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A b s t r a c t

In this simulation study we examined the reliability of three phylogenetic reconstruction techniques in a 

long branch attraction (LBA) situation: Maximum Parsimony (MP), Neighbor Joining (NJ), and Maximum 

Likelihood. Data were simulated under five DNA substitution models-JC, K2P, F81, HKY, and G TR-from  

four different taxa. Two branch length parameters of four taxon trees ranging from 0.05 to 0.75 with an 

increment of 0.02 were used to simulate DNA data under each model. For each model we simulated DNA 

sequences with 100, 250, 500 and 1000 sites with 100 replicates. When we have enough data the maximum 

likelihood technique is the most reliable of the three methods examined in this study for reconstructing 

phylogenies under LBA conditions. We also find that MP is the most sensitive to LBA conditions and that 

Neighbor Joining performs well under LBA conditions compared to MP.
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1. Introduction

Charles Darwin, in 1859, described the origin of species using a tree diagram to represent the evolutionary 

relationship between ancestors of living species. Based on this concept, improved methods of studying 

evolutionary relationships using evolutionary trees, or phylogenies, have helped advance modern systematic 

biology and taxonomy. Phylogenetics is the study of the evolutionary history of species or the understanding 

o f the ancestral relationships between species. A phylogenetic tree (phylogeny) is a tree diagram that 

contains nodes and edges without any cycles. Each node represents a species, and each edge represents the 

evolutionary process from ancestor to descendant through time. DNA sequences are often the basic data 

used to reconstruct the phylogenies.

DNA consists of the polynucleotide strands which have the form of a double helix. DNA includes nucleotides, 

or bases, which are adenine (A), guanine (G), cytosine (C ), and thymine (T ). Ordered arrangements of these 

bases are called DNA sequences and are denoted, for example, as A A G T G G C T C C . Based on the chemical 

similarities of DNA bases, adenine and guanine can be categorized as belonging to the purine group while 

cytosine and thymine can be categorized as belonging to the pyrimidine group. Moreover, A  pairs with T 

while G pairs with C , owing to hydrogen bonds in the double helix structure of DNA. For example, if along 

one strand of the double helix there is a sequence of bases such as A A G G G C T C C , then the other strand 

contains the complementary sequence, T T C C C G A G G . Therefore, studying the existing information in 

DNA only requires sequences of one half o f the helix. A piece of DNA molecule that determines a hereditary 

characteristic is known as a gene. Each individual has two copies of each gene which are inherited from their 

parents. Most of the genes are very similar among all humans. These small differences, or alleles, make a 

human being unique. A DNA mutation is a permanent change occurring in the DNA sequence of a gene. 

A common mutation that happens in DNA copying is base substitution. This happens when one base of 

the sequence replaces another base. A base substitution of purine to purine or pyrimidine to pyrimidine is 

called a transition while a substitution of purine to pyrimidine or pyrimidine to purine is called transversion. 

For example, suppose the ancestor’s sequence A A G T G G C T C C  becomes A A G C G T C T C C  in a descendant. 

Then the base substitution that occurred at the fourth site, T  ^  C , is a transition, and the substitution that 

occurred at the sixth site, G ^  T , is a transversion. DNA can also undergo other types of mutations such 

as insertions, deletions, and inversion of one or more consecutive bases. As these mutations are considered 

rare we assumed that the mutation process includes only base substitution. All these mutation processes 

evolving from ancestors to descendants are represented with trees.

Methods for reconstructing phylogenies have to consider mutation. Such methods are either character- 

based, distance-based or model-based. In character-based methods, all DNA sequences are simultaneously 

compared, and a score is calculated for each tree considering site-wise variation. A common technique used 

in this category is maximum parsimony (MP). In a distance method, evolutionary distances are calculated 

between all pairs of sequences and the resulting distance matrix is used for reconstructing a phylogenetic
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tree. In this category the most commonly used technique is the Neighbor Joining (NJ) method. Under the 

category of model-based methods Maximum Likelihood (ML) and Bayesian methods are used to estimate 

model parameters. The model-based method uses different probabilistic models to explain the evolutionary 

process under different conditions. Reconstruction methods MP, NJ, and ML and the probabilistic models, 

specifically JC, F81, K2P, HKY, and GTR we used in this study are discussed in detail in the background 

section. However, we can not always expect these methods to give us the true evolutionary tree. Long 

Branch Attraction (LBA) is one of the situations in which phylogenetic reconstruction techniques might 

have trouble inferring the “true” tree in phylogenetic inference, which is discussed below.

1.1. L on g B ran ch  A ttra ctio n

In this section we discuss the challenges that occur in reconstructing phylogenies due to long branch at­

traction. Figure 1 (a) illustrates the topology of a simple phylogenetic tree. Vertices which have only one 

adjacent edge are called leaves of the tree. Other vertices are internal vertices, and leaves represent taxa 

(species). Moreover, an edge incident to two interior vertices is called an interior edge, while one incident 

to a leaf is called a pendant edge. Usually the edge length in a phylogenetic tree is used to represent how 

many changes occur in sequences between the two ends of the edge, both seen and unseen. The phylogenetic 

tree which uses its edge lengths to explain the evolutionary process between nodes is called a metric tree. 

Therefore, a metric tree plays an important role in phylogenetic tree inference. An example of a metric tree 

is shown in Figure 1 (b) where the Zj are branch or edge lengths.

leaf (Taxa) leaf

(a) (b)

F igure 1. Four-taxon unrooted metric tree topologies. In 1 (b), taxa 1 and 2 are sister 
taxa and taxon 1 and taxon 4 are non-sister taxa. Further, it is clear that there are likely 
fewer sequence changes between taxon 3 and taxon 2.

Generally, phylogenetic trees are categorized into two groups: rooted and unrooted. A rooted tree is a 

directed tree with a vertex r called the root where all edges are directed away from it. An unrooted tree 

is a tree obtained after 1) suppressing the root from a rooted tree, and 2) ignoring all the directions. For 

example, Figure 2 shows a four-taxon unrooted tree which can be derived from the all five possible rooted



trees. Their undirected edges can be used to illustrate the evolutionary clustering between taxa. All the 

phylogenies considered in this study are unrooted trees.
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F igure 2. A four-taxon unrooted tree with all five possible rooted versions shown.

Figure 3 shows all the possible unrooted tree topologies for four taxa that reconstruction techniques can infer. 

It is clear that if we use one of the following trees to simulate DNA sequences, then there is a possibility for 

two wrong tree topologies to be inferred. Therefore the reliability of each reconstruction technique depends 

on the percentage of time that the correct tree is inferred.

F igure 3. Four taxon unrooted tree topologies

An unrooted four-taxon metric tree with two non-sister long branches (B) and three other short branches 

(A) is shown in Figure 4 (a). When the difference between the lengths of two sets of branches increases, 

this metric topology makes it difficult to infer the correct tree because the two taxa that are most closely 

related metrically are not most closely related topologically. In other words, dissimilarities between the DNA
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sequences of sister taxa and similarities of the non-sister sequences add noise to the reconstruction process. 

This situation explains the long branch attraction (LBA) problem in reconstructing phylogenies. Therefore 

it is possible that the probability of inferring the wrong tree, as shown in Figure 4 (b), also increases.

F igure 4. LBA metric tree topology where two non-sister taxa have long branches com­
pared to the rest of the tree (a). A wrongly inferred tree with the long branches clustered 
is also shown (b).

1.2. O b je c t iv e

The objective of this simulation study is to compare the reliability of the following phylogenetics techniques- 

MP, NJ, and M L-in estimating the correct tree under LBA conditions for DNA sequences simulated under 

different probabilistic models. Simulation studies are useful in phylogenetics because certain reconstruction 

techniques and models of the evolutionary process make assumptions. It is possible to simulate data under 

certain model assumptions and conditions that we are expecting to study. This simulation study can be 

used to examine the reliability of reconstruction techniques under LBA conditions.

This paper is organized as follows. In the background section, we present the phylogenetic theories and 

statistical models applied in this study. In the methods section, we explain how to simulate data and 

reconstruct phylogenies under different conditions. Next in the results and conclusion section we discuss 

how reconstruction techniques perform under long branch attraction conditions. Finally, in the discussion 

section we explain the future directions of this study.

In this section we explain the background about probabilistic models and reconstruction techniques, which 

are used in this simulation study. First we discuss the Parsimony method, which is the simplest phylogenetic 

reconstruction technique used in phylogenetic analysis.

2.1. P arsim on y

i 4

2. B ackground

The major objective of this method is to select the best tree from data that minimizes the number of evolu­

tionary changes or MP score. We consider the following aligned DNA sequences with the rows representing 

the sequences from the species. In general, we consider DNA bases in each column as sites (sj); the data
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consists of five sites: s1, s2, s3, s4, and s5. We observe that variations in characters are only at sites s2 and 

s3. These are the characters that explain the evolutionary relationship between these four taxa.

s1 s2 S3 S4 S5

1 A T T C G

2 A T G C G

3 A G C C G

4 A G G C G

We consider s^ which has constant characters, to calculate the MP score. We observe that the parsimony 

score (the minimum number of mutations that can occur in a tree) for all possible trees for this site is zero. 

The site s3 does have two or more different states. However, two of the states do not occur at least twice, 

which causes all the tree topologies to have the same MP score. Therefore those types of sites with such 

characteristics are considered as non-informative characters in parsimony analysis. In contrast to those, if 

we use s2 to calculate MP scores of possible tree topologies, we observe that the parsimony score varies from 

tree to tree. Therefore if we consider any site which has at least two different states occurring at least twice; 

these are called informative characters in a parsimony analysis. We used informative characters to find the 

most parsimonious trees. Parsimony is usually performed on a rooted tree, but it does not matter whether 

the tree is rooted or unrooted. So in this case we have three different unrooted tree topologies for which we 

must compute parsimony scores. We apply the parsimony criterion to all three trees and find that one or 

more trees have the smallest parsimony score. Figure 5 shows how the MP score is calculated for s2 on two 

different rooted trees. Finally, we select the tree or trees which results in the minimum parsimony score as 

the optimal tree.

F ig u re  5. Computing the Parsimony score of a tree for one character constructs sets of 
states at internal nodes and yields a score of 1 for the tree (a) and 2 for the tree (b).

When n is large, this scenario is not easy to undertake and most software uses heuristic approaches to find an 

optimal tree or trees. When mutations are rare, MP is a justifiable method for inferring a tree. However, when 

mutations are not rare then probabilistic models and model-based methods are more commonly used.



2.2. P rob a b ilis tic  m od els  in D N A  m u tation

Let us consider the DNA sequence of an ancestor SO : A T G C G C C A T G  and a descendant (species 1) 

sequence S1 : A T T C G C T G A A . Based on the iid (identically and independently distributed) assumption, 

where each site in the DNA sequences behaves independently with an identical distribution, we can define 

the base distribution for any given base at S0 as p0 =  (P (S0 =  A ),P (S 0 =  C ),P (S 0 =  G ) ,P (SO =  T )) =  

(p a ,Pc ,P g ,Pt ). For an example p0 «  (Pa ,p c ,Pg ,Pt ) =  (2/10, 3/10, 3/10, 2/10) for the sequences above. 

Similarly, the base distribution at S 1 can be written as p 1 =  (p a ,PC,p G,pT ). According to the probabilities 

o f base substitutions, S0 evolves into S1, so we can observe that 16 possibilities such as A  ^  A, A  ^  

C ,A  ^  G ,A  ^  T ,C  ^  A  etc. could occur. These conditional probabilities can be represented with the 

following matrix. For instance, A  ^  A  means that an ancestral A  remains an A  in the descendant, and this 

probability is denoted by P (S1 =  A|S0 =  A) =  paa. As an example, Pa a  might be estimated to be 1/2 

from the sequences above, because half of the A ’s in S0 are still A ’s in S 1. The rows of the matrix refer to 

ancestral states, while the columns refer to descendant ones.

RELIABILITY ANALYSIS OF RECONSTRUCTING PHYLOGENIES UNDER LBA CONDITIONS. 11

M

''Paa Pag Pac Pa t ^

Pga Pgg Pgc Pgt

Pca Pcg Pcc Pct

\Pta Ptg Ptc Ptt  g

M  :

1/2 0 1/2 0

0 2/3 0 1/3

1/3 0 1/3 1/3

1/2 0 0 1/2

Note that the product of p0M  gives the base distribution of S1, p0M  =  p 1.

If the sequence S 1 continues to evolve under the similar conditions of evolution from S0 to S 1, and the 

elapsed time is similar, then we can write the distribution of base compositions at S2 as p2 =  p 1M  =  p0M 2, 

where we are calling p0 the root distribution. Assuming M  represents the change after one time-step and 

models the sequence evolving through discrete time, we can model the sequence after n time steps by 

Pn =  p0M n. In summary, the parameters of this discrete time model are a base distribution p0 of non­

negative numbers that sum to one, which gives three parameters (any three of p a ,PC,p G,p T ) and a Markov 

matrix M  of non-negative numbers whose rows sum to one, giving twelve parameters (each row has three 

with i , j  entry P (S1 =  j |S0 =  i)). This model M  is called the general Markov model (GMM), in phylogenetic 

analysis.

Given a many-edged tree, we can find the joint distribution of states at the leaves of a tree. For example, 

let us consider the two edge tree, shown in Figure 6 (b), where S1 and S2 are two leaves of a root n. The 

M ei is the Markov matrix on the edge leading to Si where i = 1 ,  2. According to the possible patterns that 

can occur at sites, we can denote the joint distribution by a 4 x 4 matrix. Let us consider this situation: 

any base k at n must become an i in S1, and a j  in S2. Therefore, the i j th entry of the joint distribution
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F ig u re  6 . One edge tree (a) and two edge tree (b).

matrix can be written as,

4
P  ( i , j )  =  ^ 2  Pnk M ei (k ,i)M e2 (k ,j  )

k = 1

=  Pni M ei (1, i)M e2 (1, j )  +  Pn2 M ei (2, i)M e2 (2, j )  +  p^3M ei (3 ,i)M e2 (3, j ) +  p^4M ei (4, i)M e2 (4, j ) .

Often, it is common to describe the evolutionary process using a continuous-time formulation. For this we 

introduce a rate matrix Q. Here qij  denotes the instantaneous rate at which state i is replaced by j  where 

qij  >  0, i =  j .  Also, we require that the row sum of Q is 0:

2aa qAC qAG qAT^
qcA q cc qcG qcT

qGA qGc qGG qGT

\jlTA qTc qTG qTT y

Q =

Let pt denote the base distribution of four states at time t, where t =  0 gives the ancestral base distribution. 

Then we can write the following system of differential equations,

dtPi(t) =  Pi(t)qii +  Pj (t)qji +  Pk(t)qki +  Pl(t)qii, 

where i, j , k , and l are states and i =  j , k, l .

Moreover we can denote those differential equations in matrix form as j j  p t =  p tQ. Then, solving the system 

of differential equations, using the given initial value p0, we end up with the solution pt =  p0eQt. This result 

derives the relationship between the Markov matrix M  and rate matrix Q as M e =  M (te) =  eQte, where M (t) 

is the single matrix describing the mutation along an edge representing a time of length t . Moreover, values 

o f M  are probabilities and values of Q are rates describing the instantaneous substitution process.

Tavare [1986] defined a model to be time-reversible if niQij  =  n jQ ji for any given time t. It follows that the 

probability of pattern ij  is equal to the probability of pattern j i . The most general continuous-time model



used in this simulation study is the general time-reversible (GTR) model introduced by Tavare [1986]. The 

G TR  model on a tree is specified by the following parameters:

• an arbitrary choice of a root distribution p =  (p a ,PC,PG,PT ) where p is a probability mass function 

(pmf).

• an arbitrary choice of 6 rate parameters of a, ft, y , 5, e, n with the common rate matrix Q on all edges,

Pc a p g /3 Pt  Y

* Pg 5 Pt  e

Pc 5 * Pt  n

Pc e PGn * /

where the row sums are zero and qAc =  qcA =  a, qAG =  qGA =  ft, qTA =  qAT =  Y, qcG =  qGC =  

5, qGT =  qTG =  ^ qGT =  qTG =  n

• edge lengths of the tree

Five DNA substitution models have been used to explain the mutation process in this phylogenetic study and 

can be seen as restricted versions of the G TR model. JC is the most restrictive model and was formulated 

by Jukes and Cantor [1969]. In this model, we assume that all nucleotide substitutions rates are equal 

(a  =  ft =  y =  ... =  n) and all base frequencies are equal (uniform). The Kimura 2 parameter model (K2P), 

which was introduced by Kimura [1980], has the following setup. The base frequencies are assumed to be 

uniform and two nucleotide substitution types are allowed: transitions and transversions. The F81 model is 

the same as JC in that all nucleotide substitutions are equal, but has arbitrary base frequencies; this model 

was formulated by Joseph Felsenstein [1981]. Subsequently, the HKY model was formulated by Hasegawa 

et al. [1985] as an extension of the K2P model. In this model the base frequencies are non-uniform like in 

the F81 model. The most commonly used continuous time model used in data analysis is the GTR.

2.3. M o d e l-b a sed  D istances

Let us consider two DNA sequences. If both sequences are identical, we say there is no dissimilarity between 

the two sequences or that there is 0 distance between the two sequences. Dissimilarity can be calculated from 

data by simply calculating the proportion of sites that are dissimilar in the two sequences. This distance 

is called “Hamming distance” . However, phylogenetic reconstruction techniques use different dissimilarity 

maps using a probabilistic model of molecular evolution, rather than the Hamming distances. In this simu­

lation study, we use Jukes-Cantor Distance to reconstruct the phylogenies. Next, we consider the ancestral 

sequence S0, which has a uniform base distribution. Its mutation is explained by a Jukes-Cantor rate matrix:

RELIABILITY ANALYSIS OF RECONSTRUCTING PHYLOGENIES UNDER LBA CONDITIONS. 13

/

Q
PAa 

PA ft 

\PAY

*
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Q

base.

—a p CO p CO p CO

p CO —a p CO p CO

p CO p CO —a p CO

p CO p CO p CO —a

where a  is the rate at which any given base is replaced by a different

Then the total mutation process over the elapsed time t can be described by:

M (t) =  eQt

— a a /3  a /3  a /3  ^

a /3  1 — a a /3  a /3

a /3  a /3  1 — a a /3

a /3  a /3  a /3  1 — a

where a =  a(t) =  ^(1 — e 4at).

We can find the joint distribution of ancestor descendant states after time t by:

P diag(po)M  (t)

^(1 — a )/4  a/12 a/12 a/12 ^

a/12 (1 — a )/4  a/12 a/12

a/12 a/12 (1 — a )/4  a/12

y a/12 a/12 a/12 (1 — a)/4^

where P ( i , j ) gives the probability

of an ancestral i and descendant j  appearing at a site.

The off-diagonal entries are the frequencies of the various ways the states may disagree at a site in the two
number o f sites that show different states 

sequences. We can estimate a using the Hamming distance as a = --------
3

total number o f sites
Finally we can estimate the total amount of mutation by cat =  — 4 ln(1 — 3a) which is called the Jukes-Cantor 

distance d jc  (S0, S 1) between sequences S0 and S 1. Likewise, we can calculate the model-based distances 

for other models too.

2.4. N e ig h b or Join in g

The Neighbor Joining Method is the most widely used distance-based method for phylogenetic reconstruction. 

The NJ method reconstructs a metric phylogeny. In each iteration of the algorithm, two nodes of the tree are 

chosen and defined as neighbors in the tree. The joining is done recursively until all o f the nodes are paired 

together. In this simulation study we use JC distances to reconstruct NJ trees for each simulation.

First we calculate the dissimilarities between N  taxa by JC distance. Calculated distances are stored in 

a symmetric N  x N  matrix or table D. If S j,S j taxa are to be joined in the current iteration then, we 

introduce a new vertex v to make them a sister taxa in a metric tree. Next we put the rest of the N  — 2 

taxa into one temporary group Sg and find the branch lengths from Sj and Sj to vertex v by solving the 

following system of equations (Figure 7 will help you to understand the concept discussed here). Then we



replace Si, Sj with v in the distance table and iterate. We proceed with this method until all taxa have been 

joined in a tree, the NJ tree.
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F ig u re  7. Distance between S1 and S2 denoted by d12, which is the value of element N 1,2 
in the D matrix. The right hand side graph shows the situation we used to calculate the 
branch lengths by x +  y =  d12 , x  +  z =  d13 , y +  z =  d2,3. Here x  and y are the true 
branch lengths presented in the final NJ tree.

2.5. M a x im u m  L ik elih ood  (M L )

The probabilistic models we use to explain evolutionary process have parameters. The main idea behind

phylogeny inference with maximum likelihood is to determine the tree topology, branch lengths and numerical

parameters of the evolutionary model by maximizing the likelihood function. Let us consider a Jukes-Cantor

model on a one-edge tree, from an ancestral sequence S0 to a descendant sequence S1. Let the length of

the edge be t, measured in units so that a  =  1 in the Jukes-Cantor rate matrix discussed above. Then a 
3 4becomes a =  ^(1 — e- 44) and we need to estimate parameter t for the sequence data of S0 and S1. Next 

we summarize the sequence data by counting how often each pattern appears, such as N (i ,j )  =  nij  where 

nij  is the number of sites with base i in S0 and base j  in S 1. This N  is a 4 x 4 matrix of data counts. Then 

using the joint distribution P  =  (pij ), we can write the likelihood function as

4
L(t|ni j ) =  n p j

i,j=1

where pij  is a function of parameter t (through function a(t)) and the log-likelihood is

4
ln L (t| {n j})  =  ^ 2  nij ln pij =  ln(a/12) ^  nij +  ln((1 — a )/4 ) ^  nu .

i,j=1 i=j i

Then, differentiating this with respect to t and setting this equal to 0, we can find the ML estimator of

a(t) = 2i=j nij
ij nij

This implies that M L’s estimated edge length t is actually the JC distance. However, estimating a best 

maximum likelihood tree or trees is computationally expensive for a large number of taxa and sequences 

available because the ML procedure must consider all the topologies and find the best edge lengths for each 

topology.
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3. M ethods

The general approach of this simulation study is to explain how LBA conditions affect the reliability of three 

phylogenetic reconstruction techniques: MP, NJ, and ML on four-taxon trees. First we choose a model tree 

and parameters to simulate DNA sequences under five probabilistic phylogenetic models. Next we use three 

different phylogenetic techniques to reconstruct the tree. Finally, we calculate the percentage of the time 

that the correct tree is inferred from tree construction for each method.

3.1. M o d e l Tree

The four-taxon unrooted tree topology shown in Figure 3 (a ) is the model tree for this study. In each 

iteration of this simulation study we consider topologically the same model tree and vary the two branch 

length parameters A and B. Branch length parameters A and B range from 0.005 to 0.75 with an increment 

of 0.02 to simulate DNA data on these model trees. Figure 8 shows how model tree topologies with varying 

branch length combinations will appear in the branch length parameter space.

A  -  Short branch lengths

F ig u re  8 . In branch length space, short branch lengths (A) are plotted on the horizontal 
axis and long branch lengths (B) are plotted on the vertical axis.
Source: Hulsenbeck, J.P. “Performance of Phylogenetics Method in Simulation” . Systematic 
Biology, vol. 44, No.1, Mar.,1995, pp.17-48.

3.2. S im ulate D N A  Sequences

The five different models of DNA substitution discussed in the background section were used to simulate 

DNA sequences in this study. For each model we simulated DNA sequences with 100, 250, 500 and 1000 

sites with 100 replicates in each case. Table 1 explains models and parameter values used to simulate the



sequences. We used Seq-Gen Version 1.3.3 updated by Rambaut and Nick [2011] to generate the DNA 

sequences in this study.

RELIABILITY ANALYSIS OF RECONSTRUCTING PHYLOGENIES UNDER LBA CONDITIONS. 17

Model Base Frequencies Substitution Rates Number of Parameters
JC Pa =  Pc =  Pg =  Pt  

=  0.25
qAc =  qAG =  qAT =  qcG =  
qcT  =  qGT =  3

5

K2P Pa =  Pc =  Pg =  Pt  
=  0.25

qAG =  qcT =  2,
qAc =  qAT =  qcG =  qGT =  1

5 +  1 =  6

F81 Pa =  0.35,p c  =  0.15, 
p G =  0.25,pT =  0.25

qAc =  qAG =  qAT =  
qcG =  qcT =  qGT =  3

5 +  3 =  8

HKY Pa =  0.35,p c  =  0.15, 
p G =  0.25,pT =  0.25

qAG =  qcT =  2
qAc =  qAT =  qcG =  qGT =  1

5 +  4 =  9

GTR Pa =  0.35,p c  =  0.15, 
p G =  0.25,pT =  0.25

qAC =  2, qAG =  4, qAT =  1.8, 
qcG =  1.4, qcT  =  6, qGT =  1

5 +  8 =  13

T a b le  1. Five models of nucleotide substitution and parameter values used to simulate 
DNA sequences. The same number of branch lengths (5) needs to be estimated for every 
model. Here p a ,Pg ,P c ,Pt  are the relevant probabilities in the pmf of the root distribution 
and qi,j are the substitution rates of state i to j  in the rate matrix Q.

3.3. M eth od s  o f  R econ stru ctin g  P h y logen y

In this study we employed three commonly used methods for reconstructing phylogenies. All these phylo- 

genies were computed using PHYLIP programs which were originally developed by Joseph Felsenstein [1984]. 

First we used the parsimony technique available in the dnapars program to reconstruct the original tree. 

Next we used the dnadist program to calculate JC distances and used the neighbor program to reconstruct 

the original tree from the Neighbor Joining method. Finally we used the JC model setup in dnaml program 

to reconstruct a Maximum Likelihood tree.

3.4. M e th o d  o f  E valuation

We calculated the percentage of inferred tree topologies that are the same as the model tree in each case. 

According to the model tree topology used in Figure 3 (a), we categorized the tree topologies of Figure 3 (b) 

and (c) as wrong tree topologies. Among these, Figure 3 (c) shows the wrong tree topology that matches 

the topology expected when long branch attraction is present. Here we labeled trees in Figure 3 from left 

to right as “ (a) - Correct Tree” , “ (b) -Wrong Tree” , “ (c) - LBA Wrong Tree” . In this study we replicated 

100 data sets in each case. Then we calculated the percentage of inferred trees that were in each of these 

three categories. We calculated the Robinson Foulds (RF) distance between the reconstructed tree and the 

model tree for the tallying. A RF distance equal to 0 implies that the compared topologies are identical and 

that the reconstructed tree was counted in the relevant category. Finally we used heat maps to present the 

results. The results of the analysis are plotted as heat maps using the same axes as shown in Figure 5. The 

RF distance calculations and heat map constructions were done using RStudio Version1.0.136.
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4. R esults and C onclusion

The detailed results of this study are included in the Appendices. The figures show the reconstruction 

performance of parsimony, Neighbor Joining, and Maximum likelihood methods for 100, 250, 500, and 1000 

sites. Appendices 1, 2, 3, 4, and 5 show the simulation results for the sequences generated under models JC, 

F81, K 2, HKY, and GTR, respectively. Areas of the branch length parameter space colored red (hot color) 

estimate that 100% of the inferred trees are correct. The areas colored blue (cool color) indicate incorrectly 

estimated correct trees. Intermediate performances of reconstruction from correct to incorrect are indicated 

from hot colors to cooler colors (or red to blue).

First, we consider the performance of the three reconstruction techniques for sequences simulated under the 

JC model. The length of the generated sequences is 1000 sites. In Figure 9 (a), the top left portion of the 

branch length space shown in blue indicates a wrongly estimated correct tree. For tree topologies in this 

region, branch lengths A are very small and branch lengths B  are very long which is the LBA region of 

branch length space. This implies that the MP method has difficulty inferring the correct tree topology in 

this region. By contrast, NJ and ML perform well in this region. Intermediate cooler colors show that NJ 

and ML methods also struggle to infer correct tree topologies in the top left corner, although the regions for 

NJ and ML are small. Comparing NJ and ML is not easy; by comparing the very top left corners of the 

Figure 9 (b) and 9 (c), the hot colors shows that ML performs better than NJ.

(a). Parsimony (b). NJ-(JC distance) (c). ML - (JC model)

F igure 9. Sequence length is 1000 (Sequences generated under JC model). Here the NJ 
method used JC distances and ML used JC model parameters to reconstruct the phylogenies.

Next we measure how the performance of each technique varies when decreasing the sequence length for 

data generated under the JC model. The first column of Appendix 1 shows how the performance of the 

parsimony technique varies when the sequence length changes from 100 to 1000. The blue color region which 

appears in the top left portion of the heat maps implies that for all sequence lengths, MP struggles to infer 

the correct tree topology in the LBA region. For sequence lengths of 500 and 1000, both NJ and ML perform
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well compared to MP. When the sequence length is too short (less than 500), NJ and ML also have at least 

some difficulty in inferring the correct tree at the extremes.

Figure 10 clearly shows that the MP method performs unreliably in the top left corner for each model. 

Therefore we can conclude that the MP method performs poorly in the LBA region of the edge length 

parameter space. According to Appendices 1-5, we can observe that NJ struggles to infer the correct tree 

topology at short sequence lengths for all these models. In the JC and F81 models, we noticed that when 

sequence lengths were 500 and 1000, NJ estimates the top left region more reliably. In the rest of the models, 

NJ clearly shows somewhat poor performance in this region, but performance is better when sequence lengths 

are large. Compared to the MP method, the region of poor behaviour for NJ is small. The ML method also 

has trouble correctly inferring tree topologies in this region when sequence lengths are very small. This is 

because when sequence length is small, less data is available for the ML method. Finally, when sequence 

lengths are large enough, ML performs better and more reliably in this region compared to the other two 

methods.

(c). HKY model (c). GTR model

F ig u re  10. Sequence length is 1000 (Sequences generated under different models and re­
constructed under MP method)

Figure 11 shows that all the failures explained by the correct tree inferred in Figure 9 came from the LBA 

wrong trees. For example, in Figure 9 (a) we see blue in the LBA region of branch length space indicating the
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true tree is not inferred, but instead MP selects the LBA wrong tree (see Figure 11 (a)) with red. Therefore 

we can clearly observe that the difficulty in inferring the correct tree happens for MP due to the LBA 

nature of the metric tree topology. Further it shows that the reliabilities of NJ and ML are also somewhat 

affected by the LBA condition. The effect of the LBA condition on NJ is small, while the effect on ML is 

negligible.

(a). Parsimony (b). NJ (c). ML

F ig u re  11. Sequence length is 1000 (Sequences generated under JC model)

Next we examine the reliability shown by NJ in Appendix 7. Here we can observe that the effect of the LBA 

conditions is smaller when the sequence length is 500 and 1000. Interestingly, when the sequence length is 

too small (<  500), there is a considerable effect on reliability at the top right corner of the branch length 

space which is not explained by LBA conditions. Finally, the ML results in Appendix 8 show that the 

reliability of the ML method is strong and the effect of the LBA is negligible. When sequence length is 

really small (<  500), ML shows some difficulties in inferring the correct tree but this is not entirely caused 

by LBA.

According to the above results the parsimony method is the most sensitive to LBA conditions, and Neighbor 

Joining performs well under LBA conditions compared to parsimony. Finally Maximum Likelihood is the 

best technique among the three methods we examined in this study. ML performs well under the LBA 

conditions when sequence lengths are long enough (greater than 500). ML handles Long Branch Attraction 

conditions really well compared to NJ and MP.

5. D iscussion

In this study we used only JC models and distances for reconstructing trees. One of the issues that should 

be considered in the future is if we can extend this study by reconstructing trees under different models and 

distances. For example, when reconstructing phylogenies for DNA sequences simulated under the K 2P model 

we should use K 2P distance and the K 2P model to reconstruct trees. Another concern that we can address is 

changing rate parameters and increasing sequence lengths to examine the performance of the reconstruction



techniques. Also for further work we could use Bayesian methods to estimate the model parameters and 

reconstruct the trees under LBA conditions and compare that with Maximum likelihood results.
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Appendix 1 : Sequences generated under JC model
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Appendix 2 : Sequences generated under F81 model
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Appendix 3 : Sequences generated under K2P model
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Appendix 4 : Sequences generated under HKY model
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Appendix 5 : Sequences generated under G TR model
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Appendix 6 : Sequences generated under JC and reconstructed under Parsi­
mony

Sequence length 100

D

Sequence length 250

D

Sequence length 500
Color Key □

Sequence length 1000

D

D

D

Color Key □

D

: ! 
i I

D

! i I!! 1!'! 1' I! I = i!;'!!!!! S1 i 11!!! 11!! i!

D

Color Key □

! 111 i 1; 11! I! 111!! 5 S! 1!!!! S! I s 1111! I! I!

D

I l l l l l l l l l i i i i i i i i i i i l l i l l i l l l l i l l l i l l I l l l i l l l l l l l l l l l l l l l l l l l l l l l l l l l i i l l s l I I I I I I I I I I I I I I I I i l l  I I I I  I I I I I l l l l l I I I s !

CorrectTree

CorrectTree

CorrectTree

CorrectTree



28 DISSANAYAKE

Appendix 7 : Sequences generated under JC and reconstructed under NJ 
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Appendix 8 : Sequences generated under JC and reconstructed under ML 
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Appendix 9 : Sequences generated under F81 and reconstructed under Par­
simony
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Appendix 10 : Sequences generated under F81 and reconstructed under NJ 
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Appendix 11 : Sequences generated under F81 and reconstructed under ML 
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Appendix 12 : Sequences generated under K2P and reconstructed under 
Parsimony
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Appendix 13 : Sequences generated under K2P and reconstructed under NJ
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Appendix 14 : Sequences generated under K2P and reconstructed under ML 
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Appendix 15 : Sequences generated under HKY and reconstructed under 
Parsimony
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Appendix 16 : Sequences generated under HKY and reconstructed under NJ 
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Appendix 17 : Sequences generated under HKY and reconstructed under ML 
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Appendix 18 : Sequences generated under GTR and reconstructed under 
Parsimony
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Appendix 19 : Sequences generated under GTR and reconstructed under NJ
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Appendix 20 : Sequences generated under GTR and reconstructed under ML 
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