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Abstract

In evolutionary biology various metrics have been defined and studied for comparing phylogenetic
trees. Such metrics are used, for example, to compare competing evolutionary hypotheses or to
help organize algorithms that search for optimal trees. Here we introduce a new metric dp on the
collection of binary phylogenetic trees each labelled by the same set of species. The metric is based
on the so-called parsimony score, an important concept in phylogenetics that is commonly used to
construct phylogenetic trees. Our main results include a characterization of the unit neighborhood
of a tree in the dp metric, and an explicit formula for its diameter, that is, a formula for the
maximum possible value of dp over all possible pairs of trees labelled by the same set of species. We
also show that dp is closely related to the well-known tree bisection and reconnection (tbr) and
subtree prune and regraft (spr) distances, a connection which will hopefully provide a useful new
approach to understanding properties of these and related metrics.
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1. Introduction

In evolutionary biology, researchers are often faced with the problem of comparing two evo-
lutionary or phylogenetic trees on a given set of species. This problem commonly arises because
there are various methods to construct such trees, and these often give different solutions which
then need to be compared. In addition, some of the methods for constructing phylogenetic trees
rely on searching through the set of all possible trees, and it can be useful to compare trees so as
to efficiently organize such searches (see, e.g. [20]). For these reasons various metrics have been
developed for comparing phylogenetic trees, see e.g. [1, 2, 4, 9, 15, 16, 18, 19]. These metrics have
different properties which can make them more (or less!) useful depending on the situation in
which they are to be used. For example, the so-called Robinson-Foulds metric [16] can give a quick
way to compare trees, but is somewhat coarse in identifying details, whereas other metrics, such
as the quartet-distance [9], can pick out more fine detail but can be more difficult to work with
computationally.

In this paper, we introduce a new tree metric which is based on the concept of parsimony. To
define this metric we first need to recall some concepts in phylogenetics (cf. [17]). Let X be a
finite set, corresponding to a set of species. A character on X is a surjective map χ from X into
another finite set C. In biology, characters are commonly morphological (e.g. a species in X either
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has fins or not) or genetic (e.g. the nucleotide in some position of the DNA for a species in X is
A, T, C or G). Now, given such a character χ, and a phylogenetic tree T = (V,E) on X (i.e. a
graph-theoretical tree with vertex set V , edge set E and leaf-set X, such that every interior vertex
has degree three), an extension χ of χ to T is a map χ : V → C with χ(x) = χ(x) for all x ∈ X.
The changing number of χ is the cardinality of the set ∆(χ) consisting of all edges {u, v} in T with
χ(u) 6= χ(v). The extension χ is optimal if it has the minimum changing number over all possible
extensions of χ to T , and the parsimony score l(T , χ) of χ on T is defined as the changing number
of an optimal extension of χ to T . Note that in phylogenetics it is common practice to look for
a phylogenetic tree that minimizes the sum of the parsimony scores over a given set of characters
(see, e.g. [17, Chapter 5]) as such a tree is considered to represent a simplest explanation for how
present-day species might have evolved.

Now, given two phylogenetic trees T and T ′ on X, we define

dp(T , T ′) = max
χ∈Ξ(X)

∣∣∣l(T , χ)− l(T ′, χ)
∣∣∣,

where Ξ(X) denotes the set of all characters on X. In other words, dp(T , T ′) is the largest difference
in the parsimony scores for the trees T and T ′ over all possible characters on X. Note that, by
definition, dp(T , T ′) = dp(T ′, T ) and that dp(T , T ′) ≥ 0 with equality holding if and only if
T = T ′. Moreover, if T ′′ is also a phylogenetic tree on X, and χ∗ is a character on X with
dp(T , T ′) = |l(T , χ∗)− l(T ′, χ∗)|, then we have

dp(T , T ′) = |l(T , χ∗)− l(T ′, χ∗)|
≤ |l(T , χ∗)− l(T ′′, χ∗)|+ |l(T ′′, χ∗)− l(T ′, χ∗)|
≤ dp(T , T ′′) + dp(T ′′, T ′),

where the first inequality follows from the triangle inequality, and the second from the definition of
dp. In other words, the function dp is a metric on the set of all phylogenetic trees on X.

In this paper, we investigate some properties of this new metric. In particular, after presenting
some preliminaries in the next section, in Section 3 we first show that the definition of dp can be
reformulated in terms of a special type of character. In Sections 4 and 5 we then prove some technical
results which allow us to prove the main theorems in the paper. These include a way to bound the
dp distance between two trees that can be decomposed in a certain fashion (Proposition 4.1), and
a result that gives the exact value of dp between two particular phylogenetic trees (Theorem 5.1).

In Sections 6 – 8 we go on to prove the main results of this paper. More specifically, in Section 6,
we characterize the set of trees that are dp distance 1 from a given tree (Theorem 6.4), in Section 7
we show that dp is very closely related to the so-called tbr and spr metrics on phylogenetic trees
(Theorem 7.1) and, finally, in Section 8 we give an exact formula for the diameter of dp, that is
the maximum value that dp can take over all possible pairs of trees (Theorem 8.1). Together, these
last two results allow us to very slightly improve upon a lower bound for the diameter of the tbr
distance given in [10].

Before proceeding, it is worth mentioning that in this paper we do not explicitly deal with the
problem of computing the value of dp for some given pair of trees. It is known that the problem of
computing the tbr or spr distance is NP-hard and also fixed parameter tractable [2, 3, 5, 13]. It
would be interesting to know whether or not this is also the case for dp. In relation to answering
this question, note there has recently been a great deal of work presented on structural properties
of dtbr and dspr (see e.g. [7, 8, 10]). In light of the close connection between these metrics and
dp given in Theorem 7.1, it could be of some interest to see whether some of these results might

2



be extended to dp, especially as this could hopefully provide new insights into some open problems
concerning dtbr and dspr, such as the one stated at the very end of this paper.

2. Preliminaries

We begin by recalling some basic definitions concerning phylogenetic trees. We refer the reader
to [17] for a more detailed exposition of the concepts mentioned here and in the introduction.
From now on we will assume that X is a finite set with n = |X| ≥ 4, unless stated other-
wise. For brevity we will denote any partition {A1, A2, . . . , Ap}, p ≥ 2, of X by A1|A2| . . . |Ap
(so, in particular, the order of the Ai in this last expression is not important). In addition, we
shall sometimes also denote a character χ : X → C = {α1, . . . , αp}, p ≥ 2, by the partition
χ−1(α1)|χ−1(α2)| . . . |χ−1(αp), or by χ−1(α1)|χ−1(α2)| . . . |χ−1(αp−1)|−. Finally, for simplicity, we
often write a set A = {a1, . . . , ak} within a partition as a1a2 · · · ak. For example, if a character
χ corresponds to the partition {x1, x3}|{x2, x5}|{x4, x6} of X = {x1, . . . , x6}, then we can instead
write it as x1x3|x2x5|x4x6, or x1x3|x2x5|− when X is clear from the context.

Phylogenetic trees Let T = (V,E) be a tree, that is, a graph T = (V,E) with vertex set V and
edge set E. Leaves of T are vertices with degree 1; non-leaf vertices are called interior vertices of
T . The tree T is binary if every interior vertex has degree three. A cherry of T is a pair {v, w} ⊆ V
of leaves of T that are adjacent to the same interior vertex of T .

Now suppose that T is a phylogenetic tree on X (i.e. a binary tree with leaf set X). Given
a subset X ′ of X, we let T (X ′) denote the tree consisting of the minimum subtree of T that
connects all of the vertices in X ′. Furthermore, the restriction of T to X ′, denoted by T |X′ , is the
phylogenetic tree on X ′ obtained from T (X ′) by contracting all vertices of degree-two. A split A|B
(= B|A) of T is a bipartition {A,B} of the leaf set X of T such that T (A) and T (B) are vertex
disjoint subtrees of T . Note that given a phylogenetic tree T on X and a non-trivial split A|B in T
(i.e. a split A|B with |A| ≥ 2 and |B| ≥ 2), there exists a unique edge e of T whose removal yields
the trees T (A) and T (B). In this case we also say that the split A|B is induced by the edge e.

A phylogenetic tree T is called a caterpillar if every one of its interior vertices is adjacent to
some leaf. Note that this is equivalent to T containing precisely two cherries. For simplicity, we
therefore denote the fact that T is a caterpillar with two cherries {c1, c2} and {c3, c4} by writing T as
[c1c2 : x1x2 · · ·xn−4 : c3c4], where {c1, c2}, {c3, c4} ⊆ X and the remaining leaves x1, x2, . . . , xn−4 of T
are listed in the obvious way (e.g. the phylogenetic tree T in Fig. 1 is the caterpillar [1 2 : 3 4 : 5 6]).
In particular, when |X| = 4, T will be written as [c1c2 :: c3c4]. Note that the order of c1 and c2, as
well as that of c3 and c4, in this coding scheme is not important, while the ordering of the elements
xi is essential. A pair of leaves x and y in a caterpillar T is called a sibling if the path connecting
x and y in T contains exactly three edges.

Tree operations We now introduce two tree operations. A tbr (tree bisection and reconnection)
operation on T involves deleting some edge e from T (bisection), and subsequently inserting a new
edge so that the resulting tree T ′ is distinct from T (reconnection). Since we require T ′ to be
binary, it is necessary to subdivide an edge in one (in the case that the other component is an
isolated labelled vertex) or both components created in the bisection stage before inserting the new
edge. An example is given in Fig. 1. In addition, such a tbr operation is called an spr (subtree
prune and regraft) operation if one further constraint is satisfied: For the split X1|X2 induced by
the edge e specified in the bisection stage, there exists a subset A := X ′ ∪ {x} with X ′ ∈ {X1, X2}
and x ∈ X \X ′ so that T |A = T ′|A. Note that a more restrictive nni (nearest neighbor interchange)
operation may also be defined, but we will not consider this operation or related concepts in this
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paper as its connection with tbr and spr operations is well documented in the literature (see
e.g. [2]).

Given two phylogenetic trees T and T ′ with the same leaf set, the tbr distance dtbr(T , T ′)
between T and T ′ is defined as the minimum number of tbr operations that is needed to be applied
one-by-one to change T into T ′. The spr distance dspr(T , T ′) is defined in a similar manner. Note
that dspr(T , T ′) ≥ dtbr(T , T ′) clearly holds.

We now recall a useful way to reformulate the tbr distance between two trees. Given two
phylogenetic trees T1 and T2 on X, an agreement forest for T1 and T2 is a partition F = {X1, . . . , Xk}
of X such that (i) for i = 1, 2, the trees in {Ti(X1), . . . , Ti(Xk)} are vertex disjoint subtrees of Ti,
and (ii) T1|Xi

is isomorphic to T2|Xi
for 1 ≤ i ≤ k. The size of F is defined as |F|. If |F| ≤ |F ′| holds

for all agreement forests F ′ for T1 and T2, then F is called a maximum-agreement forest for T1 and
T2, and we define maf(T1, T2) = |F| − 1 (that is, maf(T1, T2) is the size of a maximum-agreement
forest for T1 and T2 minus 1). In [2] it is shown that

dtbr(T , T ′) = maf(T , T ′) (1)

holds for any pair T , T ′ of phylogenetic trees on X.
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Figure 1: Two trees T , T ′ that are one tbr operation apart. In particular, the tree T ′ can be obtained from T
by deleting the edge e in T and reinserting the two edge f between the edges in T incident with leaves 2 and 5,
respectively.

Parsimony scores We now recall some facts concerning parsimony scores. In [6, Lemma 1] (based
on [7, Lemma 5.1]), it is shown that if T and T ′ are two phylogenetic trees on X with dtbr(T , T ′) ≤
1, and χ is any character on X, then l(T ′, χ) ≤ l(T , χ) + 1. This immediately implies the following
relationship between dp and dtbr.

Lemma 2.1. If T , T ′ are two phylogenetic trees on X, then dp(T , T ′) ≤ dtbr(T , T ′).

Proof. Suppose dtbr(T , T ′) = k for some k ≥ 1. Then there is a sequence T0 = T ′, T1, . . . , Tk = T
of phylogenetic trees on X so that dtbr(Ti−1, Ti) = 1 for all 1 ≤ i ≤ k. But, by the aforementioned
[6, Lemma 1], |l(Ti−1, χ)− l(Ti, χ)| ≤ 1 holds for every character χ on X. Therefore, dp(Ti−1, Ti) ≤ 1
for all 1 ≤ i ≤ k and so the lemma follows by applying the triangle inequality.

If χ1 and χ2 are both characters on X, then χ1 is a refinement of χ2 if for each element α in
the image of χ1, we have χ2(x) = χ2(y) for all x, y ∈ χ−1

1 (α). The following fact is well known and
easy to prove.

Lemma 2.2. If χ1 and χ2 are two characters on X such that χ1 is a refinement of χ2, then, for
every phylogenetic tree T on X, we have l(T , χ2) ≤ l(T , χ1). �
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We conclude this section by recalling a useful tool for computing parsimony scores that was
introduced in [11]. Given a character χ on X and a phylogenetic tree T on X an Erdös-Székely
(ES) path system (for χ on T ) is a collection of directed paths P (x, y) from leaf x to leaf y in T ,
x, y ∈ X, such that (i) for each path P (x, y) in this collection, χ(x) 6= χ(y), and (ii) if P (x, y)
and P (x′, y′) are two paths in this collection that have some edges in common, then P (x, y) and
P (x′, y′) traverse these edges in the same direction and χ(y) 6= χ(y′).

Theorem 2.3. [11] Let χ be a character on X. Then for any phylogenetic tree T on X, l(T , χ) is
equal to the maximum size of an ES-path system for χ on T . �

3. A connection with convexity

In this section, we provide an alternative formulation for the metric dp in terms of the following
concept that naturally arises when considering phylogenetic trees (cf. [17]). Given a phylogenetic
tree T on X, a character χ : X → C is convex on T if the score h(T , χ) of χ on T , defined as

h(T , χ) = l(T , χ)− |C|+ 1,

is equal to zero. Note that this condition is equivalent to there being an extension χ of χ to T such
that for each α ∈ C, the subgraph of T induced by {v ∈ V : χ(v) = α} is connected [17]. For later
use, the cardinality of χ, denoted by |χ|, is defined as the number of elements contained in C.

Now, given two phylogenetic trees T and T ′ on X, let

ρT (T ′) = max{h(T ′, χ) : χ is a convex character on T },

and
ρ(T , T ′) = max{ρT (T ′), ρT ′(T )}.

Note that ρT (T ′) is not necessarily equal to ρT ′(T ) (see e.g. Fig. 2). However, in case T and T ′
have the same tree topology, that is, they are isomorphic as unlabeled trees, these two quantities
must be equal.

Our aim is to prove that ρ(T , T ′) equals dp(T1, T2). To this end, we first show that the compu-
tation of ρT (T ′) can be restricted to proper characters, that is, those characters χ : X → C such
that |χ−1(α)| ≥ 2 holds for each α ∈ C.

Lemma 3.1. Suppose that T and T ′ are two phylogenetic trees on X. Then

ρT (T ′) = max{h(T ′, χ) : χ is a proper convex character on T }.

Proof. For this proof, an element α in the image of a character χ is called trivial if |χ−1(α)| = 1.
Assume that ρT (T ′) = h(T ′, χ) holds for a convex character χ on T with k ≥ 1 trivial elements.
Then it suffices to construct a convex character χ∗ on T such that χ∗ has at most k − 1 trivial
elements and ρT (T ′) = h(T ′, χ∗).

To this end, let α be a trivial element of χ and let x be the unique element in X with χ(x) = α.
Denote the vertex in T that is adjacent to x by u. Then there exists an optimal extension χ
of χ to T such that χ(u) 6= α. Now consider the character χ∗ defined by χ∗(y) = χ(u) for
y = x, and χ∗(y) = χ(y) otherwise. Then χ∗ has at most k − 1 trivial elements. In addition,
we have l(T ′, χ∗) ≥ l(T ′, χ) − 1 and so h(T ′, χ∗) ≥ h(T ′, χ). Hence h(T ′, χ∗) ≥ ρT (T ′) and so
h(T ′, χ∗) = ρT (T ′), as required.

We now prove a useful fact concerning refinements.
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Figure 2: Two trees T1, T2 with ρ(T1, T2) = 2. Here we have ρT1(T2) = 1, and ρT2(T1) = 2 in light of the character
χ = 13|25|46.

Lemma 3.2. Suppose that χ : X → C is a character and that T is a phylogenetic tree on X with
l(T , χ) > |C| − 1. Then there exists a character χ′ on X such that (i) χ′ is a refinement of χ and
|χ′| = |χ|+ 1, and (ii) l(T , χ) = l(T , χ′). In particular, there exists a refinement χ′ of χ such that
l(T , χ′) = l(T , χ) and χ′ is convex on T (that is, h(T , χ′) = 0).

Proof. Fix an optimal extension χ of χ and denote the set of vertices in T by V . Since χ is not
convex, there exists a subset U of V such that (i) all members of U are mapped to the same element
by χ, denoted by χ(U), (ii) for each vertex v in V \U that is adjacent to a vertex in U , χ(v) 6= χ(U),
(iii) U ∩X 6= ∅, and (iv) there exists some leaf x ∈ X \ U such that χ(x) = χ(U).

Now consider some ε not in C, and let χ′ : X → C ∪ {ε} be the map defined by χ′(x) = ε for
x ∈ U ∩ X, and χ′(x) = χ(x) otherwise. Then clearly χ′ is a character on X such that χ′ is a
refinement of χ and |χ′| = |χ|+ 1. Therefore it only remains to show that l(T , χ) = l(T , χ′) holds.

To this end, first note that by Lemma 2.2 we have l(T , χ) ≤ l(T , χ′). To see that the reverse
inequality holds, consider the extension χ′ of χ′ defined by χ′(v) = ε for v ∈ U , and χ′(v) = χ(v) for
v ∈ V \U . Then, since U satisfies (i) and (ii) above, we can conclude l(T , χ′) ≤ |∆(χ′)| = |∆(χ)| =
l(T , χ), as required.

We now show that ρ and dp are equal.

Theorem 3.3. Suppose that T1 and T2 are two phylogenetic trees on X. Then

dp(T1, T2) = ρ(T1, T2).

Proof. Let T1 and T2 be as in the statement of the theorem. It immediately follows by the definition
of ρ that dp(T1, T2) ≥ ρ(T1, T2) holds. To see that the reverse inequality holds first note that,
switching T1 and T2 if necessary, we may assume

max
χ∈Ξ(X)

|l(T1, χ)− l(T2, χ)| = l(T1, χ
′)− l(T2, χ

′) = h(T1, χ
′)− h(T2, χ

′)

holds for some character χ′ on X.
If h(T2, χ

′) = 0, then we are done. Otherwise, by Lemma 3.2, there exists a character χ′′ so
that χ′′ is a refinement of χ′, l(T2, χ

′) = l(T2, χ
′′) and h(T2, χ

′′) = 0. In addition, we must have
l(T1, χ

′′) = l(T1, χ
′) as otherwise Lemma 2.2 would lead to a contradiction. Therefore, in summary,

we have

max
χ∈Ξ(X)

|l(T1, χ)− l(T2, χ)| = l(T1, χ
′′)− l(T2, χ

′′) = h(T1, χ
′′)− h(T2, χ

′′) ≤ ρT2(T1) ≤ ρ(T1, T2),

which completes the proof.

For later use, we present the following lemma concerning the dp metric on phylogenetic trees
with five leaves.
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Figure 3: The trees T [A] and T [B] for the split A|B = {1, 2, 3}|{4, 5, 6} of the leaf set of the tree T1 in Fig. 1.

Lemma 3.4. Suppose that T1 and T2 are two distinct phylogenetic trees on X. If |X| = 5, then
dp(T1, T2) = 1.

Proof. Let X = {x1, . . . , x5}. Relabeling if necessarily, we may assume that the two cherries of T1

are {x1, x2} and {x3, x4}. That is, T1 is a caterpillar and T1 = [x1x2 : x5 : x3x4]. By Lemma 2.1, we
may further assume that dtbr(T1, T2) > 1 as otherwise the lemma clearly holds. Since |X| = 5, this
implies dtbr(T1, T2) = 2. Swapping x3 and x4 if necessary, we can assume that T2 = [x1x3 : x5 : x2x4].
Therefore, χ1 = x1x3|x2x4x5 and χ2 = x1x3x5|x2x4 are the only two proper convex characters on T2.
Together with h(T1, χ1) = h(T1, χ2) = 1, using Lemma 3.1 it follows that ρT2(T1) = 1. In addition,
a similar argument leads to ρT1(T2) = 1. Hence by Theorem 3.3

dp(T1, T2) = ρ(T1, T2) = max
(
ρT1(T2), ρT2(T1)

)
= 1,

as required.

The following corollary, albeit simple, will be useful since it shows that the distance induced by
dp on subtrees cannot increase.

Corollary 3.5. Suppose that T1 and T2 are two phylogenetic trees on X, and Y is a subset of X.
Then ρT1|Y (T2|Y ) ≤ ρT1(T2). In particular, by Theorem 3.3, dp(T1|Y , T2|Y ) ≤ dp(T1, T2).

Proof. It clearly suffices to prove the corollary for the special case Y = X \{x} for some x ∈ X. Let
χ be a character on Y such that χ is convex on T1|Y , and h(T2|Y , χ) = ρT1|Y (T2|Y ) holds. Consider
the character χ∗ on X that is obtained from χ by mapping x to a new symbol not in the image of
χ. Then χ∗ is convex on T1 and h(T |Y , χ) = h(T , χ∗). Thus ρT1|Y (T2|Y ) ≤ ρT1(T2), as required.

4. Tree decompositions

In this section we prove two results which allow us to restrict our attention to certain special
subtrees when computing dp for two trees that have a non-trivial split in common. To this end,
given a phylogenetic tree T on X and an edge e of T corresponding to a non-trivial split A|B of
T , let T [A] and T [B] be the two trees obtained from T by dividing e into three new edges through
adding two new vertices rA and rB, and deleting the edge {rA, rB} as illustrated in Fig. 3. In
particular, T [A] and T [B] are phylogenetic trees on A ∪ {rA} and B ∪ {rB}, respectively.

Proposition 4.1. Suppose that T1, T2 are two phylogenetic trees on X. If they contain a common
non-trivial split A|B, then

dp(T1, T2) ≤ dp(T1[A], T2[A]) + dp(T1[B], T2[B]). (2)
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Proof. Let T1, T2 be as in the statement of the theorem. Then T1[A] and T2[A] are two phylogenetic
trees on A ∪ {rA}, and T1[B] and T2[B] are two phylogenetic trees on B ∪ {rB}. Let e1 = {u1, v1}
and e2 = {u2, v2} be the edges in T1, T2 corresponding to A|B, respectively, with ui being the vertex
in Ti(A), i = 1, 2, Note that by Theorem 3.3, it suffices to show

ρT1(T2) ≤ ρT1[A](T2[A]) + ρT1[B](T2[B]).

To this end, let χ be a character on X with h(T1, χ) = 0 and h(T2, χ) = ρT1(T2). In addition,
fix an optimal extension χ of χ to T1. Then the character χA on A ∪ {rA} defined by putting
χA(a) = χ(a) if a ∈ A and χA(rA) = χ(v1) is convex on T1[A], and the character χB on B ∪ {rB}
defined by putting χB(b) = χ(b) if b ∈ B and χB(rB) = χ(u1) is convex on T1[B]. Therefore, it
suffices to show

h(T2, χ) ≤ h(T2[A], χA) + h(T2[B], χB). (3)

Now, fix an optimal extension χ̃A of χA to T2[A], and χ̃B of χB to T2[B]. Consider the extension
χ̃ of χ to T2 defined by χ̃(w) = χ̃A(w) for vertex w in T2(A), and χ̃(w) = χ̃B(w) for vertex w in
T2(B). Note that, since χ is convex on T1, χ(A) ∩ χ(B) can contain at most one element.

If χ(A) ∩ χ(B) contains exactly one element, which we denote by α, then as χ is optimal, we
have χ(u1) = χ(v1) = α, and so χA(rA) = α and χB(rB) = α. Therefore, we have

l(T2, χ) ≤ |∆(χ̃)| = |∆(χ̃A)|+ |∆(χ̃B)| = l(T2[A], χA) + l(T2[B], χB),

and hence
h(T2, χ) + |χ| − 1 ≤ l(T2[A], χA) + l(T2[B], χB) + |χA|+ |χB| − 2.

But |χ| = |χA|+ |χB| − 1, and so Eq. (3) holds.
If, on the other hand, χ(A) ∩ χ(B) = ∅, then as χ is optimal, we have χ(u1) ∈ χ(A) and

χ(v1) ∈ χ(B). Since χA(rA) = χ(v1) 6∈ χ(A), we can assume χ̃A(u2) 6= χ̃A(rA). Similarly, we can
assume χ̃B(v2) 6= χ̃B(rB). Hence

l(χ, T2) + 1 ≤ |∆(χ̃)|+ 1 = |∆(χ̃A)|+ |∆(χ̃B)| = l(T2[A], χA) + l(T2[B], χB).

Therefore, as |χ(A)|+ 1 = |χA| and |χ(B)|+ 1 = |χB|, Eq. (3) holds, as required.

Note that the strict inequality may hold in Eq. (2). For example, for the two trees T1 and T2 in
Fig. 1 and the split A|B = {1, 2, 3}|{4, 5, 6} of T1 and T2, we have

1 = dp(T1, T2) < dp(T1[A], T2[A]) + dp(T1[B], T2[B]) = 2.

However, for the special case where T1[B] is isomorphic to T2[B], Corollary 3.5 and Proposition 4.1
immediately imply that the equality must always hold in Eq. (2) (note that the same property is
shown to hold for dtbr and dspr in [2, Theorem 3.4]), i.e. we have:

Theorem 4.2. Suppose that T1, T2 are phylogenetic trees on X that have a common non-trivial split
A|B such that T1[B] = T2[B]. Then dp(T1, T2) = dp(T1[A], T2[A]). �

5. dp on caterpillars

In this section, we shall prove the following rather technical theorem concerning the dp distance
between two caterpillars. This result will be key in understanding unit neighborhoods of dp in the
next section.
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Theorem 5.1. Let |X| ≥ 7 and suppose that T1 and T2 are two caterpillars on X with dtbr(T1, T2) =
2 and that have no cherry in common. Then dp(T1, T2) = 2.

Before proving this theorem we present a useful lemma.

Lemma 5.2. Suppose |X| ≥ 7 and let χ : X → C be a character with |C| ≤ 3. If T is a caterpillar
on X with cherries {y1, z1} and {y2, z2} such that (i) χ(yi) 6= χ(zi) for i = 1, 2 and (ii) for each
element α ∈ C, χ(x) = α for some x ∈ X \ {y1, y2, z1, z2}, then h(T , χ) ≥ 2.

Proof. If |C| = 2, then Condition (ii) implies that there exist two elements x1 and x2 in X \
{y1, y2, z1, z2} with χ(x1) 6= χ(x2). Therefore {P (z1, y1), P (z2, y2), P (x1, x2)} is an ES-path system
for χ on T by Condition (i). Hence h(T , χ) ≥ 2.

If |C| = 3, then Condition (ii) implies that there exists a subset {x1, x2, x3} ⊆ X \
{y1, y2, z1, z2} so that χ(xi) 6= χ(xj) for 1 ≤ i < j ≤ 3. Therefore, by Condition (i),
{P (z1, y1), P (z2, y2), P (x1, x2), P (x1, x3)} is an ES-path system for χ on T . Hence h(T , χ) ≥ 2.

Proof of Theorem 5.1: Let T1 and T2 be as in the statement of the theorem. By Lemma 2.1 we
have dp(T1, T2) ≤ 2, and so it suffices to show that dp(T1, T2) ≥ 2 holds. To this end, for this proof
we shall say that a character on X is good if it is convex on T1 and h(T2, χ) ≥ 2, or it is convex
on T2 and h(T1, χ) ≥ 2. In particular, note that if such a character exists then dp(T1, T2) ≥ 2 by
Theorem 3.3, and so the existence of a good character proves the theorem.

Now, denote the two cherries in T1 by C1 and C2 and put ch(T1) = C1∪C2. Similarly, let ch(T2)
be the union of the two cherries of T2. Since dtbr(T1, T2) = 2, there is a maximum-agreement forest
F = {X1, X2, X3} between T1 and T2. Without loss of generality assume X1 ∩ ch(T1) 6= ∅. We first
consider a special case.

Claim 1: If |X2| = |X3| = 1, then dp(T1, T2) ≥ 2.

Proof of Claim: Denote the element contained in X2 by y, and the one contained in X3 by z. In
addition, let T1|X1 = [c1c2 : x1 · · ·xk : c3c4] for some k ≥ 1, where ci (1 ≤ i ≤ 4) and xj (1 ≤ j ≤ k)
are elements in X. We can assume without loss of generality that |ch(T1)∩{y, z}| ≤ |ch(T2)∩{y, z}|
holds. We now consider three cases.

Case I: |ch(T1) ∩ {y, z}| = 0. Since this implies that neither y nor z is contained in ch(T1), we
have C1 = {c1, c2} and C2 = {c3, c4}. Hence neither C1 nor C2 is a cherry in T2. So, by symmetry,
the cherries of T2 are {c1, y} and {z, c3}. Therefore, since χ is convex on T1 and h(T2, χ) ≥ 2 by
Lemma 5.2, it follows that the character χ = c1c2|c3c4|− is good.

Case II: |ch(T1) ∩ {y, z}| = 1. Without loss of generality, assume y ∈ ch(T1) and z 6∈ ch(T1).
By symmetry, we can also assume C1 = {c1, y} and C2 = {c3, c4}. Thus T1 can be obtained from
T ′1 := T1|X1∪X2 by attaching the element z to some edge ei with 0 ≤ i ≤ k + 1 (see Fig. 4). Now,
since |ch(T1) ∩ {y, z}| ≤ |ch(T2) ∩ {y, z}|, either y or z is contained in ch(T1), and so it suffices to
consider the following three subcases.
(II-1): ch(T2) contains y but not z. This implies that T2 can be obtained from T ′2 := T2|X1∪X2 by
attaching z to some edge fj with 0 ≤ j ≤ k+ 1 (see Fig. 4). Now, note first that if z is attached to
e0 in T ′1 , then c1yz|− is a good character by Lemma 5.2. Similarly, if z is attached to fk+1 in T ′2 ,
then c3yz|− is a good character. Moreover, if z is attached to ek+1 in T ′1 , then z must be attached
to fj in T ′2 for some 0 ≤ j < k, which implies that c3c4z|− is a good character. Similarly, if z is
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attached to f0 in T ′2 then c1c2z|− is a good character. Therefore, we only need to consider the case
where z is attached to ei for 1 ≤ i ≤ k, and to fj for 1 ≤ j ≤ k. Moreover, we may assume that
z is not attached to e1, as otherwise c1c2x1|− is a good character, and z is not attached to fk, as
otherwise c3c4xk|− is a good character. Therefore, it only remains to consider when z is attached
to ei for 1 < i ≤ k, and to fj for 1 ≤ j < k.

To this end, put T ∗i := Ti|X1∪X3 for i = 1, 2. Then T ∗1 6= T ∗2 , and so there must exist an
element x ∈ {x1, . . . , xk} such that either (a) dT ∗1 (c1, x) < dT ∗1 (c1, z) and dT ∗2 (c1, x) > dT ∗2 (c1, z) or
(b) dT ∗1 (c1, x) > dT ∗1 (c1, z) and dT ∗2 (c1, x) < dT ∗2 (c1, z). Put X ′ = {c1, c2, c3, c3, x, y, z}. Then in
case (a) we have T1|X′ = [c1y : c2xz : c3c4] and T2|X′ = [c1c2 : zxc4 : c3y]. Therefore, dp(T1, T2) ≥
dp(T1|′X , T2|′X) ≥ 2, where the first inequality follows from Corollary 3.5 and the second is obtained
by considering the character χ = c3c4z|c1c2yx on X ′. To see that dp(T1, T2) ≥ 2 must hold in case
(b) is similar.

��

@@ ��

@@ ��

@@ ��

@@
T ′1

y

c1 c2

e0 e1 ek ek+1

x1 xk−1 xk

c4

c3

T ′2
c2

c1

x1 x2 xk c4 y

c3

f0 f1 fk fk+1

Figure 4: Two trees T ′1 , T ′2 considered in the proof of Theorem 5.1.

(II-2): ch(T2) contains z but not y. By switching c3 and c4 if necessarily, we may assume that the
two cherries in T2 are {c1, c2} and {c3, z}. Hence the character χ = c1y|c3c4|− is good by Lemma 5.2.
(II-3): ch(T2) contains both z and y. Note first that we may assume {c3, c4} ∩ ch(T2) 6= ∅. Indeed,
if neither c3 nor c4 is contained in ch(T2), then the two cherries in T2 must be {y, z} and {c1, c2}.
Thus, switching c3 and c4 if necessary, we may assume that c3 is a sibling of y in T2, which implies
that c3yz|− is a good character.

Now, without loss of generality, assume c3 ∈ ch(T2). Note that if {c3, z} is a cherry in T2, then
the other cherry of T2 must be {c2, y}, and hence χ = c1y|c3c4|− is a good character. Therefore, we
can assume that {c3, y} is a cherry in T2. Denote the other cherry in T2 by C ′. Then C ′ is either
equal to {c1, z} or {c2, z}.

If C ′ = {c1, z}, then z is not attached to e0 in T ′1 as otherwise {X1 ∪ X3, X2} is a maximum
agreement forest of {T1, T2}. On the other hand, if z is attached to ei for some i ≥ 1, then
c1c2z|− is a good character. Therefore, we may assume that z is attached to e1 in T ′1 . This implies
χ = c1yc2|c3c4|− is a convex character on T1, and hence χ is a good character by Lemma 5.2.

If C ′ 6= {c1, z}, then C ′ = {c2, z}, and the proof is similar. In particular, we may assume that z
is not attached to e0 in T ′1 as otherwise c1yz|− is a good character. In addition, if z is attached to
ei for some i ≥ 1, then c1c2z|− is a good character. Therefore we may assume that z is attached to
e1 in T ′1 . This implies that χ = c1yc2|c3c4|− is a good character.

Case III: {y, z} ⊂ ch(T1). Since |ch(T1)∩{y, z}| ≤ |ch(T2)∩{y, z}|, we must have {y, z} ⊂ ch(T2).
We now consider two subcases.
(III-1): {y, z} is a cherry in T1 or T2. Without loss of generality, assume {y, z} is a cherry in T1.
By symmetry, we may assume T1 = [zy : c1c2x1 · · · xk : c3c4]. Since {y, z} ⊂ ch(T2) but {y, z} is not
a cherry of T2 then – switching y and z and c3 and c4 if necessary – we can assume C ′1 := {c3, z}
is a cherry in T2, and that the other cherry C ′2 in T2 must contain y and one of the elements in
{c1, c2} (indeed, we must have C ′2 = {c2, y}, as otherwise C ′2 = {c1, y} and so {X1 ∪ X2, X3} is a
maximum-agreement forest). But then C ′1 := {c3, z} and C ′2 = {c2, y} which implies c1zy|− is a
good character.
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(III-2): {y, z} is not a cherry in T1 or T2. By symmetry, we may assume T1 = [c1y : c2x1 · · · xkc4 :
c3z]. Note that we can further assume c1 6∈ ch(T1), as otherwise {c1, z} is a cherry in T2, and hence
c1c2z|−, being convex on T2, is a good character. Similarly, we may assume c3 6∈ ch(T1) as otherwise
{c3, y} is a cherry in T2, and hence c3c4y|− is a good character.

Therefore, we must have ch(T2) = {c2, c4, y, z}. Denoting the cherry in T2 containing y by C ′1,
and the cherry containing z by C ′2, we have either C ′1 = {c2, y} and C ′2 = {c4, z}, or C ′1 = {c4, y}
and C ′2 = {c2, z}. In both cases, the character χ = c1y|c3z|− is good. This completes the proof of
Claim 1. �

Now, since |ch(T1)| = 4 we can assume |ch(T1) ∩ X1| ≥ 2. Moreover, in view of Claim 1,
from now we can assume without loss of generality that ch(T1) 6⊆ X1 and C1 ⊆ X1 (and so
|ch(T1)∩X1| ≤ 3). We now show that if T1 and T2 have the split X1|(X \X1) in common then the
theorem must hold.

Claim 2: If X1|(X −X1) is a common split of T1 and T2, then dp(T1, T2) ≥ 2.

Proof of Claim: For simplicity, put A = X1, B = X2 ∪X3 and u = rA. Then T1[A] and T2[A] are
two caterpillars on A ∪ {u}. Note first that C1 is a cherry in T1[A], but not a cherry in T2[A], as
otherwise C1 would also be a cherry in T2, a contradiction. Hence dp(T1[A], T2[A]) ≥ 1.

Since dp(T1[A], T2[A]) ≥ 1, there exists a subset A′ := {x1, x2, x3} ⊆ A such that, for A∗ :=
A′ ∪ {u}, T1[A]|A∗ 6= T2[A]|A∗ . In particular, by relabeling the elements xi if necessary, we can
assume T1[A]|A∗ = [ux1 :: x2x3] and T2[A]|A∗ = [ux2 :: x1x3]. In addition, since dp(T1|B, T2|B) ≥ 1
(as {A,B} is not a maximum-agreement forest), there exists a subset B′ := {y1, y2, y3, y4} ⊆ B
such that T1|B′ 6= T2|B′ . In particular, by relabeling the elements yi if necessary, we can assume
T1|B′ = [y1y2 :: y3y4] and T2|B′ = [y1y3 :: y2y4].

It follows that, for X ′ = A′ ∪ B′, we may assume without loss of generality that T1|X′ is
obtained by attaching u in T1[A]|A∗ to the edge incident to y1 in T1|B′ . In other words, we have
T1|X′ = [x2x3 : x1y1y2 : y3y4].

Now, for 1 ≤ i ≤ 4, let ei be the pendant edge incident to yi in T2|B′ , and denote the tree
obtained by attaching u in T1[A]|A∗ to edge ei by T ′i . Consider the character χ = x2x3|y3y4|−. This
is convex on T2. On the other hand, since T ′i contains a cherry {x1, x3} and the other cherry of T ′i
is either {y2, y4} or {y1, y3}, we have h(T ′i , χ) ≥ 2 by Lemma 5.2, and hence dp(T1|X′ , T ′i ) ≥ 2, for
all 1 ≤ i ≤ 4. But then, as T2|X′ ∈ {T ′1 , . . . , T ′4}, we have dp(T1, T2) ≥ dp(T1|X′ , T2|X′) ≥ 2, where
the second inequality follows by Corollary 3.5. This completes the proof of Claim 2. �

We now continue with the proof of the theorem, under the assumptions made up to the
statement of Claim 2. Without loss of generality we assume ch(T1) ∩ X2 6= ∅ from now on. The
remainder of the proof is divided into two claims (Claims 3 and 4) according to whether or not
ch(T1) intersects X3. From now on we denote the two leaves contained in C1 by c1 and c2.

Claim 3: If X3 ∩ ch(T1) 6= ∅, then dp(T1, T2) ≥ 2.

Proof of Claim: By Claim 1, without loss of generality we may assume |X2| > 1 and X3 = {z}
some z ∈ X. Hence the cherry C2 in T1 not equal to C1 is equal to {z, y0} for some y0 ∈ X2. We
now consider three cases.

(I): |X2| = |X| − 3. Then X1 = {c1, c2} = C1 and T1 = [c1c2 : y1 · · · yk : y0z] with X2 =
{y1, . . . , yk, y0} for some k ≥ 3. Let ei, i ∈ {0, 1, 2, k}, be the pendant edge in T2|X2 = [y1y2 :
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y3 · · · yk−1 : yky0] that is incident with yi. Noting that C1 is not a cherry in T2, without loss of
generality we may assume that {c1, z} is a cherry in T2. Let f be the pendant edge incident to c2

in the tree T2|X1∪X3 . Since dtbr(T1, T2) ≥ 2, T2 can be obtained by connecting f in T2|X1∪X3 to ei
in T2|X2 for i ∈ {0, 2, k}. Hence χ = c1c2y1|− is a good character.

(II): |X2| = 2. Then X2 = {y0, y1} for some y1 ∈ X, and we have T1 = [c1c2 : x1 · · ·xky1 : y0z] with
X1 = {c1, c2, x1, . . . , xk} for some k ≥ 3. Since h(T1, χ) = 2 for χ = c1y0y1|− or χ = c2y0y1|−, we
may assume without loss of generality that {c1, z} is a cherry in T2. Because neither {X1, X2 ∪X3}
nor {X1 ∪X2, X3} is a maximum-agreement forest for {T1, T2}, T2 can be obtained by adding the
cherry {y0, y2} to the pendant edge incident to xk−1 in the tree T2|X1∪X3 = [c1z : c2x1 · · ·xk−2 :
xk−1xk]. Hence the character χ = y0y1xk−1|− is good.

(III): 2 < |X2| < |X| − 3. Then T1 = [c1c2 : x1 · · ·xkym · · · y1 : y0z] for some k ≥ 1 and m ≥ 2 (and
so X1 = {c1, c2, x1, . . . , xk}, X2 = {y0, y1, . . . , ym} and X3 = {z}).

Suppose that neither {z, c1} nor {z, c2} is a cherry in T2. Then {c1, c2} is not a cherry in tree
T2|X1∪X2 . Thus, without loss of generality, T2|X1∪X2 can be formed by connecting the pendant edge
e incident to c1 in T1|X1 to a pendant edge in T1|X2 . Since X1|X2∪X3 is not a split of T2 by Claim 2,
we can assume that χ = {z} ∪ (X1 \ {c1})|− is convex on T2. Hence, as h(T1, χ) = 2, χ is good.

Therefore, we can assume without loss of generality that {z, c1} is a cherry in T2. Let C ′ denote
the other cherry. Put x0 := c2 and let ei (i ∈ {k − 1, k}) be the pendant edge incident to xi in
T2|X1∪X3 = [zc1 : x0x1 · · ·xk−2 : xk−1xk]. Then T2 is formed by connecting ek−1 or ek in T2|X1∪X3 to
a pendant edge in T2|X2 .

Now, if C ′ 6= {y0, y1}, then we have either C ′ = {ym, ym−1}, or C ′ = {y0, ym} (which occurs only
if m = 2). Consider the character χ defined by χ = c1z|ymym−1|− when C ′ = {ym, ym−1}, and χ =
c1z|y0ym|− otherwise. Then χ is convex on T2, and {P (ym, c1), P (ym, c2), P (ym−1, y0), P (ym−1, z} is
an ES-path system in T1 for χ. Thus dp(T1, T2) ≥ 2.

On the other hand, if C ′ = {y0, y1}, then since h(T1, χ) = 2 for χ = X2 ∪ {xk−1}|−, we may
further assume that T2 is formed by connecting ek in T2|X1∪X3 to a pendant edge in T2|X2 . Since
{X1 ∪X3, X2} is not a maximum-agreement forest, m > 2 and ek is connected to the pendant edge
incident to ym−1 in T2|X2 . This implies that the character χ = X1 ∪ {z, ym−1}|− is good, which
completes the proof of Claim 3. �

Claim 4: If X3 ∩ ch(T1) = ∅, then dp(T1, T2) ≥ 2.

Proof of Claim: Let X3 = {z1, . . . , zt} for some t ≥ 1, and let C2 = {c3, c4} be the cherry in T1 that
is different from C1. In view of Claim 1 we can assume C2 ⊆ X2. Since T1 and T2 share no common
cherry, either C1 ( X1 or C2 ( X2 must hold, thus we may assume without loss of generality that
X1 = {c1, c2, x1, . . . xk} for some k ≥ 1.

Suppose first that X2 = {c3, c4}. Then c3 and c4 is a pair of siblings in T2, and so X1|(X2 ∪X3)
is a split of T2. By Claim 2, we may assume X1|(X2 ∪ X3) is not a split of T1. Thus X3 = {z1}
and the unique sibling of c3 in T1, which we denote by xk, belongs to X1. Now, one cherry in T2

must contain xk, and the other one is either equal to {c3, z1} or {c4, z1}. Therefore, the character
χ = c3c4xk|− is good.

So, suppose X2 = {c3, c4, y1, . . . , ym} for some m ≥ 1. Since C1 ⊆ X1 and C2 ⊆ X2, by Claim 2
we can assume that X1|(X \ X1) is a split of T1 but not of T2, and X2|(X \ X2) is a split of T2

but not of T1. Hence t = 1 and so T1 is obtained by attaching leaf z to one of interior edges
in T1|X1∪X2 = [c1c2 : x1 · · ·xkymym−1 · · · y1 : c3c4]. Since z ∈ ch(T2) implies ∅ 6= ch(T2) ∩ Xi for
1 ≤ i ≤ 3, by Claim 3 we have z 6∈ ch(T2). Thus, without loss of generality, we may further assume
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that T2|X1∪X2 is obtained by connecting the pendant edge incident to c1 in T2|X1 to the pendant
edge incident to c3 in T2|X2 .

Consider the set A = {c1, c2, xk, z, ym, c3, c4}. Then since T1 contains the split X1|(X \ X1)
but not the split X2|(X \ X2), we must have T1|A = [c1c2 : zxkym : c3c4]. Hence the character
χ = c1c2z|xkymc3c4 on A is convex on T1|A. On the other hand, T2 contains the split X2|(X \X2) but
not the split X1|(X \X1). Therefore, as c1 and c3 are siblings in T2, and thus also in T2|A, it follows
that {P (c2, xm), P (c1, c3), P (z, c4)} is an ES-path system on T2|A. Therefore dp(T1|A, T2|A) ≥ 2, and
so dp(T1, T2) ≥ 2, as required. This completes the proof of Claim 4 and also the theorem. �

6. Unit neighborhoods in dp

In this section, we present a result which can be used to characterize the set of trees that are at
distance one from a given phylogenetic tree T in the dp metric (see Theorem 6.4). This set is also
known as the unit neighborhood of T . It can be helpful to understand such neighborhoods as they
often form the basis for algorithms that search through phylogenetic trees to find some tree that
optimizes some criterion, such as parsimony or likelihood (see e.g. [12, 20]).

We begin by considering a way to “reduce” a pair of trees which have a special subtree in
common. To this end, suppose that (T1, T2) is a pair of distinct phylogenetic trees on X that
contain a common non-trivial split A|B of X such that T1[B] = T2[B] holds. Then Ti[A], i = 1, 2,
can be regarded as the tree obtained from Ti by replacing the subtree Ti(B) by a single leaf rA
(see Fig. 5 for an illustration). In this case we shall say that (T1[A], T2[A]) is obtained from (T1, T2)
by a subtree reduction (cf. Rule 1 in [2, Section 3]). In addition, given an arbitrary pair (T1, T2)
of distinct phylogenetic trees on X, we shall say that (T̃1, T̃2) is a primitive pair for (T1, T2) if it
can be obtained from (T1, T2) by a sequence of subtree reductions and no further subtree reduction
can be applied to (T̃1, T̃2) (or, equivalently, T̃1 and T̃2 share no common cherry). Note that it is
straight-forward to see that only one primitive pair can be associated to (T1, T2) (in other words, if
(T ∗1 , T ∗2 ) is also a primitive pair for (T1, T2), then T̃i and T ∗i are isomorphic as phylogenetic trees,
i = 1, 2).
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Figure 5: An illustration of subtree reduction. The pair (T1[A], T2[A]) is obtained from (T1, T2) by a subtree reduction
with respect to the common subtree on leaf set B.

We first show that the concept of primitive pair is closely related to the three metrics considered
in this paper.

Lemma 6.1. Suppose that (T1, T2) is a pair of phylogenetic trees on X. Then we have dp(T1, T2) =

dp(T̃1, T̃2), dtbr(T1, T2) = dtbr(T̃1, T̃2) and dspr(T1, T2) = dspr(T̃1, T̃2).
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Proof. Let (T ′1 , T ′2 ) be a pair of phylogenetic trees obtained from (T1, T2) by a subtree reduction.

Then by Theorem 4.2 we have dp(T1, T2) = dp(T ′1 , T ′2 ). Since (T̃1, T̃2) can be obtained from (T1, T2)

by a finite number of subtree reductions, it follows that dp(T1, T2) = dp(T̃1, T̃2), as required. The
statements for dtbr and dspr can be established using a similar argument because these two distances
are also preserved by subtree reductions (cf. [2, Theorem 3.4]).

Now we present a result which shows that caterpillars naturally arise when considering trees
which are dp distance 1 apart.

Lemma 6.2. Suppose that (T1, T2) is a pair of phylogenetic trees on X with dp(T1, T2) = 1. Then

T̃1 and T̃2 are both caterpillars.

Proof. It suffices to show that if T1 and T2 are phylogenetic trees on X with dp(T1, T2) = 1 which
have no common cherry, then T1 and T2 are both caterpillars.

Suppose this were not the case. Without loss of generality, we can assume that T1 contains three
cherries, say {c1, c2}, {c3, c4}, {c5, c6}, or, in other words, putting A := {c1, c2, c3, c4, c5, c6}, T1|A is
a phylogenetic tree with six leaves and three cherries. We now consider four cases.

(I): T2|A has three cherries in common with T1|A. Then T1|A = T2|A and there must exist three ele-
ments in X, say x1, x2, x3, such that xi is adjacent to a vertex in the path P (c2i−1, c2i) in T2 for all 1 ≤
i ≤ 3. Let B = A∪{x1, x2, x3}. Then, by symmetry, we may assume that {c1, x1}, {c3, x2}, {c5, x3}
are the three cherries contained in T2|B. Consider the character χ = c1c2|c3c4|c5c6|x1x2x3. Then
χ is convex on T1|B, and {P (c1, x1), P (c2, c4), P (c2, c6), P (c3, x2), P (c5, x3)} is an ES-path system.
Hence by Theorem 2.3, we have

dp(T1, T2) ≥ dp(T1|B, T2|B) ≥ h(T2|B, χ) = l(T2|B, χ)− |χ|+ 1 ≥ 2,

a contradiction.

(II): T2|A has two cherries in common with T1|A. Without loss of generality, we may assume
that these two cherries are {c1, c2} and {c3, c4}. Then T2|A contains exactly two cherries. By
switching c5 and c6 if necessary, we may assume that T2|A contains the split c1c2c5|c3c4c6. In
addition, using an argument similar to that used in Case (I), we may assume that there exist
x1, x2 ∈ X such that {c1, x1} and {c3, x2} are the only two cherries contained in T2|B, where
B := A ∪ {x1, x2}. Consider the character χ = c1x1|c3x2|−. Then χ is convex character on T2|B,
while {P (c1, c2), P (c3, c4), P (c5, x1), P (c5, x2)} is an ES-path system on T1|B. As in Case (I) this
leads to a contradiction.

(III): T2|A has one cherry in common with T1|A. Without loss of generality, we may assume this
cherry is {c1, c2}. Then by symmetry we can assume T2|A contains another cherry {c3, c5}. By an
argument similar to that in Case (I), we may assume that there is an element x ∈ X such that
{c1, x} is a cherry contained in T2|B, where B := A∪{x}. Consider the character χ = c1x|c3c5|c2c4c6.
Then χ is a convex character on T2|B, while {P (c1, c2), P (c3, c4), P (c5, c6), P (c5, x)} is an ES-path
system on T1|B. As in Case (I) this leads to a contradiction.

(IV): T2|A and T1|A have no cherries in common. By symmetry we can assume that {c1, c3} and
{c2, c5} are two cherries contained in T2|A. Consider the character χ = c1c3|c2c5|c4c6. Then χ is
convex character on T2|B, while {P (c1, c2), P (c1, c6), P (c3, c4), P (c3, c5)} is an ES-path system on
T1|B. As in Case (I) this leads to a contradiction, which completes the proof of the lemma.
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Using Theorem 5.1, the main result from the last section, we now show that if |X| ≥ 6 and two
caterpillars T1 and T2 have no cherry in common, then they are dp distance 1 apart if and only if
they differ by precisely one tbr operation.

Proposition 6.3. Suppose |X| ≥ 6. Let T1 and T2 be two caterpillars on X that have no cherry in
common. Then dp(T1, T2) = 1 if and only if dtbr(T1, T2) = 1.

Proof. Let T1 and T2 be two caterpillars as given in the theorem. By Lemma 2.1, it suffices to show
that if dp(T1, T2) = 1 then dtbr(T1, T2) = 1. To this end, we shall show that if dtbr(T1, T2) ≥ 2 then
dp(T1, T2) ≥ 2. We do this by induction on |X|.

Suppose |X| = 6. Assume T1 = [c1c2 : c5c6 : c3c4]. Let A|B be the split of X in T2 with |A| = 3.
Switching A and B if necessary, we may assume that |A ∩ {c1, c2, c5}| = 2. Indeed, clearly we can
assume |A ∩ {c1, c2, c5}| ≥ 2 and if |A ∩ {c1, c2, c5}| = 3, then dtbr(T1, T2) = 1, a contradiction. By
symmetry, we may further assume c1 ∈ A and c4 6∈ A.

Let C1 be the cherry of T2 that is contained in A, and C2 the one contained in B. If c2 ∈ A,
then c4 6∈ A implies that either (i) A = {c1, c2, c6} or (ii) A = {c1, c2, c3}. If (i) holds then,
by symmetry, we may assume T2 = [c1c6 : c2c4 : c3c5], and hence dp(T1, T2) ≥ 2 in view of the
character χ = c1c2c5|c3c4c6. If (ii) holds, then c5 ∈ C2 as, otherwise dtbr(T1, T2) = 1 would hold, a
contradiction. Hence we can again conclude that dp(T1, T2) ≥ 2 holds by considering the character
χ = c1c2c5|c3c4c6.

So suppose c2 ∈ B. Since for the character χ = c1c3c5|c2c4c6 we have h(T1, χ) = 2, we can assume
that c3 6∈ A, as otherwise the proposition clearly follows. Therefore, we have A = {c1, c5, c6}. Hence
B = {c2, c3, c4}, and so c2 ∈ C2. In addition, we must have c6 ∈ C1 as otherwise we would have
dtbr(T1, T2) = 1, a contradiction. Hence, by considering character χ = c1c2c5|c3c4c6 we can again
conclude that dp(T1, T2) ≥ 2 holds. This completes the proof of the base case.

Now assume |X| = n ≥ 7 and the result holds for all pairs of caterpillars with n− 1 leaves that
do not share a common cherry. Note that if dtbr(T1, T2) = 2, then dp(T1, T2) = 2 by Theorem 5.1.
Therefore, we may further assume dtbr(T1, T2) ≥ 3. Fix a cherry {x1, x2} of T1 and denote the sibling
of x1 in T1 by x3. Let x := x1 if {x1, x3} is a cherry of T2, and x := x2 otherwise. Put X ′ = X \{x},
and consider the tree T ′i = Ti|X′ , i = 1, 2. Then by construction, T ′1 and T ′2 are a pair of caterpillars
on X ′ with |X ′| = n − 1 which share no common cherry, and dtbr(T ′1 , T ′2 ) ≥ dtbr(T1, T2) − 1 ≥ 2.
Therefore by induction, we have dp(T ′1 , T ′2 ) ≥ 2. By Corollary 3.5 we conclude that dp(T1, T2) ≥ 2
holds, which completes the induction step, and the proof of the proposition.

Using the last proposition, we can now characterize pairs of trees that are at dp distance 1 from
one another.

Theorem 6.4. Suppose that T1, T2 are phylogenetic trees on X. Then dp(T1, T2) = 1 if and only if

T̃1, T̃2 are both caterpillars and either (i) dtbr(T̃1, T̃2) = 1, or (ii) dtbr(T̃1, T̃2) = 2 and |T̃1| = |T̃2| = 5.

Proof. To establish the “ only if ” direction, suppose that T1, T2 are two phylogenetic trees on X
with dp(T1, T2) = 1. By Lemma 6.2 T̃1 and T̃2 are caterpillars. Hence, by Proposition 6.3, if

|T̃1| = |T̃2| ≥ 6, then T̃1 and T̃2 satisfy (i). The theorem now follows since it is straight-forward to
check that, for T ′1 and T ′2 two arbitrary distinct trees on a set Y , if |Y | = 4 then dtbr(T ′1 , T ′2 ) = 1,
and if |Y | = 5 then dtbr(T ′1 , T ′2 ) ≤ 2.

To establish the other direction, suppose that T1, T2 are two phylogenetic trees on X such that
the pair T̃1, T̃2 satisfies either (i) or (ii) as stated in the theorem. By Lemma 2.1 and Lemma 3.4,

we have dp(T̃1, T̃2) = 1 in both cases. Therefore using Lemma 6.1, we conclude that dp(T1, T2) =

dp(T̃1, T̃2) = 1, as required.
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In [2, Lemma 2.7] it is shown that if T1, T2 are phylogenetic trees on X then dspr(T1, T2) ≤
2dtbr(T1, T2). Moreover, it is easy to check that any two phylogenetic trees with five leaves differ
by at most two spr operations. Thus, by Lemma 6.1 and Theorem 6.4 we have the following result
concerning the spr and tbr distance between two trees that are at dp distance 1 from one another.

Corollary 6.5. Suppose that T1 and T2 are two phylogenetic trees on X with dp(T1, T2) = 1. Then
dtbr(T1, T2) ≤ dspr(T1, T2) ≤ 2.

Using Theorem 6.4 and the formula for the size of the unit neighborhood in dtbr (see [14,
Theorem 3.6]), we can also obtain a formula for the size of the unit neighborhood Np(T ) := {T ′ :
dp(T , T ′) = 1}. For i = 2, 3, let Vi(T ) be the set of nodes with degree i in the tree obtained from
T by removing all the leaves and their incident edges.

Corollary 6.6. If T is a phylogenetic tree on X with n = |X| ≥ 4, then

|Np(T )| = 4
(∑
|A| · |B|

)
− 4(n− 2)(n− 3) + 2|V2(T )|+ 6|V3(T )|,

where the sum is taken over all non-trivial splits A|B of T .

Proof. Let Ntbr(T ) be the set consisting of those trees T1 with dtbr(T , T1) = 1. Then by The-
orem 6.4 we have Ntbr(T ) ⊆ Np(T ). In addition, for each T1 ∈ Np(T ) − Ntbr(T ), both trees

in the primitive pair (T̃ , T̃1) for (T , T1) are trees with five leaves and dtbr(T̃ , T̃1) = 2 holds.
Since there are precisely two trees that are two tbr operations away from a phylogenetic tree
with five leaves, we conclude that a vertex v in Vi(T ) (i = 2, 3) will contribute a subset ϕ(v) of
Np(T ) − Ntbr(T ) with |ϕ(v)| = i(i − 1), and ϕ(v) ∩ ϕ(v′) = ∅ for each v′ ∈ V2(T ) ∪ V3(T ) − {v}.
This implies |Np(T )−Ntbr(T )| = 2|V2(T )|+6|V3(T )|. The corollary now follows since |Ntbr(T )| =
4(
∑
|A| · |B|)− 4(n− 2)(n− 3) holds by [14, Theorem 3.6].

Note that it is known (see [14]) that caterpillars and “complete trees” have the maximum and
minimum sized neighborhoods relative to dtbr, respectively. It would be interesting to find out
which trees have these properties relative to dp.

7. A connection with SPR and TBR metrics

In this section we prove the following theorem which provides a close connection between the
metrics dp, dspr and dtbr.

Theorem 7.1. Suppose that T and T ′ are two phylogenetic trees on X. Then

dp(T , T ′) ≤ dtbr(T , T ′) ≤ dspr(T , T ′) ≤ 2 dp(T , T ′). (4)

In addition, if |X| = 4m, m ≥ 2, then there exist phylogenetic trees T m1 and T m2 on X such that

dtbr(T m1 , T m2 )

dp(T m1 , T m2 )
= 2− 1

m
. (5)

Proof. The first inequality in Eq. (4) holds by Lemma 2.1 and the second one clearly holds by defi-
nition. To see that the third inequality holds, first note that we may assume dp(T , T ′) ≥ 1. Let t =
dp(T , T ′). Then, by definition, there exists a sequence of phylogenetic trees T0 := T ′, T1, . . . , Tt := T
on X so that dp(Ti−1, Ti) = 1 holds for 1 ≤ i ≤ t. By Corollary 6.5, dspr(Ti−1, Ti) ≤ 2 for 1 ≤ i ≤ t,
and hence dspr(T , T ′) ≤ 2t. Therefore dspr(T , T ′) ≤ 2 dp(T , T ′).

16



�
�
�

A
A
A




J
J





J
J

�
�
�

A
A
A




J
J





J
J

�
�
�

A
A
A




J
J





J
J

�
�
�

A
A
A




J
J





J
J

1

2

5 6 7 8 n - 3 n - 2 n - 1 n

3

4 1

3

5 7 6 8 n - 3 n - 1 n - 2 n

2

4

Figure 6: Two phylogenetic trees considered in the proof of Theorem 7.1, T m
1 on the left and T m

2 on the right. For
simplicity, we have put n = 4m.

We now show that there exist trees T m1 and T m2 on X for which Eq. (5) holds. For m ≥ 2,
let T m1 and T m2 be two phylogenetic trees on X = {1, 2, . . . , 4m} as depicted in Fig. 6. Let
Ai = {4i− 3, 4i− 2, 4i− 1, 4i} and Bi = Ai − {4i}, 1 ≤ i ≤ m.

We first show that dp(T m1 , T m2 ) = m holds. Indeed, consider the character χ =
{1, 2}|{3, 4}| . . . |{4m− 3, 4m− 2}|{4m− 1, 4m} on X. Then χ is convex on T m1 and⋃

1≤i≤m

{P (4i− 2, 4i), P (4i− 3, 4i− 1)}

is an ES-path system for χ on T m2 . Hence dp(T m1 , T m2 ) ≥ m holds by Theorem 2.3. On the other
hand, for each 2 ≤ i ≤ m, Ai|(X \Ai) is a split of both T m1 and T m2 . Let X ′ = {1, 2, 3, 4, a2, . . . , am}
and consider the two caterpillars T ′1 = [12 : a2 · · · am : 34] and T ′2 = [13 : a2 · · · am : 24] on X ′. Then
by recursively applying Proposition 4.1 we have

dp(T m1 , T m2 ) ≤ dp(T ′1 , T ′2 ) +
m∑
i=2

dp(T m1 [Ai], T m2 [Ai]) ≤ m.

Hence dp(T m1 , T m2 ) = m as claimed.
Now, since {B1, A1 \ B1, . . . , Bm, Am \ Bm} is an agreement forest for (T m1 , T m2 ), we have

maf(T m1 , T m2 ) ≤ 2m − 1. Hence it remains to show that maf(T m1 , T m2 ) ≥ 2m − 1 holds since
by Eq. (1) we would then have dtbr(T m1 , T m2 ) = maf(T m1 , T m2 ) = 2m− 1 = 2dp(T m1 , T m2 )− 1.

We shall show maf(T m1 , T m2 ) ≥ 2m − 1 by induction. The base case m = 2 is clear. Now
assume maf(T m−1

1 , T m−1
2 ) ≥ 2m− 3 holds for some m > 2. Let F = {X1, . . . , Xk} be a maximum

agreement forest for (T m1 , T m2 ). Then by definition there exists at most one Xi ∈ F such that
Xi ∩ Am 6= ∅ and Xi \ Am 6= ∅. We therefore consider two cases.

Case I: For each block Xi in F , either Xi ⊂ Am or Xi ∩ Am = ∅. Let I be the set consisting of
those indices i ∈ {1, . . . , k} with Xi ⊂ Am. Then |I| ≥ 2 since T m1 |Am 6= T m2 |Am . Now consider the
set F ′ obtained from F by deleting all blocks Xi with i ∈ I. Then F ′ is an agreement forest for
(T m−1

1 , T m−1
2 ) with |F ′| ≤ |F| − 2. Therefore by induction we have

maf(T m1 , T m2 ) = |F| ≥ |F ′|+ 2 ≥ maf(T m−1
1 , T m−1

2 ) + 2 ≥ 2m− 1,

as required.

Case II: There exists a unique block, say X1, in F such that X1 ∩ Am 6= ∅ and X1 \ Am 6= ∅,
while for each i ∈ {2, . . . , k}, we have either Xi ⊂ Am or Xi ∩ Am = ∅. Let I be the set consisting
of those indices i ∈ {1, . . . , k} with Xi ⊂ Am. Fix an element x in X1 \ Am and consider the set
A′ = X1 ∩ ({x} ∪Am}). Then T m1 |A′ = T m2 |A′ implies |X1 ∩Am| ≤ 2, and hence |I| ≥ 2. Let F ′ be
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obtained from F by deleting all blocks Xi with i ∈ I and replacing X1 by X1 \ Am. Then F ′ is an
agreement forest for (T m−1

1 , T m−1
2 ) with |F ′| ≤ |F| − 2. Using a similar argument as in Case I it

follows that maf(T m1 , T m2 ) ≥ 2m− 1, as required.

Clearly for the trees T m1 , T m2 , m ≥ 2, constructed in the proof of the last theorem, we have

(2− 1

m
) ≤ dspr(T m1 , T m2 )

dp(T m1 , T m2 )
≤ 2.

We conjecture that the second inequality is in fact an equality. More generally, it would be inter-
esting know whether for any X with |X| ≥ 5 there exist phylogenetic trees T , T ′ on X such that
dspr(T , T ′) = 2dp(T , T ′) holds.

8. The diameter of dp

Given a metric d on the set of phylogenetic trees on X, the diameter of d, denoted by diam(X, d),
is the maximum value of d(T , T ′) over all pairs of phylogenetic trees T and T ′ on X. The exact
values of diam(X, dtbr) and diam(X, dspr) are still unknown although some recent progress has been
made on upper and lower bounds for these quantities (see e.g. [10]). Therefore, the following result
and its corollary are of interest (recall that for any real number x ∈ R, bxc is the largest integer
not greater than x while dxe is the smallest integer not smaller than x):

Theorem 8.1. Suppose |X| = n ≥ 4 and let k = bnc. Then

diam(X, dp) =

{
n− 2k + 1 if n = k2,
n− 2k otherwise.

Proof. Let X = {x1, x2, . . . , xn}. In addition, put ψ(n) = 1 for n = k2 and ψ(n) = 0 otherwise.
Then we want to show diam(X, dp) = n− 2k+ψ(n). To do this, by Theorem 3.3 it suffices to show
that the maximum value of ρT ′(T ) over all phylogenetics trees T and T ′ on X is n− 2k + ψ(n).

To this end, first suppose that T and T ′ are two arbitrary phylogenetics trees on X. Let
χ : X → C be a character on X such that χ is convex on T ′ and h(T , χ) = ρT ′(T ) holds. Let r
be the number of elements in C and choose some α ∈ C so that |χ−1(α)| ≥ |χ−1(α′)| holds for all
α′ ∈ C. Then |χ−1(α)| ≥ n/r. Now, consider the extension χ of χ to T defined by putting χ(v) = α
for every interior vertex v in T . Then we have

l(T , χ) ≤ ∆(χ) = n− |χ−1(α)| ≤ n(1− 1/r),

and hence

h(T , χ) ≤ n(1− 1

r
)− (r − 1) = (n+ 1)− (r +

n

r
).

Note that r+ n
r
≥ 2
√
n where the equality holds if and only if r = n

r
, that is, n = k2 and r = k. In

other words, we have dr + n
r
e ≥ 2k + 1− ψ(n). This implies

ρT ′(T ) = h(T , χ) ≤ b(n+ 1)− (r +
n

r
)c = (n+ 1)− dr +

n

r
e ≤ n− 2k + ψ(n).

In light of this last inequality, it only remains to show that there exists a pair of phylogenetic
trees T and T ′ on X with ρT ′(T ) = n − 2k + ψ(n). Since for any character χ on X there always
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exists a phylogenetic tree T ′ on X with h(T ′, χ) = 0, it suffices to construct a phylogenetic tree T
and a character χ on X with h(T , χ) = n− 2k + ψ(n).

To do this, let T be the caterpillar [x1x2 : x3 · · ·xn−2 : xn−1xn]. Now consider the character
χ : X → {0, 1, . . . , k − 1} defined by χ(xj) = j mod k for 1 ≤ j ≤ n. Then it remains to show

l(T , χ) = n− k − 1 + ψ(n), (6)

as this implies h(T , χ) = l(T , χ)− k + 1 = n− 2k + ψ(n).
To establish (6), consider first the extension χ of χ defined by χ(v) = 1 for every interior vertex

v of T . Then we have ∆(χ) = n− k if n = k2 and ∆(χ) = n− k − 1 otherwise. That is, we have

l(T , χ) ≤ ∆(χ) = n− k − 1 + ψ(n). (7)

Conversely, for 1 ≤ i < k, put Ai = {(i − 1)k + 1, (i − 1)k + 2, . . . , ik}, Ti = T |Ai
, Ak =

Xn \ ∪1≤i<kAi and Tk = T |Ak
. Then the restriction χi of χ to Ai is a character on Ai, 1 ≤ i ≤ k.

Note that we have l(Ti, χi) = k − 1 for 1 ≤ i < k, and l(Tk, χk) = (k − 1) if n = k2 and
l(Tk, χk) = (k− 1) + (n− k2− 1) otherwise. Now consider an optimal extension χ of χ to T . Since
the restriction of χ to the tree Ti (1 ≤ i ≤ k) – which we denote by χ|Ti – is also an extension of χi
on Ti, we conclude

l(T , χ) = ∆(χ) ≥
k∑
i=1

∆(χ|Ti)

≥
k∑
i=1

l(Ti, χi)

= (k − 1)k + (n− k2 + ψ(n))

= n− k + ψ(n).

Together with (7), this establishes (6), and hence completes the proof of the theorem.

By Theorem 7.1 we immediately have:

Corollary 8.2. Suppose |X| = n ≥ 4 and let k = bnc. Then

diam(X, dspr) ≥ diam(X, dtbr) ≥
{
n− 2

√
n+ 1 if n = k2,

n− 2k otherwise.

Note that to date the best known lower bound for diam(X, dtbr) is n−2d
√
ne+ 1 (cf. [10]), and

so the last result represents a rather modest improvement on this bound. More importantly, since
we have taken a quite different approach to the one taken in [10], we hope that our new approach
might ultimately lead to a way to determine an exact formula for diam(X, dtbr) and diam(X, dspr).
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