4,678 research outputs found

    A parsimony-based metric for phylogenetic trees

    Get PDF
    In evolutionary biology various metrics have been defined and studied for comparing phylogenetic trees. Such metrics are used, for example, to compare competing evolutionary hypotheses or to help organize algorithms that search for optimal trees. Here we introduce a new metric dpdp on the collection of binary phylogenetic trees each labeled by the same set of species. The metric is based on the so-called parsimony score, an important concept in phylogenetics that is commonly used to construct phylogenetic trees. Our main results include a characterization of the unit neighborhood of a tree in the dpdp metric, and an explicit formula for its diameter, that is, a formula for the maximum possible value of dpdp over all possible pairs of trees labeled by the same set of species. We also show that dpdp is closely related to the well-known tree bisection and reconnection (tbr) and subtree prune and regraft (spr) distances, a connection which will hopefully provide a useful new approach to understanding properties of these and related metrics

    Reliability analysis of reconstructing phylogenies under long branch attraction conditions

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2018.In this simulation study we examined the reliability of three phylogenetic reconstruction techniques in a long branch attraction (LBA) situation: Maximum Parsimony (M P), Neighbor Joining (NJ), and Maximum Likelihood. Data were simulated under five DNA substitution models-JC, K2P, F81, HKY, and G T R-from four different taxa. Two branch length parameters of four taxon trees ranging from 0.05 to 0.75 with an increment of 0.02 were used to simulate DNA data under each model. For each model we simulated DNA sequences with 100, 250, 500 and 1000 sites with 100 replicates. When we have enough data the maximum likelihood technique is the most reliable of the three methods examined in this study for reconstructing phylogenies under LBA conditions. We also find that MP is the most sensitive to LBA conditions and that Neighbor Joining performs well under LBA conditions compared to MP

    Tracing evolutionary links between species

    Full text link
    The idea that all life on earth traces back to a common beginning dates back at least to Charles Darwin's {\em Origin of Species}. Ever since, biologists have tried to piece together parts of this `tree of life' based on what we can observe today: fossils, and the evolutionary signal that is present in the genomes and phenotypes of different organisms. Mathematics has played a key role in helping transform genetic data into phylogenetic (evolutionary) trees and networks. Here, I will explain some of the central concepts and basic results in phylogenetics, which benefit from several branches of mathematics, including combinatorics, probability and algebra.Comment: 18 pages, 6 figures (Invited review paper (draft version) for AMM

    Data incongruence and the problem of avian louse phylogeny

    Get PDF
    Recent studies based on different types of data (i.e. morphological and molecular) have supported conflicting phylogenies for the genera of avian feather lice (Ischnocera: Phthiraptera). We analyse new and published data from morphology and from mitochondrial (12S rRNA and COI) and nuclear (EF1-) genes to explore the sources of this incongruence and explain these conflicts. Character convergence, multiple substitutions at high divergences, and ancient radiation over a short period of time have contributed to the problem of resolving louse phylogeny with the data currently available. We show that apparent incongruence between the molecular datasets is largely attributable to rate variation and nonstationarity of base composition. In contrast, highly significant character incongruence leads to topological incongruence between the molecular and morphological data. We consider ways in which biases in the sequence data could be misleading, using several maximum likelihood models and LogDet corrections. The hierarchical structure of the data is explored using likelihood mapping and SplitsTree methods. Ultimately, we concede there is strong discordance between the molecular and morphological data and apply the conditional combination approach in this case. We conclude that higher level phylogenetic relationships within avian Ischnocera remain extremely problematic. However, consensus between datasets is beginning to converge on a stable phylogeny for avian lice, at and below the familial rank

    Polyhedral geometry of Phylogenetic Rogue Taxa

    Get PDF
    It is well known among phylogeneticists that adding an extra taxon (e.g. species) to a data set can alter the structure of the optimal phylogenetic tree in surprising ways. However, little is known about this "rogue taxon" effect. In this paper we characterize the behavior of balanced minimum evolution (BME) phylogenetics on data sets of this type using tools from polyhedral geometry. First we show that for any distance matrix there exist distances to a "rogue taxon" such that the BME-optimal tree for the data set with the new taxon does not contain any nontrivial splits (bipartitions) of the optimal tree for the original data. Second, we prove a theorem which restricts the topology of BME-optimal trees for data sets of this type, thus showing that a rogue taxon cannot have an arbitrary effect on the optimal tree. Third, we construct polyhedral cones computationally which give complete answers for BME rogue taxon behavior when our original data fits a tree on four, five, and six taxa. We use these cones to derive sufficient conditions for rogue taxon behavior for four taxa, and to understand the frequency of the rogue taxon effect via simulation.Comment: In this version, we add quartet distances and fix Table 4

    Reconstructing phylogeny from RNA secondary structure via simulated evolution

    No full text
    DNA sequences of genes encoding functional RNA molecules (e.g., ribosomal RNAs) are commonly used in phylogenetics (i.e. to infer evolutionary history). Trees derived from ribosomal RNA (rRNA) sequences, however, are inconsistent with other molecular data in investigations of deep branches in the tree of life. Since much of te functional constraints on the gene products (i.e. RNA molecules) relate to three-dimensional structure, rather than their actual sequences, accumulated mutations in the gene sequences may obscure phylogenetic signal over very large evolutionary time-scales. Variation in structure, however, may be suitable for phylogenetic inference even under extreme sequence divergence. To evaluate qualitatively the manner in which structural evolution relates to sequence change, we simulated the evolution of RNA sequences under various constraints on structural change
    corecore