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Abstract

This thesis studies the problem of intelligent localisation for an autonomous un-

derwater vehicle (AUV). After an introduction about robot localisation and specific

issues in the underwater domain, the thesis will focus on passive techniques for AUV

localisation, highlighting experimental results and comparison among different tech-

niques. Then, it will develop active techniques, which require intelligent decisions

about the steps to undertake in order for the AUV to localise itself. The undertaken

methodology consisted in three stages: theoretical analysis of the problem, tests with

a simulation environment, integration in the robot architecture and field trials. The

conclusions highlight applications and scenarios where the developed techniques have

been successfully used or can be potentially used to enhance the results given by cur-

rent techniques. The main contribution of this thesis is in the proposal of an active

localisation module, which is able to determine the best set of action to be executed,

in order to maximise the localisation results, in terms of time and efficiency.
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Chapter 1
Introduction

Day after day, the number of operations at sea has significantly increased in the

last few years. This is related to many different fields, such as exploration, exploitation

of resources (e.g. oil underwater infrastructures), security (e.g. harbour protection)

and life sciences studies. Remotely Operated Vehicles (ROVs) are safely and routinely

used in the off-shore industry, for underwater operations. Although they represent

essential equipment for many tasks, limitations are high. They have no intelligence

as they are driven by a human pilot, connected through an umbilical cable. This

means a complete lack of autonomy and the need of costly infrastructures to operate

with those vehicles. Human pilot is needed for all the time the ROV is operating in

the field, and a support vessel is essential to deploy the vehicle. Additionally, due

to the cable constraints, the support vessel needs to keep its position during the full

operational time of the ROV. The operations are also limited by the connected cable.

For example underwater caves or under-ice locations remain inaccessible. Autonomous

Underwater Vehicles (AUVs) address these limitations as they do not need a human

pilot and the costly infrastructures required by the ROVs. They are able to perform

more complex missions, due to the absence of a connecting cable between the vehicle

and the mother ship and the on-board capability of data processing and decision

making. The development of the Intervention-AUVs (I-AUVs) concept led to vehicles

that can also interact with the structures and be used for autonomous inspection and

intervention.

A key area for intelligent vehicles is to correctly estimate the state of unmanned

systems in the operational environment, i.e. the capability of the robot to correctly

estimate its position and orientation. The problem is usually known as autonomous

localisation.

Localisation techniques are required for many underwater applications involving

autonomous and semi-autonomous robots. For both survey-class and intervention-

class AUVs, a localisation system is a prerequisite for almost every task. Two very im-
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portant topics are for example autonomous docking and navigation around/inspection

of underwater structures. For docking purposes, it is important to correctly estimate

the relative state of the vehicle with respect to the docking station. For inspection

purposes, understanding its own location allows the robot to correctly navigate around

underwater structures, both for inspection or intervention.

Being underwater intelligent vehicles, some of the research fields are similar to the

ones for ground or aerial intelligent vehicles. The peculiar features of the environment

are however different. Therefore different sensors and different strategies, according

to the constraints of the underwater world, need to be designed and used.

The aim of this thesis is therefore to analyse current work in the intelligent localisa-

tion area, and develop novel approaches to overcome some of the shortfalls identified.

1.1 Thesis objectives and contributions

The research carried out as part of this thesis addresses the following areas:

1. investigate current localisation techniques for autonomous underwater vehicles;

2. design and realise localisation systems for AUV, addressing some of the short-

comings in current techniques, in terms of computational efficiency and preci-

sion;

3. link the localisation system of an AUV to the overall planning system, in order

to get better localisation results.

Regarding 1, this thesis presents an up-to-date analysis of the state of the art,

mainly in Chapter 2 and Chapter 5. Some techniques are also explained in details

and implemented.

Regarding 2, the main contributions of this thesis are:

1. design, implementation and integration of a novel approach for underwater vehi-

cles, based on improved Particle Filters, with a comparison with state-of-the-art

techniques;

2. design and implementation of a mixed localisation system, using both Extended

Kalman Filters and Particle Filters (3.4);

3. design, implementation and integration of novel approaches in localisation with

respect to a structure (4).

Regarding 3, the main contributions of this thesis are:
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Figure 1.1: Thesis structure and relations among the Chapters.

1. design, implementation and integration of a novel framework for active locali-

sation, using a tree-based planner, to aid localisation (6.2);

2. extension of the framework to be more adaptable and possible to be integrated

in different systems (6.2).

Among the contributions presented in this thesis, the author considers the latter

block as the most important, as related to the autonomy of the underwater vehicle and

its decision-making capability, linked to the navigation and localisation capability. It

is also important to underline that all proposed algorithms have been implemented

and tested with real data, and in many cases fully integrated in the AUV architecture

and tested in field trials.

Figure 1.1 presents the organisation of the thesis. The first block is a presentation

of passive localisation techniques (Chapter 2), followed by a contribution in the field

(Chapter 3). The need of incorporating the control of the vehicle in the navigation

system has lead to the investigation of navigation around structures (Chapter 4).

Considering that this solution was purely reactive, an analysis of deliberative ac-

tive localisation systems is presented in Chapter 5, leading to a contribution part in

Chapter 6, where a novel framework for active localisation is presented.

The Introduction (current Chapter) develops then with a brief presentation of

the localisation problem, in terms of a probability formulation. Underwater sensors

are presented, with special attention to the sonars used in the thesis. The vehicles

employed and the different test sites and facilities are finally described.
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1.2 Localisation

The problem of self localising a robot consists in determining its pose in the

operating environment, given the observation history, the command history, and the

knowledge of the environment, as presented in [107]. Analytically, it can be expressed

as estimating the probability distribution:

p(xt|z0:t, u0:t,m) (1.1)

where xt is the robot position in the environment at time t, z0:t is the sensing history

z0, z1, ..., zt up to time t, u0:t is the command history u0, u1, ..., ut up to time t, and

m is the map of the environment. The observation history z0, z1, ..., zt can be also

referred to as exteroceptive sensing history, since it is relative to the exteroceptive

sensors. Such devices are able to acquire external (with respect to the robot) measures.

Two different approaches to localisation are analysed: position tracking and global

localisation. In the first one, the new position is computed, assuming to have a good

estimate of the previous one. Analytically, position tracking consists in estimating

the following distribution

p(xt|zt−1, ut−1, xt−1,m) (1.2)

while the global localisation can be expressed in terms of 1.1. Usually in position

tracking the posterior about robot poses is often represented using a Gaussian distri-

bution. This enables those approaches tracking only a single mode of the evaluated

posterior. If the wrong mode is chosen, the estimate is extremely unlikely to converge

to the correct solution. In contrast, global localisation approaches are able to deal

with ambiguous situations, by representing the posterior about robot poses through

a multi-modal distribution. This results in a greater robustness, but in an increased

computational complexity.

Without any external aid or without sensing the environment, the only possibility

for the robot is to use dead reckoning, which deals with state sensors only. They

can provide relative information (e.g. speed, acceleration, etc.) or absolute informa-

tion (e.g. heading, global position, etc.). The problem with these techniques is the

growing error over time of the estimated position with relative sensors, like Doppler

Velocity Log (DVL) and Inertial Navigation Systems (INS), while a global fix in po-

sition, through GPS is possible only on surface. The only possibility to improve the

navigation using only those kind of sensors is either to improve the sensor quality or

working operationally very close to surface.

An et al. demonstrated the fusion of differential GPS and INS at two feet below
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water surface [4]. Their work focused successfully on the fusion between the two

sensors and on noise removal.

Erol et al. proposed to use a GPS-aided localisation [28]. Considering that GPS

signal does not propagate in the water, the AUV is therefore forced to acquire the

signal at the surface. This approach is not very reliable since the vehicle has no access

to GPS signal during the submerged period and has to estimate its state with other

sensors. To handle this problem, the vehicle dives to a fixed depth and follows a

predefined trajectory, which is not suitable for navigation in complex environments,

and prevents the possibility of any in-mission real-time replanning.

Other navigation techniques need to be explored in order to perform operations

without the constraint of being close to surface and, at the same time, correcting the

error of techniques based on pure dead reckoning.

A commercially available solution is represented by acoustic aid. Acoustic tech-

niques are widely used to aid localisation. The three main methods of calculating a

position using acoustic are:

• Long Base-Line (LBL)

Determines beacon position by measuring the slant ranges from three or more

widely spaced transponders;

• Short Base-Line (SBL)

Determines beacon position by measuring the relative arrival times at three or

more vessel mounted hydrophones;

• Ultra Short Base-Line (USBL)

Determines beacon position by measuring the relative phases of the acoustic

signal received by closely spaced elements in a single hydrophone.

As outlined by Thomson in [106], the most precise of the three is the LBL system.

Both SBL and USBL requires a one-time calibration at installation. On the other

hand, LBL requires a calibration at each deployment. This is not however a mas-

sive drawback, as transponders for LBL can be deployed and remain active for long

time without the need of doing anything. USBL requires only one transducer so the

system complexity is lower compared to the other techniques. SBL requires multiple

hydrophones, but this leads to multiple solutions and improved accuracy over USBL.

In operational activities, LBL is generally used for the global localisation of the vehi-

cle, and the transponders delimit the mission area. SBL/USBL is generally used for

communication with a surface vessel. Figure 1.2 shows how USBL and LBL work for

subsea operation.

However it is not always possible to deploy transponders and, even when it is pos-

sible, for navigation close to subsea structures, appropriate filtering techniques need
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(a) USBL in action (b) LBL in action

Figure 1.2: USBL and LBL systems: the first one has a direct contact with the ship,
whilst the second one calculates its position using the deployed transponders.

to be used, as well as integration with sensor data. In the next section a brief intro-

duction on the challenges of underwater sensing and some details on the underwater

sensors employed are therefore presented.

1.3 Underwater Sensing

This section briefly presents the sensors used to acquire information about the

environment.

1.3.1 Vision

In the robotic domain the vision system is generally considered one of the main

sensors to acquire information about the world surrounding the robot. However, in

the field of underwater robotics, vision systems have many limitations. Such systems

work only in clear water. Water is about 800 times denser than air and this has

impact in optical sensors and in the penetration rate. Additionally, scattering and

refraction change the direction and the speed of light waves. The zone or depth at

which light penetrates in water allowing plants to exist is known as the Photic Zone.

The amount of light that penetrates the water depends on the amount of dissolved

minerals, silt and detritus material contained in it (scattering and absorption) [73].

During the penetration, however, a portion of light is absorbed and converted into

heat or used for photosynthesis. As light penetrates water, the colours are absorbed

at different depths, as shown in Table 1.1.

Irregular sea surfaces affect visibility in several ways. Variable refraction results in

a reduction of the contrast of a target. All these factors reduce camera visibility to a

range of tens of meters, in the best conditions. Figure 1.3 illustrates light propagation
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Figure 1.3: Light transmission and propagation according to different path length
and water types.

underwater in different water types [27].

1.3.2 Laser

Laser scanners or LIDARs are also very often used in land robotics. However, their

application for underwater scenarios is still limited. While there are a few approaches,

like for example [89], [113], [22], underwater laser scanners have a very limited range

and require very clear water for the light to propagate.

1.3.3 Sonar

Considering the limitations of usual sensors used in other robotic fields, in the

underwater domain there is the need of an instrument that is able to address the

Colour Wavelength Depth

Red 780 to 622 nm 5m
Orange 622 to 597 nm 15m
Yellow 597 to 577 nm 30m
Green 577 to 492 nm 60m
Blue 492 to 455 nm 75m

Table 1.1: Wavelenghts and depth penetration of different lights.
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Figure 1.4: Typical fan shaped beam as used in imaging sonars [1].

peculiarities of the water medium. Sonar is a system that uses transmitted and

reflected underwater sound waves to detect and locate submerged objects or measure

the distances underwater. It stands for SOund Navigation And Ranging. The first

rudimentary sonar system has been described by Leonardo Da Vinci, in 1490: it was

a simple tube used to detect vessels by placing an ear to the tube [29]. However the

use of a sonar system to locate underwater obstacles comes only in the second decade

of the 20th century, with the world first patent for an underwater echo ranging device

filed in 1912, a month after the sinking of the Titanic. Due to the conditions typical

of the underwater environment, SONAR remains the main sensor used to acquire

information about the environment.

Not being based on vision, a sonar system can have a range of several hundreds

of meters. There are two main classes of sonar: profiling and imaging. In Imaging

sonars, a fan-shaped sonar beam scans a given area, by either rotating or moving in a

straight line, through a series of small steps, as explained in Figure 1.4. The beam’s

movement through the water generates points that form a sonar image of the given

area.

In Profiling sonars, a narrow pencil-shaped sonar beam scans across the surface

of a given area generating a single profile line on the display monitor, like explained

in Figure 1.5. This line, consisting of a few thousand points, accurately describes the

cross-section of the targeted area. A key to the Profiling process is the selection of
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Figure 1.5: Typical pencil shaped beam as used in profiling sonars [1].

the echo returns for plotting. The sonar selects the echo returns, typically one or two

returns for each “shot” based on a given criterion for the echo return strength and

the minimum profiling range. The information gathered from the selection criteria

forms a data set containing the range and bearing figures.

For the development of this thesis, imaging sonars have been employed, although

they have often been treated as profilers, through appropriate signal and image pro-

cessing techniques.

Table 1.2 presents the different sonars used in this thesis with their features.

Sonar Frequency Field of view
Range Scanning/Multibeam Vehicle

Tritech SeaKing 325-650 kHz 0-360deg
300 m scanning PAIV AUV, Cartesian Robot

Tritech MiniKing 675 kHz 0-360deg
100 m scanning Ictineu AUV

Tritech Micron 700 kHz 0-360deg
75 m scanning Nessie IV AUV

Tritech Micron DST 325-650 kHz 0-360deg
300 m scanning Nessie V AUV

Tritech Gemini 720i 720 kHz 120deg
120 m multibeam Nessie V AUV

Table 1.2: The different sonar employed and their features.
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1.4 Navigation Sensors

This section will present the sensors that a vehicle can use to understand its own

motion.

1.4.1 Doppler Velocity Log

A Doppler Velocity Log (DVL) is a hydroacoustic sensor, which is useful for

bottom-tracking. Using the Doppler effect of sound waves reflected back from the

bottom, it is able to give an estimate of the velocity of the vehicle. In case the vehicle

is at an altitude where it is impossible to have bottom tracking, the same principle

of the DVL can be applied to try to estimate the movement of the vehicle in the

water column, using the sound waves scattered back from particles within the water

column. The position tracking of the vehicle is performed integrating over time the

velocity. This naturally leads to an increased error in the position estimate.

1.4.2 Inertial Measurement Unit

An inertial measurement unit, or IMU, is an electronic device that measures and

reports the vehicle’s acceleration in different axes. According to the type and the cost

involved, it can have a combination of accelerometers, gyroscopes and magnetometers.

From the acceleration data, in order to get the position, a double integration over time

is needed. Again, as for the DVL described in Section 1.4.1, the error is increasing

over time.

1.4.3 Compass

A compass is a sensor which provides the orientation of the vehicle with respect

to the magnetic north. Unlike the DVL and IMU, its error does not increase over

time, as each measure is independent and provide a value in global world coordinate.

The drawback however is that a compass can be easily influenced when navigating

around metallic structures. The error of a compass for AUV can arrive easily to a

few degrees, which can create serious problems for long transit.

1.4.4 Fibre Optic Gyroscope

A fibre optic gyroscope is a sensor that measures the orientation in one or multiple

axes, considering the sensed acceleration. It is very precise and its value needs to

be compensated for the Earth’s rotation. Unlike the compass, it cannot provide any

global value. It is therefore usually used in combination with a compass. The compass
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is used to get the first initial global value, and then it is updated consequently to the

gyroscope’s readings, therefore providing orientation values much more accurate than

using the compass only.

1.5 Underwater Vehicles

Unmanned underwater vehicles (UUV) are any vehicles that are able to operate

underwater without a human occupant. These vehicles may be divided into two

categories, Remotely operated underwater vehicles (ROVs), which are controlled by a

remote human operator, and Autonomous underwater vehicles (AUVs), which operate

independently of direct human input.

1.5.1 Remotely Operated Vehicles

Remotely Operated Vehicles - ROV - are human-piloted underwater vehicles and

routinely daily used in the oil&gas industry. The main features are:

• the vehicle is not autonomous, neither has any cognition;

• the vehicle is connected through an umbilical cable, to receive power and for

data exchange, including control commands;

• the commands sent by the human pilot are low-level. No high-level tasks are

given to the vehicle.

External power allows use of powerful lights. Additionally, because of the possibil-

ity of data-transfer given by the cable, the pilot can receive lots of data real-time. The

use of ROVs is however very expensive, as they require a support vessel and a human

pilot for the full mission time. Other limitations come from the nature of the cable

itself, making the exploration of complex structures very difficult, if not impossible.

Under-ice missions are another example where ROVs are unsuitable.

1.5.2 Autonomous Underwater Vehicles

Autonomous Underwater Vehicles - AUVs - aim to address the shortcomings in

the use of the ROVs, moving control from the pilot to the vehicle itself. An increased

interest both from industry and from academia goes towards more reliable and more

intelligent vehicles, aiming both at reducing operational cost and at increasing the

range of different missions that can be successfully performed underwater. Without

the umbilical cable, the vehicles need to have energy storage and computation capa-

bilities. A consequent change deals with the shape of the robot: whilst ROVs are
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often ad hoc used for industrial manipulation tasks, and therefore not particularly

hydrodynamic, AUVs are generally used for long explorations, thus often designed to

be torpedo-shaped.

Applications range from biological survey, to oceanography, to military applica-

tions. The robots became increasingly more reliable and equipped with better pay-

load.

1.5.3 Intervention Autonomous Underwater Vehicles

The increased progress in autonomous underwater vehicles leads to the creation of

a new field of vehicles, the so-called Intervention/Inspection-Autonomous Underwater

Vehicles - I-AUVs. I-AUVs - sometimes called Intelligent ROVs aims to perform tasks

currently performed by ROVs only, like close inspection of underwater structure and

intervention. This thesis focuses both on AUVs and I-AUVs, positioning itself on the

problem on underwater localisation for autonomous inspection.

1.6 Platforms

In this section, all the robotic platforms used for the development of this thesis

will be briefly described.

1.6.1 Cartesian Robot

The Cartesian Robot (Figure 1.6) is an important asset to gather sensor data at

different and controlled distances. It is actuated with a DMC-1380 motion controller,

actuating three degrees of freedom, alongside the three geometrical axes of the pool.

Sensors can be easily plugged in, for data gathering in controlled conditions. It is

fully integrated with the vehicles’ software architecture, based on ROS. The expected

precision is about 1 cm. The operational capability spans out over the full dimension

of the OSL tank, being it 3x4m and 2m depth. A pan & tilt unit can be mounted on

the end effector increasing therefore the degrees of freedom of the sensors attached.

Details on the use of this vehicle are in Chapter 3.

1.6.2 Nessie IV AUV

The vehicle is made up of two 22cm diameter cylindrical aluminium hulls sur-

rounded by a Delrin polymer frame. This cage serves as a mounting point for sensors,

protects the contained devices from impact, and keeps the thrusters safely out of the

way of human divers. One hull, dubbed the motor hull, houses batteries and H-bridge
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Figure 1.6: The Cartesian Robot in the OSL pool. Equipped with a DMC-1380 motor
controller, it is actuated on three degrees of freedom. Sensors can be easily plugged
in, for data gathering in controlled conditions.
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controllers to drive the thrusters. The other, the PC hull, contains the embedded

computers, interfacing and sensing electronics and the batteries to power these. Sep-

arating the power supplies and electronics in this way provides a degree of isolation

from noise and power fluctuation caused by the H-bridges. It also ensures that even

if the thrusters drain their batteries to a low level, the computers remain operational

and control is still possible. A photograph of the submerged vehicle can be seen in

Figure 1.7. The computers used in the vehicle are industrial MSM800 PC104 embed-

ded PCs. It has a AMD Geode LX800 500 MHz Processor, 512 mb of RAM, 4 USB

2.0 ports, 2 serial ports and one 100 Mbit Ethernet port. Two of these embedded

PCs are used in the vehicle; one for low level sensing and control, and another for

video capture and processing. These are connected via Ethernet. This split ensures

that that primary control PC is never starved of resources by the image processing

algorithms. To make the computer more robust, flash based solid-state hard disks

are used instead of standard magnetic disks. These further reduce the power require-

ments of the system and make it more robust to bumps and jerks as are expected in a

mobile vehicle. Each of the vehicle’s hulls contains two 10 cell Nickel- Metal-Hydride

(NiMh) battery packs connected in series to provide a nominal 24 volts. The Tritech

PA500 is used to measure the distance between the vehicle and the floor of the tank

or the seabed. This has a maximum operating range of 50 metres. A Keller Series

33X depth sensor is used to measure the distance between the vehicle and the water

surface. For a flat environment, this sensor gives an information very similar to the

altimeter, but its precision close to the bottom is higher. A TCM 3 compass measures

the vehicle’s heading with a precision of 0.5 degrees. It is able to compensate for the

vehicle’s tilt up to 80 degrees.

The vehicle is fitted with four 50 metre rated underwater colour cameras. They

interface to the second PC104 with a PC104 form-factor video capture board. This can

capture up to 25 frames per second, at 24 bit colour depth. Two cameras are arranged

in pairs, looking forward, for stereoscopic vision. The downward facing camera can

be used for ground target detection, bottom mapping, feature extraction, while the

upward facing camera can be used for ship hull inspection, cave or and under-ice

inspections. An extremely compact Micron DST Sonar is mounted on the vehicle

for obstacle avoidance and mapping. Vertical beamwidth is 35 deg and horizontal

beamwidth is 3 deg. Details on the use of this vehicle are in Chapter 3, 4 6.

1.6.3 Nessie V AUV

Nessie V has been developed as a multi-functional open platform capable of ac-

commodating different sets of sensors, and to perform a large variety of missions, such

as the aforementioned types.
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Figure 1.7: Nessie IV AUV. Fully actuated on four degrees of freedom, it mounts a
Tritech Micron sonar, used for localisation.

In terms of size, shape and manoeuvrability, Nessie V is a compact autonomous

underwater vehicle that combines a torpedo shape for fast transit with hover capability

through the use of six SeaBotix thrusters. The maximum diameter is 30 cm long

and the length is 175 cm. A range of missions from wide area surveys to the close

inspection of objects of interest can be easily performed. Nessie V is equipped with

a 2.25 kW power source comprised of four Lithium polymer battery packs, which

provides approximately 12 hours of endurance when performing missions such as a

pipe or a wall inspection. Station keeping in low tidal current areas can be maintained

for several days. The sensors currently on-board include a forward looking Tritech

Gemini sonar, a rotating Tritech Micron sonar, four colour underwater cameras, two

omnidirectional hydrophones, a PNI TCM 6 compass, a KVH DSP-3000 fibre optic

gyroscope, a Keller Series 33X depth sensor, a GPS, an acoustic WHOI Micromodem,

and a Teledyne Explorer PA DVL. Nessie V is equipped with two industrial PC104

PCs chosen for their small size and low power consumption. They each have a 1.66

GHz Atom Processor, 1 GB of RAM, four USB 2.0 ports, four serial ports, and one

gigabit Ethernet port. One PC has an on-board GPS receiver. The two PCs are

connected via Ethernet, one being used for sensing and control, and the other for

video capture and processing. Flash based solid-state hard disks are used in lieu of

standard magnetic hard disks, for robustness. Details on the use of this vehicle are

in Chapter 4 and 6.
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Figure 1.8: Nessie V AUV. Fully actuated on five degrees of freedom, it mounts a
Tritech Gemini sonar, used for localisation.

1.6.4 Ictineu AUV

Ictineu AUV, in Figure 1.9 was developed by the University of Girona. Tailored

around a typical open frame design, the vehicle is composed by two cylindrical pres-

sure vessels made of aluminium, to host power and computer modules while a smaller

one made of Delrin contains a Motion Reference Unit (MRU). It has four fully actu-

ated degrees of freedom. The robot chassis is made of Delrin, an engineering plastic

material which is lightweight, durable and resistant to liquids. Among the mounted

sensors, the robot is equipped with a SonTek Argonaut Doppler Velocity Log (DVL)

specially designed for applications which measure ocean currents, vehicle speed over

ground and as an altimeter using its 3 acoustic beams. A pressure sensor provides wa-

ter column pressure measurements and a Xsens MTi low cost miniature Attitude and

Heading Reference System (AHRS) provides a 3D orientation (attitude and heading),

3D rate of turn as well as 3D acceleration measurements. The robot is equipped both

with vision sensors (two cameras) and an acoustic sensor (Tritech Miniking Mechan-

ically Scanned Imaging Sonar - MSIS), designed for use in underwater applications

such as obstacle avoidance and target recognition. Dataset from a marina were gath-

ered by Ictineu and used to test localisation algorithms described in Chapter 3. Those

data export readings from the Inertial Measurement Unit (IMU), Doppler Velocity

Log (DVL), and Tritech Miniking Imaging Sonar.

1.6.5 PAIV AUV

The Prototype Autonomous Inspection Vehicle (PAIV) is an underwater vehicle

resulted from the joint efforts of SeeByte Ltd. - a spin-off company of the Ocean
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Figure 1.9: Ictineu AUV. Fully actuated on four degrees of freedom, it mounts a
Tritech Miniking sonar, used for localisation.

Systems Lab. - and Subsea7, a large subsea engineering and construction company.

The vehicle is rated 1,000 m depth (with easy upgrade up to 2,000), and it represents

a prototype autonomous inspection vehicle. This vehicle represents the commercial

industrial interest for a new kind of skilled AUV, who are capable of carrying out

complex tasks, and not just preplanned surveys. With a weight of 350 Kg, and

equipped with the best available sensors, it is considered in the industrial world as

an innovative, light intelligent vehicle. It mounts a fibre optic gyroscope, depth and

altimeter sensors, two cameras, a Tritech SeaKing sonar and can host a BlueView

sonar according to the operational needs. Details on the use of this vehicle are in

Chapter 7.

1.7 Test sites

In this section, all the test sites used for the development of this thesis will be

briefly described.

1.7.1 OSL Tank

The OSL tank is a 3x4 m tank, 2 m deep. Located in the Ocean Systems Labora-

tory, it represents a comfortable and easy-to-use facility for fast in-water debugging

and validation. Equipped with a Cartesian robot, described in 1.6.1 and with a man-

ual crane, it is usually the first site used to test algorithms as well as basic hardware

and software checks for new vehicles built in the laboratory. It has been the first test

site for the algorithms described in this thesis, in Chapter 2, 3 and 6.
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Figure 1.10: PAIV AUV. Fully actuated on four degrees of freedom, it mounts a
Tritech SeaKing sonar, used for localisation.
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Figure 1.11: OSL Tank. Used for several localisation tests, both with the Cartesian
robot and with Nessie AUV

1.7.2 HWU Wave Tank

The HWU wave tank is a 10x12 m tank, 2.5 m deep. Located in the School of Built

Environment of Heriot-Watt University, it provides a reasonably sized environment for

more complex testing, which would be impossible to be carried out in the OSL small

tank. It has a suspended beach for wave absorption on the long size, which is half a

meter deep. This reduces the surface dimensions of the tank to 8.5x12 m. Equipped

with an automatic crane, and with a bridge which allows easy accessibility to the

centre of the tank, it represents a very valuable in site test site, even for complex

tasks and for big vehicles. Additionally it is possible to start waves with different

intensity and frequency, a feature that has been often exploited to test the vehicles’

ability to overcome the disturbances given by currents and waves. It has been used

to test the algorithms described in this thesis, both in Chapter 3, 4 and 6.

1.7.3 Subsea7 Test Tank

The Subsea7 Test Tank is a circular tank, with a diameter of 10 m, 8 m deep. It is

located in Aberdeen, at Subsea7 headquarters. It has been used for navigation around

structure and autonomous localisation, as presented in Section 7.1.2. Surface and

underwater cameras are linked to a control room, where it is possible to comfortably

operate.
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Figure 1.12: HWU Wave Tank. Used to tests several localisation algorithms, it can
produce waves at different frequences and amplitudes.

1.7.4 Somerton Diving Pool

The JEM Divers Pool, located in Somerton, is a 12x7 m, with a gradient descent

from 1 to 2 m deep, and a final part 5 m deep. It has been the testing facility in

preparation for the Student Autonomous Underwater Challenge - Europe (SAUC-E)

2009. The localisation algorithm described in Chapter 3 has been tested there, as

outlined in Section 7.1.1.

1.7.5 QinetiQ Ocean Basin Tank

The QinetiQ Ocean Basin Tank is the the biggest covered water space in Europe,

used for ship testing. It is 122m long, 61m wide and 5.5m deep, with a portion

equipped for wave production. It hosted the Student Autonomous Underwater Chal-

lenge - Europe (SAUC-E) 2009. The localisation algorithm described in Chapter 3

has been tested there, as outlined in Section 7.1.1.

1.7.6 CMRE waterfront

The Centre for Maritime Research and Experimentation of NATO, La Spezia,

formerly NURC - NATO Underwater Research Centre regularly host the SAUC-E
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Figure 1.13: Somerton Diving Pool. Used to test a localisation algorithm, in prepa-
ration for the competition SAUC-E 2009.

Figure 1.14: QinetiQ Ocean Basin Tank, used during the SAUC-E competition 2009.
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Figure 1.15: The Centre for Maritime Research and Experimentation of NATO, La
Spezia, used for the SAUC-E competition 2010, when localisation with respect to a
structure has been tested.

competition. It hosted the Student Autonomous Underwater Challenge - Europe

(SAUC-E) from 2010. The structure inspection algorithms described in 4 have been

tested there, as outlined also in Section 7.1.1.

1.8 Conclusions

This Chapter has outlined the research objectives and the contribution of this

thesis. Then it presented the problem of localisation, formalised with a probabilistic

approach. Following that, underwater sensors were outlined, considering both sensors

to perceive the environment, and sensors to estimate the motion. Both types will be

used in the thesis for localisation. Finally, the different platforms employed as well as

the test sites were described. The rest of thesis is organised is the following way:

- Chapter 2 will present the relevant literature for passive localisation approaches, the

mathematical background behind Bayesian filtering and some implementations and

first tests of standard techniques;

- Chapter 3 will highlight the proposed approaches, and will present the experimental

results and comparison with other techniques;

- Chapter 4 will present the topic of navigation around structures, comparing different

approaches and showing experimental results;

- Chapter 5 will present the relevant literature for active localisation approaches, high-

lighting shortfalls of current techniques;
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- Chapter 6 will present a novel approach to active localisation, with a full framework

proposal to address the topic, presenting experimental results and comparison with

other techniques;

- Chapter 7 will present some applications of the presented algorithms, and discuss

the presented results, outlining future research paths, which can be undertaken based

on the results of this thesis.
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Chapter 2
Passive techniques for AUV localisation

2.1 Introduction

The problem of self localising a robot consists in determining its pose in the

operating environment, given the observation history, the command history, and the

knowledge of the environment. Analytically, it can be expressed as estimating the

probability distribution:

p(xt|z0:t, u0:t,m) (2.1)

where xt is the robot position in the environment at time t, z0:t is the sensing history

z0, z1, ..., zt up to time t and u0:t is the command history u0, u1, ..., ut up to time t.

This chapter focuses on passive techniques for localisation. By the word passive,

the author means without the vehicle control in the loop. It means that the robot

tries its best to estimate its state, given the sensing history and the command history.

There is no decision making involved, in order to facilitate the localisation process.

The module takes the values from the sensors input and gives the best state estimate

as output. It is to be noted that some of the related work cited in section 2.2 presents

algorithms, which employ active techniques. This is due to the different semantic

attributed to the adjectives passive and active. All the work cited in this chapter

comply with the above definition of passive: no decision making involved. This am-

biguity derives from the subjects to which the adjectives are referred. In the case

of this thesis, passive and active are related to the vehicle. As long as there is no

decision making, the vehicle is passive, whilst when the control is in the loop and a

specific decision related to localisation is made, the vehicle is active. In other works,

the adjectives are referred to devices placed in the environment to facilitate the task

of localisation. Therefore, according to those authors, a passive localisation approach

deals with passive devices - for example a cat’s eye acoustic buoy, whist an active

localisation approach deals with active devices - for example an active pinger. Those
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approach are both classified as passive for the scope of this thesis and therefore cited

in this Chapter and not in Chapter 5.

The usual sensor used in the underwater world to sense the environment is the

sonar, as outlined in section 1.3.3. In addition to sonar values, however, the local-

isation module could have more information from other sensors, such as compass,

altimeter, depth sensor. Those information help to reduce the state space, thus im-

pacting on the efficiency of the algorithms. Additionally, Inertial Measurement Unit

(IMU) and Doppler Velocity Log (DVL) can provide estimates of the vehicle motion,

giving better estimates than a hydrodynamic model, which would be used with the

command history.

This Chapter is organised as follow:

• section 2.2 will present the related work in the field. Several approaches to the

localisation problem are presented, with a particular emphasis on the use of

filtering techniques and in particular to particle filters;

• section 2.3 will present the Bayesian mathematical background behind this the-

sis;

• section 2.4 will present the standard Extended Kalman Filter (EKF) algorithm

applied for AUV localisation;

• section 2.5 will present some scan matching approaches for AUV localisation.

• section 2.6 will present the Set Membership approach for AUV localisation

Finally, conclusions will summarise the main techniques presented, will present the

shortfalls of the presented approaches and will outline the open questions addressed

in the following Chapter.
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2.2 Related Work

This section will review current approaches in underwater localisation, with a focus

on filtering techniques.

2.2.1 Acoustic communication

The earliest method using transponders, put forward by Smith & Cheeseman,

uses an Extended Kalman Filter (EKF) to estimate jointly the state of the AUV and

the position of the transponders [101]. This approach has been used with success in

various cases, for example by Kantor & Singh [52], Kurth et al. [62], Djugash et al.

[25], but the filter suffers from linearisation of non-linear models which can quickly

lead to divergence as the covariance estimates become unreliable. In addition, the

algorithmic complexity of the EKF algorithm grows quadratically with the number of

beacons (in the two dimensional case). For example, the prediction step of the EKF

only affects the state of the AUV but involves the computation of the Jacobian of the

motion model which also takes into account the transponders.

Several methods have been put forward to reduce the complexity of the EKF

algorithm, such as the linear state augmentation principle or the partitioned update

approach both presented by Bailey & Durrant-Whyte in [8]. These methods have a

linear complexity with the number of beacons.

Scherbatywk analysed the use of a single transponder in a LBL configuration.

In addition to successfully demonstrate his approach in simulation, he also pointed

out the main disadvantages of this technique: transponders installation, calibration,

recovery and possible losses [97].

The theory behind a single beacon LBL approach is well described in the work of

Webster et al.. The work presented also extends the use of this technique to multiple

vehicles. Synchronous clocks on the reference beacon and the vehicles enable the mea-

surement of one-way travel-times, whereby the time of launch of the acoustic signal

at the reference beacon is encoded in the acoustic broadcast and the time of arrival of

the broadcast is measured by each vehicle. The decentralised navigation algorithm,

running independently on each vehicle, is implemented using the information form of

the Extended Kalman Filter [115].

Other relevant work using a single beacon for localisation has been presented by

Ferreira et al. in [32]. To determine its horizontal position, the AUV fuses distances

to the single beacon with dead reckoning data, heading and longitudinal velocity.

The authors implemented both a Particle Filter and an Extended Kalman Filter

and compared the two techniques in terms of performances. The merged solution

among Particle Filters and Extended Kalman Filter is however a subset of the solution
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proposed in this thesis in section 3.4 and presented in [72].

Willumsen et al. additionally showed the feasibility for the AUV to locate itself,

with the aid on a single transponder, analysing the efficiency of different approaches,

together with quality and quantity of available information [119]. Both active (range)

and passive (differential range) measurements achieve a good accuracy. As expected,

using both range and differential range gives a quicker convergence in position esti-

mate. All these aids however, need time and movement to obtain good navigation.

For SBL, Storkensen et al. proposed to use a support ship equipped with a high-

frequency directional emitter able to accurately determine the AUV’s position with

respect to the mother ship. This approach requires, however, the support of a ship

[103], [111]. Furthermore, it cannot be used in many situations as it requires the ship

and the vehicle being close to each other. This approach is therefore not suitable for

navigation around deep off-shore structures.

Watanabe et al. also studied the use of SBL and SSBL (Super Short Base-Line,

similar to USBL), analysing its multiple advantages to solve the AUV localisation

problem [114], linked to data transmission. It is notable that the proposed approach

has been validated at a depth of 1.200m, with the ROV Kaiko.

The French company IXSEA presented a few commercial solutions to fuse USBL

with inertial technologies [117]. The GAPS positioning system takes advantage of

rigid mounting of INS and USBL, careful synchronising the data coming from an

innovative 3D antenna. The coupling of RAMSES and PHINS systems uses not

only of ranges and inertial sensors, but also SLAM techniques adapted to subsea

positioning needs. Although the article is very commercial-oriented, the presented

results for AUV localisation are promising.

Ura and Kim also analyse the fusion among USBL and INS techniques. After

the vehicle has reached the maximum altitude for the DVL to be able to track the

seabed, the position error is calculated as the difference between SSBL position and

corresponding position in INS [109]. The proposed approach has been validated on

a in-water mission at Kuroshima Knoll, showing great advantages for the navigation

system.

The idea of underwater transponders can evolve into the idea of a proper under-

water station, which not only helps the AUV to localise itself, but it can provide tools

for recharging and data exchange.The work proposed by Maki et al. deals with AUV

localisation with respect to a seafloor station [69]. The key idea is acoustic mutual

orientation and communication. The AUV firstly sends a signal to the station and

then receives the reply with a hydrophone array to estimate direction and distance

to the station. On the other hand, the station estimates the direction to the AUV by

receiving the signal with a hydrophone array, and sends the information back to the
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Figure 2.1: Use of freely floating acoustic buoys equipped with GPS connection,
communicating with the AUV.

AUV. Then, the AUV can estimate its position and orientation at the station-fixed

coordinates without drifts. Furthermore, these measurements are fused with other

on-board sensors such as DVL, angular rate gyroscope and depth sensor by particle

filter, a probabilistic approach, in order to realise stable positioning robust against

sensor noises and lack of measurements.

A different approach on acoustic sensor fusion for AUV navigation was performed

by Rigaut et al., showing the advantages of acoustic data fusion, versus a dead reck-

oning strategy [95]. The matching of the absolute and relative reckoning modules

permits to compute a new hypothesis, and to reset the relative estimation in an

asynchronous way with the help of the operator.

2.2.2 Communication with surface vehicles/buoys

Having the possibility to use the GPS would be however very beneficial, so some

other approaches have been explored, arriving to the so-called Surface-LBL. This ap-

proach uses third entities on the surface, and the submerged vehicle acoustically com-

municate with the surface. Caiti et al. developed an acoustic localisation technique

using freely floating acoustic buoys equipped with GPS connection [15]. This system

requires the buoys to emit a ping at regular time intervals with the coded information

of its GPS position. The vehicle can locate itself using time-of-flight measurements

of acoustic pings from each buoy. Figure 2.1 shows the proposed framework. The

limitations of this approach are the necessity to deploy enough floating buoys in the

mission area, the need to collect them after the end of the mission and a non efficient

communication scheme, as the buoys periodically send acoustic messages. Limitations

28



for deep water missions are also evident.

A similar approach is presented by Yang et al., using three surface buoys or vessels

[120]. Acoustic ranges are calculated using the equivalent sound speed profile and

travel times of sound rays. The linear distances can be obtained through ray tracing

and the position thus calculated through geometric calculation. Simulation results

have shown an accuracy of 20cm in the area covered by the three transducers at a

depth of 500m.

Yang et al. also proposed a sonar-based approach for passive localisation of an

AUV [121]. It is however to be noted that the term passive is used with a different

meaning than the one presented in this thesis, and in particular in this chapter. Yang

refers with passive localisation to techniques where passive receivers listen for a signal

broadcasted by the AUV and then infer its position. Once again, in the scope of

this thesis passive localisation means that the vehicle has no way to actively link the

control loop and the robot actions with the localisation process, which only processes

the data produced by the sensors.

2.2.3 Terrain-based navigation

Terrain-based navigation is another very important area for AUV localisation.

The estimated position is not calculated trying to find an acoustic fix either with

transponders or with floating buoys, but it is relative to the terrain. The AUV

measures the topography of the bottom using on-board sensors, and correlates those

measurements with an existing bathymetry map in order to estimate its position

on this map during the mission, as shown in Figure 2.2. The same concept can be

extended for navigation around underwater structures. The underlying idea is the use

of sensors to perceive the environment and to match a previously known map, being

it a bathymetry map or a map of the environment with structures and objects.

This produces a non-trivial advantage in terms of operational cost (including time

and money) avoided for the deployment of the aiding devices. Terrain-based naviga-

tion has been widely used for decades in aircraft and cruising missiles. An example

is in the early work of Hostetler and Andreas, where they explored the application of

non-linear Kalman filtering techniques to radar terrain-based navigation [41].

One of the first works in the underwater domain is presented by Newman and

Durrant-Whyte [81]. Analysing the nature of the sonar beam, they successfully esti-

mated the ocean floor gradient, as a world feature. Applying a simple target extraction

algorithm, the AUV was able to identify and rely on natural features for navigation.

Nakatani et al. proposed a terrain-based approach using a Particle Filter for

stochastic estimation [110]. The approach has been successfully validated through

sea experiments and the work pointed the way to active techniques, which are the
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Figure 2.2: Terrain-based navigation: the AUV measures the topography of the bot-
tom and estimates its location in the map.

core of Chapter 5 and 6.

The work presented by Sarma represents an important contribution in the field of

map-matching based self-localisation. The AUV is equipped with a multi-beam high

frequency sonar and matches the received data from the sensor with a bathymetry

map, a priori known. The estimated position is computed using the Maximum Like-

lihood Estimator, widely used for land robotics, for example in [85], [104], [68], [82],

[42].

Carreno et al. presents several works using Particle Filters for terrain-based Navi-

gation [18]. Karlsson et al. proposed a particle filter approach for terrain-based AUV

navigation, based on a SIR-Particle Filter. An INS was used for measuring the robot

displacement and an echo sounder was employed for measuring the altitude. The

focus was however more on the mapping problem than on the localisation one [53].

An analysis of particle filters for terrain-based navigation in presence of tides

is given by Anonsen & Hallingstad, who also compared standard Monte Carlo ap-

proaches with a Bayesian Point-Mass Filter (PMF) [5]. Although results of PMF

were slightly better, the computational needs explode when going into an estimation

of a 3D state, whereas it still remains tractable for particle filters.

Silver et al. presented a particle filter merged with scan matching techniques [99].

They use a particle filter and an approximation of the likelihood of sensor readings,

based on nearest neighbour distances, to approximate the probability distribution

over possible poses. The initial robot location is not considered as an issue in this

work, as it focuses mainly on trajectory tracking and mapping.
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The choice of sensors always play a major role, due to limited payload capability

of AUVs. As many survey-class AUV are equipped with a sidescan sonar, to acquire

images of the seabed, Zerr et al. investigated the use of the same sensor data to

improve navigation [124]. It is assumed that the AUV surveys a known area, so a pre-

vious map of the environment is known and available for pre-processing and feature

extraction. Matching the results of real time payload data processing with a knowl-

edge database has demonstrated potential aid to AUV navigation when performing

routine missions.

Huang et al. proposed a novel inertial-SLAM algorithm for AUVs, by fusing IMU’s

data with information from the sonar [43]. The AUV can estimate the velocity and

pose by Inertial-SLAM only using on-board IMUs and sonar sensors with. According

to the simulation results, the proposed system is more efficient and accurate than a

standard EKF-SLAM.

An extension to terrain-based navigation is represented by the work of Kimball

et al. [56]. Their proposed approach can be used for AUV navigation relative to an

iceberg. Navigation techniques based on inertial sensors or GPS cannot provide ice-

relative navigation accounting for the full motion of free-floating icebergs, especially

for iceberg rotation. The proposed approach has been validated post-processing multi-

beam sonar data, acquired by a ship circumnavigating the iceberg. The unknown

movement of the iceberg introduces a higher level of uncertainty than standard terrain-

based navigation. It is however to be noticed that a transposition from a side-looking

sonar mounted on a ship to a fully autonomous vehicle exploring under-ice would not

be an easy task and would certainly bring new challenges.

The idea of terrain-based navigation is similar to the one explored in this thesis

and presented in this chapter, though the proposed approach of this thesis does not

deal mainly with explicit feature extraction and with data association.

The work presented by Kondo et al. is in the same direction of this thesis, dealing

with navigation around underwater structures [58]. The proposed solution employs a

Particle Filter for global localisation and position tracking, while the planner issues

waypoints once a convergence has been reached.

2.2.4 Magnetic navigation

Another field explored in subsea navigation is related to magnetic fields. Re-

searchers have either explored how a strong magnetic field can influence navigation,

or - on the other hand - can help the localisation process.

Kondo and Ura analysed the difficulties for an AUV of correctly localising itself

in presence of strong magnetic disturbances, which are typical near steel underwater

structures, or in presence of a particular geological configuration [59]. To prevent
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the navigation being affected by the disturbances, they proposed a relative approach,

based on images by a CCD camera and laser pointers. Both cameras and laser pointers

can work only in clear water, so this approach is not transferable to deep water

application without any change. However, changing the main external sensor to sonar,

and navigating around the structure with visual servoing techniques allow the vehicle

to prevent unwanted jumps in the navigation state (and thus in the control) due to

magnetic disturbances.

Magnetic disturbances have been research subjects also for Huang and Hao, [123].

The dipole magnetic anomaly caused by ferromagnetic object or geologic structural

change, mixed with geomagnetic field has been investigated and the effect for AUV

localisation aided by geomagnetic anomaly. A novel localisation algorithm is presented

and validated in simulation.

Magnetic fields and magnetic-aided localisation technique are out of the scope

of this thesis, but they are mentioned for completeness on the different localisation

techniques.

2.2.5 Other approaches for localisation

Localisation in Partially Known Map

The problem of localisation usually assumes a complete knowledge of the environ-

ment. Not many publications deal with localisation in partially known maps, while it

is a very important topic, due to unforeseeable obstacles in the sensor field of view, and

discrepancies which might occur between a map of underwater structures and their

real position and orientation after years, especially if in presence of strong currents.

Cristi analysed this problem presenting tank results of an AUV successfully locating

itself also in presence of unexpected objects [23]. The approach chosen by Cristi was

the use of neural networks to model potential functions for the environment. The ap-

proach chosen in this thesis, and described in section 3.3.1 deals mainly with Particle

Filters and analyses their ability to handle unknown objects in the environment.

Underwater Sensor Networks

Luo et al. presented a localisation system for Underwater Sensor Networks (UWSN),

with the use of an AUV [67]. Based on directional signals, which are transmitted by

an autonomous underwater vehicle (AUV), the system is able to correctly estimate

the node positions. The AUV is considered as a precise source of localisation infor-

mation, with bounded error. This problem can be mirrored, with uncertain AUV

position and with active beacons, as explained by Petillot et al. in [90].
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Other uses for particle filters

In most of the presented approaches, particle filters are used to estimate the state

of the robot. In some mirror scenarios, they were employed to estimate a beacon, or

the state of another vehicle. Their use in robotics and in the underwater domain is

not however restrained to vehicle localisation only, but can be used to estimate other

mission-dependent variables. A work from Ortiz et al. for example addresses the use

of particle filters for tracking undersea narrow telecommunication cables [88].

Simultaneous Localisation and Mapping

The problem of localisation can be solved together with the mapping problem,

thus arriving to a full Simultaneous Localisation and Mapping (SLAM) approach.

Although solving the full SLAM problem is out of the scope of this thesis, a very brief

review of relevant work in the underwater domain is given. Feder et al. explored the

issue of long-term performance of SLAM for an AUV equipped with a forward looking

sonar [31].

The underwater group at the Australian Centre for Field Robotics (ACFR) is a

leading group in underwater SLAM. In the work presented by Williams et al., a stereo-

visual SLAM is presented in order to estimate the vehicle position during survey

tasks [118]. The presented results of the mapping, obtained by data post-processing,

show the capabilities of the algorithm proposed. Barkby et al. propose a featureless

approach using an a-priori low-resolution map, in order to enforce consistency between

the prior map and the AUV bathymetry [9].

Wang et al. present a new SLAM algorithm based on support vector machines(SVM)

adaptive Extended Kalman Filter(EKF) for autonomous underwater vehicle(AUV) to

reduce the influence of the change of statistical characteristics of the system noise and

the observe noise [48].

Li et al. propose a range sonar array based SLAM method [65]. The vehicle’s

operational environment is a water tank whose dimension are known to the AUV.

Aided by the knowledge of the general environment, the EKF-based SLAM is able to

map unknown objects in the tank.

Other solutions to the general SLAM problem are the Extended Information Filter

[108], the Unscented Kalman Filter, presented by Julier & Uhlmann, in [49] and the

FastSLAM algorithms, developed by Montemerlo et al. [77].

Clark et al. applied Particle-Filter based FastSLAM for data post-processing

collected by a small ROV for archaeology purposes [20].
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2.2.6 Critical Analysis

This section has presented several approaches for AUV localisation and several

approaches of the use of filtering techniques, with a special focus on Particle Filters.

Relying only on state sensors, like for example DVL and compass, the state estimation

diverges over time from the real trajectory. In order to correct the estimation, there

are two main approaches, both based on acoustic:

• use of acoustic beacons: the vehicle communicates with the beacons to com-

pute its location;

• use of sensor data: the vehicle observes the environment (either the seabed, or

underwater structures) and matches the sensor data with a previously known

map.

This chapter will focus on the second approach. Whilst the first one is already rou-

tinely used, it does have disadvantages linked to deployment and recovery. The second

approach is certainly more challenging, and requires a high level of autonomy in the

robotic systems. The goal of this research is to present a generic system which does

not require any external support, like acoustic beacons. The interest is mainly on in-

creasing the capabilities of the robot, on the adaptation of localisation techniques for

the underwater world, and on some optimisations. A key interest is in probabilistic

approaches, as they can address uncertainty typical of real world robotic tests, with

uncertainty in process model, sensor readings, etc. Therefore in the next section a

Bayesian formulation is presented, alongside with the mostly used techniques which

approximate the Bayesian formulation. Thereafter, several proposed approaches are

presented.

2.3 Bayesian filtering framework

2.3.1 Optimal Bayesian filtering

The state of the AUV at time t is a random vector denoted by Xt that usually

includes the position and the speed of the AUV. The evolution of the AUV’s state

is provided by the motion model. Usually, the motion model assumes that (Xk) is

a Markov process entirely defined by the transition kernel p(xk|xk−1) and the distri-

bution of the initial state X0. The transition kernel is related to the measurements

provided by the IMU or the DVL that predict the future state of the AUV given its

past state. The state Xt is not directly observed but is known through measurements

regularly gathered by the AUV. The measurements are, for example, the scan of a
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rotating sonar or range measurements with respect to acoustic transponders. The

measurement at time t is a random vector denoted by Yt that only depends on Xt.

The measurement model provides the conditional density p(yt|xt) that statistically

links the observation Yt to the state Xt. These assumptions are those of a hidden

Markov model.

The objective in Bayesian filtering is to calculate the conditional density p(xt|y0:t)
so that one has an estimate of the state Xt through the conditional expectation

E[Xt|Y0:t] =

∫
xtp(xt|y0:t)dxt (2.2)

This conditional expectation is the estimate of Xt given Y0:t that minimises the mean

square error, namely

E[ |Xt − E[Xt|Y0:t]|2 ] ≤ E[ |Xt − ψ(Y0:t)|2 ] (2.3)

for any other estimate ψ(Y0:t) of Xt given the observations Y0:t. The conditional den-

sity p(xt|y0:t) may be recursively calculated from p(xt−1|y0:t−1) through the following

exact prediction and correction steps

p(xt|y0:t−1) =

∫
p(xt−1|y0:t−1) p(xt|xt−1)︸ ︷︷ ︸

Transition kernel

dxt−1 (2.4)

and

p(xt|y0:t) = ct p(xt|y0:t−1) p(yt|xt)︸ ︷︷ ︸
Measurement model

(2.5)

The normalisation constant ct is unknown and given by

1/ct =

∫
p(xt|y0:t)dxt =

∫
p(xt|y0:t−1)p(yt|xt)dxt (2.6)

Assuming that the motion and the measurement models are both linear and Gaus-

sian, the distribution of Xt|Y0:t is also Gaussian. The mean and the covariance matrix

of Xt|Y0:t may then be calculated using the recurrence relations of the Kalman filter

[50, 51]. The calculation of the conditional expectation E[Xt|Y0:t] is exact so that

the Kalman filter is optimal, namely it provides the estimate of Xt given Y0:t that

minimises the mean square error, which was mentioned previously.

The motion and the measurement models of an AUV are seldom both linear and

Gaussian. One has consequently to provide approximate and thereby suboptimal

solutions to the non-linear non-Gaussian Bayesian filtering problem. Various approx-

imation schemes have been put forward among which are the Monte Carlo and the
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sum of Gaussian approximations. The former approximation is at the core of any

particle filter and the latter is known as the Gaussian Sum Filter.

2.3.2 Kalman Filter

The Kalman Filter (KF) [50], [116] is a filter that can be derived directly by the

optimal Bayesian filtering under the assumptions that the system is linear and the

noise is Gaussian. Under this linear assumption the system can be described by

xt+1 = Ftxt + wt

zt+1 = Htxt + vt
(2.7)

The system noise wt ≈ N (0,
∑

wt
) and the observation noise vt ≈ N (0,

∑
vt

)

are zero mean normally distributed. The key advantage of the Kalman Filter is

that it represents the distributions in closed form, in terms of means and covariance

matrix. The update of the Kalman filter can be carried out in the time of a matrix

multiplication (O(n3), where n is the state dimension).

The iterative algorithm of the filter is the following:

• predict:

x
′

t+1 = Ftxt

Σ
′

t+1 = FtΣkF
T
t + Σwt

(2.8)

• update:

Kk = Σ
′

tHt(HtΣ
′

tH
T
t + Σvt)

−1

xk = x
′

t +K(zt −Htx
′

t)

Σt = (I −KtHt)Σ
′

t

(2.9)

Unfortunately, in underwater robot domain, the evolution model, as well as the obser-

vation model are non linear, and the noise cannot be considered Gaussian. However,

for mild evolution laws and some specific problem, a non linear extension can be

used: the Extended Kalman Filter (EKF) [116], in which the functions f and h can

be non linear, but the covariance matrix is calculated in a local linearisation under

the current state. The extended Kalman filter algorithm can be expressed as

• predict:
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x
′

t+1 = ftxt

Σ
′

t+1 = FtΣkF
T
t + Σwt

(2.10)

• update:

Kk = Σ
′

tHt(HtΣ
′

tH
T
t + Σvt)

−1

xk = x
′

t +K(zt − htx
′

t)

Σt = (I −KtHt)Σ
′

t

(2.11)

where Ft = ∇xft|xt and Ht = ∇xht|xt
The key limitations in the use of extended Kalman filter lies in the strong as-

sumptions that have to be done on the estimated system, namely: Gaussian noise,

and linearisability. In most of the robotic systems used for localisation and SLAM

the uncertainty is not expressible as a Gaussian distribution, being multi modal and

non regularly shaped. When more modes are present in a distribution, dealing with

multiple hypotheses is needed, while the Kalman Filter works on their mean. In these

situations its use is prone to failure. Moreover, the linearisation of the system can

introduce some systematic error in the estimate. Finally, some systems cannot be

linearised (being their 1st order derivatives null), thus the Extended Kalman Filter

cannot be applied. In these contexts a second order extension to the Kalman filter:

the Unscented Kalman Filter (UKF) has been proposed in [112]. While the UKF in

general behaves better than the Kalman filter, the hypotheses of Gaussian noise is

still required to hold. Nevertheless, the Kalman Filter is one of the most used tools

in localisation and SLAM, due to its simplicity. Moreover, when the underlying hy-

potheses hold, it exhibits a strong convergence rate if compared with other filtering

techniques [112].

2.3.3 Particle filters

Any particle filter relies on a Monte Carlo approximation of the conditional density

p(xt|y0:t) using a finite set of N points ξit in the state space called particles. The

approximation is of the form

p(xt|y0:t) '
N∑
i=1

witδξit(xt) where
N∑
i=1

wit = 1 (2.12)
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and where δξit denotes the usual Dirac function, namely

δξit(x) =

{
1 if x = ξit

0 otherwise.
(2.13)

Formula (2.12) may be interpreted in the following way: the denser the particles in a

region of the state space and the higher their weights, the higher the probability that

the state lies in this region. Assuming that one knows how to sample from p(xt|y0:t),
the Monte Carlo approximation becomes

p(xt|y0:t) '
N∑
i=1

1

N
δξit(xt) with ξit ∼ p(xt|y0:t) (2.14)

The previous assumption is unrealistic since it implies that the Bayesian filtering

problem is solved. Any particle filter rely on the importance sampling principle which

provides a mechanism to build a Monte Carlo approximation of p(xt|y0:t).
Suppose one would like to sample from a distribution whose density f is of the

form f(x) = c r(x)g(x) where

1. g is the density of a distribution from which it is easy to sample and which is

called the proposal distribution;

2. r is a weighting function easy to evaluate;

3. c =
∫
f(x)dx is an unknown normalisation constant.

The importance sampling principle provides the following approximation for f .

f(x) '
N∑
i=1

wi δξi(x) with ξit ∼ g(x) (2.15)

where the weights wi = f(ξi)/
∑N

j=1 f(ξj) are not equal to 1/N since they account for

the particles being generated using another distribution than f .

The first particle filter ever proposed was the bootstrap filter introduced in [37] but

the most commonly used particle filter is the sampling with importance resampling

(SIR) filter. Other kinds of particle filters such as the auxiliary particle filter or the

kernel filter have been introduced in order to improve the performance of the SIR

algorithm. The interested reader can found an overview of the existing sequential

Monte Carlo methods for Bayesian filtering in [16, 3].

The SIR filter intends to reproduce the optimal prediction and correction steps of

the optimal Bayesian filter. The three steps of iteration t ≥ 1 of the SIR algorithm

are as follows.
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1. Selection: Generate τ it ∼ (w1
t−1, . . . , w

N
t−1)

2. Propagation: Generate ξit ∼ p(xt|ξ
τ it
t−1)

3. Correction: Set wit ∝ p(yt|ξit)

In the SIR particle filter, the propagation step of iteration t uses the transition kernel

to simulate the new set of particles (ξ1t , . . . , ξ
N
t ), as in the bootstrap filter. However,

only the most likely particles at time t − 1 are selected to generate the particles at

time t. The selection is made according to the weights since the higher a weight, the

higher the corresponding particle is in adequacy with the observations. This selection

step makes the SIR particle filter more efficient than the bootstrap filter.

2.3.4 Gaussian Sum Filter

Particle filters rely on a Monte Carlo approximation of the distribution of Xt|Y0:t.
They require a large number of particles so that the approximation is accurate enough

and thereby have a high computational cost. A long time before the emergence of

particle filters, an approximation scheme based on a mixture of Gaussian distributions

was suggested in [2]. This Gaussian sum approximation was shown to perform better

than the Extended Kalman Filter while being compatible with the computational

capabilities of that time. The conditional density p(xt|y0:t) is approximated by

p(xt|y0:t) '
N∑
i=1

αitΓ(xt ; mi
t, P

i
t ) with

N∑
i=1

αit = 1 (2.16)

where x 7→ Γ(x ; m,P ) denotes the probability density function of a Gaussian multi-

variate distribution of mean m and covariance matrix P . The individual means and

covariance matrices mi
t and P i

t are updated according to the recurrence relations of

the Extended Kalman Filter. The interested reader can found a complete description

of the Gaussian Sum Filter in [2].

2.3.5 Bayesian approach to the SLAM problem

The Bayesian filtering framework is suitable to estimate the state Xt of an AUV.

The Simultaneous Localisation and Mapping (SLAM) problem also requires the esti-

mation of the state Xt along with the estimation of the map of the environment. In

the SLAM problem considered in this section, the environment is composed of acous-

tic transponders whose positions are to be found. The position of each transponder

is denoted by Bi and B denotes the set of all the transponders.
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The Bayesian approach to the SLAM problem requires the calculation of the con-

ditional density p(xt, b|y0:t) so that one has an estimate of (Xt, B) through the condi-

tional expectation

E[Xt, B|Y0:t] =

∫
p(xt, b)p(xt, b|y0:t)d(xt, b) (2.17)

2.4 Extended Kalman Filter for Localisation

In this section a detailed presentation of the EKF filter is presented, together with

numeric results of an implementation of the filter. The map consists in m1, ...,mK

object (landmark) locations, the state vector is the location vector of the robot, and

the observation vector consists in the landmark locations, seen in the reference frame

local to the robot. If the landmarks can be uniquely identified, then the solution to

the localisation problem is relatively straightforward and this method works well, but

if the data association cannot be solved it is necessary to adopt multiple hypotheses

tracking techniques that overcome the mono-modality of the Kalman Filter. Another

way of using the Kalman Filter for localisation is to use some forward observation

model p(x|z) that returns the set of feasible positions that are compatible with the

current observation. For example in [39], [21], the location of the robot is evaluated

by map matching techniques among the proximity data ad a geometric map, then

used to feed the KF. In particular, in [44, 38] an efficient matching method in the

Hough parameter space is used, for estimating the position given the observation.

The main limitation of this technique lies in the requirement of unique landmarks, or

in the presence of some unambiguous forward observation model. Unfortunately, the

use of unambiguous models is impossible in environments presenting symmetries.

Two types of landmarks can be analysed, artificial and natural landmarks. The

artificial are placed for the purpose of being landmarks, examples include bar codes

and floor stripes. The natural landmarks are extracted from the environment without

any change being made. In the work presented in this section, artificial landmarks

are defined as narrow vertical pillars placed on the bottom surface of the underwater

environment. This has the advantage of providing arbitrarily detailed information

including its pose in the global map frame.

2.4.1 Data Association

Feature Matching or Date Association is implemented using Individual Compati-

bility Nearest Neighbour (ICNN) Method.

• Take a measurement zk with uncertainty Rk
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Figure 2.3: A complete picture of EKF localisation for artificially defined landmarks

• For every map feature xj:

– Compute the robot related position of the feature

[hj(x
−
k ), HjP

−
k H

T
j ]

– Compute the Innovation and its uncertainty

vkj = zk − hj(x−k )

Skj = HjP
−
k H

T
j +R

– Compute the mahalanobis distance

D2
kj = vTkjS

−1
kj vkj

– Does it Pass compatibility test?

D2
kj < χ2

d,α

• Select the Compatible feature with the smallest distance

The Block Diagram in Figure 2.3 shows the actual implementation of the EKF

localisation for underwater environment defined by forest of narrow pillars. A 3 DOF

vehicle navigates in the map in a 2D trajectory defined a priori.
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Figure 2.4: A simulated map containing landmarks with known global position.

2.4.2 Numeric results

The Matlab experimental platform is a 3-DOF Autonomous Underwater Vehicle

(AUV). The vehicle navigates in a 3D trajectory defined in the a-priori map. The

vehicle is equipped with a single 2D forward looking sonar. The sonar head is always

assumed to be aligned with the heading angle of the vehicle. The maximum range

measurement of the sonar is limited to 100 meters and its angular field of view is

limited to 90 deg. The map is represented by a number of narrow long pillars placed

at the bottom of the underwater environment. Figure 2.4 shows this map. Figure 2.5

and Figure 2.6 shows the localisation results using the motion model only, that is,

without the update model of Kalman Filter. Even though the initial state of the

vehicle is known, after the first 50 iterations, the estimated trajectory diverts from

the ground truth. This implies the vehicle will incur a significant mislocalisation after

50 to 100 time steps, according to 100 tests. Figure 2.6 further shows the sub-linear

increase of uncertainty and error in the x, y and θ degree of freedoms. It is also shown

to grow rapidly as the vehicle keeps navigating. The increase in error and covariance

in the vehicle state, however, can be corrected using EKF update model. In the

update model of EKF, the distance from the predicted position to each of the known
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Figure 2.5: EKF-Prediction Model Localisation, Real and Estimated Trajectory.

Figure 2.6: EKF-Prediction Model Localisation, Error and Uncertainty Plots.
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Figure 2.7: EKF-Update Model Localisation, Real and Estimated Trajectory.

landmarks is computed and a feature matching is performed to match the observed

landmarks to one of the known features in the map. Consequently, the innovation

and covariance between this landmark and real measurement to a feature is computed.

The distance in the feature matching stage is computed in the Mahalanobis sense.

Finally, the Kalman gain is computed from the innovation covariance and uncertainty

of the prediction stage (i.e. motion model) and the state of the vehicle is consequently

corrected. The experimental results for the update model are shown in Figure 2.7 and

Figure 2.8. As can be seen from the above figure, for the first movement, the error

between the real and estimated position is very high. This is due to the fact that the

vehicle performs the first iteration without taking a measurement and the localisation

is performed only from the information of the motion model. For iterations greater

than two there is a fairly small and decreasing error. In addition, during the tests the

initial position of the vehicle is assumed to be known. The uncertainty in the state

of the vehicle is also estimated and plotted and it is shown to decrease as the vehicle

navigates.

2.5 Scan Matching for localisation

Scan matching techniques can also be used for robot localisation. Starting with

two sets of range readings and an initial guess for the displacement between them,

the algorithm iteratively refines the displacement estimation by generating pairs of
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Figure 2.8: EKF-Update Model Error and Uncertainty Plots.

corresponding points on the scans and minimizing an error metric. The most popular

methods to perform scan matching is the Iterative Closest Point (ICP) [11], [96],

Iterative Dual Correspondence (IDC) [66] or the Metric-Based Iterative Closest Point

(mbICP) [76]. However none of these methods take into account sensor noise, which

is quite common in underwater sonar. Two types of Scan Matching frameworks are

reviewed. Numeric results as well as results from the post-processing of sonar data

are presented.

2.5.1 Probabilistic Sonar Iterative Correspondence (psIC)

Probabilistic Sonar Iterative Correspondence (psIC) is a sonar scan matching

framework where both the sparseness and noise of the readings are taken into ac-

count [78]. This is accomplished by means of probabilistic models of ultrasonic and

odometric sensors as well as a method to propagate the error through them. The

matching process is accomplished considering the Mahalanobis distance.

Error Models

The two scans used in scan matching are named current scan (Scurr) and reference

scan (Sref ), being the current scan the most recently gathered scan, and the reference

scan a previously gathered scan. These two scans are then grouped by using the

odometric information of the vehicle. The travelled distance has to be long enough

to acquire a large scan. In practice travelled distance between one and two meters
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is a good choice. By performing the grouping process, the resulting scan is subject

to two sources of error. Uncertainty in the range and bearing readings and grouping

error (i.e. from odometry error).

A sonar reading taken by sonar sensor s at time j is assumed to be a Gaussian

random variable, xsj = N (x̂j, P
s
j ). The mean x̂j represents the translation and rotation

of the reference frame located at the sonar reading coordinate, with respect to the

reference frame s, located at the sensor position and aligned with the axis of the sonar

beam. Thus, x̂j = [x, y, θ]T and P s
j is a covariance matrix of the form

P s
j =

σ
2
xx 0 0

0 σ2
yy 0

0 0 σ2
θ

 (2.18)

Where σxx and σyy model the range and σθ the angular uncertainty. It has been

experimentally set as

σxx =
r

100
cos(θ)

σyy =
r

100
sin(θ)

σθ =
r

2
tan(

α

2
)

(2.19)

where r is the current sonar range reading and is equal to r =
√
x2 + y2, while α

is the beam angle of the sonar.

Measurement Grouping

A scan frame is labelled as A for the reference and B for the current scan. The

composition operator is used to represent the sonar readings with respect to a common

reference frame. Let uab = [ux, uy, uθ] represent the translation and rotation of the

reference frame b with respect to the frame a and Qa
b the associated covariance matrix.

Similarly, let xs1 and xs2 represent reference and current scans. The transformation of

the current to the reference frame is given by

x12 = f(xs1, x
s
2) =

ux + x2 cos(uθ)− y2 sin(uθ)

uy + x2 sin(uθ) + y2 cos(uθ)

uθ + θ2

 (2.20)

Linearising the system around the current estimate and using the first order Taylor

approximation, the covariance can be expressed as follows

P 1
2 = J⊕1P

s
1J

T
⊕1 + J⊕2P

s
2J

T
⊕2 (2.21)
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where

J⊕k =
∂f(xs1, x

s
2)

∂(xk, yk, θk)
(2.22)

Probabilistic Scan Matching

The goal of a scan matching process is to estimate the relative displacement uab =

[ux, uy, uθ] between the reference scan frame 1 (or A) and the current scan frame 2

(or B). This process is usually performed by means of an iterative process. At each

iteration k the algorithm establishes, for each point pi in Snew a correspondence qj in

Sref using the current estimate urefcurrk . Next, the new estimate urefcurrk+1
is computed

as the one that minimises the error of these correspondences. These two steps are

repeated until a convergence is achieved.

A- Nearest neighbour data association

Let pi = N (pi, Ppi) and qj = N (qj, Pqj) be Snew and Sref items respectively. Let

pi = [px, py]
T and qj = [qx, qy]

T . To decide whether pi is compatible or not with qj ,

the mahalanobis distance is used. The squared Mahalanobis distance between pi and

qj is defined as follows:

D2(pi, qj) = hTi,jC
−1
i,j hi,j (2.23)

where hi,j = h(u12, pi, qj) computes the difference between pi and qj . To calculate

this difference, pi has to be transformed to the reference frame 1 (i.e. A).

hi,j =

[
ux + px cosuθ − py sinuθ

uy + px sinuθ + py cosuθ

]
−

[
qx

qy

]
(2.24)

Linearising h using the First order Taylor’s approximation, the covariance matrix

Ci,j can be computed as follows

Ci,j = J3i,jQ
1
2J

T
3i,j

+ J4i,jPpiJ
T
4i,j

+ Pqj (2.25)

where

J3i,j =
∂h(u, pq)

∂u

J4i,j =
∂h(u, pq)

∂p

(2.26)

The matrix Q1
2 is the covariance associated to u12 . The computation of this

matrix will be discussed in section C. Thus, pi and qj are compatible if and only

if D2(pi, qj) < χ2
2,p, where p is the desired confidence level. For each pi , the set of
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compatible points in Sref is built. Among them, the corresponding point qj is selected

as the one which is closer to pi in the Mahalanobis sense.

B- Minimisation

The second step in the scan matching process is to find the relative displacement

u12 = [ux, uy, uθ] that minimises the error between pairs of corresponding points. The

notation C = [< a1, b1 >,< a1, b1 >, . . . , < an, bn >] will be used to denote corre-

spondences between the ai in Sref and the bi in Scurr. In this work, a Least Square

method has been used to minimise the sum of squared Mahalanobis distance between

the points in C. The criteria is to minimise the following:

min
u

n∑
i=1

hTi C
−1
i,i hi (2.27)

where hi = h(u, bi, ai) as defined previously in section A. Linearising h using the first

order Taylor approximation, the above equation can be written as follows:

min
u

(Ju− A)R−1(Ju− A) (2.28)

where

J =



J31,1

J32,2

.

.

.

J3n,n


A =



J31, 1u− h(u, b1, a1)

J32, 2u− h(u, b2, a2)

.

.

.

J3n, nu− h(u, bn, an)


(2.29)

and R is a block diagonal matrix containing the Ci,i. By using the orthogonality

principle, the u that minimises the previous equation is

umin = (JTR−1J)−1JTR−1A (2.30)

The umin is used in the next iteration as the u12 = [ux, uy, uθ] in order to find

correspondence and minimise again. Note that in the first iteration, u12 = [ux, uy, uθ]

is obtained from odometry.

C- Error estimation

The scan matching output is represented as a Gaussian distribution of the form

u12 = N (u12, Q
1
2). This section describes a method to compute the covariance matrix

Q1
2. Let the function F (u) be defined as follows
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F (u) =



h(u, b1, a1)

h(u, b2, a2)

.

.

.

h(u, bn, an)


(2.31)

The covariance Ci,i is known for each h(u, bi, ai). Thus, the block diagonal matrix

R containing the Ci,i represents the covariance of F (u). Linearising F (u) around u

and using the first order Taylor approximation, R can be written as follows

R = J5Q
1
2J

T
5 (2.32)

where

J5 =
∂F (u)

∂u
(2.33)

Thus, the scan matching covariance Q1
2 can be computed as follows

Q1
2 = J+

5 Q(JT5 )+ (2.34)

where + represents the Moore-Penrose pseudo inverse of a matrix.

2.5.2 Iterative Closest Point with Least Median Error Min-

imisation (ICP-LMS)

ICP-LMS is based on ICP scan matching algorithm. The important difference is

that ICP-LMS minimises the square of median error between corresponding points.

The implementation of ICP-LMS is carried out as follows:

Let Sref and Scurr represent the current and reference scans, and motion, between

the current and reference scan, TLMS initially set to the identical transformation

T0 = I and updated to the motion that is evaluated best ever in each trial. At

the end of all trials, TLMS satisfies the LMS condition. The overall ICP-LMS scan

matching is, therefore, carried out as follows:

• Initialisation: TLMS = T0.

• For n from 1 to NT , where NT signifies the number of trials

– A set ofNS pointsQRS is extracted from Sref at random: QRS = RS(Sref , NS).
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– The Point set QRS is used by the ICP algorithm with the Scurr to estimate

the motion parameters: TICP = ICP (QRS, TLMS, Scurr).

– The estimated motion is evaluated by MS(Sref , TICP , Scurr).

– If MS(Sref , TICP , Scurr) < MS(Sref , TLMS, Scurr), then TLMS = TICP

• The resultant motion TLMS satisfies:

MS(Sref , TLMS, Scurr) = min1<n<N MS(Sref , TLMS, Scurr) and this is the result

of LMS scan matching (motion estimation) between Sref and Scurr.

Where

NT is the number of trials;

NS is the number of random samples;

QRS is an array with randomly extracted scan points from Sref ;

RS is a function to do the random sampling;

TLMS is the motion estimated through Least Median;

TICP is motion estimated through ICP;

MS is used to compute the squared mean error between corresponding points, gen-

erated using the given transformation, i.e. TLMS or TICP .

2.5.3 Numerical Results

The method of psIC is implemented in the Matlab simulation environment. The

odometry and sonar sensor error are taken into account in the implementation. This

method is analogous to ICP and IDC, but it groups sonar readings prior to the scan

matching and corrects the trajectory after the scan matching. This method works

for environment which are non-structured. No assumption in the geometry of the

environment is taken into account. The environment considered for the simulated

tests is a generic non-structured 3D structure, with the AUV moving towards the

structure.

Figure 2.9 shows the vehicle trajectory (starting from the left, going towards the

structure) and the estimated trajectory of the vehicle, which is a bit diverted from the

ground truth. Scan matching using psIC gives a relatively poor result in estimating

the vehicle state. This is due to two sources of errors: the sonar data and the motion

model. In addition, this method is shown to constantly diverge from the ground truth.

This is because there is no error correction method like the update model of EKF.

Figure 2.10 shows the plots of errors and uncertainties of the psIC in the estimation

of the vehicle state. The current scan is transformed to the previous scan frame using

the motion from odometry. The matching is performed on the previous reference

system. The estimated trajectory is improved and the error level is reduced from 6.0
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Figure 2.9: psIC Real and Estimated Localisation Trajectories

Figure 2.10: The Error and Uncertainty of the psIC Scan Matching
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Figure 2.11: Sonar Image taken at the left corner of the pool

m (motion model) to 2.0 m (Scan matching). In order to reduce the computational

load, a smaller field of view could be used. However this means a greater error in

localisation and in limited information about the environment.

2.5.4 Experimental Results

The Scan matching using ICP-LMS is tested using the Cartesian Robot described

in section 1.6.1. A Tritech mechanically scanned profiling sensor is mounted on the

Robot. The pool is 4x3 meters and 2 meters deep. The localisation is performed

on a horizontal plane at about 1 meter altitude. In this section, the scan matching

is performed without assuming a priori knowledge of the motion. Scan matching is

performed using the sonar data only.

Sonar images are processed to extract features. Figure 2.11 shows a sample sonar

scan image in the environment of interest.

In order to remove the outliers (as in Figure 2.12), range distance of each point is

compared with its left and right adjacent points. If the distance between these points

exceeds a threshold of 0.25 meters the point is regarded as an outlier. Figure 2.13

shows the result of the re-enforced feature extraction.

The results are also compared with the standard ICP using Least Mean of Squares

error. It is shown that ICP-LMS offers better estimate and a smaller error compared

to ICP. But this advantage comes at the expense of an increased computational com-

plexity.
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Figure 2.12: The processed image representing the walls of the pool. The small
rectangle refers the sonar pose. Two outlier points are extracted. This is due to the
reflection effect on the sonar image.

Figure 2.13: The processed image representing the walls of the loop. The small
rectangle refers the sonar pose. The outliers are removed using an improved feature
extraction.
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Figure 2.14: ICP localisation without using a motion model

The ICP starting with an identity transformation (i.e. with no motion model) is

shown to give a growing error as the vehicle keeps navigating, as in Figure 2.14. The

error increases up to 1.5 meters. This is due to the fact that ICP is easily affected by

little number of outlier scan points.

Figure 2.15 shows the results of the implementation of ICP-LMS method of lo-

calisation. In a similar approach like the normal ICP, no initial motion estimate is

assumed and the matching is performed using the sequence of scanned images. As ex-

pected, the error grows over time. However, the results of ICP-LMS are much better

than standard ICP.

Varying the sonar range, the results of the scan matching can change significantly.

Figure 2.16 shows the error with a range varying from 3 to 7 meters. In general the

error increases when the range increases. This is because more outliers are considered

for bigger ranges, and they then affect the overall performances.

2.6 Set membership methods

2.6.1 Introduction

This section presents a less-known approach to localisation, using a Set-membership

approach. Set-membership methods have often been considered for the localisation of

robots [75][40], in the case where the problem is linear and also [14] when the robot is
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Figure 2.15: ICP-LMS localisation without using a motion model

Figure 2.16: Euclidean Error for ICP-LMS assuming a sonar range dimension of
3,4,5,6 and 7 meters.
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underwater. In situations where strong non-linearities are involved, interval analysis

has been shown to be useful (see, e.g., [74], where the first localisation of an actual

robot has been solved with interval methods). Another strong point of set member-

ship methods is the ability to deal with outliers (see [45]). In the Set Membership

formulation, both input data and computed robot position are represented by their

respective belonging sets. Constraints between the position of the robot and the sen-

sor observations are used to contract the actual position set, i.e. reducing its size thus

increasing the estimates precision. In this section a presentation of the technique is

given and experimental results are presented. A critical analysis compared with the

Particle Filter technique previously presented is then given. The work presented in

this section was performed with Jan Sliwka, [100].

2.6.2 Definitions and notations

Interval : An interval is a connected and closed subset of R. If x is a real variable,

[x] is the interval containing this variable. [x] is called the domain of x. An interval

has an upper and lower bound which is noted as follows [x] = [x−, x+]. IR is the set

of all the real intervals. IN is the set of natural number intervals. w([x]) = x+ − x−

is called width of [x]. For example, ∅, {−1}, [−1, 1], [−1,∞],R are intervals.

Box : A box of Rn is defined by a Cartesian product of intervals. A box can

be also considered as an interval vector. If x = (x1, .., xn) ∈ Rn is a real variable

vector we denote by [x] = ([x1], .., [xn]) the box containing this variable. For example,

[1, 3]× [2, 4] is a box of R2.

CSP : A constraint satisfaction problem (or CSP) is defined by a set of constraints

C1, .., Cn, a vector of variables x = (x1, .., xm) and the domain D = D1 × .. ×Dm of

possible values of x. Only continuous CSP are considered, where the domain D is a

subset of Rm. The constraints are linear or nonlinear equations or inequalities

gi : Rm → R, hi : Rm → R
Ci : gi(x) ≤ 0, i ∈ {1, .., k}
Ci : hi(x) = 0, i ∈ {k + 1, .., p}.
x ∈ D

(2.35)

A more general notation can be used to represent such a CSP

fi : Rm → R`

Ci : fi(x) ∈ [yi],

x ∈ D, [yi] ⊂ R`, i ∈ {1, .., n}
(2.36)
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2.6.3 Mathematical formulation

A dynamic system such as an underwater robot can usually be characterised by

discrete-time dynamic equations

fk : Rm → Rm,gk : Rm → R`

xk+1 = fk(xk)

yk = gk(xk).

(2.37)

where xk is the state of the system, yk is the output vector, fk is the evolution

function and gk the observation function. The input of the system is enclosed in

the expression of fk . The noise (due to model imperfection) is neglected. The

noise can be actually added as a state of the system but this work focuses on the

position to simplify the different formulations. In our case, xk is the robot pose, fk

characterises robots dynamics, yk is the measurement vector (here sonar distance to

obstacle measurements). yk and xk are related by the observation function gk which

express in our case geometrical relations between the position, the measurements

and the map. Denote by [yk] ⊂ R` the domain of the measurement yk. Denote by

[xk,0] ⊂ Rm the prior domain of xk. Using state equation in (2.37), the problem of

estimation of xk can be cast into the following set of equations

gk(xk) = yk

gk−1 ◦ f−1k−1(xk) = yk−1

...

gk−n+1 ◦ f−1k−n+1 ◦ ... ◦ f−1k−1(xk) = yk−n+1

xk ∈ [xk,0],yi ∈ [yi], i ∈ {k − n+ 1, .., k},

(2.38)

this set of equations can also be called a continuous constraint satisfaction problem or

CSP. The CSP can be solved using set membership methods as shown in section 2.6.5.

It is possible to assume that at the time step k the state xk (position of the robot) is

a priori completely unknown. In that case, the prior domain of membership of xk is

[xk,0] = Rm. In the localisation jargon, this corresponds to the global localisation.

On the other hand, it is possible to exploit the fact that the current state of the

system xk depends of its previous state xk−1 since

fk : Rm → Rm

xk = fk−1(xk−1).
(2.39)

In the localisation jargon, this corresponds to the dynamic localisation or position

tracking. The prior domain of membership of the state xk depends on the domain of

xk−1 which is supposed to be computed. Denote by Xk−1 the solution set of the CSP
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corresponding to the problem of estimation of xk−1 using set membership methods.

We have

[xk,0] = [fk−1(Xk−1)] (2.40)

where [fk−1(Xk−1)] is the smallest box enclosing the set fk−1(Xk−1). The advantage

of dynamic localisation versus global localisation is to reduce the size of the search

space and as a consequence reduce the computation time for the same precision re-

quirements. In order to simplify the theoretical explanations the following notations

are considered:

∀i ∈ {1, .., n},hi : Rm → R`, zi ∈ R`,x ∈ Rm, [x0] ⊂ Rm,

h1 = gk

h2 = gk−1 ◦ f−1k−1
hi = gk−i+1 ◦ f−1k−i+1 ◦ ... ◦ f−1k−1, i ∈ {3, .., n},
zi = yk−i+1, i ∈ {1, .., n}
x = xk, [x0] = [xk,0],

(2.41)

The CSP becomes

h1(xk) = z1

...

hn(xk) = zn

x ∈ [x0], zi ∈ [zi], i ∈ {1, .., n}.

(2.42)

2.6.4 Relaxed resolution of the system of equations

Consider the CSP defined in (2.42). The solution set S of such CSP is

S = {x ∈ [x0],∀i ∈ [1..n],hi(x) = zi, zi ∈ [zi], [zi] ⊂ R} (2.43)

or in a more compact form

S = {x ∈ [x0],∀i ∈ [1..n],hi(x) ∈ [zi], [zi] ⊂ R} (2.44)

In some cases, this CSP doesn’t admit any solution. In the context of localisation,

that will be the case when some of the measurements are erroneous i.e. there are

outliers. Since the equations come from measurements, the equations coming from

erroneous measurements are a priori not satisfied. Dealing with outliers has already

been considered by several authors, in a set membership context (see, e.g., [83], [63],

[91], [60] ,[45]). In this case, we define a solution set Sq where x ∈ Sq satisfies only a

part of equations from the set of equation. This problem is called a relaxed CSP.
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A q-relaxed resolution of the CSP (2.42) is searching for a solution set Sq where

x ∈ Sq satisfies at least n − q among n equations i.e. searching for the following

solution set

Sq = {x ∈ Rm, ∃I ⊂ {1, .., n}, Card(I) =n− q,∀i ∈ I,hi(x) ∈ [zi], [zi] ⊂ R}. (2.45)

2.6.5 Using set membership methods

Set membership methods allow to manipulate sets (see [79] and [46]). As an

example, considering A,B,C subsets of Rn and a function f , those methods allow to

compute intersection A = B ∩ C, union A = B ∪ C, set inversion A = f−1(B), image

of a set by a function A = f(B). It is possible to implement those operations on a

computer in a form of solvers such as QUIMPER [19]. The solution of the CSP in

(2.42) can also be characterised by an intersection of sets. Denoting by Xi the set of

points x which satisfy the ith constraint of the CSP (defined in 2.42) hi(x) ∈ [zi], the

formulation becomes:

Xi = {x ∈ Rm,hi(x) ∈ [zi], [zi] ⊂ R} = h−1i ([zi]), i ∈ {1, .., n}. (2.46)

with

S =
⋂

i∈{1..n}

Xi. (2.47)

In case of outliers, since not all the equations are satisfied, there is no point which

satisfy all the equations thus S is an empty set. The idea which have been introduced

in [45] is to define Sq as a special intersection of the Xi sets defined in (2.46) called

the q-relaxed intersection where the number q corresponds to the number of outliers

in the data. Suppose the ith measurement is an outlier. The corresponding set Xi

doesn’t necessarily contain any viable solution. As such, the set Xi shouldn’t be taken

into consideration during the intersection process hence the relaxed intersection.

The q-relaxed intersection (see [45]) of.n sets X1, ..,Xn also denoted by

{q}⋂
i∈{0..n}

Xn is

a set of points which are in at least n− q sets among the Xi, i ∈ {1, .., n} sets i.e.

{q}⋂
i∈{1,..,n}

Xi = {x ∈ Rm,∃I ⊂ {1, .., n}, card(I) =n− q,∀i ∈ I,x ∈ Xi} (2.48)
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Figure 2.17: Illustration of the relaxed intersection of 5 sets X1,X2,X3,X4 and X5.
The hatched set corresponds to the 2-relaxed intersection of those sets.

Figure 2.17 shows the q-relaxed intersection of sets X1,X2,X3,X4 and X5. We have

{0}⋂
i∈{1..5}

Xi =
⋂

i∈{1..5}
Xi = ∅

{2}⋂
i∈{1..5}

Xi = X1 ∩ X2 ∩ X3 (hatched set in Figure 2.17)

{5}⋂
i∈{1..5}

Xi =
⋃

i∈{1..5}
Xi.

The number of outliers q is usually unknown but quite often the number of those

outliers is bounded and never go beyond a maximum number qmax. The solution of

the relaxed CSP becomes

Sqmax =

{qmax}⋂
i∈{1..n}

Xi, (2.49)

this solution is guaranteed as long as the assumption about the number of outliers

(q < qmax) is respected.
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The dynamic function

The robot evolution can be characterised by the following differential equation

ẋ =


ẋ

ẏ

θ̇

v̇

ω̇

 =


v ∗ cos(θ)

v ∗ sin(θ)

ω

a

aω

 (2.50)

where (x, y, θ) is the pose of the robot, v its speed, ω its rotation speed, a is the

acceleration and aω is the rotation acceleration..Using Euler discretisation we obtain

xk+1 = xk + vk cos(θk)dt

yk+1 = yk + vk sin(θk)dt

θk+1 = θk + ωkdt

vk+1 = vk + akdt

ωk+1 = ωk + aω,kdt

(2.51)

where (xk, yk, θk) is the state of the robot, vk is its speed, θk is its orientation and

ωk is the rotation speed at time step k. The acceleration ak and rotation acceleration

aω,k are considered as input noise.

2.6.6 Solving

Once the expression of the relaxed CSP is found, the RSIVIA solver (see [45]) can

be used to compute the solution set.

Results

Figure 2.18 shows the reconstructed trajectory comparing it to the GPS reference

trajectory (in black). The algorithm will start by performing a global localisation in

order to find the initial position. In this case, the searching area is the whole marina.

This step takes several seconds since the required precision is big with respect to the

size of the searching area. Once the position has converged, the algorithm switches

to position tracking. The algorithm computes the trajectory in the form of a set of

boxes. The real trajectory (which is a set of points) is included in this set of boxes.

Usually the trajectory formed by the centres of those boxes can be considered as an

approximation of the real trajectory.
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Figure 2.18: Comparing the GPS trajectory (in black) with the trajectory computed
using set membership methods.

Advantages and drawbacks

The main advantages of this method are guaranteed results and robustness to out-

liers which varies in our case from 0 to 15%. Another advantage is that the algorithm

is capable of detecting inconsistent situations such as an error in the map model or

the sensor malfunction. Another advantage not displayed in this application is the

possibility to use non-linear equations for both evolution and observation functions.

The main disadvantage of this method is that often the output is a large solution sets

for positions, without knowing where is the biggest probability of occurrence. The

center of the set is usually taken as a better approximation.

2.7 Conclusions

This Chapter has reviewed the main techniques currently used for localisation, pro-

viding both an analysis of the related work, the mathematical formulation of Bayesian

filtering, and some numeric and experimental results using standard techniques such

as Kalman Filters, Scan Matching and Set Membership approach. From the analysis

of the different approaches, the topics this thesis aims to address in this area are

related to a localisation system for underwater vehicles which:

• is not dependent on external aid;

• solves both global localisation and position tracking;
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• is able to cope with high level of noisy data and imprecisions in the previous

knowledge of the map;

• is able to recover from wrong convergences;

• is robust and reliable not just in simulated tests, but also integrated in the robot

architecture and tested over long trajectories in the field.

The next Chapter will present a localisation system with some novelty aspects covering

for all these areas.
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Chapter 3
Novel approaches for AUV passive

localisation

3.1 Introduction

In the previous Chapter several methods for AUV passive localisation were pre-

sented. This chapter will now focus on novel approaches which lead to more general,

more robust and faster solutions. The proposed localisation system, as outlined at

the end of the previous Chapter, needs to address the following items:

• it should not be dependent on external aid;

• it should solve both global localisation and position tracking;

• it should be able to cope with high level of noisy data and imprecisions in the

previous knowledge of the map;

• it should be able to recover from wrong convergences;

• it should be robust and reliable not just in simulated tests, but also integrated

in the robot architecture and tested over long trajectories in the field.

This Chapter is organised as follow:

• section 3.2 will present a novel localisation approach for an AUV, based on par-

ticle filters (PF). Both results from simulations and field trials will be presented

and comparison with other techniques will be highlighted;

• section 3.3 will present the case of partially known environment analysing the

performances with varying parameters;
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• section 3.4 will present a localisation algorithm, based on fusion between two

modules, running an EKF and a PF respectively.

Finally, conclusions will summarise the main achievements presented in this Chapter,

presenting the need of an active approach, which will be the topic for the following

Chapters.

3.2 Particle Filters for Localisation in Distinctive

Environment

Among the several techniques presented in the last Chapter, the chosen one as a

base to develop a more robust and general system is based on particle filters. Particle

filter techniques were chosen because they can handle estimation of non Gaussian

and non linear processes. This is very important because non-linearities are very

frequent in AUVs, both in the motion model specification and in the observation

process. Additionally, the noise cannot be modelled as Gaussian in many situations.

Another advantage of using particle filters is that it does not require any assumption

on the initial position and orientation of the vehicle. In order for a particle filter

to work, the sensed environment needs to be distinctive enough. By distinctive the

author means that the sensor’s measures vary significantly with position. A typical

example is the navigation in man-made environments, like marinas, or navigation

close to underwater structures, being them either natural or artificial, like an off-

shore underwater oil infrastructure.

The standard approach presents two main problems. The first one is the high

number of particles required, in order to explore the state space, resulting in an

increase of the computational power needed. The other major issue in particle filter

approaches is the sample impoverishment problem, i.e. the loss of diversity for the

particles to adequately represent the solution space [17]. In our approach, both these

problems are addressed, as shown next.
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3.2.1 Particle Resampling

The standard SIR algorithm for particle resampling lets the particles with high

weight reproduce, while the particle with low weight are more unlikely to survive.

However, the resulting probability density function (pdf ) at time t is depending only

on the pdf at time t − 1. In time, this means that only a small part of the state

space is represented by the particles and the system cannot recover from an incorrect

estimation of the vehicle’s position (due to sensor noise for instance). In the proposed

system, at each step, a portion of the particles is instantiated randomly in the state

space. Thus, the resampling algorithm is built with two modules. The first one is

a standard SIR module, returning N − k particles. The second module returns k

particles, created randomly. The combination of these two modules constitutes the

resampling step in the proposed system. The algorithm is then able to recover in case

of a wrong convergence, as shown in the experimental results section. The benefits on

the computational point of view are also relevant since there is no need to instantiate

a high number of particles. Even if in the initial step there are no particles near

the real position of the vehicle, the proposed solution is still able to find the correct

position, after some time, thanks to the partial random resampling.

3.2.2 Sensor model and likelihood calculation

The sensor used is a forward looking imaging sonar, used as profiler. TheXY sonar

image, easy to understand for humans is actually often more complex to analyse for a

computer. Additionally the transformation is not needed, thus working with ρθ sonar

images is to be preferred. Figure 3.1 shows a sonar image taken with a Tritech Micron

sonar (see 1.3.3), in the OSL water tank (see 1.7.1), with a range of 3m. In order

to arrive to range values, each beam (line) of the ρθ sonar image is scanned, and the

first high intensity bin (pixel) is highlighted. Knowing the sonar range, it is possible

to therefore calculate the range to the closest obstacle. This approach is also useful

to discard sonar echo. Among the parameters to tune, there is the level of threshold

for high intensity. In most of the cases, it was predefined, though some work on

adaptive threshold could be applied. It is important to remove the noise close to

the sonar and the vehicle imprint, when this shows up on the image, according to

the mounting position. Overall, this method was proven to be reliable and robust to

outliers, following many experimental validation.

Figure 3.2 shows the problem of the likelihood calculation for a particle at a differ-

ent location than the robot. Considering range values only, the likelihood calculation

is therefore an assessment on similarities among two arrays of distances. The first one

is the array generated by the real sonar system, whilst the second one is simulated,
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Figure 3.1: ρθ sonar image (left) and XY sonar image (right). It is also possible to
see the reflection of the NessieIV AUV, under which the sonar is mounted.

based on the possible position of the vehicle (given by the particle) and the knowledge

of the environment (a priori map). For the simulated setup, a raytracing algorithm

was used to compute the intersection between the sonar beams and the environment.

In order to determine the array of distances for each particle, an alternative solution

to raytracing has been used. As the map given by [94] is a set of lines, a geometrical

approach, based on line intersection, is much faster than and as accurate as raytrac-

ing. For the real tests, sonar data processing is required in order to get the array of

distances. The imaging sonar returns for each beam an intensity array. To transform

this array in a distance value, a threshold is applied in order to separate the acoustic

imprint left by an object in the image, from the noisy background data. Once the

two arrays of distances have been computed, the next problem is the likelihood cal-

culation. The likelihood value should reflect the similarity of the two arrays. To let

the reader understand better the proposed approach, the case of arrays composed by

a single element each (r and s) will be now described. In this case, the likelihood is

given by the following equation:

L(x) =
1√
(2π)

exp−1

2
x2 (3.1)

where x = r − s, r represents the real value of distance, given by the vehicle, and

s represents the simulated value, given by the particles. In the case of arrays with

more than one value, the same procedure can be applied to all indexes of the array,

producing likelihood array. In order to calculate a single likelihood value, a mean

value solution was chosen. The likelihood function calculated in this way is therefore
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Figure 3.2: Illustration of the calculation of the likelihood for the particle filter.
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a mixture of Gaussians. A pure Gaussian likelihood was also tested, multiplying the

likelihoods of the single indexes, like a joint probability of independent variables. Both

methods were proven valid and reliable. However, the product one is more selective

but also more sensitive to noise, as a few bad index likelihoods have a great impact on

the overall likelihood of the particle. On the other hand, the average method seems

to preserve better the diversity of the particles in the solution state. Thus, it is to be

preferred when the particles used are few, while the product is to be preferred when

there are many particles in the same area, to discriminate better between them.

3.2.3 Motion model

For the simulated setup, the motion model is simply the difference between the

ground truth positions at time t and at time t − 1, disturbed with some process

noise. The particle state is thus updated considering that value, plus a different

noise for each particle, in order to explore more effectively the solution space. For

the real setup, the motion estimation is given by the sensors. The Ictineu vehicle

is equipped with a SonTek Argonaut DVL unit which provides bottom tracking and

water velocity measurements at a frequency of 1.5 Hz. Additionally, an MTi sensor,

a low cost motion reference unit (MRU), provides attitude data at a 0.1 Hz rate.

These values are integrated in an Extended Kalman Filter (EKF). A 6 DOF constant

velocity kinematic model is used to predict the state of the vehicle. Since AUVs are

commonly operated describing rectilinear transects at constant speed during survey

missions, such model, although simple, represents a realistic way to describe the

motion.

3.2.4 Results

Results on simulated data The first step in the validation of the proposed system

is by simulation. Our system can model a vehicle with six degrees of freedom (DOF).

In this particular setup pitch and roll of the vehicle are neglected. Additionally, at this

point, the sensor’s orientation in relation to the vehicle is fixed. A simulated gyroscope

is used to have a noisy estimation of the orientation of the vehicle’s heading (yaw). A

simulated depth sensor provides a noisy estimation of the vehicle’s depth. Finally, a

simulated sonar is modelled to acquire range profiles, with a field of view of 30m. It is

assumed that an a priori map of the vehicle’s surroundings is known. No assumptions

are made on the initial position of the vehicle within the map. The particle state is

represented by six variables, three for orientation and three for position of the vehicle,

plus an additional variable representing the weight of the particle.

A synthetic environment was created to validate the approach. Different types of
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(a) 3D representation of the environment and of the
trajectory.

(b) Localisation algorithm starts. The robot is at the
small square on the right, whilst the particle converged
inside the area delimited by the ellipse.

(c) The filter is able to recover from a wrong conver-
gence. All particles are now close to the robot location.

(d) Once converged, position tracking performs well,
and the particles are always close to the robot location.

Figure 3.3: Three consecutive states of a mission (2D projection of a 3D simulation).
This test shows the ability to recover after a wrong state estimation. The real trajec-
tory is a solid blue line (black in a grey scale image), where the rectangle on top of
the line represents the actual position of the AUV at that time; (a) 3D environment
and 3D trajectory in blue; (b) Wrong particle convergence: 90% of the particles are
in the circle, quite far from the real AUV position; (c) recovering from the wrong con-
vergence: the particles are now close to the real position (with increased likelihood);
(d) the actual AUV state has been correctly estimated.
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(a) 3D representation of the environment and of the
trajectory.

(b) Localisation algorithm starts. The robot is at the
small circle on the right, whilst the particle converged
towards the centre of the map. The dash-trajectory
represents the location of the best particle (i.e. the one
with highest weight), while the dot trajectory repre-
sents the average on all particle locations.

(c) The filter is able to recover from a wrong conver-
gence. All particles are now close to the robot location.

(d) Once converged, position tracking performs well,
and the particles are always close to the robot location.

Figure 3.4: Three consecutive states of a mission (2D projection of a 3D simulation).
This test shows the ability to recover after a wrong state estimation. The real trajec-
tory is a solid blue line (black in a grey scale image), where the rectangle on top of
the line represents the actual position of the AUV at that time; (a) 3D environment
and 3D trajectory in blue; (b) Wrong particle convergence in the centre of the image;
(c) recovering from the wrong convergence: the best particle expected position is very
near the real position, while the mean expected position is still far, at about the center
of the figure; (d) the actual AUV state has been correctly estimated.
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Figure 3.5: Particle Filters for localisation: (left) 2D projection of map, real and
estimated trajectories; (right) error in the localisation, both for the trajectory given by
the best particle (red, dark gray) and for the mean of the particles (yellow, light gray).
The trajectory given by the best particle always performs better, after convergence.

scenarios were considered in order to analyse the algorithm performances. The system

has been proven valid for both structured and unstructured scenarios. In more than

96% of cases, the algorithm converges to the real trajectory before the end of the

experiment. Figures 3.3 and Figure 3.4 show the ability of the algorithm to recover

from a wrong convergence. Two methods have been explored in order to infer the

trajectory, given the particles’ state. The first method considers the mean of the

Monte Carlo approximation (i.e. weighted sum of the particles) and the second one

considers the best particle as an estimate of the state of the AUV (a crude estimate

of the mode of the distribution). In the simulated setup, the best particle trajectory

gives always better results, minimising both the time needed for convergence and the

overall error, as shown in Figure 3.5. This setup is the closest to a real scenario with an

underwater vehicle: compass and depth/pressure sensors are able to provide a good

estimate of those parameters. So, the initialisation of the particles are on two full

dimensions (x and y), and on two with a small variance, to account for measurement

errors (z and yaw). Increasing the state space to explore with particles is certainly

possible, but in that case more particles would be needed. The amount of particles

depends on the size of the dimension to explore. For similar dimension, the number

of particles is polinomial with respect to the number of dimensions.

72



Comparison with standard Particle Filter A set of tests varying the number

of particles were carried out to define quantitative data and to compare the results

with a standard particle filter technique. Three cases were analysed, using the same

simulated scenario described in the previous section, with 40 particles, 60 particles

and 100 particles. For each case the algorithm runs 200 times and the number of

convergence before the end of the trajectory was recorded. Table 3.1 shows the results.

Even with a very low number of particles, the algorithm successfully converges to the

true robot location before the end of the run in more than 96% of the times.

The same test has been run with a standard particle filter, and results are shown

in Table 3.2. Very few runs successfully converge into the true robot location. This

is because of the low number of particles which do not represent completely the state

space. With a standard resampling step, the state space cannot be further explored

and therefore in case no particle is initially close to the initial location, it would be

impossible to recover from a wrong convergence.

In order to arrive to similar results than those presented with the proposed algo-

rithm, the number of particles need to be multiplied by a factor of ten, as shown in

Table 3.3. Convergence now is much more frequent, because the number of particles

covers the full state space much better.

Additionally, a standard algorithm is not able to recover from a wrong conver-

gence, or to solve the kidnapped robot problem, unless there is a cognitive layer that

reinitialises the localisation filter.

Results on real data The localisation system was tested on the same dataset

used by [94] to perform underwater SLAM. The data was gathered during an exten-

sive survey of a abandoned marina in the Costa Brava (Spain). The Ictineu AUV

gathered a data set along a 600m trajectory which included a small loop around the

principal water tank and a 200m straight path through an outgoing canal. The data

set included measurements from the Imaging sonar (a Tritech Miniking), DVL and

MRU sensors. For validation purposes, the vehicle was operated close to the surface

attached to a DGPS equipped buoy used for registering the real trajectory (ground

truth). Figure 3.6 and Figure 3.7 show the results of the localisation algorithm, in

particles convergences percentage
40 193 96.5%
60 194 97%
100 198 99%

Table 3.1: Results on convergence over 200 runs for each configuration. Even with a
very low number of particles, the algorithm successfully converges to the true robot
location before the end of the run.
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particles convergences percentage
40 6 3%
60 9 4.5%
100 22 11%

Table 3.2: Results on convergence over 200 runs for each configuration, with a stan-
dard particle filter. Convergence is very rare due to the low number of particles, which
is not able to cover for the state space.

particles convergences percentage
400 162 81%
600 188 94%
1000 200 100%

Table 3.3: Results on convergence over 200 runs for each configuration, with a stan-
dard particle filter. Convergence now is much more frequent, because the high number
of particles is able to well cover the state space.

two different settings. In Figure 3.6, 100 particles are used and they are spread over

an area of 1, 848 square meters. In Figure 3.7, the initial area where the particles are

spread increases to 10, 368 square meters and the number of particles is consequently

increased to 600.

As it can be seen, the dead reckoning trajectory obtained by merging DVL and

MRU data suffers from an appreciable drift (even causing it to go outside the canal).

On the other hand, during all the mission, the trajectory computed by the localisation

system is very close to the trajectory given by the DGPS. Figure 3.8 shows a zoom in

a specific area of the marina (part of the big trapezoid). The particles have different

shape according to their weight. It is clear that the error given by dead reckoning

trajectory is continuously increasing, while the performance of the trajectory given

by the localisation are very good during all the mission.

Comparison with Set Membership approach An approach based on Set Mem-

bership was presented in section 2.6. As the algorithm was tested on the same dataset,

particle filter results were just shown in the last paragraph, here is a critical analysis of

the two approaches, based on the performances. Both techniques are proven reliable

and valid for AUV localisation in a man-made underwater environment. It is impor-

tant to stress that both techniques can work only when the sonar sensor measures

are distinctive enough, like marinas and underwater structures. Both do not work

well in open sea, if the environment is featureless. Although radically different in the

mathematical background, both techniques have common points. Both methods do

not make any assumption on the initial position. They are therefore able to perform

global localisation and not just position tracking. Both algorithms are very robust
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Figure 3.8: A zoom of the area to show how close the inferred trajectory (green - light
grey) is to the real trajectory (blue - black) in comparison with the dead reckoning
(red - dark grey).

77



against outliers in the sonar measures. Having an estimation of the AUV motion is

helpful in both methods, but it is not necessary. However, for environments which are

not very distinctive, it is almost an essential information. In the field trial discussed,

it is the case of the corridor. In that area the sensor measure would always return sim-

ilar values, and an estimation of the motion is therefore necessary. Both methods can

be easily parallelised. The computation of the simulated sensor measure from each

particle represents the most expensive part for the Particle Filter algorithm. However,

each particle is independent and its associated sensor measure can be computed in

parallel, or precomputed and stored in a hash-table. The simulated sensor measures

could also be precomputed for all possible position, and the information retrieved with

an hash table, thus speeding up the process. Again, the weight calculation for each

particle can be computed in parallel. As for the set membership approach, the search

space which is initially represented by a box is usually divided into smaller boxes

which can be processed separately. The process of characterisation of each box i.e.

the process of associating the number of consistent measurements with a position box

is in fact independent for every box. Both algorithms are able to recover from wrong

convergence and inconsistent situations. The particle filter approach is able to recover

dynamically, i.e. without changing state of the algorithm. Through the resampling

step, a portion of random particles is generated, thus allowing a wide exploration of

the environment and the recover from a wrong convergence. The Set Membership ap-

proach can detect inconsistent situations and perform again global localisation, called

from the author static recovery. The algorithm state changes to global localisation

and, when a convergence is reached, changes back to position tracking.

Particle Filter Techniques can handle non Gaussian and non linear processes.

Set Membership Techniques can also handle non linear processes. Set membership

techniques do not directly involve probabilistic distributions. Those methods require

assumptions on the membership of the variables of the problem. If the assumptions

are correct so is the solution. Knowing the probabilistic distribution of a variable can

be useful to make assumptions on its membership. As an example, consider a variable

x following a Gaussian distribution N(m,σ) and x0 a measurement of this variable. It

is possible to assume that the real value of x variable is included in the 99% likelihood

interval [x0 − 3σ, x0 + 3σ]. Note that in the 1% case where that assumption is not

true the measurement x0 can be considered as an outlier and is taken into account by

the robust algorithm, as outlined in [100].

A clear disadvantage for both methods is represented by the computational re-

quirements. However they are both feasible for real-time execution and they have

been used integrated in the AUV architecture. The field trials in the Marina took

about 1 hour to be performed. The Particle Filter algorithm has been tested postpro-
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Figure 3.9: Error plots for the Set Membership Approach. The high peak is deter-
mined by the vehicle being in the central corridor. That situation cannot be handled
in a robust way by this technique.

cessing the data, with 31 minutes needed on Matlab, on a Core2 2.2 GHz. The Set

Membership approach was implemented using C/C++ and needed 1hour 10minutes

to execute on one core of a Centrino duo T2500 at 2GHz.

Figure 3.9 and Figure 3.10 present the error plots of the two algorithms. The green

lines is the error of the Set Membership approach, whilst the black line is the error

of the Particle Filter approach. It is possible to see that the error is less than 2m in

80% of the cases, which is good compared to the length of the trajectory (> 600m).

In the case of Particle Filters, it is normal that the initial error is slightly bigger,

because global localisation has been performed initially. It is also to be noted that

despite some noisy measures increased the error in some cases, the algorithm shows

the possibility to gradually correct itself and reduce the error, recursively estimating

the vehicle state. Figure 3.11 shows the two error plots in the same figure. Analysing

that together with the vehicle’s trajectory, it is possible to understand better the

sources of error. In both cases, spikes of error appear when the data from the sensor

are not good enough, for example when the vehicle is in the central area, with few

features captured by the sonar, or are not distinctive enough, for example when the

vehicle is in the corridor.

Considering that the main disadvantage of the Set Membership approach is that
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Figure 3.10: Error plots for the Particle Filter Approach.

Figure 3.11: Comparing error plots among Particle Filter and Set Membership ap-
proaches.
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the solution is often given in a form of large sets for positions, without knowing where

is the biggest probability of occurrence, a possibility to make use of the best features

of both approach would be to use a Set Membership approach to find an overall

guaranteed position and then to apply a probabilistic approach, like Particle Filters,

to define the uncertainty and to calculate the most likely state.

3.3 Partially known maps

3.3.1 Particle Filters with partially known map

Most of the available techniques consider the problem of localisation in a map

previously known by the robot. Neither corruption nor incompleteness of the map is

usually considered, unless the research is about the full SLAM problem. However the

assumption to have a perfect map of the environment is often unrealistic. It is more

common to have an estimation of the map or to have an incomplete map, with most

features known by the robot, but with some differences between the sensed map and

the previous knowledge. For a mobile robot moving in an indoor environment, the

previously known map could be, for example, the walls of the building. It is quite

unlikely that the robot can be aware of the position over time of a chair in a room,

unless its map is continuously updated. In the underwater domain the same situation

appears. Water currents can change the natural profile over the years, animals and

other floating objects can interfere with the sensors, the position of subsea man-made

installations can change with time from the deployment point and maps could be

not fully updated. Moreover, in tank tasks, the tank walls can be previously known,

but it is often impossible to have a detailed map of other objects/vehicles/people in

the tank itself. In the scenario of the SAUC-E competition 7.1.1, for example, the

dimensions of the tank are known, while position and orientation of different objects

in the tank are unknown. In all these situations, a full-SLAM approach helps, but it

is more computationally expensive than a localisation one. The goal of this section

is to explore the algorithm presented in the section 3.2 in various condition when the

map is not completely known.

Experimental Results

For these tests, the Cartesian robot in the OSL tank was used, mounting the

Tritech SeaKing on it. Three different fields of view were tested, in order to study

the error in function of the portion of the environment which can be observed. The

operating environment was a rectangular tank, 4 metres long, 3 metres width and

2 metres deep. The sensor data were scaled by a factor of 25, in order to simulate
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a bigger environment. Four irregular mid-water objects were added in the pool,

but the robot was only aware that it was in the rectangular pool. In this way the

problem has moved from localisation in a completely known map to localisation in a

partially known map. In Figure 3.12 there is an example of the sonar image, of the

processed image with range values for each angle and the simulated image from the

same position.

As shown in the figure, the simulated and the real picture are different. That is

because the vehicle is not aware of the mid-water objects. The results presented in this

section show the robustness of the proposed algorithm and its capability to be used

in real missions, being able to localise and navigate around underwater structures.

Figure 3.13 shows the results of the algorithm. The real trajectory is plotted in

blue (black). The expected trajectories, given by particle analysis are plotted in green

(light grey) and in red (dark grey). The green dash trajectory is given by the mean

of the particles and the red dot trajectory is given by the best particle. As the figure

shows, at the beginning, the inferred trajectories are not close to the real trajectory,

because no assumptions are made on the initial position of the vehicle within the map.

After a short time, the particles converge near the real position and they do not lose

it. The figure also shows the particle distribution at the last step, plotted according

to their weight. Particles near the real trajectory are bigger than particles with a low

weight.

Figure 3.14 shows the error between the real trajectory and the trajectories inferred

by the particles. The green (light grey) dash error line is referred to the trajectory

given by the mean of the particles, whilst the red (dark grey) dot error line is referred

to the trajectory given by the best particle. The considerations about errors detailed

for the synthetic environment are not valid any more. It is still true that the best

particle trajectory converges faster than the mean particle trajectory. However there

is not much difference between the two errors. While in simulation it was clear that

the best particle trajectory was to be preferred, using the real data, over more than

one thousand tests with different configurations, they were substantially equivalent.

A possible explanation lies on the fact that the real tests are performed in a partially

known environment and not in a fully known one. To analyse the performance of

the system, the number of particles used was changed among 20, 40 and 80 particles.

The field of view of the sonar was also changed among 50, 100, 150 degrees. For each

configuration 100 different tests were run. Figure 3.15 shows the average error over

the total of 900 runs of the algorithm, 100 for each of the nine different configurations.

The error varies from 8 to 60 cm, depending on the number of particles and on

the field of view of the sonar. It is quite important to notice that, after the first

iterations, the error is given only by the x component of the particles, as in 100of
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(a) Sonar image, from the Tritech SeaKing, mounted
on the Cartesian robot.

(b) Segmented sonar image, extracting a distance value
for each beam.

(c) Simulation of the sonar data from the same loca-
tion. The vehicle is not aware about the four buoys.

Figure 3.12: Differences between the perceived reality and the vehicle’s knowledge.
(a) Real sonar image; (b) segmented sonar image, extracting distance value for each
beam; (c) simulated sonar image from the same location. In addition to the noise,
the main difference is in the four mid-water objects, of which the vehicle is not aware
of.
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Figure 3.13: Real results with the Cartesian Robot: a 2D plot of the environment,
with real trajectory (blue) and expected trajectories, given by particle analysis. The
green (light gray) dot trajectory is given by the mean of the particles, while the red
(dark gray) dash one is given by the best particle. The real trajectory starts at the
beginning of the blue (black) line, on the bottom left of the figure. The particles in
their last configuration are also shown, at the end of the trajectories, on the bottom
center of the figure.

84



Figure 3.14: Real results with the Cartesian robot: error between real trajectory and
expected trajectories, inferred by the particles. The red (dark gray) dash error line
is given by the best particle trajectory, while the green (light gray) dot error line is
given by the mean trajectory.

tests the particles converged to the real y value. With limited field of view and with

the high noise, this fact is understandable. Looking at the error plots, it is clear that

the precision of the final solution is directly linked to the number of particles and to

the field of view. Within certain limits, they can compensate each other. However

solutions with very small field of view are in general very imprecise, as well as solutions

using too few particles.

3.3.2 EKF Localisation for a partially known map

This method uses the EKF localisation approach for a map defined by known

and unknown natural landmarks. The state, motion, prediction and update models

remain the same as the EKF localisation for a map of known landmarks, presented in

section 2.4. However, a different Feature Matching algorithm is proposed. Observa-

tions are made using imaging sonar that scans the horizontal plane around the vehicle.

The observation consists of a relative distance and orientation from the vehicle to the

feature. Point features are extracted from the scans and are matched against existing

features in the map. This feature matching is different for a map comprising known

and unknown landmarks in the map. When a new range and bearing observation

is received from the feature extraction process, the estimated position of the known

feature from the predicted position of vehicle is computed. This position is then
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(a) (b)

(c)

Figure 3.15: Real results with the Cartesian Robot: average error over 100 tests for
each configuration. Each figure represents a different field of view ((a) 50 deg, (b) 100
deg, (c) 150 deg) and for each figure 3 different number of particles are represented
(20, 40, 80 particles)
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Figure 3.16: The Feature Matching Algorithm

compared with the estimated positions of the features in the map using Mahalanobis

distance. If the observation can be associated to a single feature, the EKF is used to

generate a new state estimate. An Observation that can be associated with multiple

targets is rejected since false observations can significantly harm the integrity of the

estimation process. Figure 3.16 shows the matching process. Similarly, if the obser-

vation does not match to any targets in the current map, it is compared against a list

of tentative targets. Each tentative target maintains a counter indicating the number

of associations that have been made with the feature as well as the last observed

position of the feature. If a match is made, the counter is incremented and the ob-

served position is updated. When the counter passes a threshold value, the feature is

considered to be sufficiently stable and is added to the map. If the potential feature

cannot be associated with any of the tentative features, a new tentative feature is

added to the list. Tentative features that are not re-observed are removed from the
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Figure 3.17: EKF for partially known map - Real and Estimated Trajectory

list after a fixed time interval has elapsed.

Numeric results

In this case, the map is represented by a mixture of known and unknown narrow

long pillars placed at the bottom of the underwater environment. In a similar approach

with EKF for known Landmarks, the estimated trajectory, error and covariance in

the estimate of the vehicle state is shown in Figure 3.17 and in Figure 3.18.

The increase in error and covariance in the vehicle state, however, can be corrected

using the EKF. In the update model of EKF, the distance from the predicted position

to each of the known landmarks is computed and a feature matching is performed

to match the observed landmarks to one of the known features in the map. Conse-

quently, the innovation and covariance between this landmark and real measurement

to a feature is computed. The distance in the feature matching stage is computed in

the Mahalanobis sense. Finally, the Kalman gain is computed from the innovation

covariance and uncertainty of the prediction stage (i.e. motion model) and the state

of the vehicle is consequently corrected. Figure 3.18 shows that there is a higher error

in the update model when no match is found for the observed features. When a match

is found the update model of EKF is used and the error and uncertainty decreases.

As compared to previous implementation of EKF, in this case there is a higher level of

error. The same holds for the uncertainty. This implementation is further geometri-

cally constrained by the fact that the landmarks shall be narrow, so that the contour

88



Figure 3.18: Experimental results for EKF localisation on a map of mixture of known
and unknown landmarks.

of the landmark would be closer to the centre of the pillar. This will help to reduce

the error associated with the feature extraction stage of the measurement model.

3.3.3 Conclusions

In this section the noise and the possibility of an incomplete map has been pre-

sented. The particle filter approach was able to cope with those quite well, and results

have shown the performances with varying field of view and number of particles. A

modification for the data association algorithm is presented for the case of Extended

Kalman Filters, with the possibility of modifying the map, adding new information,

without solving the full SLAM problem, computationally more expensive.

3.4 Particle Filters merged with EKF

Both Extended Kalman Filters and Particle Filters have strong points and weak

points. A combination of the two filters is presented in this section, in order to handle

the limitations in using only one of the two. The main strong points of the Particle

Filters approach are the possibility to start without an estimation of an initial position

and to be able to recover from wrong convergence. The main strong point of Extended

Kalman Filters is the computational efficiency, compared with the previous solution.

The main weak point of EKF, in addition to needing an estimation of the initial
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position, is the impossibility to assure recovery from a wrong convergence. In cases

of high-nonlinearities, additionally, the Kalman filter solution is not very reliable and

thus a correction through particle filtering can substantially help the state estimation.

In order to handle these problems and to maximise the strong points of both methods

the following algorithm is proposed:

• localisation starts with an improved Particle Filter approach, as there are no

assumptions on the initial position of the vehicle;

• once a convergence is reached, the system switches to a Kalman filter approach,

giving as input the estimated state by the Particle Filter;

• the control is given back to the Particle Filter module in these cases: (a) after

a fixed period of time, to check if the convergence is right and, if needed, to

correct the state estimation - routine procedure; (b) the covariance matrix of

the EKF grows over a fixed threshold, meaning a high imprecision - emergency

procedure.

When the Particle Filter module is called because of a routine procedure, the par-

ticles are initialised as a normal distribution, centred in the expected position given

by EKF module. When it is otherwise called by the emergency procedure, the initial

distribution is a mixture of a Gaussian distribution centred, as before, in the expected

position given by EKF module and a uniform distribution over the map. In this way,

the process evolution is taken in account, but on the same way the uniform distribu-

tion helps to explore the whole environment, because the module was called after a

mislocalisation process has been detected. This method has been tested successfully

and shows efficiency, accuracy and robustness.

Naturally an important role is played by the landmarks. Defining landmarks

as long and narrow pillars will reduce the error in the feature extraction stage and

improve the localisation results. Similarly the higher the number of the landmarks,

the better the localisation results.

3.4.1 Numeric Results

Our system can model a vehicle with six degrees of freedom (DOF), plus a DOF

for the mounting of the sensor on the sway axis. In this particular setup we have

assumed that pitch and roll of the vehicle are neglected. Additionally, at this point,

the sensor orientation in relation to the vehicle is fixed. A simulated gyroscope is

used to have a noisy estimation of the orientation of the vehicle (yaw). A simulated

depth sensor provides a noisy estimation of the distance between the vehicle and the

seabed. Finally, a simulated profiling sonar is modelled to acquire range profiles. It is
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Figure 3.19: A 2D plot of the environment, with real trajectory in blue (black) and
expected trajectory in red (gray). The starting point is on the bottom. (A) End of
Particle Filter Module, with an estimation of the position given to the EKF Module;
(B) routine procedure: the particles correct the EKF estimation; (C) emergency
procedure: the Particle Filter Module is called because a significant growth of the
uncertainty was detected.

assumed that an a-priori map of the vehicle’s surroundings is known. No assumptions

are made on the initial position of the vehicle within the map. The particle state is

represented by six variables, three for orientation and three for position of the vehicle,

plus an additional variable representing the weight of the particle.

In Figure 3.19, the results of the combination of Particle and Kalman Filters are

presented. A 2D projection of the 3D environment is shown for more clarity. The real

trajectory is plotted in bold blue (black) and starts from the bottom. In Figure 3.20

the error between the expected trajectory and the real one is plotted.

At the beginning, as no assumptions are made on the initial position, the error is

quite high and the expected trajectory not very stable. At point A, the particle filter

algorithm converges and gives the control to the EKF module. The EKF run until a

bit before point B, when it is stopped by the controller (routine procedure). In B the
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Figure 3.20: Error between real trajectory and expected trajectory. As soon as the
particles converge, the error goes close to zero, as well when they are called to correct
the estimation.

particle filter module corrects the expected position given by the EKF module and

gives back the control. At this point, a mislocalisation is simulated, with the expected

position going to point C and with a grow in the covariance matrix. The emergency

procedure is thus called. The particle filter module takes the control of the localisation

and corrects it in a few steps. The ability to recover from wrong convergence is a key

point, very important to increase vehicle autonomy. It has to be noted that the output

of the initial run of the Particle Filter module does not necessarily need to be very

close to the real position. It is very unlikely, as it has happened only once in 70 tests.

However, it is interesting to see that the Kalman Filter Module is able to correct the

initial not accurate estimation given by the Particle Filter Module. An example is

shown in Figure 3.21.

3.4.2 Experimental Results

For this localisation approach the four mid-water objects in the pool represent

the landmarks detected and associated by the EKF module. Figure 3.22 shows the

results of the algorithm. The real trajectory is plotted in blue (black). The expected

trajectory is plotted in red (dark grey). The expected trajectory is given at first by

the Particle Filter module and, soon after the convergence, by the EKF module. After

the first steps, in which the Particle Filter module is determining the vehicle position,

the trajectory becomes smoother and is close to the real trajectory.
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Figure 3.21: A 2D plot of the environment, with real trajectory in blue (black) and
expected trajectory in red (gray). The starting point is on the bottom. The initial
Particle Filter Module ended with a very noisy estimation of the real vehicle. However,
the EKF module corrected it in a few steps.
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Figure 3.22: Extended Kalman Filter and Particle Filter: tests in the OSL tank.
The real trajectory of the vehicle is plotted in bold blue (black) and the expected
trajectory is plotted in red (grey).
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Figure 3.23: Plot of the localisation error.

Figure 3.23 shows the error between the real trajectory and the trajectory in-

ferred by the system. The results are very good, as the error level, after the particle

convergence, is always lower than 30 cm. Performing the algorithm over 200 tests,

the error was always lower than 40 cm and lower than 15 cm in 89% of the cases.

Comparing the results given by the Particle Filter module and those given by the

integrated module with the Extended Kalman Filter, it is possible to say that both

present very good results. The Particle Filter algorithm is clearly more accurate, but

in systems where computational power is a sensitive issue, the integration with the

Kalman Filter provides a very good trade-off between accuracy and speed.

3.5 Conclusions

This Chapter has presented a contribution in the field of autonomous robot local-

isation using passive techniques. After the literature review and the analysis of the

state of the art presented in the previous Chapter, the focus went on novel techniques

in the field of Particle Filter and Kalman Filter.

An improved particle filter algorithm, adapted for the underwater domain, was

therefore presented and compared with state-of-the-art techniques, showing reliability

and efficiency.

Then the topic of partially known maps was analysed, with results both using

Particle Filter and Extended Kalman Filter.

Whilst particle filters are chosen because able to handle multiple hypotheses, and
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are not limited to linear and Gaussian processes, they are certainly more computa-

tionally expensive than EKF. Thus an approach to use both algorithms was presented,

in order to intelligently switch between them according to the current state, goal and

circumstances.

Particle filters (with the possible extension with EKF) are considered the main fil-

tering technique explored in this thesis, and will be the base for the active localisation

system presented in Chapter 6.

None of the presented approaches consider the control of the vehicle in the loop

to facilitate the localisation process, and none of them considers the vehicle’s control

and decision making in the loop. The focus of the next chapters will therefore be on

active techniques, starting from navigation relative to an underwater structure, to a

full deliberative system addressing active localisation.
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Chapter 4
Localisation with respect to a structure

4.1 Introduction

In the past sections the problem of global localisation was analysed, i.e. the ability

for the vehicle to understand its position in the general global coordinates, analysing

several techniques with clear proposals for improved performances. Sometimes, how-

ever, the robot does not need to use this information, but it would rather uses infor-

mation about its relative position to a specific structure. While manoeuvring around

different types of underwater constructions - being them natural or man-made, the

essential operational information shifts from the global frame to the relative one. Ac-

cording to the type of structure, the relative localisation problem can be defined in

several ways. For the aim of this work, it is defined as finding a couple < d, θ >, where

d represents the distance from the robot to the structure, and θ represents the angle

of orientation of the vehicle, with respect to the underwater structure. It is to be

noted that, according to the chosen approach, d can represent a distance vector, with

distances at different angles, and not just a single value. Linked to these parameters,

the robot can enter into different behaviours, according the the chosen technique. In

the following sections sonar information extraction is discussed and three different

approaches are analysed and compared.

4.2 Structure Detection and Pose Estimation

This section analyses the relative pose estimation of the vehicle from the sonar

image. The sonar mounted on NessieAUV is a Tritech Gemini 720i Multi-beam Imag-

ing Sonar, with a field of view of 120 degrees with a variable range extending between

0.2 and 120 meters. In the raw image data, the field of view is arranged in to 256

beams, while a maximum of 25 meters range at a scale of 120 pixels per meter in to
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Figure 4.1: DVZ-Intrusion and reaction forces

the vertical bins, with a chosen frame rate of 2Hz.

An empirically defined threshold is applied to the raw image to identify pixels

corresponding to a strong reflection. The lower range sonar readings are ignored

in the subsequent processing since they are a result of the AUV body structure’s

reflections. The object to inspect is assumed to be the closest object of reflection,

as a result only the first bin close to the sonar is considered. Three approaches were

analysed: based on RANSAC, on least square algorithm and on Hough transform.

Considerations about the results are given in section 4.4.

4.3 Control Approaches

Three different approaches were analysed: the Deformable Virtual Zone, an ad-hoc

Velocity Control, and Pose Request.

4.3.1 Deformable Virtual Zone

The first algorithm, based on a reflex behaviour reaction, uses the Deformable

Virtual Zone (DVZ) concept, in which a robot kinematic dependent risk zone is located

surrounding the robot. Deformation of this zone is due to the intrusion of proximity

information. The system reaction is made in order to reform the risk zone to its

nominal shape, implicitly moving away from obstacles [64]. The technique captures

the orientation of the wall and the current situation of the AUV with respect to it, and

drives the AUV reaction regarding its heading and distance to the wall, like explained

in Figure 4.1.
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4.3.2 Velocity Control

This technique, implemented by Karras et al. follows common practice in the

relevant literature [54]. A kinematic control scheme is initially derived, considering

the actuated velocities u, v, w, r as virtual control inputs (i.e., some appropriate

desired velocities ud, vd, wd, rd are designed). Subsequently, the selected velocities

are considered as reference velocities in the dynamic model and the actual control

inputs X, Y , Z, N are designed.

The analysis will proceed in an Input to State Stability framework, i.e. the stability

of the actuated degrees of freedom is first studied, assuming that p, q are absolutely

bounded by some constants p̄, q̄, that is:

|p (t)| ≤ p̄, |q (t)| ≤ q̄, ∀t ≥ 0 (4.1)

and then prove that the overall closed loop system response does not violate the

aforementioned bounds.

In this respect, the position and orientation errors are defined as ex = x − xd,

ez = z − zd and eψ = ψ − ψd. Notice, however, that a position error in y-axis is

not defined since: i) constant velocity ẏd in this axis is required and ii) an accurate

estimate of y is almost impossible in the absence of absolute position measurements.

To proceed, the following kinematic controller is chosen: ud

vd

wd

 = J−11 (η2)

 −kxexẏd

−kzez


rd = −2kψ

cθ
cφ
eψ

(4.2)

with kx, kz, kψ > 0 and the control inputs are designed as follows:

(4.5)
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where M̄, C̄ (v), D̄ (v) and Ḡ (η) involve the rows of the corresponding dynamic

model matrices, concerning only the actuated degrees of freedom (i.e., u, v, w, r).

Finally, ku, kv, kw, kr are positive control gains and eu = u − ud, ev = v − vd,

ew = w − wd, er = r − rd denote the velocity errors.

Considering an underwater vehicle and the control scheme in eq. 4.2, there exist

positive control gains kx, kz, kψ, ku, kv, kw, kr such that the proposed control scheme

solves the Structure Inspection task, despite the presence of modelling uncertainties

and external disturbances.

4.3.3 Pose Request

This section presents a control approach based on pose request, rather than on

force/velocity. It is useful in cases when the low-level control of the vehicle is not

known, or the vehicle model is not available. Therefore it is based on giving pose

requests to the pilot system, which will then translate those into force requests. Three

cases are considered:

• angular error: if the angular error |θerr| between the desired orientation and

the current orientation is greater than a threshold θt, the vehicle only requests

an angular adjustment. It does not move at the same time, because an angular

error might be caused by obstacles at the side of the field of view, thus requiring

an immediate rotation, in order to avoid the obstacle and continue to perform

the inspection.

• distance error: if the vehicle is too close to the structure it is inspecting, the

safest behaviour is to ask only for the requested distance from the wall, and

adjust any angular error. Being too close to the structure, the field of view is

very limited and the safest behaviour is to return to a stable situation, i.e. at the

desired distance and desired angle, before re-engage in the dynamic inspection.

• normal situation: this happens when |θerr| < θt and |distreal − distdesired| <
tdist. In this case, the waypoint is computed and requested in order to complete

the inspection.

This technique doesn’t require for the waypoints to be reached by the vehicle. They

can have arbitrary distance, as new waypoints are issued at every sonar frame. Com-

pared to the previous approach, it can handle heterogeneous structures, and it doesn’t

require any knowledge of the vehicle model. On the other hand, velocity-based control
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Figure 4.2: (left) Trajectory tracking; (right) sonar simulation and field of view (Gem-
ini sonar)

is much smoother in defined situations, where lines are the predominant feature of

the structure.

4.4 Experimental Results

Simulation and in-water trials successfully demonstrate the validity for all tech-

niques, with some advantages for the pose-based one.

4.4.1 DVZ

For the DVZ technique, two different types of sonar were evaluated: the Tritech

Micron Scanning Imaging Sonar, mounted on Nessie IV AUV and the Tritech Gemini

720i Multibeam Imaging Sonar, mounted on Nessie V AUV. The first one has a field

of view of 360 deg, but, being mechanically scanning, is relatively slow in computing

the image, compared to the second. The Gemini sonar is a multibeam sonar, with 256

beams, but covering only 120 deg. Figure 4.2 shows simulated results, highlighting

the trajectory of the vehicle. Figure 4.3 reports more analytical data of the distance

between the vehicle and the structure and the velocity on each of the vehicle axis.

Experimental results with the robot Nessie IV happened at the Somerton Diving

Pool (1.7.4) and at the QinetiQ Ocean Basin Tank (1.7.5). Experimental results

with the robot Nessie V happened at the OSL Wave Tank (1.7.2) and at the CMRE

Waterfront (1.7.6). Unfortunately, the performances in open-water were not as good

as expected. The algorithm showed weaknesses in presence of currents and waves,

which were not estimated in the model.
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Figure 4.3: Temporal evolution of angular velocity and velocities on surge and sway

Figure 4.4: No disturbances: The distance and orientation with respect to the wall
along with the desired values.

4.4.2 Velocity Control

The velocity-based approach was evaluated at the Wave Tank. Two sets of ex-

periments were considered: the first one without disturbances, and the second with

disturbances (i.e. medium waves). In both cases the vehicle responded very well, as

highlighted in Figure 4.4 and Figure 4.5. Figure 4.6 shows the vehicle coping with

waves and disturbances.

4.4.3 Pose Request

The pose-based approach was evaluated at the Wave Tank and at the CMRE

Waterfront, during SAUC-E 2010. The condition at the CMRE waterfront were not
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Figure 4.5: In the presence of disturbances (medium height waves): The distance and
orientation with respect to the wall along with the desired values.

Figure 4.6: The vehicle autonomously surveying the wall in presence of waves. The
sonar data and first analysis is shown at the bottom of the Figure.

104



as controlled as in the Wave Tank, as current sea conditions were depending from

several conditions: a fresh water stream, on specific times of the day, waves caused

by weather conditions, waves caused by passing ships. The algorithm was tested in

various conditions, at different times of the day, and the performances were always

very satisfactory. Analytical results show that the error is always bound in between

10 cm for patches of clear wall, even in case of disturbances. Close to corners, the

error increases, due to the limited field of view of the sensor. However, as soon as the

turn is completed, the error is again bounded. Figure 4.7 shows the vehicle surveying

two walls. The algorithm is general enough to handle corners and not linear surfaces.

4.4.4 Considerations

Analysing the results of the different trials, it is possible to see that a RANSAC

approach is more robust in the case of clear wall, whilst a least square approach

allows the vehicle to successfully overcome obstacles and corners. The best structure

identification algorithm therefore can be dependent on the type of structure being

inspected. RANSAC parameters are also very problem-dependent and the output is

the one best line fit, discarding other points. In complex structures, there is the risk

that only a portion of the structure is considered, i.e. the best line approximation in

a subset of the image. In cases of irregular shapes and corners, a RANSAC approach

is not able to cope with those, whilst a least square solution considers all the sonar

return and is therefore able to take into account a shape change, as soon as it is

visible, from the very beginning. Therefore, although RANSAC is to be preferred in

case of wall following, with no corners, a least square approach is more general and

able to address a wider range of environments, with no specific shape definition.

A velocity-based approach provides smoother trajectories, mainly in presence of

clear walls, and allows to define the desired velocity of the vehicle. A pose-based

approach, on the other hand, is more general, and depends on geometric calculation

only, leaving all aspects related to the vehicle itself out of the loop. In this case, it is

not possible to directly control the velocity, but the pose request does influence the

velocity, if the internal control of the vehicle is based on a PID.

4.5 Conclusions

This Chapter has presented several techniques to solve the problem of robot nav-

igation around structures. It is a different approach than the ones presented in the

previous chapters, as the vehicle’s control is in the loop. It is however a reactive
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Figure 4.7: Wall Inspection at NATO CMRE Waterfront. The pose-based approach is
able to survey any surface, and overcome angles, as well as unstructured environment.
In the Figure, the vehicle is able to turn itself using a very simple and generic approach,
not dependent on the specific scenario.
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behaviour for navigation and localisation, whilst in some circumstances a deliberative

layer of active localisation is needed. In the cases analysed in this chapter, the ve-

hicle responds to the sensor data directly, whilst a further step forward in the active

navigation topic is a more complex vehicle reasoning, able to support the localisation

process, which is not dependent on the current sensor frame, and which takes into

account the full probability density function of the estimate of the vehicle’s state. The

next Chapters will therefore analyse and propose a solution to the active localisation

problem.
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Chapter 5
Active techniques for AUV localisation

5.1 Introduction

Chapters 2 and 3 have showed several approaches to AUV localisation, with the

development of novel techniques, comparing different methods and addressing a fully

known map as well as a partially known one. In all the presented approaches, how-

ever, the robot was “simply” processing the data coming from the sensors (usually

motion estimation and measures of the environment). There was no robot motion

control involved. Chapter 4 presented localisation with respect to a structure and

algorithms to perform an inspection. However the motion was not related to any

global localisation, but only to relative navigation.

This chapter will now focus on active techniques, with an emphasis on intelligent

decision making, for localisation. By the word active, the author means with the

vehicle control in the loop, so with the robot actively choosing an action, in order to

facilitate self-localisation. Adding the control in the loop represents a way to improve

the robustness and the efficiency of the process. In certain cases, it might also be

the only way to successfully solve the problem of self-localisation. The key difference

is that an active selection of the best set of actions to be executed is performed, in

order to reduce the uncertainty, rather than just passively evaluating data from the

sensors.

The adjective active is therefore referred to the robot who actively chooses a set of

actions. It is to be noticed that sometimes the literature referred to active localisation

in relations to localisation with active features (e.g. active beacons, lights), see for

example in [36, 35, 93]. The two should not be confused, as they mean completely

different approaches.

This chapter will analyse the current state of the art, in the robotic field more

in general, as literature specific for the underwater domain in active localisation is
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very limited. Additionally, some of the techniques presented for land robotics, may

be applied in the underwater domain, with appropriate modifications.

This Chapter is organised grouping the different available techniques:

• section 5.2 will present the active selection of landmarks in EKF;

• section 5.3 will present the use of Multiple-Hypothesis Kalman Filters in the

context of active localisation;

• section 5.4 will present the notion of entropy in the localisation probability

density function, linking active localisation to the minimisation of the entropy;

• section 5.5 will present an approach of action selection to facilitate the localisa-

tion process;

• section 5.6 will analyse a typical approach for active localisation in underwater

robotics, in a scenario where the localisation process is aided by an acoustic

beacon;

• section 5.7 will present the link between active localisation and path planning,

showing how the two can be linked;

• section 5.8 will present multi-robot approaches to active localisation;

• section 5.9 will then present other approaches, who are not classifiable in any

of the other categories.

At the end of the Chapter there is an overall critical analysis (section 5.10), showing

the shortfalls of current techniques, giving a hint of the direction of the next chapter,

which represents one of the main contributions of this thesis.

5.2 Active Landmark Choice

The first presented approach deals with active landmark choice. The vehicle’s

navigation system is implemented using an Extended Kalman Filter (EKF, see sec-

tion 2.4). As discussed, Extended Kalman Filter is a landmark-based localisation

system. The algorithm can be diveded into two phases: Prediction ad Update. Obser-

vation of the landmark triggers an update in the filter, to correct the predicted state

estimation. Instead of passively searching for landmarks in the measurement, this

approach actively influences the vehicle in order to actively look for landmarks, in

order to reduce the uncertainty. It is therefore applied whenever there is a predicted

location and an associated uncertainty. From the position uncertainty ellipse, the

visible landmarks are selected, and the best landmark is then chosen.
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Figure 5.1: Localisation system proposed by Tessier [105], based on active landmark
selection.

Arsenio & Ribeiro applied this technique to mobile robots in a controlled indoor

environment [7]. This approach helps tracking the position of the robot, especially

in presence of landmarks which are not easily observable (in the specific case: glass

wall, with a laser scanner). The system therefore chooses to look at more observable

landmarks. If the uncertainty grows, a specific module is called for global localisa-

tion. There is however no specific strategy to discriminate between different possible

locations of the vehicle.

This idea is also proposed by Tessier et al., in [105], where the landmarks are

actively selected, by a supervisor module. The proposed strategy of active landmark

detection optimises a combination of tools - a landmarks bank, sensors and detectors

- by introducing the notion of perceptive triplets. Figure 5.1 presents the localisation

approach and the active detection principle. This approach is very useful and can be

ported in the underwater world, in the case distinctive landmarks can be detected.

Similar to the previously described approach, it does not address the initial pose

estimation and the disambiguation between multiple possible locations of the vehicle.

Olson present techniques to optimally select landmarks for performing mobile

robot localisation by matching terrain maps [86]. The method is based upon a

maximum-likelihood robot localisation algorithm that efficiently searches the space

of possible robot positions. A sensor error model is used in order to estimate a proba-

bility distribution over the terrain expected to be seen from the current robot position.

The estimated distribution is compared to a previously generated map of the terrain

and the optimal landmark is selected by minimising the predicted uncertainty in the

localisation. In order to predict the uncertainty obtained by localisation using vari-

ous landmarks, the proposed method constructs a probabilistic representation of the
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terrain expected to be sensed at any position in the global map. Treating the patches

of this probability map of the terrain as a local map allows the uncertainty expected

by sensing the terrain patch to be estimated using the surface fitting techniques. This

results in a rocky terrain were quite promising. Similarly to the previous paper in this

area, this work can be applied in the underwater domain with the necessary adapta-

tion in cases where distinctive landmarks can be selected. It suffers however of the

typical limitations already described in this section.

5.3 Multiple-Hypothesis Kalman Filter

Remaining in the Kalman Filter domain, a possibility to consider multiple possible

locations for the vehicle is the use of a multiple-hypothesis Kalman filter. This is based

on multiple Kalman filters running in parallel, each carrying a possible location, with

related uncertainty. Each hypothesis is represented by a pose estimate x̂i = (x̂, ŷ, θ̂)Ti ,

with an associated covariance matrix, Σi, and information about the probability of the

hypothesis being the correct one P (Hi). The consideration of multiple hypothesis is

extremely important when the problem is not only position tracking, but also global

localisation. Figure 5.2 shows an example where multiple hypothesis are essential.

The robot is in a simple environment with one room and four door. The perception

system recognises a door. Therefore there are eight possible location, or hypothesis

for the robot. In this framework, the active approach consists in the determination

of the best move that maximise the expected number of new features observed.

Jensfelt & Kristensen proposed an approach based on multiple hypothesis Kalman

filter [47]. They used a topological map to represent the environment. The decision

on the robot move is determined by the maximisation of the expected number of new

features observed in the next possible moves. Starting from N possible hypothesis, the

Figure 5.2: The need for multiple pose hypothesis shown in a simple environment
with only one room with four doors. The robot can see a door, thus there are eight
possible locations (or hypothesis).
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Figure 5.3: The selection of the waypoint in [34], selecting a point close to the nearest
possible obstacle

most probable is considered. A search in the topological graph is performed from the

current location of this hypothesis in order to find the one of the neighbouring nodes

not previously visited and providing the largest number of features. This node is then

selected as the next node to go to. This approach works well when it is possible to

identify a clear set of features. The exploration is driven by some heuristics, including

the avoidance of visiting the same location twice. This is an important optimisation,

as visiting the same location twice does not provide any new information.

The work of Gasparri et al. is also based on multiple hypothesis Kalman filter

[34]. The algorithm relies on two steps: hypothesis generation and safe planning

and tracking technique. The first step exploits a particle filter to find out the most

likely hypotheses with the assumption of stillness of the robot. The second step plans

safe trajectories to reduce the remaining ambiguities using an extended Kalman filter

for each hypothesis when the robot is moving. Figure 5.3 shows the active selection

of a waypoint in the second step of the algorithm. It is close to the nearest possible

obstacle, to allow a safe navigation. A good strategy of this approach is the use of two

steps, one to identify a finite number of poses and another one to disambiguate among

the poses. The simulation results are very promising. It is however unclear how the

algorithm can avoid deadlock situations, which can arise in some environments where

the selection of a single waypoint might not be enough. Surely the algorithm can be

applied sequentially, which would help in many cases, though not solving the possible

deadlock in the disambiguation problem.
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5.4 Entropy minimisation

When the robot localisation is performed with Markov-based techniques (for ex-

ample in section 3.2), a different approach to active localisation can be chosen. Con-

sidering a location l, defined as l = (x, y, θ). The distribution, denoted by Bel(l),

expresses the robot’s subjective belief for being at l. Bel(l) is updated in two cases.

In the first one, the update is triggered by a robot motion (or action more in gen-

eral). Modelling the motion in probability terms, Pa(l/l
1) represents the probability

of being at location l, after executing the action a from position l1. As explained by

Fox et al. in [33], the believe is then updated using the following formula:

Bel(l)←
∫
Pa(l/l

1)Bel(l1)dl1 (5.1)

The second case when the belief is updated happens when the robot sensors provide

a measurement. Considering s as a sensor reading, and P (s/l) the likelihood of

perceiving s at l, Bel(l) is updated using the following formula:

Bel(l)← P (s/l)Bel(l)

P (s)
(5.2)

To eliminate uncertainty in the position estimateBel(l), the robot must choose actions

which help it distinguish different locations. The entropy of the belief measures the

uncertainty in the robot position and is obtained by the following formula:

H = −
∫
Bel(l)log(Bel(l))dl (5.3)

If H = 0, Bel(l) is centred on a single position. In this framework actions are selected

in order to minimise the expected future entropy. Considering Bela,s(l) the belief

after executing the action a from location l and sensing s, the expected entropy can

be represented by:

Ea,s[H] = −
∫
Bela,s(l)log(Bela,s(l))dl (5.4)

The expression expected entropy after executing action a is obtained by integrating

over all possible sensor values s, weighted by their likelihood, and by applying the
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Figure 5.4: The algorithm proposed by Kodaka [57], based on a pre-calculated entropy
map.

update rule, defined in Eq. 5.2:

Ea[H] =

∫
Ea,sp(s)ds

= −
∫ ∫

Bela,s(l)log(Bela,s(l))p(s)dlds

= −
∫ ∫

P (s/l)Bela(l)log
P (s/l)Bela(l)

P (s)
dlds

(5.5)

Solving the problem of active localisation therefore means to minimise Ea[H].

A very important work using this technique is made by Burgard et al. [13] and Fox

et al.[33]. In their work they selected actions by maximising the weighted sum of the

expected decrease in uncertainty (entropy) and the costs of moving to the target point.

Target points are specified relative to the current robot position and can represent an

arbitrary point in the space. Path planning is not involved in the active localisation

module. The result of the algorithm is only a single point to be reached by the robot.

Position probability grids are used to estimate the vehicle position.

Kodaka et al. proposed an approach for mobile robots based on an entropy map

[57]. RFID tags have been placed into the environment with the entropy map precal-

culated based on the arrangement of the tags. After a pose prediction using particle

filtering, the robot is attracted to the target using a dynamic model, the fundamental

unit of which is rotation-based angular velocity. Figure 5.4 shows the steps of the

algorithms and the relations with the environment. This solution is too specific to

be applied in the underwater domain with similar scales. Using active beacons, with
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greater distances due to the physical nature of the sensors, it is possible to design a

similar solution. However, the different constraints in the vehicles would suggest an

alternative solution which would suit better the underwater world.

Mariottini & Roumeliotis presented an active vision-based localisation technique

in a large-scale image map, represented as a vocabulary tree [70]. They adopted

a sequential Bayesian approach in order to eliminate the localisation ambiguity by

exploiting additional camera measurements over an extended time horizon, while

navigating towards a target image, and along the least-ambiguous (i.e., low entropy)

visual path.

Kümmerle et al. use this approach involving active sensing, i.e. the possibility for

the robot to decide where to point the sensor. Active sensing represents a subset of the

full active localisation problem, where the possible actions the robot can undertake

are limited to the pointing of the sensor. They use particle filters for the vehicle

localisation (section 3.2). They cluster the particles into groups and calculate the

total expected entropy for the particle filter by a weighted average of the expected

entropy for each cluster/group [61].

5.5 Selection of best action

This section presents a selection of approaches which are based on the selection of

the single best action for the robot to undertake, in order to localise itself. The method

to discriminate between the different actions can be different, but they all have the

same framework in common: given a set of n possible actions A = a1, a2, a3, ..., an,

the algorithm select the action ai, which maximises the following formula:

i = argmax
i

(rewardai − costai) (5.6)

The work carried on by Fairfield & Wettergreen represents an important contribu-

tion using this approach, also because it is one of the few examples in the underwater

domain [30]. It uses active localisation on top of the map previously constructed by

a SLAM approach. The set of possible actions are represented by the heading of the

vehicle for the following 30m. The action is selected in order to choose the most

discriminative one. The vehicle state is represented with a particle filter, and only

a subset of particles are used to evaluate the best action. In many cases however a

single action - in this case: setting the heading for the following 30m - is not enough

to discriminate between multiple hypotheses.

Solberg et al. propose an approach based on the active movement of an electric

field emitter [102]. Their approach is based on electric fields for vehicle navigation,
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a biology-inspired concept. The vehicle state is estimated with a particle filter and

the chosen control option minimises the expected variance of the particles at the next

iteration.

Seifzadeh et al. propose some modification to the standard Monte Carlo localisa-

tion, in order to solve the kidnapped robot problem and to initialise the particles in

a more efficient way [98]. In the description of the active approach, the robot chooses

an action which represents the best trade-off between cost and gain. Again, similar to

other approaches discussed above, choosing only one action does not guarantee any

result in complex environment, and thus can only be used in very specific cases.

Chuho et al. developed an active-semantic localisation method [122]. A Bayesian

model for robot localisation has been applied, incorporating also spatial contexts

among objects, which were described using symbols. The robot action selection is

based on a greedy approach. Only the best action is considered.

Murtra et al. also presents an approach based on the selection of the best action

to execute [80]. It is based on a rational criteria to select the action that minimises

the expected number of remaining position hypotheses, using a Particle Filter.

5.6 Beacon-aided localisation

Some approaches in active localisation can be very specific and tailored to a spe-

cific robot configuration or with specific environmental constraints. This is the case

of the approach of Olson et al., who use active beacons deployed in the environment,

in order to help the localisation process [87]. The use of active beacons (i.e. acoustic

emitters) is quite common in underwater robotics. Using this approach, there are two

standard solutions to the localisation problem. The active approach to localisation

therefore aims to disambiguate between these two solutions, with a specific path to

be followed. Figure 5.5 shows the exploration gradient with two possible beacon lo-

cations. The best disambiguating motion is a function of the AUV’s location. The

vehicle maximises the difference between the range measurements by travelling along

the arrows. The length of the arrows indicates how rapidly the difference in range

changes. This approach is capable of performing localisation without relying on care-

fully surveyed beacon locations. The ability to localise a beacon is tightly coupled

to the path travelled by the AUV. The robot’s path should be therefore chosen to

optimally resolve ambiguous data. Although simulation results were very promising,

this approach cannot be easily generalised or adapted if beacons are not present in

the environment.
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Figure 5.5: Exploration gradient with the beacon location at (-1;0) or (1;0). The best
disambiguating motion is a function of the AUV’s location.

5.7 Path planning and active localisation

Active localisation can also be seen not just as an isolated problem, but linked to

the overall robotic system, which has tasks to perform. It might not always possible

to focus on localisation neglecting any other goal of the robot. On the other hand,

the opposite is almost always impossible: the knowledge of the robot state is very

often - if not always - a needed condition. A way to address this area is to perform

active actions, which would contribute both to the localisation process and to the end

goal. In trajectory planning, for example, a localisation-aware trajectory would be

not necessarily the shortest one to the goal point, but the one which would allow the

robot to see features and arrive to the goal point with a reduced uncertainty. The

work of Bauer is in this area and presents an approach to support the data acquisition

for the localisation process of an autonomous robot by well-aimed manoeuvres [10].

The task of localisation is linked with a specific goal to be reached. In the case of path

planning, the proposed approach mediates among the different tasks: localisation and

user defined mission. This mediation is performed by analysing the estimated benefits

and cost of each task and selecting therefore the optimal manoeuvre. The work was

tested in simulation with line features as the landmark types for the robot to localise

itself. Important assumptions for this work are the knowledge of the start position

and the limitations to line features.
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5.8 Multirobot active localisation

In some cases the problem of localisation and active localisation can be addressed

in a multi-robot scenario, showing the benefits of active approaches versus passive

ones. Bhuvanagiri & Krishna designed a system to guide several robots who are in

ambiguity of their states to locations where as many of them can get rid of their

ambiguities by localising to a unique hypothesis state [12]. It presents a unified

probabilistic framework that takes into account the role of measurements between

robots as well as the measurement made on the local map structure in deciding the

best locations to move. The robots choose to move towards those locations where the

probability of localising itself to a unique hypothesis is maximum. This work shows the

advantages of a multi-robot system in addressing problems such as state estimation.

Davison & Kita demonstrated accurate localisation for an inspection team consisting

of a robot with stereo active vision and its companion with an active lighting system

[24]. In this case a single sensor can be used for measuring the position of known

or unknown scene features, measuring the relative location of the two robots, and

actually carrying out an inspection task. The active vision system is based on active

landmark choice, described in Section 5.2

A close multi-vehicle collaboration is however out of the scope of this thesis.

5.9 Other approaches

In this section other specific approaches, which cannot be grouped in the categories

described above, are presented. They often provide a customize solution for a specific

problem, thus making their portability in other domains or in scenarios with different

constraints difficult.

Antonelli et al. focus on the improvement of observability for relative localisation

of AUVs [6]. The case of cooperation between two vehicles is analysed and numerical

simulations have shown path configurations which avoid singularities. The proposed

approach is purely mathematical dealing with system observability. A system is said

to be observable if, for any possible sequence of state and control vectors, the current

state can be determined in finite time using only the outputs. The approach evaluated

valid paths which allow full rank observability matrix for the linearised system, i.e.

all variables are fully observable. Those paths are however defined in advance, and

specific to the situation. The behavioural control techniques described in the paper

do not provide a general solution to the localisation problem, in cases where the robot

needs to choose the best trajectory (or, in a wider sense, the best set of actions).

O’Kane & LaValle have analysed three robot configurations with limited sensing,
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in order to analyse the possibility for a simple robot to localise itself in a polygonal

environment [84]. A discretisation of the state space is applied. No uncertainty is

considered, but all the possible states are in a finite set. In order to disambiguate,

two random possible states are considered, and a list of actions is computed in order

to arrive to a point when only one of the two states is admissible. This approach,

justified with algorithmic proofs, successfully determines the robot pose. Among

the limitations, the environment needs to be polygonal, no uncertainty is taken into

account and the two possible poses among the set of all possible poses are chosen

randomly, which leads to the possibility of having to apply recursively the algorithm

n− 1 times, with n being the number of possible initial states.

Dudek et al. presented a method for minimum distance traversal for localisation

that works in polygonal environments without holes that they show to be NP-Hard

[26]. A randomized version of the same method was presented in [92].

The work proposed by Kondo et al. on localisation around underwater structure is

an example of linking the localisation with the planning system [58]. The localisation

itself is based on particle filters (section 3.2) but the planning system considers the

state of the filter in its planning. Once convergence is reached, it issues waypoints,

in order to inspect the structure at a fixed distance. In the proposed system, the link

among localisation and planning is not very strong. The planner waits for a stable

navigation status, before moving the vehicle, which is very reasonable, but does not

consider the possibility that a consistent status might be achieved only after a specific

set of actions.

5.10 Critical Analysis

The previous sections presented several approaches for active localisation. Actively

choosing the landmark to observe represents a good strategy for landmark-based lo-

calisation. However, it does not address the disambiguation among multiple possible

locations. Multiple-Hypothesis Kalman Filters address the possibility of multiple pos-

sible locations, but this approach works well only when it is possible to identify a clear

set of features. The concept of entropy minimisation is considered key from the au-

thor. Considering the localisation function as a probability distribution function, any

active localisation technique directly or indirectly needs to minimise the expectation

of the future entropy, when selecting the actions. However, a clear drawback is repre-

sented by the complex mathematical formulation, which is computational intensive,

as also outlined by Fairfield & Wettergreen ([30]). Additionally, the solution provided

by Burgard et al. [13] provides one map point relative to the robot which the robot

should reach to minimise the entropy in the localisation distribution. However that
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Figure 5.6: An example of why building a set of actions greedy concatenating the best
single action is not a powerful solution. A and B represent two possible location of the
robot. (a) initial situation; (b) the best single action is to move towards the left; (c)
the best single action from the previous best single action is again a move towards the
left. However, if the robot moves towards the right twice from the initial situation, it
arrives to a much better location to discriminate among the two hypothesis.

point might not be accessible, and the path planning to reach that point is not ex-

plicit. The selection of the best action works well only in simple environments. In

many cases there is the need of a series of action in order to correctly estimate the

location in the map. Executing one action only does not give any guarantee to im-

prove the localisation. A simple greedy approach of building up a new action on top

of the previous best action is again not suitable, due to the possibility of local minima

and local maxima. Figure 5.6 shows an example. Considering two possible states, A

and B, the single best action is to move towards the left, as moving towards the right

would not discriminate at all among the two possible location. If the system would

build a set of action composing the best single actions, it would then go again towards

the left. However, if the system chooses to go right from the beginning, it arrives to

a much better location to discriminate among the two hypothesis. The work from

Gasparri et al. [34] shows a proposal which is very similar to the selection of the best

action, though the selection process is more elaborated, therefore having similar lim-

itations. The selection of a point close the first possible obstacle was mainly justified

because of safety. It actually helps the whole localisation process. The idea of looking

for places which are different according to the different hypotheses is key. Based on
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the literature analysis, a clear gap is identified. The proposed system needs to:

• be general enough, and not tight to any specific custom problem;

• be able to handle multiple possible locations (global localisation), and not just

the current one (position tracking);

• consider the entropy expectation as an important information in the definition

of the actions to be performed;

• consider multiple actions, as one action is not enough to properly address the

problem;

• optimise the computational load

The following chapter will present and formalise the proposed system, taking into

account the above-mentioned criteria.
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Chapter 6
Novel approaches for AUV active

localisation

6.1 Introduction

The previous chapter has showed several approaches to AUV active localisation.

This Chapter will now focus on a novel deliberative active system which addresses the

shortfalls of the current approaches. The proposed system aims to be general enough,

not tight to a specific environment or sensor. Handling multiple possible locations

(global localisation) needs to be one the features, and not just performing position

tracking. Additionally, it needs to consider multiple actions, because - as outlined

in the previous chapter - choosing the best one action is not enough. The proposed

module is based on a Particle Filter approach, described in 3.2 and is able to return

a set of actions in order to facilitate particle convergence.

This Chapter is organised as follow:

• section 6.2 will present the active localisation module, one of the main contri-

butions of this thesis, with comparison with other techniques;

• section 6.3 will present the experimental results, both on simulated data and in

field trials;

Finally, conclusions will be presented in 6.4

6.2 AUV Localisation Module

The proposed approach takes into consideration the analysis made in the previous

section and addresses all the highlighted points. An architectural overview is firstly

presented, while each module will be described in more detail in the following sections.
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The integration with the vehicle architecture is a key, and it is reasonable therefore to

assume that the system needs to continuously run the localisation module. In specific

cases, there should be the possibility of actively taking the control of the vehicle

in order to execute a plan aiming at reducing the uncertainty in the localisation.

Therefore, the proposed system, outlined in Figure 6.1, is a two-layer localisation

architecture. The first layer represents a continuously running passive localisation

module, as described in Chapter 3, section 3.2. The second layer is an active module,

i.e. with the control of the vehicle’s motion in the loop. The first module is the one

running by default: it receives the information from the vehicle’s sensors (for example

Doppler Velocity Log, compass, depth and altimeter sensors, sonar measures) and

it combines them in order to estimate the vehicle state. When there is the need to

actively localise, the second module starts and generates the best set of actions to

be executed, in order to reduce the uncertainty. The decision to switch from passive

localisation to active localisation needs however to be taken by the mission planner,

based on the current goals and vehicle state estimation. Considering the full vehicle

architecture, a single module should not be allowed to take the control of the vehicle,

even if it is to solve such an important problem as localisation. There are several

cases where, for example, the vehicle must continue in carrying out the current task

and the active localisation can only be performed after the current task or goal is

fully finished or achieved.

6.2.1 Passive Localisation Layer

This module represents the passive localisation system of the vehicle, as described

in Chapter 3. For the purpose of this thesis, it is based on the improved particle filter

algorithm described in Section 3.2. Particle Filters are the chosen technique for the

passive layer, as they can be applied in a variety of different scenarios, they don’t

require an initial state knowledge, and can effectively represent multiple hypotheses,

which is definitely the case when similarities arise in the environment and the vehicle

can be confused about its true state. Additionally particles can easily be grouped

into clusters to reduce the number of possible states, and already defined formulations

easily provide information about their distribution and entropy.

6.2.2 Formulation

The active localisation problem can be defined as a planning problem, expressed

by the tuple Ψ = (Bel(xti);A; γ; δ) where:

• Bel(xti) represents the robot belief of its state at time ti, i.e. the probability

distribution function;
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Figure 6.1: The general architecture of the navigation system: the passive localisation
module is always running. According to the probability distribution of the state,
the particles are clustered and centroids are calculated. According to the entropy,
cluster features and plan constraints, the active localisation module can be triggered.
Through an exploration of the tree structure, it outputs the set of actions to be
executed by the vehicle.
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• A represents a set of n possible actions {a1, a2, ..., an}

• γ represents the cost associated to the execution of the actions. In case the

cost of each action are independent from previous actions, it is a vector of n

elements, associated to the n actions. On the other hand, if the cost is not

independent, it is represented by a more complex function.

• δ represents the reward associated to the successful completion of the action. It

is not represented by a fixed value or a vector, but it is a function of the belief

on the state.

The output of the algorithm is represented by a set of s actions S = {ai1, ai2, ..., ais},
where ai ∈ A, which maximises the function Σ

i
[cδ,iδi(Bel(xt0)) − cγ,iγi(Bel(xt0))],

where cδ,i and cγ,i represent weights in order to be able to give more or less impor-

tance to specific (order of) actions.

Particle filters by definition represent a discrete representation of the probability

distribution function. Each particle represents a possible state of the robot, and

therefore a possible hypothesis. However, for computational reasons, there is an

interest in grouping the particles which are in the same neighbourhood.

A particle pi belongs to a cluster Cj, with centroid cj if the distance is smaller

than a threshold |pi − cj| < ϑp, with ϑp > 0

A cluster Ci is considered compact if the entropy of the particles belonging to the

cluster is smaller than a threshold H(Ci) < ϑC , with ϑC > 0

Following this formulation, it is possible now to analyse the proposed approach

more in details.

6.2.3 Cluster Calculation

Active localisation is useful to discriminate among several hypotheses for the state

estimation. Although it could literally start taking as input the total amount of parti-

cles, the problem would easily become intractable, due to the required computational

power. Additionally, many particles surrounding the same state do not add valuable

information, in terms of possible hypotheses. On the other hand, they give an es-

timate of the probability of the same singular hypothesis. For those reasons, it is

useful to proceed with a cluster analysis, to identify a few hypotheses, rather than

working with hundreds or even thousands of possible states. The algorithm needs to

be generic enough to allow the vehicle to discriminate between n possible states. The

number of possible states n is not known in advance, but it is bounded 0 < n 6 T ,

with T ∈ N. This means that there is an assumption on the maximum number of
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states, for computational reasons. The proposed system therefore iterates the clus-

ter calculation through an iterative k-means algorithm. As shown in algorithm 1, at

each iteration, the algorithm checks if the clusters are compact, according to defini-

tion 6.2.2. If all the clusters are compact, this information is passed to the Vehicle’s

Planning and Control System, to enable active localisation, as in Figure 6.1.

Data: Bel(xti) (i.e. particles), T

Result: C (set with clusters), trigger for active localisation

nCluster = 1;
while nCluster 6 T do

C = kmeans(Bel(xti, nCluster);
compact = true;
foreach cluster Ci in C do
if !compact(Ci) then

compact=false; break;
end
if compact then

notifyToPlanner();
end

end

Algorithm 1: Clusterisation of the particles for active localisation. The planner is
notified only when the computed clusters are compact.

6.2.4 Vehicle’s Planning and Control System

This module receives the information from the passive localisation system, when

there is a clear clusterisation, i.e. all the clusters are compact, according to defini-

tion 6.2.2. The goal is to enable the active localisation only when it is needed and

when it does not interfere with the current vehicle’s goals, if their accomplishment is

more important than performing a different set of action aiming at localisation. For

example, if the vehicle is performing a mission-critical inspection of an underwater

structure, it might be more advantageous to continue the inspection using relative

position with respect to the structure. In other cases, it would be better to clarify its

current location, in order to avoid keeping inspecting possibly the wrong structure.

A detailed analysis of this module is however out of the scope of this thesis, as its

focus is on the localisation mechanisms. In stand-alone tests of active localisation,

this system was always triggering the active localisation module, when receiving in-

formation about the clusterisation, with more than one cluster. In this way, it ensures

that there is a finite and computationally tractable number of hypothesis over which

the system needs to discriminate.
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Figure 6.2: From each of the eight possible robot locations, a tree of actions is com-
puted. Analysing the results of the actions across the possible locations, the algorithm
will determine the best path in the tree.

6.2.5 Active Localisation Layer

This module is started from the Vehicle’s Planning and Control System and has

the task of producing a set of action, with the goal of minimising the entropy of

the expectation in the particle distribution and contribute therefore to an effective

localisation. At this stage, the full particle distribution is not considered any more,

but only the centroids of the clusters are considered as possible hypothesis. This

module, as described in section 6.2.2 produces a set of actions, whose execution will

help discriminate among the different clusters. Basic actions ai that the vehicle can

perform are identified:

A = {a1; a2; ...; an} (6.1)

The actions ai are on the format: “go forward for x meters”, “go backwards for x

meters”, “go left for x meters”, “go right for x meters”, “go up for x meters”, “go

down for x meters”, “turn x deg clockwise”, “turn x deg anticlockwise”.

The module produces a list at0 , ..., ats which represents the s actions selected to

be executed at times t0, ..., ts.

The proposed approach is to build a tree of basic actions from each cluster cen-

troids, as shown in Figure 6.2. Figure 6.3 shows a tree built on a possible location

(cluster i), with the root of the tree initialised at the centroid, and with four basic

actions. The complexity of the tree exploration is polynomial on the number n of

actions and exponential on the depth d of the tree (O(nd)). However, it is possible to

reduce this complexity, considering that for every basic action ai there is another basic

action aj which produces the opposite effect. As visiting a location already visited

is not providing any new information, each node will not expand the node with the

action which balances the previous one, as shown in Figure 6.4. Following the same

principle, loops on the same root-to-node path are not allowed, thus reducing the

final complexity, as shown in Figure 6.5. This means to avoid visiting the same state

more than once, as also suggested by Jensfelt & Kristensen [47]. Table 6.1 shows the
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Figure 6.3: An example of a tree built from the centroid of cluster i, with four basic
actions/movement.
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Figure 6.4: First optimisation step: cutting basic loops.
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squares for depth = 4

Figure 6.5: Second optimisation step: cutting all loops.

effects of the optimisations considering four basic actions, highlighting the advantages

in terms of nodes to be visited according to the depth and the chosen algorithm.

It is also possible to set other constraints, in order to cut the tree. They can be

related to the specific vehicle used, and to some manoeuvres which should be avoided.

For simplicity, no other constraints are considered, but they are easily pluggable in

the module. Modelling the robot behaviour as a set of basic actions is very important

in order to consider that different paths to the same location can produce a different

probability density function of the vehicle state. Another possibility would have been

to consider longer trajectories, instead of basic actions. First of all, choosing to model

trajectories would have limited the framework to trajectories only, whilst it has been

designed to account to any type of actions, not only movements. Additionally, in order

to select among several trajectories, an action/cost associated to the trajectories would

have been needed and therefore they would have been discretised to analyse several

points of the trajectories. Finally, several different types of trajectories could be

represented, like for example spiral, straight-line, lawn-mower, etc. and it would have

been difficult to create a stardardised approach for the discretisation. In complex

environments a very specific trajectory - not directly linked to a trajectory family,
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depth
# actions # actions # actions

no optimisation cutting basic loops cutting all loops

1 4 4 4
2 20 16 16
3 84 52 52
4 340 160 152
5 1,364 484 436
6 5,460 1,456 1,216
7 21,844 4,372 3,388
8 87,380 13,120 9,304
9 349,524 39,364 25,572
10 1,398,100 118,096 69,672
11 5,592,404 354,292 189,964
12 22,369,620 1,062,880 514,896

complexity
4d 3d 2.724542468d

d = depth

Table 6.1: Number of nodes and complexity in function of the depth of the tree,
showing the benefits of the optimisations in the tree exploration.

could be the one needed for localisation. On the other hand, basic moves are like

bricks which allow to build any of those trajectories, in a discretised way. Basic actions

however needs to ensure the robot safety. In the next section a brief explanation of

the obstacle avoidance system will be presented.

Dealing with obstacles

A key safety constraint for the robot is to avoid obstacles whilst performing a

task. This is very relevant for active localisation as well, because the control of the

robot is in the navigation loop and specific sets of actions are chosen to solve the

localisation problem. Considering that the map and the possible robot locations are

known in advance, the only trajectories that can be generated are those who satisfy

safety constraints for all the possible locations. This has the effect to further cut

branches of the tree, thus making the algorithm even more efficient. Trajectories

which would bring the robot close to obstacles for one cluster and in free space for

another cluster are to be preferred, as it will be explained more in details in the next

section, about action rewards. However, this is done directly in the node evaluation,

without explicitly considering obstacles in the reward calculation. In the next sections

a proposal of action reward and cost will be presented.

132



Action Reward

As previously said, it is important to minimise the expectation of the entropy in

the probability distribution function. However, the reward function is calculated for

each node of the tree, and therefore it can be easily classified as the critical operation

for the system. Fairfield & Wettergreen pointed out that this calculation is very

time consuming ([30]). The proposed approach therefore tries to avoid it, analysing

the meaning of the minimisation of the expected entropy. The proposed approach

considers the information gain acquired after executing the actions at0 , ..., ats . It is

represented by the diversity in the expectation of the future measurements for the

different hypothesis. The following notation is used:

• ktot represents the total number of clusters

• k represents the Cluster k;

• n represents the node n in the tree;

• zkn represents the measure from node n in cluster k. It is represented as an array

of distances;

• m represents the number of cells in the array of measures (i.e. the number of

beams in a sonar)

• zj,kn represents the scalar value of the measure zkn at index j, with 1 6 j 6 m

The algorithm seeks nodes to maximise the differences in the measurements from

different clusters. Considering that an indication of the difference in a set of numbers

is given by the variance σ2, the reward of a node n can be expressed as:

r(n) =

∑m
j=1 σ

2

zj,k=1:ktot
n

m
(6.2)

It represents the average of the variance for each index j of the measurements zn,

acquired from the different clusters k, with k ranging from 1 to ktot. The gain calcu-

lation is also explained in Figure 6.6. If we consider only translations and rotations

as set of basic actions, each action applies a transformation matrix to the centroid.

Considering x the initial state of the centroid, the resulting position x′ at node n is

therefore given by:

x′ = [RT ]ath · [RT ]ath−1
· · · · · [RT ]at1 · x (6.3)

where h represents the depth of node n and at the action executed at time t.
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Figure 6.6: The reward calculation for each node of the tree.
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Cost of actions

Each action has not just a reward, but also a cost associated to it, which may vary

according to the specific constraints. For example, in many cases, it is reasonable to

assume that if the action at is the same than the action at−1, the cost for the vehicle

would be smaller than for a completely new action. This surely happens when the

actions represent vehicle basic moves, because there is no need to radically change

the thruster behaviour. The total value therefore assigned to a single node is given

by the difference between the reward r and the cost c. The output of the module is

therefore:

p∗ = {a∗t0 , ..., a
∗
ts} = argmaxpi(rpi − α ∗ cpi) (6.4)

where pi represents the path ith, α is a constant representing the scale of the

cost with respect to the reward and p∗ represents the best path. The design of the

cost function has of course a significant impact on the path generated and it can vary

according to the robotic platform and to the environment. In the proposed framework,

the cost of every action cai is calculated as follow:

cai = hCi ∗ (1 + h ∗ nI + k ∗ nTZ) (6.5)

where hCi is the hydrodynamic coefficient linked to the specific action ai, h is the

coefficient weighting the nI thrusters requiring an inversion of voltage, in order to

execute the action, and k is the coefficient weighting the nTZ thrusters requiring a

change of voltage to zero, with h > k. For a torpedo shaped slide-capable vehicle, a

possible set of parameters is:

• hCi is equal to 0.6, if ai represents a forward movement; to 1, if ai represents a

rotation; to 2, if ai represents a sideways movement);

• h is equal to 1;

• k is equal to 0.5;

Stopping criteria

The stopping criteria for the exploration of the tree are as follow:

1. a predefined depth is reached. In this case the best path is given to the path

execution system;

2. the reward for a node has reached a specific value. That means that the path

up to that node is able to disambiguate among the different clusters.
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The ability to stop the tree exploration at any depth is very important for in-mission

executions, where time-constraints do not allow prolonged reasoning.

Can the algorithm guarantee convergence after stopping criteria is reached? The

easy answer is not in all cases, like all solutions for robot navigation. Robot navigation

is very dependent on the environment and there can be very tricky environments where

the disambiguation among several hypotheses is not only difficult, but mathematically

impossible. A very easy example to show is two identical environments, A and B,

which are not connected. In this case the robot does not have any possibility to

understand if he is in the environment A or in the environment B. Another example

is a standard rectangular pool, with no compass. Any trajectory or set of actions

to sense the environment will not be able to discriminate among the two symmetric

solutions. Both examples are related to closed environments. In those cases, even

without setting a maximum length of the tree, the algorithm would terminate when

it has fully explored the environment and there are no more nodes in the tree to

expand. It is possible to easily detect those cases and therefore to notify to the

upper vehicle’s layer about the impossibility to solve the localisation problem. This

happens when the reward for each explored node is below a certain noise threshold,

thus detecting practically symmetries in the environments which are impossible to

solve. Those cases are however theoretical cases, as in real environments chances of

impossible localisation are rare, if not impossible. Those cases are well known in

advance, as for localisation problems the map is known in advance. There would not

be any robotic mission required accurate localisation if the environment would be

known to be an impossible one for localisation.

Summary of the module

Summarising, the general principle of the module is to find a path (or, more in

general, a set of actions) that maximises the diversity in the observations from the

different initial possible positions. From the centre of each cluster, an action tree is

built. Each node represents a possible basic action. The output of the module is a

path root-leaf (i.e. a sequence of basic actions) which maximises the diversity in the

observations and thus minimising the expected entropy.

6.2.6 Plan Execution

After the best set of actions is chosen, they need to be executed. The results of this

execution will minimise the entropy and, through the filtering process, will eventually

drop at least one cluster from the hypothesis space, if the problem is solvable. There

are cases when the problem is not solvable, i.e. given any set of action, it would still
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be impossible for the vehicle to determine its own location. However, those scenarios

are generally far from the real applications. They would be nevertheless detected by

the tree-based planner, as no path/node in the tree would give a better gain/cost

compared to others.

6.3 Experimental Results

6.3.1 Simulated setup

The algorithm has been tested in a simulated setup first. For simplicity, only 2D

environments have been tested, in order to reduce the set of basic moves. The 3D

extension is very straightforward, as the only change is the number of elements in

the set of possible actions. Conceptually and practically, there is no difference, apart

from the computational time, which is however relatively low. The sensor modelled

is a Tritech Micron, currently mounted on our vehicle Nessie IV. It is a mechanically

scanning imaging sonar (MSIS), with 360 deg field of view. For this reason, in this

first setup there are no rotations in our set of basic moves, as they do not provide

more information about the environment. In the case in which the field of view is

limited, then the rotation basic actions are necessary. The set of basic actions is thus

represented by:

A = move{forward, backwards, left, right}

for 6 meters
(6.6)

The first environment has a U configuration, described in Figure 6.7. The vehicle

is either at the end of one of the two legs of the U. With the vehicle positioned on the

left leg, the particles, initially spread all over the environment, quickly converge to

two possible symmetric locations. Of course, the same result appears with the vehicle

positioned on the right leg. As the observation from the two points is the same,

it is not possible to distinguish between the two hypotheses with classical passive

techniques. The control is then given to the active localisation module which takes

the two locations of the cluster centroids in input. The dimensions of the environment

are 100x100 meters, with each leg long 50 meters and 30 meters wide. The two cluster

centroids are located at (15; 85) and at (85; 85) With a sonar range of 40 meters, the

output of the module is a path composed by six basic moves, all going backwards.

This is actually the best path in order to discriminate between the two solutions, as

the diversity in the environment can be sensed on the bottom of the U. Reducing the

range to 30 meters, the output is composed by eight basic moves: six backwards and

then two on the left. This is consistent with the expectations, as the generated path
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(a) Initial state: uniform distribution of the
vehicle state

(b) Clusterisation of the particle

(c) Tree built from each centroid (d) Path chosen to maximise the information
gain

Figure 6.7: All the steps of the active localisation process: clusterisation, tree con-
struction and path building. First scenario: U-like closed environment
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Environment Basic Actions N. Clus-
ters

Sonar
Range

Sonar
FOV

Path gen-
erated

U-shaped
100x100m

{F,B, L,R}for 6m 2 40 m 360deg B - B - B - B
- B - B

U-shaped
100x100m

{F,B, L,R}for 6m 2 30 m 360deg B - B - B - B
- B - B - L -
L

Table 6.2: Active localisation in U-environment. Two clusters at (15;85) and (85,85).
According to the sonar range, the generated path is different. If less information are
available (reduced range) the path is longer.

arrived to a point very close to the borders of the environment (presence of obstacles)

for one cluster, while for the other cluster, the final point was far from any obstacle.

This simulated environment shows the possibility to apply active localisation in closed

environment, like it is often the case for man-made environments, like marinas. All

the steps are highlighted in Figure 6.7. Table 6.2 summarises the results.

The second environment is more similar to open sea conditions and leading to off-

shore applications. There are no boundaries, just three objects, which can represent

an underwater site, as in Figure 6.8. Assuming that the vehicle is travelling from

one site to another one, it is very likely that the navigation error is bigger than the

distance between two objects and thus the vehicle needs to find a way to discriminate

between the initial hypothesis (in this case, three). This case is also interesting as it

shows how a small change in the parameters of the sonar can change significantly the

results. Due to the location of the underwater objects, a range of the sonar over 27

meters can discriminate between the positions without need of any active localisation.

Reducing the range gradually, the generated path change significantly. Between 26

and 27 meters, one move is enough to distinguish between the three hypotheses and

the selected move is to go backwards. For the top right centroid, this has the effect

to go nearer the two middle objects. When the range drops up to 23 meters, the

selected move is to go right. For the left centroid, this has the effect to go nearer

the central object. Reducing again the range, the required trajectory is composed by

two steps and again the first choice (up to 21 meters) is to go backwards, creating a

measure discrepancy between the top centroid and the other two. At 20 metres range,

the two steps are on the right. Up to 17 meters range, the planned path is to go on

the right for three steps: this helps to discriminate the left centroid (very near to the

central object) with respect to the other two objects. It is now interesting to see what

happens for sonar range below 17 meters. There is no straight exit from the Active

Localisation module, so the tree is fully explored until the maximum depth (fixed at

nine). However, the best discriminant path that the algorithm can found is not a
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(a) Particle clustered in front of the three objects

(b) Path chosen to maximise the information gain

Figure 6.8: Second scenario: three objects in an open environment.
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Environment Basic Actions N. Clus-
ters

Sonar
Range

Sonar
FOV

Path gen-
erated

3 objects,
100x100m

{F,B, L,R}for6m 3 > 27 m 360deg -

3 objects,
100x100m

{F,B, L,R}for6m 3 26 − 27
m

360deg B

3 objects,
100x100m

{F,B, L,R}for6m 3 23 − 25
m

360deg R

3 objects,
100x100m

{F,B, L,R}for6m 3 21 − 22
m

360deg B - B

3 objects,
100x100m

{F,B, L,R}for6m 3 20 m 360deg R - R

3 objects,
100x100m

{F,B, L,R}for6m 3 15 − 19
m

360deg R - R - R

Table 6.3: Active localisation in an open environment with three objects. The varia-
tion of the sonar range has the effect to variate the generated path.

path of length 9, but it is the last path generated for a sonar range of 17-20 meters,

of length 3. Table 6.3 summarises the results. A representation of the environment,

with particle clustering and chosen path is highlighted in Figure 6.8.

A complex simulated test - a labyrinth-style environment, Figure 6.9 - represents

our third simulated environment. For such complex scenario with so many constraints,

given by the walls, the algorithm needs to be applied iteratively, in order to arrive

to a final unique determination of the robot pose. The first path generated by the

algorithm drops the number of clusters from the initial six to three. The second path

drops it from three to two, while the third path provides a unique solution. It is to

be noted that the last path is actually a degenerated path, with the robot deciding

not to move. This decision is very rare, if not impossible, at the very beginning of

the active localisation module, otherwise it would mean that two (or more) different

positions sensing substantial different measures would have all a certain likelihood

to represent the robot pose. It is however possible when there is an iteration of the

algorithm, like in this case. The second path has dropped one cluster (the fourth),

while keeping the position is recognised to be the best action to discriminate between

the last two clusters. Table 6.4 summarises the results.

Finally, a fourth simulated test has been performed, changing the parameters of

the algorithm in order to model actions and cost related to both a different vehicle with

different sensor capabilities. This was very important to test the portability of the

proposed system, which is not bounded to a specific narrow solution, but can represent

an important, sometimes vital, tool in any system. The vehicle actions were therefore

modelled considering the vehicle Nessie V. This vehicle is fully actuated in five degrees
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(a) (b)

(c) (d)

Figure 6.9: Labyrinth environment: 80x80 m, with each square of 10 m. Sonar range
set to 10 m. (a) initial distribution, with six possible locations; (b) pose estimation
after first path (down-right-right) is executed. Three clusters are dropped; (c) pose
estimation after second path is executed (left-down). An additional cluster is dropped;
(d) execution of the third path (stay still): particle convergence.
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Iteration Basic Actions N. Clus-
ters

Sonar
Range

Sonar
FOV

Path gen-
erated

1 {F,B, L,R}for 10m 6 10 m 360deg B - R - R
2 {F,B, L,R}for 10m 3 10 m 360deg L - B
3 {F,B, L,R}for 10m 2 10 m 360deg -

Table 6.4: Active localisation in a labyrinth environment. Initially six clusters are
identified. The first path is generated (B-R-R). The filter drops three clusters. The
active localisation is again performed and a new path generated (L-B). After this, the
particles can be grouped in two clusters only. At this stage a new path is computed,
but the algorithm does not provide any new actions. Remaining in that location, the
filtering processing drops one of the two clusters and shows the real location of the
robot.

of freedom (surge, sway, heave, pitch, yaw), so one more (pitch) than Nessie IV, a

different set of actions was therefore chosen, linked to the sensor mounted. Nessie

V is equipped with a multibeam Tritech Gemini sonar. Although this sensor is very

precise (256 beams), and very fast in delivering images, it has a limited field of view

of 120 deg. Due to this constraint, it is necessary to incorporate basic rotation actions

in the framework. On the other hand, some other basic actions, like some considered

in the examples previously explained, cannot be safely executed, due to the limited

field of view. A conservative safe behaviour was therefore chosen, resulting in this set

of basic actions:

A = {move forward for w meters;

rotate q degrees{clockwise, anticlockwise}}
(6.7)

This configuration was tested on the the first simulation scenario, based on the

U-environment, already defined in Figure 6.7. w was set to 6m, as in the previous

simulation. Two tests were performed with q equal to 90 deg first and to 60 deg. The

path generated in output was a double rotation of 90 deg clockwise and then five steps

of going forward. In the second case, the generated path was very similar, i.e. three

rotations of 60 deg and then five steps forward. Also in this case, it is possible to

see that the vehicle’s choice is to target an area of diversity, starting from the two

clusters, which is represented by the start of the U-legs in this scenario. Comparing

the path generated in output with the path previously generated for the Nessie IV

vehicle, both similarities and differences can be identified. Both algorithms made

the vehicle navigating the U-leg towards the main area. Nessie IV also decided to

make two steps lateral, in order to drop one of the cluster quicker, whilst Nessie V

decided that it was enough just to rotate and navigate towards the beginning of the
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Environment Basic Actions N. Clus-
ters

Sonar
Range

Sonar
FOV

Path gen-
erated

U-shaped
100x100m

F for 6m;
{CR,ACR}90 deg

2 40 m 120deg CR - CR - F
- F - F - F -
F

U-shaped
100x100m

F for 6m;
{CR,ACR}60 deg

2 40 m 120deg CR - CR -
CR - F - F -
F - F - F

Table 6.5: Active localisation in U-environment. Two clusters at (15;85) and (85,85).
The vehicle chooses to rotate and navigate towards the main tank area.

leg. This apparent behaviour difference is linked to the field of view of the sonar. In

the first case, the lateral movement was useful to radically differentiate among the

two clusters, whilst with a limited field of view, this was considered unnecessary. It

is also interesting to analyse the fact that, with different rotation actions, the same

path was given by the algorithm. This is due to the gain/cost function. Surely a

rotation of 60 deg before reaching the end of the leg could be enough to differentiate

among the two clusters. However, the cost of the forward movement is significantly

smaller than the cost of rotation. Again, it is useful to underline that the clockwise

and anticlockwise rotations have the same ratio cost/benefit. The vehicle did choose

to rotate clockwise, but simply because it was the first node to be expanded in the

tree. Similarly, for the first presented test, the vehicle did choose to move on the left,

at the end of the path. A movement to the right would have produced the same exact

results. Table 6.5 summarises the results of the fourth simulation scenario.

6.3.2 Comparison with other techniques

The proposed technique performs more reliably than other approaches to the active

localisation problem. In this section we analyse the first scenario presented in the

previous section, with a U configuration, described in Figure 6.7. The vehicle is either

at the end of one of the two legs of the U. The set of basic actions is the same than

previously described:

A = move{forward, backwards, left, right}

for 6 meters
(6.8)

Random move

The first set of experiments are performed comparing the proposed approach with a

random move approach. Each action has the same probability to be selected. Table 6.6

summarises the results of this test, with a sonar of 30m and 40m. The random test
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Env. Basic
Actions

Sonar
Range
FOV

RM
average

RM
best

AL AL/RM
average

U-shaped
100x100m

{F,B, L,R} for 6m 40m
360deg

85.35
steps

6 steps 6 steps 14.22

U-shaped
100x100m

{F,B, L,R}for 6m 30m
360deg

113.18
steps

8 steps 8 steps 14.15

Table 6.6: Comparison with composition of random moves. The vehicle is able to
localise itself more than 14 times faster than the average of a random move trajectory.

Env. Basic
Actions

Sonar
Range
FOV

RM
average

RM
best

AL AL/RM
average

U-shaped
100x100m

{F,B, L,R} for 6m 40m
360deg

41.82
steps

6 steps 6 steps 6.97

U-shaped
100x100m

{F,B, L,R}for 6m 30m
360deg

54.52
steps

8 steps 8 steps 6.82

Table 6.7: Comparison with composition of random moves avoiding to choose an
action with opposite effect of the previous action. The vehicle is able to localise itself
almost 7 times faster than the average of a random move trajectory.

has been performed 10,000 times for each sonar parameter and in the table both the

average length of the path and the best path found in 10,000 runs are shown. The

best path found in 10,000 runs has the same length than the one computed by the

active localisation module, whilst the average path is more than 14 times longer in

both cases. The worst path constituted of 1,502 and 1,043 single steps, respectively,

being it 174 and 187 times worst than the proposed approach.

Random move avoiding basic loops

The second analysis presented uses the same approach of selecting a random move,

but avoiding to choose an action which would be the opposite of the previous action.

For example, if the current action selected randomly makes the robot moving forward,

then the following action cannot be a backward movement. Table 6.7 summarises the

results of this test, with a sonar of 30m and 40m. The random test, with selective

random action, has been performed 10,000 times for each sonar parameter and in

the table both the average length of the path and the best path found in 10,000

runs are shown. The best path found in 10,000 runs has the same length than the

one computed by the active localisation module, whilst the average path is almost 7

times longer in both cases. The worst path constituted of 642 and 534 single steps,

respectively, being it 80 and 89 times worst than the proposed approach.
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Env. Basic
Actions

Sonar
Range
FOV

RM
average

RM
best

AL AL/RM
average

U-shaped
100x100m

{F,B, L,R} for 6m 40m
360deg

15.06
steps

6 steps 6 steps 2.51

U-shaped
100x100m

{F,B, L,R}for 6m 30m
360deg

17.50
steps

8 steps 8 steps 2.19

Table 6.8: Comparison with composition of random moves avoiding to choose an
action which would bring the robot in an already visited location. The vehicle is
able to localise itself more than 2 times faster than the average of a random move
trajectory. It is to be noticed that this statistic are only related to the generated
paths who allowed the robot to localise itself, as in more than half of the runs, the
robot was not able to localise itself following this specific random move trajectory.

Random move avoiding all loops

This approach is based on the selection of a random move which will bring the

robot into an explored area. The reason behind this optimisation is the same than for

the previous section: an already visited location would not add any new information

for the filter. However this approach cannot be used reliably. As the robot executes

each action after selection, it can easily arrive to point where no available action can

be selected. This is the case for the U scenario analysed. The impossibility to go into

already visited locations would prevent the robot to correct a completely wrong path.

Although this approach cannot be used with the real vehicle, it has been tested in

simulation, again with 10,000 runs for each sonar parameter. Table 6.8 summarises

the results of this test, with a sonar of 30m and 40m. In both cases, more than half

of the runs (5,188 and 5,953) ended without finding a solution to the localisation

problem, arriving to a point where the robot was surrounded by visited locations.

Analysing the remaining runs which allowed the robot to correctly localise itself,

the best path has the same length than the one computed by the active localisation

module, whilst the average path is more than 2 times longer in both cases. The worst

path constituted of 41 and 35 single steps, respectively, being it 5 and 6 times worst

than the proposed approach.

Selection of the one best action

This case analyses the selection of one best action, and possibly a trajectory given

by the sum of n best actions, with respect to our proposed approach. Considering

the same U scenario, the selection of one action cannot even be applied. If the action

represents a movement up to 15m, it will not be possible to discriminate among the

actions, as for both clusters the robot would sense the same exact information (plus
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Figure 6.10: The autonomous underwater vehicle Nessie IV in the OSL tank. It is to
be noted the division panel, in order to create two identical environment sections.

noise). This would mean essentially to use a random action approach, discussed in

the previous sections. On the other hand, if the basic action is represented by a

movement longer than 15m, the only available action is represented by the action of

going backward, as all other actions would have the result to bring the robot out of

the map, thus violating obstacle avoidance checks. After the execution of the only

available action, however, the robot would still not be able to localise itself, because

it has not arrived to a point discriminative enough. In that case, the concatenation

of two consecutive actions - the only available - of moving backward of 15m would

allow the robot to localise itself. This however cannot be generalised. The length of

a single step needs to be adjusted and it is not something the robot can easily do.

As discussed in the previous Chapter, there are also cases and examples where the

concatenation of one best action is not enough for the robot to localise itself.

6.3.3 Tank Trials

The algorithm has been successfully tested in several tank trials, using the facili-

ties at Heriot-Watt University. The test platform was the Autonomous Underwater

Vehicle Nessie IV [71], equipped with a Tritech Micron sonar to sense the environ-

ment, and Doppler Velocity Log (DVL) for motion estimation. A first set of tests has

taken place in a 3x4 m tank, as in Figure 6.10.

A panel has been put into the tank in order to create two identical parts in the

environment, similar to the U-scenario described in the simulated setup. The results

are highlighted in Figure 6.11.

The second set of tests has taken place in a 10x12 m tank. The environment

is composed by the tank walls plus four panels making two identical sections. The
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(a) (b)

(c) (d)

Figure 6.11: Active localisation in the OSL tank, 3x4 m. (a) Initial distribution (b-c)
executing the path (down-down-down-down-left-left) (d) Convergence after execution
of the path generated by the Active Localisation module.
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robot starts with no initial knowledge of its position, so particles are spread over all

the environment. After a clear clustering of the particles is reached and stable over

time, the active localisation module is triggered and the vehicle computes the path to

be executed. After executing the path, the vehicle’s position is determined without

doubts. All the steps are highlighted in Figure 6.12 and in Figure 6.13.

6.4 Conclusions

This Chapter has presented a novel approach to AUV active localisation. The

system has been designed to:

• be general enough, and not tight to any specific custom problem;

• be able to handle multiple possible locations (global localisation), and not just

the current one (position tracking);

• consider the entropy expectation as an important information in the definition

of the actions to be performed;

• consider multiple actions, as one action is not enough to properly address the

problem;

• optimise the computational load

Based on particle filters, the active module is triggered when there is a clear

clustering of the particle, in order to disambiguate among several hypotheses. From

each centroid, a tree of actions is built, and each node is evaluated. The algorithm

tries and finds the best node for which measures from the different clusters are most

different. This represents the maximisation of the information gain, expressed as the

variance of the measurements. Essentially, the algorithm tries to go in places where

the sensor measures can help disambiguate among the hypotheses.

Experimental results both in simulation and in two in-water facilities were pre-

sented. It is important to see the different paths generated in the same scenario,

changing some of the configuration parameters, such as the sonar range or the basic

actions.

In all tests performed, the vehicle is able to successfully localise itself after the

execution of the set of actions produced by the proposed algorithm. In one scenario

it needed to apply the algorithm iteratively, scaling down the number of clusters at

each iteration.

As described in the Chapter, the complexity of the proposed algorithm is related

to the number of basic actions, with the tree growing with the growth of the set of
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(a) Initial situation, the robot doesn’t know its position

(b) Two clusters are identified. At this moment the Active
Localisation module is triggered and a path is planned.

(c) Path execution I

Figure 6.12: Active localisation at the Wave Tank (1/2): raw sonar image (top left),
processed sonar image (top centre), state estimation (top right), real vehicle position
(centre-left).
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(a) Path execution II

(b) Path execution III: particle convergence

Figure 6.13: Active localisation at the Wave Tank (2/2): raw sonar image (top left),
processed sonar image (top centre), state estimation (top right), real vehicle position
(centre-left).
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basic actions. All the experiments presented in this Chapter are in 2D, although the

full framework is perfectly usable for 3D environments. The complexity of the tree

can increase going from 2D to 3D, but not necessarily. It all depends on the number of

basic actions. Torpedo-shaped vehicles for example are generally underactuated, with

positive surge, positive or negative pitch, and positive or negative yaw. Additionally

pitch is limited and this would contribute to cut some of the tree branches. Therefore

this approach is fully portable in 3D scenarios as well. For vehicles with more actuated

DOFs however the complexity increases, as shown in Table 6.1. A possible way

to significantly reduce the complexity is to significantly simplify the tree structure,

keeping however a very similar formulation for reward/cost. Essentially, the idea is to

cut branches of the tree that would bring the robot in an already visited state not only

for that particular path, but also for any path already evaluated. This approach would

loose the influence of previous states and the pdf would be only calculated related to

the current node, as well as cost and reward functions. Although the data structure

can be represented in the same way, to allow different config parameters to choose

the level of optimisation required for the specific mission, this approach practically

means to convert a tree exploration into a linear exploration, and therefore from

exponential to linear complexity. Thinking about a set of actions only related to

trajectory planning, this further optimisation ensures that each possible cell is visited

at most once during the full execution of the algorithm (and not at most one in the

same path root-node of the tree).

The proposed approach successfully addresses all the objectives set at the be-

ginning of the Chapter. Comparison with other techniques are presented, as well

as limitations and scalability issue. It therefore represents a clear contribution and

advancement with respect to the state of the art.
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ceedings of Internacia Kongresa Universitato - IKU 2012, Hanoi, Vietnam

153



Chapter 7
Conclusions and Future Work

This final Chapter aims to conclude the thesis work. It will present specific cases

where this work has been applied, and will highlight and summarise the main contri-

butions with respect to the state of the art. Finally a discussion and considerations

on possible future work will end

7.1 Applications

It is very important to show applications of the presented work in real world

scenarios, especially for an engineering thesis. Although results with real robots and

real world conditions were already presented in the core of the thesis, this section

aims to present a couple of scenarios where the work has been successfully employed.

7.1.1 Student Autonomous Underwater Challenge - Europe

The Student Autonomous Underwater Challenge Europe (SAUC-E) is a compe-

tition in which underwater robots compete in carrying out a predefined set of tasks.

Held for the first time in 2006 at Pinewood Studios (UK), the event is designed to

encourage students to think about underwater technology and related applications

while fostering innovation and technology. Heriot-Watt University has participated

in all the editions, winning the 2008 and 2009 editions. The passive localisation sys-

tem described in Chapter 3 has been integrated into the vehicle Nessie IV, for the

2009 edition, held at the QinetiQ Ocean Basin Tank (UK). Figure 7.1 and Figure 7.2

show the results of the localisation algorithm at the Somerton Diving Pool, during

SAUC-E preparation. From the Figures, it is possible to see the robustness of the

algorithm, both in presence of high acoustic disturbances and limited number of par-

ticles for optimisation purposes. The algorithm was then tested in the large QinetiQ

tank. The results of this testing were also successful. However the differences in the
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Figure 7.1: Raw sonar image, with range 10 m (left), segmented image (centre),
vehicle state estimation in the environment, 6x11 m (right). It is to be noted that the
raw sonar image is in sonar reference frame, with the sonar mounted with the head
looking down and with a rotation of 90 deg, while the segmented image is already
transformed in vehicle reference frame. The crossing lines in the right image shows
the particle with greater weight. The real position of the vehicle is not known, as
there is no ground-truth sensor available underwater. However, it can be inferred by
looking at the raw sonar image.

environment required a reanalysis of the algorithm and its parameters. For the first

time, it was tested on a very large environment, whilst all previous tests were done

in relatively similar conditions. The most important factor which needed tuning was

the noise level in the particle distributions, which needed to be scaled, according to

the scale of the environment. Figure 7.3 shows the team at SAUC-E 2009.

7.1.2 Autonomous Inspection / Intervention Vehicles

The industrial interest for underwater inspection vehicles starts from the very be-

ginning of the exploitation of the sea resources. At the moment most of the inspection

tasks are carried out routinely by Remotely Operated Vehicles (ROVs). The interest

for AUVs to carry inspection tasks can be easily understood in looking at current un-

derwater industrial operations. An AUV allows operators to reduce the manpower by

around 50% compared to current operations, where the work is carried out by ROVs.

That also means that personnel logistics are reduced dramatically. Furthermore, pi-

lots are not needed over 24 h and the on line team can be reduced dramatically, as

explained by Kermorgant & Scourzic [55]. The AUV operating footprint is unlimited,

since it is free swimming whereas a ROV has got limitations due to its umbilical. An

AUV also enables the surface ship to carry out parallel tasks. Out of the same reason,

a double speed can be achieved (0 - 6 knots with an AUV, only up to 3 knots with a
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Figure 7.2: Raw sonar image, with range 20 m and with high interference noise (left),
highlighted pool borders (centre), vehicle state estimation in the environment, 6x11
m (right). In addition to the noise, the image presents multipath reflections, which
should not be confused with the pool borders. Despite the noise and multipath, the
algorithm is very robust.

Figure 7.3: Team Nessie at SAUC-E 2009
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ROV in deep water). When using an AUV the operation duration is reduced, not only

because it is faster, but the vehicle not being influenced by the sea state and the ship’s

movements. The total weight of the AUV spread is about 1/5th of a ROV spread. Ad-

ditionally, the quality of the data retrieved by an AUV is often higher than the data

retrieved by an ROV. This is due to the fact that an AUV operates without umbilical.

Therefore the vehicle is neither disturbed by the ships movements transferred to the

vehicle by the umbilical, nor by the umbilical own vibrations, and can stabilise itself

without the constant need of a pilot, and more precisely. Autonomous localisation

is essential in order to successfully perform inspection tasks. According to the type

of problem, the complexity of the required localisation can change (e.g. relative to

the structure to be inspected or global). Going towards persistent autonomy, active

localisation is not just a nice tool, but a real need.

An Inspection/Intervention-AUV represents a new class of autonomous underwa-

ter vehicles, which are used not just for surveys, but also to inspect and interact with

underwater structures. A hybrid ROV - or intelligent ROV - is generally consid-

ered an intermediate step towards I-AUVs. In the next section results on localisation

performed on a I-AUV are presented.

Navigation around structures

This section presents the results of the localisation algorithm developed in Sec-

tion 3.2, applied to a I-AUV. The robotic platform used for the experiments is a hover

capable AUV such as the one in Figure 7.4.

The trials were performed in a cylinder tank, 8 metres tall, with a diameter of 14

metres. The first part of our validation process was to test the localisation algorithm

in the empty tank, using the wall as a reference. After validating this first step, we

added a cylindrical metallic object in the center of the tank in order to analyse the

performances of the algorithm in the navigation around structures.

An a-priori map of the vehicle surroundings is known. The vehicle is equipped

with a fibre optical gyroscope, DVL and depth sensor, as proprioceptive sensors. A

Tritech Seaking mechanically scanned sonar is the main exteroceptive sensor which

acquires range profiles of the environment.

In order to use our particle filter approach, a simulation of the sensor’s view is

computed as if the vehicle were located at each of the particle’s position. According

to the particular geometrical situation of our test facility, a geometrical approach

was used, in order to simulate the sensor data, possible because both the tank and

the inner object are cylinders. Other approaches, such as ray tracing, are of course

possible, but more computational expensive.

In Figure 7.5, a 2D plot with the initial particle distribution is presented.
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Figure 7.4: The Prototype Autonomous Inspection Vehicle - PAIV

Figure 7.5: Initial distribution of particles
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Figure 7.6: A 2D plot of the environment, with the particles, in their last configuration
and with the expected trajectories, given by particle analysis. The green (light gray)
dot trajectory is given by the mean of the particles, while the red (dark gray) dash
one is given by the best particle.

In Figure 7.6, the expected trajectories are plotted, as well as the final configura-

tion of the particles. The green (light gray) trajectory is given by the mean of the

particles and the red (dark gray) trajectory is given by the best particle.

The general behaviour of the algorithm is similar to other tests presented in Chap-

ter 3. There is some uncertainty at the beginning, but the particles converge to the

right position quite quickly. The mission was to track the cylinder object, keeping a

fixed distance from it, for about a quarter of a complete turn and then come back

on the same trajectory. As shown in Figure 7.6, the proposed algorithm successfully

returns the expected trajectory for the described mission.

Figure 7.7 shows the error between the real trajectory and the trajectories inferred

by the particles. The green (light gray) dot error line is referred to the trajectory given

by the mean of the particles, whilst the red (dark gray) dash error line is referred to

the trajectory given by the best particle. The results are very good. In all our tests,

the error is less than 40 cm, after the convergence. If we compare these results with

the simulated data presented in 3.2, they appear to be even better. In reality, an

important factor has impact on these results. The complexity of the map has to be

taken into account. The synthetic environment was much more complex and bigger

than the real one, presenting similar profiles, which could lead more easily to a wrong

convergence.

Transit among different sites

Inspection AUV might be required to make long transit from one underwater

installation to another one. When the robot travels between two different sites, the
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Figure 7.7: Trials with real vehicle: error between real trajectory and expected tra-
jectories, inferred by the particles. The red (dark gray) dash error line is given by
the best particle trajectory, while the green (light gray) dot error line is given by the
mean trajectory.

navigation error might be bigger that the distance between two similar elements in

the same site, being them pipes, raises or other infrastructures. In this context, the

techniques developed in Chapter 6 would be very beneficial. After reaching the target

location, the vehicle can perform active localisation to disambiguate among multiple

hypotheses, and therefore can carry out its task on the right infrastructure.

7.2 Summary of the thesis

This thesis has analysed the topic of autonomous localisation for underwater ve-

hicles.

After the Introduction, Chapter 2 has focused on passive techniques for AUV lo-

calisation. Several techniques have been presented, related to the state-of-the-art.

The mathematical background of Bayesian filtering was outlined. Some of the tech-

niques have been implemented and results both in simulation and with real data were

presented. Chapter 3 has focused on the contribution related to passive localisation

techniques. The most relevant contribution is the design and test of an improved

particle filter, to be able to recover from wrong convergences. Additionally partially

known maps were addressed both with particle filter and Extended Kalman Filter.

Finally, an intelligent solution switching among particle filter and EKF was presented,

in order to gain the advantages of both techniques.

Chapter 4 started the topic of the control system in the loop for navigation. Ad-

dressing relative navigation with respect to an underwater structure, three approaches

were presented and compared.

Chapter 5 moved into a full exploration of the active localisation topic, not just
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sonar servoing as in the previous chapter. Current state-of-the-art was analysed and

shortfalls discussed. Chapter 6 presented a novel approach to active localisation.

This system is mostly useful in case of more than one pick of probability, in the

probability distribution function (pdf ). Starting from n possible states, the planning

system produces a set of actions to be executed in order to reduce the uncertainty.

Experimental results have shown the reliability of this technique, both on simulated

data, and in field trials. Comparison with other techniques was also successfully

presented.

Finally, Conclusions are giving an overview of the thesis, highlighting applications,

contributions and future work.

7.3 Summary of the main contributions

This thesis has presented advancements both for passive and active localisation

systems.

Among the passive techniques, the main contributions are:

• an improved particle filter algorithm, adapted for the underwater domain, with

an ad-hoc resampling step, able to recover from wrong convergences, showing

reliability and efficiency.

• a consideration for partially known maps, with results both using Particle Filter

and a modification to the standard Extended Kalman Filter.

• a novel localisation system which joins Particle Filter and Extended Kalman

Filter with an intelligent switch system, according to the current state, goal and

circumstances.

Considering navigation around structures, a novel and simple technique was pre-

sented and successfully evaluated compared to state-of-the-art algorithms.

Regarding the active localisation area, which probably represents the most impor-

tant contribution, a novel system was presented which:

• is general enough, and not tight to any specific custom problem;

• is able to handle multiple possible locations (global localisation), and not just

the current one (position tracking);

• considers the entropy expectation as an important information in the definition

of the actions to be performed;
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• considers multiple actions, as one action is not enough to properly address the

problem;

• optimises the computational load

It was also successfully tested compared to other techniques.

Intelligent decision making, in order to solve the localisation problem, is not just an

additional feature, but an essential one. Without any doubts, the research in the field

of underwater robotics goes towards permanent underwater deployment, persistent

autonomy, increased capabilities. Active localisation represents an important skill to

reliably perform prolonged missions.

Finally, it is important to underline that all the proposed algorithms have been

validated not just in simulation, but fully integrated in several robot architectures and

successfully proven to be reliable in several in-water tests. No contribution that was

presented in this thesis is the results of simulated numerical tests only. Everything

was tested at the minimum post-processing real data, and in most of the cases fully

integrated in several AUVs. This naturally resulted in an extra engineering work,

which was however essential to present reliable and complete results.

7.4 Future Work

The results of this thesis have put a basis for future work in several directions.

Considering the passive localisation algorithm proposed in Chapter 3, future work is

related to improve the precision of the results. A way to do so is to consider the

distortion in the sonar image, caused by the vehicle motion. Mechanically scanning

sonar are generally slow to acquire data, and the image can be therefore very distorted,

especially in cases of rotation. To cope with this problem, there are two possible

ways. The first one leaves the core algorithm without changes, but changes the way

the simulated image is computed. Instead of computing a 360 deg from a single

position, the full motion estimate (e.g. from DVL) is considered, so that each single

ping is simulated at a closer state point, than a fixed one for the full image. The

second approach would require a minimal change to the algorithm itself. Instead

of considering full 360 deg images, a full cycle in the particle filter algorithm could

be run for each single sonar beam. This would require to change the sensor model,

changing its probability function. This change is required in order to prevent the

particle impoverishment problem. Considering the obvious noise in sonar images, the

same precise model for laser would not work. Considering the localisation in partially

known maps and the scan matching sections, future work is related to a map update

through scan matching. This would allow the vehicle to both self-localise in the
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environment and to update its previous knowledge with the sensor reading. It is to

be noted that this problem can be considered as SLAM (Simultaneous Localisation

and Mapping), although there are some important differences, which should result

in an implementation less computationally expensive than the one required to solve

the full SLAM problem. Future work is also related to a different field, namely

solving a semantic localisation problem, and not just a geometric one. A cognitive

perception of the environment is certainly useful to complete the geometric one. A

localisation system based on the semantics associated to different observations can be

more efficient than a mere geometric approach.

With regards to the active localisation approach, future work is related mainly

to the extension in 3D. The algorithm does not require actually any structural mod-

ification. Relevant actions should be added to the set of the possible actions, like

for example dive for x meters or go up for x meters. The real needed work for this

extension is related to the sensor simulation, in order to evaluate the particles’ weight.

Several approaches can be considered, from 3D raytracing to considering several 2D

maps on top of each other, “slicing” the environment. Additionally, applications in

open water scenarios would be beneficial to further validate the approach. A further

area of research linked to the work on active localisation is path planning, with a

specific location to be reached. Whilst the work presented in this thesis was aiming

at localisation only, it could be applied to look for paths arriving to a target location,

with a trade-off among the cost of the path and the expectations on the features (in a

general sense) perceived, in order to keep the vehicle localised. The algorithm would

not start from different clusters in the pdf, as the original position might be known in

advance, but would use similar techniques described in Chapter 6 to evaluate possible

paths to the target location.
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[72] F. Maurelli, S. Krupiński, A. Mallios, Y. Petillot, and P. Ridao. Sonar-based

auv localization using an improved particle filter algorithm. In Proceedings of

IEEE OCEANS ’09, Bremen, Germany, 2009.

[73] Tiah E. McKinney. What is the biological affect of spectrophotometry of light in

water? http://www.ed.mtu.edu/esmis/id65.htm. resource accessed 2008/10/07.
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