigorously
rigid. We find an optimal rigid transformationA that fits Eq.
15 in a least-squares sense, i.e. we minimise:

E(QG) =
∑

i∈QG(i)

‖vqi − vqic −A(vpi − vpic)‖
2 (16)

In fact, this energy function is a shape matching problem. In
the 2D case,A has the analytical expression [36],

A =
1

µs

∑

i∈QG(i)

(v̂pi − v̂p⊥i )

(

−v̂qTi
−v̂q⊥T

i

)

(17)

where

µs =

√

(
∑

i

v̂qTi v̂pi)
2 + (

∑

i

v̂qTi v̂p
⊥
i )

2 (18)

with v̂pi = vpi − vpic andv̂qi = vqi − vqic , where⊥ is a
2D vector operator such that(x, y) ⊥= (−y, x).

3) Implementation The Relaxation and Regularisation al-
gorithm is implemented as follows:

– Initialisation : Take the texture map imageTI with size
i×j as a regular meshM and divideTI intom×n small
regular grid cellsG, where each covers(i× j)/(m× n)

texels. In our implementation, the size ofm × n is as-
signed to be1/16 of (i× j).

– Relaxation: Relax each grid cellG of meshM . For each
vertexvni of cellG, its relaxed positionvni is determined
by Eqs. 13-14 above. If the∆(Vn)i is not changed sig-
nificantly, we perform theMesh Adjustment operation,
otherwise we performregularisation.

– Regularisation: After getting the relaxed mesh, we mod-
ify the positions of boundary vertices of each grid cell
G with the as-rigid-as-possible regularisation method in
Eqs. 16-18. In addition, we take the regularised grid as
an input into the Relaxation phase.

– Mesh Adjustment: According to the alteration of grid
cell vertices, adjust the regular meshM forming an ir-
regular meshIrM .

– Texel Projection: Inversely project all texels covered by
IrM intoM through sampling. The sampling frequency
for each single grid cell is equal to(i× j)/(m× n). We
can then obtain the new relaxed texture map imageTI ′.
Note that we should record the mapping relation of the
source imageTI and the relaxed imageTI ′.

5 Experimental Results

We firstly compare the simplification results for 3D geom-
etry models without texture maps obtained by QEM[10],
mesh saliency [20] and our method. We then show the visual
quality for textured models when we simplify the geometry
and resize the texture image using three different texture re-
sizing methods: 1) applyQEM and direct texture image
resizing without texture space optimization (QEMRD), 2)
apply mesh saliency [20] and texture image resizing with
texture space optimization [1] (SALOPT ), and 3) our method.
To our knowledge, there is no existing work directly compa-
rable to our method due to its uniqueness, and that we alter-
natively compare our method with QEMRD and SALOPT,
which are based on combining a mesh and a texture map
simplification methods, in order to improve the fairness of
the comparison. Table 1 shows geometry face number and
texture image resolution for the original and the reduced ver-
sion of the testing models. Note that the vase, horse, girl, and
wolf are textured models while the last two, Armadillo and
Laurana, are purely mesh models without texture map.

5.1 Simplification for Mesh Model

Fig. 11 shows the simplification results of two mesh mod-
els obtained from: QEM [10], mesh saliency [20] and our
method. The Laurana and Armadillo models are simplified
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to contain only 3% and 1% of polygons of their original
models, respectively. The results shows that visually impor-
tant regions, such as armadillo’s mouth and knee, and Lau-
rana’s eyes, nose and mouth, are better preserved by our
method, while the results from QEM [10] are the worst. This
is because our method can successfully detect visually im-
portant regions as shown in Fig. 4. Our method also allow
adjustments to the saliency weighting factorκ as in Eq. 11,
making salient regions to preserve much longer than other
model parts during simplification.

5.2 Simplification for Textured Model

This part presents results of a visual quality comparison and
an objective measurement on the rendered outputs of some
reduced textured models produced byQEMRD,SALOPT
and our method.

5.2.1 Visual Quality Comparison

For the comparison, we present screenshots of the rendering
results of three different model reduction methods against
four textured models (ref. Fig. 12). We found that our new
method achieves better visual appearance for the textured
models than the other two methods. In the vase and wolf
models (ref. Fig. 12(a) and (d)), the white horse pattern at
the center of the vase model and the white furs on the back
of the wolf model are simple in colour. Since our salient
detection method takes into account the local entropy fea-
ture, we successfully detect such a pattern as visually im-
portant. Consequently, the boundary of this horse pattern
in vase model and the white furs on the back of the wolf
model are well preserved even after model simplification.
For the horse model (ref. Fig. 12(b)), we can also capture
the white hair on the head as a salient region. In addition,
for the horse, girl and wolf models (ref. Figs. 12(b)-(d)), our
method also obtains eyes more clearly thanQEMRD and
SALOPT , mainly because the curvature around the eyes of
the girl, horse and wolf models does not vary significantly.
SinceQEMRD andSALOPT rely only on geometry in-
formation to capture salient areas, they do not regard these
features as visually important and they will be easily lost
during model simplification.

For texture image reduction, when appliesQEMRD

andSALOPT , mapping errors appear on the legs of the
horse model (ref. Fig. 12(b)) if texture image is resized ag-
gressively, since such resizing will get rid of some texels.
The mapping error is more serious for the horse model since
the reduced versions of their corresponding texture images
are small. As shown in Table 1, the texture image’s size of
the reduced horse model is just32× 32 pixels.

Specifically, as shown at the leg of the horse model (within
the two red rectangles) (ref. Fig. 12 (b)),QEMRD induces

quite significant artifacts since it simply resizes textureim-
ages without considering any saliency information. In gen-
eral,SALOPT induces less error thanQEMRD because
it takes saliency into account. However, the artifacts still ap-
pear in the horse model whenSALOPT is applied. This
is because the texture optimization operation ofSALOPT

causes severe deformation to the texture image due to a re-
laxation process and that some texels are lost as mentioned
in section 4.2.2. In contrast, we have introduced a geometri-
cally motivated shape regularisation method to adjust the re-
sults obtained from our relaxation process, minimising such
a deformation problem. In addition, our method has reor-
ganised a texture map making more texture space to hold vi-
sually salient texels. This helps reduce possible texture dis-
tortion as well as allowing visually salient texels preserved
longer during model simplification.

Table 1 Geometry face numbers and texture image sizes (pixels) of
the original and reduced versions of the test models

Original Model Reduced Model Ratio(Reduced/Orignal)

Vase
33216 1800 5.4 %

1024×1024 64×64 0.4%

Horse
18363 1181 6.4%

512×512 32×32 0.4%

Girl
46368 3178 7.3%

1024×1024 64×64 0.4%

Wolf
29892 2856 7.9%

1024×1024 64×64 0.4%

Armadillo
346K 3445 1%

Laurana
129K 3870 3%

5.2.2 Objective Comparison

We adopt the peak signal-to-noise ratio (PSNR) and multi-
scale structural similarity index(MS − SSIM ) [42] to ob-
jectively measure the rendered quality of the textured mod-
els.PSNR is still the most commonly used metric for judg-
ing visual fidelity of images, butMS − SSIM , a kind of
statistical metric, is considered the most accurate [33]. To
provide a more comprehensive measurement, we take sev-
eral images of each model from different viewpoints, com-
putingPSNR andMS − SSIM values for all images and
averaging thesePSNR andMS−SSIM values to form a
single error measurement for each model.

Before computingPSNR, MS − SSIM andH , we
should assign the reference model and the reference image
set. In our experiment, we use the original model as the
reference model. The reference image set is captured from
this reference model. We carefully arrange the viewpoints,
such that an even coverage of image samples is collected.
We adopt the small rhombicuboctahedron [23] to evaluate
PSNR andMS − SSIM values.

We also measure the colour distribution (CD) of the tex-
ture image used in a model, where a higherCD value in-
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Fig. 11 Compare simplification results on the two models, Laurana and Armadillo (column 1), by running QEM [10], Lee’s [20] and our method
(columns 2 to 4, respectively).

dicates that the texture image comprises a wider range of
colours, i.e. more complicated. For example, the vase model
has a higherCD than the girl model, while theCD value is
low for the horse and raptor models. To compute theCD, in
the implementation, we scan through a whole texture image
and find out all the colours on it.

Table 2 shows the models produced by our method have
largerPSNR andMS − SSIM values than those gener-
ated by the other two methods, meaning that our method per-
forms better, as the rendered outputs of the simplified tex-
tured models produced by our method are very similar to the
reference image set. Experiment results for the horse model
show thatPSNR of our method is just 0.13 higher than
that ofSALOPT and much higher than that ofQEMRD.
Similarly, theMS−SSIM for our horse model is also just
0.0121% higher than that ofSALOPT . This is because the
CD value of the horse model is relatively low, since most of
the texture space is occupied by similar colours. As such a
texture image is not complicated in terms of either the colour
information or the pattern on the image surface, its features
are unlikely to be lost significantly, even after simplifica-
tion. Therefore, our method makes no significant improve-
ment overSALOPT in such a situation. UnlikeSALOPT ,
QEMRD does not consider saliency information of a tex-
ture image but simply reduces the texture image directly
with the bilinear filtering operation. Consequently, texels of
a texture image are unlikely to be retained after simplifica-
tion, making such a method difficult to obtain good results.
For the wolf model, we achieve similar experimental results
for bothPSNR andMS − SSIM .

6 Conclusion

This paper has presented a salient region detection method
to support textured model simplification. The method relies
on a unified visual saliency map that we have developed to
identify important model features, which are jointly formu-
lated by meshes, texture maps and the projection between
them, guiding how a model is to be simplified. We have
also improved the quality of local saliency identification by
a newly developed local filter window. In terms of model
simplification, we have introduced a novel relaxation and
regularisation algorithm to preserve important visual fea-
tures from a texture map longer during model simplifica-
tion. Results show that we can well preserve salient regions
even when models are extremely simplified. In the future,
we would like to take into account lighting and other sur-
face properties, such as normal map, for determining salient
regions of a textured model, since they also play important
roles in modelling the appearance of a 3D object in modern
graphics applications. We also plan to extend this saliency
detection method to identify visually important objects in
large-scale virtual environments.

Table 2 PSNR andMS − SSIM of three different methods

QEMRD SALOPT Our Method CD

Vase
PSNR 29.7443 32.2861 34.1341

101371
MS − SIMM (%) 0.8661 0.8870 0.9325

Horse
PSNR 38.6988 40.9702 41.1091

7894
MS − SIMM (%) 0.9010 0.9221 0.9342

Girl
PSNR 39.0627 41.5688 42.9627

99473
MS − SIMM (%) 0.9295 0.9584 0.9793

Wolf
PSNR 38.1002 39.7663 40.6375

16167
MS − SIMM (%) 0.9142 0.9761 0.9979
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(a) Vase

(b) Horse

(c) Girl

(d) Raptor

Fig. 12 Visual quality comparison among four different reduced textured models. For each model, screenshots obtained from theoriginal textured
model,QEMRD ,SALOPT and our method, are shown respectively.
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