89 research outputs found

    Overview of Key Technologies for Water-based Automatic Security Marking Platform

    Get PDF
    Water-based automatic security marking platform composed of multifunctional underwater robots and unmanned surface vessel has become the development trend and focus for exploring complex and dangerous waters,and its related technologies have flourished and gradually developed from single control to multi-platform collaborative direction in complex and dangerous waters to reduce casualties. This paper composes and analyzes the key technologies of the water-based automatic security marking platform based on the cable underwater robot and the unmanned surface vessel, describes the research and application status of the key technologies of the water-based automatic security marking platform from the aspects of the unmanned surface vessel, underwater robot and underwater multisensor information fusion, and outlooks the research direction and focus of the water automatic security inspection and marking platform

    Real-time simulator of collaborative and autonomous vehicles

    Get PDF
    Durant ces dernières décennies, l’apparition des systèmes d’aide à la conduite a essentiellement été favorisée par le développement des différentes technologies ainsi que par celui des outils mathématiques associés. Cela a profondément affecté les systèmes de transport et a donné naissance au domaine des systèmes de transport intelligents (STI). Nous assistons de nos jours au développement du marché des véhicules intelligents dotés de systèmes d’aide à la conduite et de moyens de communication inter-véhiculaire. Les véhicules et les infrastructures intelligents changeront le mode de conduite sur les routes. Ils pourront résoudre une grande partie des problèmes engendrés par le trafic routier comme les accidents, les embouteillages, la pollution, etc. Cependant, le bon fonctionnement et la fiabilité des nouvelles générations des systèmes de transport nécessitent une parfaite maitrise des différents processus de leur conception, en particulier en ce qui concerne les systèmes embarqués. Il est clair que l’identification et la correction des défauts des systèmes embarqués sont deux tâches primordiales à la fois pour la sauvegarde de la vie humaine, à la fois pour la préservation de l’intégrité des véhicules et des infrastructures urbaines. Pour ce faire, la simulation numérique en temps réel est la démarche la plus adéquate pour tester et valider les systèmes de conduite et les véhicules intelligents. Elle présente de nombreux avantages qui la rendent incontournable pour la conception des systèmes embarqués. Par conséquent, dans ce projet, nous présentons une nouvelle plateforme de simulation temps-réel des véhicules intelligents et autonomes en conduite collaborative. Le projet se base sur deux principaux composants. Le premier étant les produits d’OPAL-RT Technologies notamment le logiciel RT-LAB « en : Real Time LABoratory », l’application Orchestra et les machines de simulation dédiées à la simulation en temps réel et aux calculs parallèles, le second composant est Pro-SiVIC pour la simulation de la dynamique des véhicules, du comportement des capteurs embarqués et de l’infrastructure. Cette nouvelle plateforme (Pro-SiVIC/RT-LAB) permettra notamment de tester les systèmes embarqués (capteurs, actionneurs, algorithmes), ainsi que les moyens de communication inter-véhiculaire. Elle permettra aussi d’identifier et de corriger les problèmes et les erreurs logicielles, et enfin de valider les systèmes embarqués avant même le prototypage

    Acoustic underwater target tracking methods using autonomous vehicles

    Get PDF
    Marine ecological research related to the increasing importance which the fisheries sector has reached so far, new methods and tools to study the biological components of our oceans are needed. The capacity to measure different population and environmental parameters of marine species allows a greater knowledge of the human impact, improving exploitation strategies of these resources. For example, the displacement capacity and mobility patterns are crucial to obtain the required knowledge for a sustainable management of fisheries. However, underwater localisation is one of the main problems which must be addressed in subsea exploration, where no Global Positioning System (GPS) is available. In addition to the traditional underwater localisation systems, such as Long BaseLine (LBL) or Ultra-Short BaseLine (USBL), new methods have been developed to increase navigation performance, flexibility, and to reduce deployment costs. For example, the Range-Only and Single-Beacon (ROSB) is based on an autonomous vehicle which localises and tracks different underwater targets using slant range measurements conducted by acoustic modems. In a moving target tracking scenario, the ROSB target tracking method can be seen as a Hidden Markov Model (HMM) problem. Using Bayes' rule, the probability distribution function of the HMM states can be solved by using different filtering methods. Accordingly, this thesis presents different strategies to improve the ROSB localisation and tracking methods for static and moving targets. Determining the optimal parameters to minimize acoustic energy use and search time, and to maximize the localisation accuracy and precision, is therefore one of the discussed aspects of ROSB. Thus, we present and compare different methods under different scenarios, both evaluated in simulations and field tests. The main mathematical notation and performance of each algorithm are presented, where the best practice has been derived. From a methodology point of view, this work advances the understanding of accuracy that can be achieved by using ROSB target tracking methods with autonomous vehicles. Moreover, whereas most of the work conducted during the last years has been focused on target tracking using acoustic modems, here we also present a novel method called the Area-Only Target Tracking (AOTT). This method works with commercially available acoustic tags, thereby reducing the costs and complexity over other tracking systems. These tags do not have bidirectional communication capabilities, and therefore, the ROSB techniques are not applicable. However, this method can be used to track small targets such as jellyfish due to the reduced tag's size. The methodology behind the area-only technique is shown, and results from the first field tests conducted in Monterey Bay area, California, are also presented.La biologia marina junt amb la importància que ha adquirit el sector pesquer, fa que es requereixin noves eines per a l’estudi dels nostres oceans. La capacitat de mesurar diferents poblacions i paràmetres ambientals d’espècies marines permet millorar el coneixement de l’impacte que l’ésser humà té sobre elles, millorant-ne els mètodes d’explotació. Per exemple, la capacitat de desplaçament i els patrons de moviment són crucials per obtenir el coneixement necessari per a una explotació sostenible de les pescaries involucrades. No obstant, la localització submarina és un dels principals problemes que s’ha de resoldre en l’explotació dels recursos submarins, on el sistema de posició global (GPS) no es pot utilitzar. A part dels mètodes tradicionals de posicionament submarí, com per exemple el Long Base-Line (LBL) o el Ultra-Short Base-Line (USBL), nous mètodes han estat desenvolupats per tal de millorar la navegació, la flexibilitat, i per reduir els costos de desplegament. Per exemple, el Range-Only and Single-Beacon (ROSB) utilitza un vehicle autònom per a localitzar i seguir diferents objectius submarins mitjançant mesures de rang realitzades a partir de mòdems acústics. En un escenari on l’objectiu a seguir és mòbil, el mètode ROSB de seguiment pot ser vist com a un problema de Hidden Markov Model (HMM). Aleshores, utilitzant la regla de Bayes, la funció de distribució de probabilitat dels estats del HMM pot ser solucionat utilitzant diferents mètodes de filtratge. Per tant, s’estudien diferents estratègies per millorar el sistema de localització i seguiment basat en ROSB, tant per objectius estàtics com mòbils. En aquesta tesis, presentem i comparem diferents mètodes utilitzant diferents escenaris, els quals s’han avaluat tant en simulacions com en proves de camp reals. A més, es presenten les principals notacions matemàtiques de cada algoritme i les millors pràctiques a utilitzar. Per tant, des d’un punt de vista metodològic, aquest treball fa un pas endavant en el coneixement de l’exactitud que es pot assolir utilitzant els mètodes de localització i seguiment d’espècies mitjançant algoritmes ROSB i vehicles autònoms. A més a més, mentre molts dels treballs realitzant durant els últims anys es centren en l’ús de mòdems acústics per al seguiment d’objectius submarins, en aquesta tesis es presenta un innovador mètode anomenat Area-Only Target Tracking (AOTT). Aquest sistema utilitza petites etiquetes acústiques comercials (tag), la qual cosa, redueix el cost i la complexitat en comparació amb els altres mètodes. Addicionalment, gràcies a l’ús d’aquests tags de dimensions reduïdes, aquest sistema permet seguir espècies marines com les meduses. La metodologia utilitzada per el mètode AOTT es mostra en aquesta tesis, on també es presenten els primers experiments realitzats a la badia de Monterey a Califòrnia

    Autonomous Vehicles

    Get PDF
    This edited volume, Autonomous Vehicles, is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of vehicle autonomy. The book comprises nine chapters authored by various researchers and edited by an expert active in the field of study. All chapters are complete in itself but united under a common research study topic. This publication aims to provide a thorough overview of the latest research efforts by international authors, open new possible research paths for further novel developments, and to inspire the younger generations into pursuing relevant academic studies and professional careers within the autonomous vehicle field

    An evolutionary approach to optimising neural network predictors for passive sonar target tracking

    Get PDF
    Object tracking is important in autonomous robotics, military applications, financial time-series forecasting, and mobile systems. In order to correctly track through clutter, algorithms which predict the next value in a time series are essential. The competence of standard machine learning techniques to create bearing prediction estimates was examined. The results show that the classification based algorithms produce more accurate estimates than the state-of-the-art statistical models. Artificial Neural Networks (ANNs) and K-Nearest Neighbour were used, demonstrating that this technique is not specific to a single classifier. [Continues.

    Developing a Holonomic iROV as a Tool for Kelp Bed Mapping

    Get PDF

    Probablistic approaches for intelligent AUV localisation

    Get PDF
    This thesis studies the problem of intelligent localisation for an autonomous underwater vehicle (AUV). After an introduction about robot localisation and specific issues in the underwater domain, the thesis will focus on passive techniques for AUV localisation, highlighting experimental results and comparison among different techniques. Then, it will develop active techniques, which require intelligent decisions about the steps to undertake in order for the AUV to localise itself. The undertaken methodology consisted in three stages: theoretical analysis of the problem, tests with a simulation environment, integration in the robot architecture and field trials. The conclusions highlight applications and scenarios where the developed techniques have been successfully used or can be potentially used to enhance the results given by current techniques. The main contribution of this thesis is in the proposal of an active localisation module, which is able to determine the best set of action to be executed, in order to maximise the localisation results, in terms of time and efficiency

    Localization, Mapping and SLAM in Marine and Underwater Environments

    Get PDF
    The use of robots in marine and underwater applications is growing rapidly. These applications share the common requirement of modeling the environment and estimating the robots’ pose. Although there are several mapping, SLAM, target detection and localization methods, marine and underwater environments have several challenging characteristics, such as poor visibility, water currents, communication issues, sonar inaccuracies or unstructured environments, that have to be considered. The purpose of this Special Issue is to present the current research trends in the topics of underwater localization, mapping, SLAM, and target detection and localization. To this end, we have collected seven articles from leading researchers in the field, and present the different approaches and methods currently being investigated to improve the performance of underwater robots

    Fachzeitschrift für Hydrographie und Geoinformation

    Get PDF
    Second International Issu
    • …
    corecore