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Abstract It is well known among phylogeneticists that adding an extra taxon (e.g.
species) to a data set can alter the structure of the optimal phylogenetic tree in sur-
prising ways. However, little is known about this “rogue taxon” effect. In this paper
we characterize the behavior of balanced minimum evolution (BME) phylogenet-
ics on data sets of this type using tools from polyhedral geometry. First we show
that for any distance matrix there exist distances to a “rogue taxon” such that the
BME-optimal tree for the data set with the new taxon does not contain any nontriv-
ial splits (bipartitions) of the optimal tree for the original data. Second, we prove a
theorem which restricts the topology of BME-optimal trees for data sets of this type,
thus showing that a rogue taxon cannot have an arbitrary effect on the optimal tree.
Third, we computationally construct polyhedral cones that give complete answers
for BME rogue taxon behavior when our original data fits a tree on four, five, and
six taxa. We use these cones to derive sufficient conditions for rogue taxon behavior
for four taxa, and to understand the frequency of the rogue taxon effect via simula-
tion.

Keywords Minimum evolution · Distance-based phylogenetic inference · Linear
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1 Introduction

Ideally, phylogenetic data sets would have the property that the optimal tree for a
subset X of taxa Y would be the same as the tree obtained by restricting the optimal
tree on Y to the set X. However, practicing phylogeneticists are well aware that this is
not the case; the extensive literature on “taxon sampling” reviewed below is evidence
to the contrary. One can also find references to “rogue taxa” which, although not
clearly defined or rigorously investigated, are taxa who do not fit into a tree and whose
inclusion may disrupt the inference of evolutionary relationships of the other taxa.
For example, Sullivan and Swofford (1997) state “. . . the hedgehog therefore appears
to represent a ‘rogue’ taxon that cannot be placed reliably with these data and that
possibly confounds attempts to estimate the relationships among the remaining taxa.”
The “rogue” descriptor is also used by Baurain et al. (2007) to describe taxa with a
“strong nonphylogenetic signal”; these authors describe the importance of finding
and eliminating these taxa from phylogenetic studies.

Surprisingly, we were unable to find any mathematical or simulation-based analy-
sis of the action of rogue taxa in phylogenetic trees. The closest studied subject is
“taxon sampling.” This area of research is focused on the following question: If we
are interested in the phylogenetic tree on a set of taxa Y , do we do better or worse
by adding more taxa into the tree? If better, is the improvement more significant than
would be gained by increasing the length of the sequences (by redirecting resources)?

The origins of the taxon sampling debate can be traced to the pioneering paper of
Felsenstein (1978) that demonstrated mathematically the existence of “long-branch
attraction,” where two pendant branches are artifactually placed close together by
parsimony algorithms. This led to the question of whether parsimony long-branch
problems could be dispensed with by adding new taxa to the data set to break up the
long branches; Hendy and Penny (1989) have answered affirmatively under certain
conditions. The investigation was continued by Kim (1996), who showed that the
situation is subtle and that the new taxa must appear in specific regions of the tree in
order to counter the long-branch attraction problem.

These mathematical investigations of parsimony were followed by a flood of
simulation-based papers investigating maximum likelihood, parsimony, and distance
methods for phylogenetics. Hillis (1996), Graybeal (1998), and Poe (1998) indicated
that a larger number of taxa improved estimation, whereas the high-profile publi-
cation of Rosenberg and Kumar (2001) claimed the opposite. The Hillis group re-
sponded (Zwickl and Hillis 2002; Pollock et al. 2002; Hillis et al. 2003), which led
Rosenberg and Kumar (2003) to somewhat moderating their position. The debate
on taxon sampling has continued to the present day, with additional simulations (Poe
2003; DeBry 2005; Hedtke et al. 2006), review articles (Heath et al. 2008a), and stud-
ies to understand the impact of taxon sampling on the inference of macroevolutionary
processes (Heath et al. 2008). The simulation literature in this area is considered im-
portant enough to even have a paper (Rannala et al. 1998) about methodology for
taxon-sampling simulations.

There are two inherent difficulties with simulations of this type. First, the collec-
tion of possible parameter values for simulation is vast, and any simulation study
must make choices about which parameters to use. This first problem alone may
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be the source of the disagreement found in the taxon selection literature. Second,
the simulations are done by simulating data with a single model on a tree, then re-
constructing. This does not address the problem of what happens when considering
unusual data sets, such as those obtained by major model misspecifications.

A mathematical approach can address these difficulties, although with certain
caveats. Theorems can indicate that a phenomenon will always happen given cer-
tain criteria, and the construction of the complete spaces of examples or counter-
examples gives very precise information about these questions. By exploring the
complete space of data sets of a certain type, one is not limited to data sets which
are within a certain class of models. The trade-off for the strength of these conclu-
sions is that often the setting must be simplified to make the problem mathematically
tractable.

In order to address taxon selection and the rogue taxon effect problem mathemati-
cally, we have chosen to use distance-based phylogenetics, specifically the Balanced
Minimum Evolution (BME, described below) criterion. Because the optimality crite-
rion is expressed in terms of the minimization of an inner product, we are able to har-
ness the power of polyhedral geometry to answer the questions of interest with a high
degree of precision. Although BME-based algorithms are not among the most popu-
lar in phylogenetics, implementations do exist which show good performance under
simulation (Desper and Gascuel 2002b). The BME criterion is consistent (Desper and
Gascuel 2004), as is FastBME which minimizes BME through tree rearrangements
(Bordewich et al. 2009). Another motivation for studying BME is the close relation-
ship between BME and the very popular Neighbor-Joining (NJ) algorithm (Saitou
and Nei 1987). Specifically, NJ has been shown to be a heuristic BME minimizer
(Desper and Gascuel 2005); the relationship between the two algorithms has been
investigated by Eickmeyer et al. (2008).

After describing a bit of terminology, we will discuss the main results of the paper.
Note that by dissimilarity map we simply mean a mapping D from unordered pairs
of taxa to nonnegative numbers such that D(x,x) = 0 for all x. These are sometimes
called “distance matrices” in the phylogenetics literature but we use dissimilarity map
to emphasize that they need not satisfy the triangle inequality.

Definition 1.1 Let t be a phylogenetic tree equipped with branch lengths b. The
tree metric associated with t and b is the dissimilarity map obtained as follows: the
distance between taxa i and j of t is given by the total length (i.e., sum of branch
lengths) of the path from i to j in t with respect to b.

Next we define some core objects of study for this paper.

Definition 1.2 Let D be a dissimilarity map on n taxa. A “lifting” D̃ of D is a
dissimilarity map on n + 1 taxa obtained from D by adding distances from the first n

taxa to an (n + 1)st taxon.

Definition 1.3 Let D be a dissimilarity map on n taxa, and let D̃ be a lifting of D.
The BME tree for D will be called the “lower tree,” while the BME tree for D̃ will
be called the “upper tree.” The “restricted upper tree” will be the tree induced on the
original n taxa by restricting the upper tree to this set.
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Our primary goal is to understand topological differences between the upper and
lower trees for various original dissimilarity maps D and various liftings D̃.

1.1 Overview of the Paper

The first section describes the effect of adding a new taxon when the original dissimi-
larity map D is arbitrary. Theorem 3.2 shows that for any D, there exists a lifting such
that the intersection of the split sets for the restricted upper tree and the lower tree
consists of the trivial pendant splits. In other words, we show that the restricted upper
tree and the lower tree can be maximally distant in terms of the Robinson–Foulds
metric (Robinson and Foulds 1981). However, the upper tree cannot deviate from the
lower in an arbitrary way: Theorem 3.5 shows that certain combinations of lower and
upper trees are not possible. We also note that the trees of Theorem 3.2 need not be
maximally distant in terms of the quartet distance (Remark 3.4).

The second section addresses the case where the original dissimilarity map D is
a tree metric for some tree t ; in this setting there is no question of what the optimal
tree for the lower taxa “should” be. That is, if the upper tree does not contain the
lower tree, the additional taxon is definitely a disrupting “rogue” taxon. When D is
a tree metric, there exists a simplified formulation of the BME computations. This
“reduced” formulation has a linear rather than a quadratic number of variables, and
allows polyhedral computation directly over the parameters of interest. We study the
associated “reduced polytope” and several of its combinatorial and geometric prop-
erties, including its dimension. Using this “reduced” formulation we are able to give
sufficient conditions (Propositions 4.16 and 4.17) for the rogue taxon effect when the
lower tree has four taxa, as well as a perspective on the frequency of the rogue effect
through simulations for up to six lower taxa.

The computations in this paper were done with a combination of Gfan (Jensen
2009), Polymake (Gawrilow and Joswig 2000), and custom ocaml (Chailloux et
al. 2000) code using GSL (Galassi et al. 2009), the GNU scientific library. For the
interested reader, source code is available at

http://github.com/matsen/roguebme.

2 Polyhedral Geometry and BME Phylogenetics

In this section, we introduce the mathematical problem we wish to investigate and
walk through the necessary background in polyhedral geometry. We start by defining
the Balanced Minimum Evolution (BME) criterion for phylogenetic inference.

For the purposes of this paper, all trees will be unrooted phylogenetic trees. We
will use parenthetical “Newick format” to describe trees, such that ((a, b), (c, d), e)

indicates a five-taxon tree with the pairs a, b and c, d being sister taxa (Felsenstein
2004). Sometimes we will write these unrooted trees in a rooted manner, as we feel
that ((a, b), (c, d)) is clearer than (a, b, (c, d)). The degree-two vertex of the rooted
representation should be suppressed. Trivalent trees are trees such that all internal
nodes have degree three.

http://github.com/matsen/roguebme
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Definition 2.1 Given a dissimilarity map D in R(n
2), the “Balanced Minimum Evo-

lution” (BME) length of a phylogenetic tree t with respect to a dissimilarity map D

is the quantity

λ(t,D) :=
∑

1≤i<j≤n

ωt
ijDij , (1)

where ωt
ij = ∏

v∈pt
ij
(deg(v) − 1)−1, and pt

ij denotes the internal vertices in t on the

path between leaves i and j .

Remark 2.2 In the case of a trivalent tree t , the weight ωt
ij equals 2−|pt

ij |.

A BME tree for an n×n nonnegative matrix D will be a tree t minimizing λ(t,D)

over all n-taxon trees. The BME algorithm is consistent on trivalent trees: if D is
tree metric with trivalent tree topology t , then the BME tree of D is t (Desper and
Gascuel 2004).

Note that there is a volume-zero set of dissimilarity maps with multiple optimal
BME trees, and therefore it is not quite right to speak of “the” BME tree. All of
our statements are true by replacing “the BME tree” with “a BME tree”; however,
we prefer stating the former. More precisely, given a dissimilarity map, we have two
cases: either the set of possible BME trees of D consists of a single (trivalent) tree, or
the set has size at least two, and it is closed under degenerations. That is, if a trivalent
tree t contracts to a BME tree for D, then t is also a BME tree for D; this claim will
be clear from the polyhedral perspective described below.

There are several equivalent formulations of the BME length (Eickmeyer et al.
2008), although we prefer (1) because of its polyhedral interpretation.

Global BME minimization is known to be hard (Guillemot and Pardi 2009). The
widely used Neighbor-Joining algorithm approaches the BME problem from a greedy
perspective (Studier and Keppler 1988). The Fastme algorithm starts with a heuris-
tically obtained tree and then refines it using Nearest-Neighbor Interchange (NNI) to
attempt to find the BME minimal tree (Desper and Gascuel 2004). A better under-
standing of the BME polytope (defined below) could lead to better such algorithms
(Desper and Gascuel 2002a), analogous to how understanding the traveling salesman
polytope provides insight into the traveling salesman problem (Padberg and Grötschel
1985).

We now introduce the BME polytope, first investigated by Eickmeyer et al. (2008).
A polytope in R

m is the convex hull of a finite number of points in R
m. Fix a positive

integer n. The BME polytope in R(n
2) is the convex hull of the points (ωt

ij )i,j , where
t varies among all possible tree topologies on n taxa.

Using this polyhedral interpretation, the problem of finding the BME-optimal tree
t on n taxa corresponds to picking a vertex ωt of the BME polytope minimizing the
Euclidean dot product of the vertex with a given dissimilarity map (considered as a
vector in R(n

2)). The BME tree is the tree associated with this vertex.
We can characterize this optimization process by constructing the corresponding

inner normal fan. The inner normal fan of a polytope P ⊂ R
N is given as a finite col-

lection of cones (i.e., a set closed under multiplication by positive scalars) as follows.
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Each cone in the inner normal fan of P corresponds to a face F of the polytope P
and is defined as

CF := {
w ∈ R

N : 〈w,v〉 = min
{〈w,u〉 : u ∈ P

}
,∀v ∈ F

}
, (2)

i.e., those vectors such that the minimum inner product is achieved at all points of the
face F .

By construction, each cone is polyhedral: it is the solution set of a system of linear
inequalities. As such, it can be expressed as the positive span (i.e., using nonnegative
scalars) of finitely many vectors, which we call extremal rays. In addition, the inner
normal fan of P is a polyhedral fan because the family {CF : F ⊂ P face} is closed
under intersections. Moreover, this fan is complete (i.e., the union of all cones equals
the ambient space R

N ), and each cone CF has dimension equal to codim F = N −
dim F , where dim F denotes the dimension of the affine span of face F . In particular,
if F is a vertex, then CF is full-dimensional. We call these full-dimensional cones
chambers. The inner normal fan of the BME polytope will be referred to as the BME
fan. We refer the reader to Ewald (1996, Chap. 1) for a complete exposition of normal
fans.

Remark 2.3 From the previous discussion we see that the BME criterion is equivalent
to the membership of a dissimilarity map D to a chamber in the BME fan. Thus D

belongs to the interior of a chamber in the BME fan if and only if the BME tree of
D is unique. The boundary of these chambers is the volume-zero set having multiple
BME trees (discussed earlier in this section).

Since the BME polytope encodes the problem of finding the BME tree of a dissim-
ilarity map, it is worth understanding its structure. Some of its combinatorial prop-
erties have been studied for small number of taxa, although several questions remain
open for n ≥ 6. We investigate some of its features below, as described by Eickmeyer
et al. (2008).

The vertices of the BME polytope correspond to the points (ωt
ij )i,j , where t

is a trivalent tree for a total of (2n − 5)!! vertices (Pachter and Sturmfels 2005,
Lemma 2.33). Here, (2n − 5)!! = (2n − 5) · (2n − 3) · · ·3 · 1. In addition, the vec-
tor ωs

ij associated with the star tree s (the tree with a single internal node) lies in the
interior of the polytope, whereas all other points ωt lie on its boundary (Eickmeyer
et al. 2008, Lemma 2.1).

The dimension of the BME polytope (i.e., the dimension of the affine space
spanned by this polytope) is

(
n
2

) − n. The polytope is not full-dimensional because,
after translation to the origin, the orthogonal complement of its affine span is spanned
by the n shift vectors {ha : a ∈ {1, . . . , n}}. Here, the shift vector ha refers to a dis-
similarity map in which leaf a is at distance 1 from all other leaves, while all other
pairwise distances are 0.

The f -vector f(P ) ⊂ R
N of an N -dimensional polytope P gives the number of

faces of each dimension of P . That is, f(P )i = #{faces of dimension i − 1 of P }. The
f -vectors of BME polytopes have been studied for up to seven taxa. In particular, for
four and five taxa, these vectors have been completely described in Eickmeyer et al.
(2008, Table 1), whereas for six and seven taxa, some of the entries of the f -vector
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have remained unknown up to now. We were able to compute the complete f -vector
for six taxa by methods of tropical geometry, using Gfan. The resulting f -vector is

(105,5460,105945,635265,1715455,2373345,1742445,640140,90262).

In particular, we see that the polytope has 90 262 facets. It also has 105 vertices,
labeled by all trivalent trees on six taxa.

As a corollary of these computations, it follows that the edge graph of the BME
polytope for six taxa is the complete graph K105 (Eickmeyer et al. 2008). This says
that any two vertices of the BME polytope can be connected by an edge. Similar
behavior occurs for four and five taxa, but this is no longer true for seven or more
taxa (Eickmeyer et al. 2008).

By construction, the BME polytope comes equipped with a natural symmetry
given by the symmetric group Sn on n elements. Namely, relabeling the leaves of
a trivalent tree t by a permutation σ ∈ Sn sends t to the relabeled trivalent tree σ t and
hence the vertex ωt to ωσt . In a similar way, higher-dimensional faces of the BME
polytope will have this symmetry. Therefore, we can encode these symmetries in the
f -vector, and record the number of faces of each dimension, up to the combinatorial
action of Sn on all faces. In the case of six taxa, we get

(2,20,182,982,2492,3489,2626,1032,169).

We illustrate these constructions and their properties in the case of four taxa.

Example 2.4 (Eickmeyer et al. 2008) Fix n = 4. The points ωt are:

ω((1,2),(3,4)) = 1

4
[2,1,1,1,1,2]; ω((1,3),(2,4)) = 1

4
[1,2,1,1,2,1];

ω((1,4)),(2,3)) = 1

4
[1,1,2,2,1,1]; ωstar(4) = 1

3
[1,1,1,1,1,1].

The BME polytope is a triangle in R
6 with vertices ω((1,2),(3,4)), ω((1,3),(2,4)), and

ω((1,4),(2,3)). It spans the two-dimensional space {(x12, x13, x14, x23, x24, x34) ∈ R
6 :

x12 + x13 + x14 = x12 + x23 + x24 = x13 + x23 + x34 = x14 + x24 + x34 = 1}.

The lineality space of a fan is defined as the maximal linear space contained in
all cones of the fan. If this space is just the origin, we say that the fan is pointed.
In the case of the BME fan, this linear subspace is n-dimensional with basis given
by the n shift vectors ha corresponding to the n leaves. Since the lineality space lies
in all cones of the fan, we can mod out by this subspace (for example, by taking a
projection to its orthogonal complement) and reduce our study to the case of pointed
complete polyhedral fans in R(n

2)−n. We illustrate the construction of the BME fan
and the associated pointed fan on four taxa.

Example 2.5 Let n = 4. We mod out by the lineality space L = (h1, h2, h3, h4) via
the canonical projection map p : R(n

2) → L⊥ � R(n
2)−n to the orthogonal comple-
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Fig. 1 Quartets minimizing the
BME criterion for each
dissimilarity map on four taxa

ment of the subspace L given by the matrix
(

0 1 −1 −1 1 0
1 0 −1 −1 0 1

)
.

We apply this projection to the BME fan, and we get a fan in R
2, which we can

plot. Alternatively, we project the BME polytope into 2-space, and we take the inner
normal fan of the resulting polytope.

From Example 2.4 we know that the BME polytope is the triangle with ver-
tices corresponding to the three quartet trees ((1,2), (3,4)), ((1,3), (2,4)), and
((1,4), (2,3)). The projection p maps this triangle to the triangle with vertices
(−2,4), (4,0) and (−2,−2). Its inner normal fan consists of the rays spanned by
r1 = (1,0), r2 = (−1,−1) and r3 = (0,1), plus the origin. Figure 1 shows the quar-
tets corresponding to the relative interior of each chamber.

3 Behavior of BME Under the Addition of an Extra Taxon

The purpose of this section is to investigate the relationship between lower and upper
trees for arbitrary D. Section 3.1 shows that for any D, there exists a lifting such
that the upper tree is as different as possible from the lower tree in terms of splits.
Section 3.2 provides a counterpoint by demonstrating that certain combinations of
lower and upper trees are not possible, i.e., that a rogue taxon cannot affect a BME
tree in arbitrary ways.

Notation 3.1 Throughout the remainder of the paper, we label our taxa by [n] =
{1, . . . , n}. We write R+ for the set of nonnegative reals.

3.1 A Theorem Demonstrating the Existence of Unusual Upper Trees

We show that every lower tree has an upper tree whose restriction to the lower taxa
is maximally different from it in terms of the Robinson–Foulds metric δRF on tree
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topologies, although perhaps not in terms of quartet distance. The δRF metric on
phylogenetic trees is defined in terms of bipartitions in the tree, also called “splits.”
A split in a phylogenetic tree is simply the bipartition of the taxa induced by cut-
ting that edge. For example, the split {1,2}, {3,4} is induced by cutting the internal
edge of the quartet ((1,2), (3,4)). Let Σ(t) denote the set of splits of tree t ; the
distance δRF(s, t) is simply one half the size of the symmetric difference of Σ(t)

and Σ(s) (Robinson and Foulds 1981). 0 The quartet distance is analogous to the
Robinson–Foulds distance but with the role of splits replaced by that of quartets (in-
duced subtrees of size four) contained in a tree. The naive algorithm for computation
is O(n4), although it be computed in O(n2) via a simple algorithm (Bryant et al.
2000) and in O(n logn) via a more complex algorithm (Brodal et al. 2004). In this
paper, s will have one more taxon than t ; we accommodate this difference for the
Robinson–Foulds and quartet distances by simply taking the induced tree on s given
by the set of lower taxa.

Theorem 3.2 Let D be a dissimilarity map on n taxa with BME tree t . There exists
a lifting D̃ whose upper tree s maximizes δRF(s, t) among all trees on n taxa.

This theorem will follow easily from the following lemma.

Lemma 3.3 Given an ordering of n taxa z1, . . . , zn and any distance matrix D on
taxa {zi : 1 ≤ i ≤ n}, there exists a lifting D̃ such that the BME tree for D̃ restricted
to z1, . . . , zn is the caterpillar tree (z1, (z2, . . . , (zn−1, zn) . . . ).

Proof Pick arbitrary numbers 1 < α1 < · · · < αn. Let y denote the extra “rogue”
taxon. We construct a family of liftings D̃c as an exponential function for a given
base number c. Set D̃c(y, zi) = cαi .

We write the BME length as

λ
(
s, D̃c

) =
∑

1≤i<j≤n

ωs
i,jDi,j +

∑

1≤i≤n

ωs
i,n+1c

αi .

As c goes to infinity, the dominant term in the summation becomes ωs
n,n+1c

αn . For c

greater than some cn, the BME tree must be a caterpillar tree with y as far as possible
from zn. Indeed, any other topology would have a smaller coefficient for cαn . We can
repeat the same argument replacing n− 1 for n, finding a cn−1 such that for c ≥ cn−1
the BME tree must be a caterpillar tree with y as far as possible from the subtree
(zn−1, zn). Continue in this way until a large enough lower bound on c is found such
that the described caterpillar tree is the BME tree for D̃c. �

With this lemma, all that is needed to prove Theorem 3.2 is to show that there
exists a caterpillar tree s such that the restriction of the caterpillar to the original taxa
has maximal δRF(s, t).

Proof of Theorem 3.2 Color the taxa of t with black and white colors as follows:
for every cherry (two-taxon subtree) of t , color one taxon white and the other black,
and color the remaining taxa arbitrarily. Now order the taxa with all of the black taxa
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first and all of the white taxa second. The caterpillar tree from Lemma 3.3 using this
ordering will have the required maximal δRF. �

Remark 3.4 The extension of Theorem 3.2 to quartet distances does not hold for
more than seven taxa. Indeed, let t be (1, ((((((2,3),4),5),6),7),8)). The maxi-
mally quartet-distant trees on 8 taxa (of quartet distance 61) are the following non-
caterpillars:

(
1,

(
2,

(((
(3,8),5

)
, (4,7)

)
,6

)))

(
1,

(
2,

(((
(3,8),6

)
, (4,7)

)
,5

)))

(
1,

((((
(2,8),5

)
, (4,7)

)
,6

)
,3

))

(
1,

((((
(2,8),6

)
, (4,7)

)
,5

)
,3

))
.

These trees were found by our code and distances were confirmed with the qdist
program of Mailund and Pedersen (2004).

One could perform a similar analysis for the path distance metric of Steel and Penny
(1993), although we have not done so.

3.2 A Theorem Restricting Topology of Upper Trees

The previous section shows that the lower and upper trees can be quite different. It is
natural then to ask about the collection of possible upper trees for a given lower tree.
That is, if we have a dissimilarity map D on n taxa with BME tree t , what are the
possible BME trees s for liftings of D? This question narrows the potential effect of
rogue taxa.

We first gain intuition by investigating the case of four taxa. This setting is simple,
as there is only one trivalent tree topology on five taxa (up to relabeling of its leaves).

Using Polymake, we can show that all but two tree topologies can be realized as
upper trees for a lower quartet. The two trees not above ((1,2), (3,4)) are shown in
Fig. 2.

This example can be established analytically and generalized to the case of more
taxa by replacing the leaves 1 through 4 with rooted subtrees a through d . In partic-
ular, we show that we can never obtain a tree where pairs of subtrees are exchanged
“over” the extra taxon.

Let y denote the new leaf to be attached. The original tree t is the tree
((a, b), (c, d)). Call s the tree ((a, c), (b, d)) as in Fig. 3.

Theorem 3.5 Let D be a dissimilarity map such the BME score of t = ((a, b), (c, d))

is strictly less than that of s = ((a, c), (b, d)) (Fig. 3). Then the BME score of ty :=

Fig. 2 The trees that do not sit
above ((1,2), (3,4)) for any
lifting of a dissimilarity map D

with BME tree ((1,2), (3,4))
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Fig. 3 The trees t , s, ty , and sy

((a, b), y, (c, d)) is strictly less than that of sy := ((a, c), y, (b, d)) for any lifting D̃

of D. Consequently, if t is the BME tree for D, then sy cannot be a BME tree for any
lifting D̃.

Proof We denote with sans-serif font the elements in each subtree, so a denotes a
leaf in subtree a, etc. For simplicity, we abbreviate ωt by ω. By definition, we get

ω
sy
ab = ωab/4; ω

sy
ac = 2ωac; ω

sy
ad = ωad/2; ω

sy
bc = ωbc/2;

ω
sy
bd = 2ωbd; ω

sy
cd = ωcd/4; ω

ty
ab = ωab; ω

ty
ac = ωac/2;

ω
ty
ad = ωad/2; ω

ty
bc = ωbc/2; ω

ty
bd = ωbd/2; ω

ty
cd = ωcd.

Similarly,

ωs
ab = ωab/2; ωs

ac = 2ωac; ωs
ad = ωad; ωs

bc = ωbc;
ωs

bd = 2ωbd; ωs
cd = ωcd/2.

Since we are interested in the difference between the two scores, we do not compute
the weights w.r.t. leaf y nor weights within a cluster, since both trees have the same
weight in these two cases. Then for any given lifting D̃, we have by subtraction

λ(sy, D̃) − λ(ty, D̃) = 3/2
(
λ(s,D) − λ(t,D)

)
.

The term on the right-hand side is positive by hypothesis. �

4 Liftings of Tree Metrics

In the previous section, we analyzed the relationship between the lower and upper
trees for liftings of a general dissimilarity map D. For a practicing phylogeneti-
cist, however, this provides limited useful information. Indeed, the basic assump-
tion of phylogenetic inference is that the data evolve in a primarily tree-like manner.
Namely, in distance-based inference, the assumption is that the given dissimilarity
map is “close” to a tree metric. In the rogue setting, we are interested in n taxa which
evolve in a tree-like manner and one, the rogue, that does not.
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In this section we formalize these notions by assuming that D is a tree metric with
respect to the tree topology t . By the consistency of BME inference, the lower tree
will be t . With this assumption, our primary interest will be in understanding how the
upper tree can differ from t in the sorts of situations more likely to be encountered
in phylogenetics. Although Theorem 3.2 provides an interesting theoretical result in
this vein, the required lifting is quite unlikely to appear in data. By reformulating the
problem below directly in terms of the branch lengths of the tree metric, we are able
to obtain more precise and relevant information about the action of rogue taxa.

4.1 Preliminaries

Notation 4.1 Given a positive integer n, we define Dn to be the cone of dissimilarity

maps on n taxa. We identify Dn with R
(n

2)+ . Similarly, we define Tn ⊂ Dn to be the
space of tree metrics on n taxa. We omit the subscript n whenever it is clear from the
context. Finally, given a tree topology t , we denote by Tt ⊂ Tn the set of tree metrics
with underlying tree topology t .

Notation 4.2 Given a trivalent tree t , the BME cone Cωt associated with t will be

denoted by Ct . Moreover, we call C+
t = Ct ∩ R

(n
2)+ the positive BME cone of t , also

known as the BME cone of dissimilarity maps associated with t .

Notation 4.3 In what follows, we write Pn for the BME polytope on n taxa. If the
number of taxa is understood, we omit the subscript.

Given a tree topology t on n taxa, let πt : R
(n

2)+ → R
2n−3 denote a map gener-

alizing the branch-length map for tree metrics as follows. The coordinates of this
map are indexed by the branches of the tree t , and each coordinate is a linear func-
tion on the metric cone whose value on tree metrics with topology t is precisely
the length of the corresponding edge. Note that this linear function is not unique,
and it is positive on tree metrics with topology t . An expression defining the coor-
dinate e of the map πt (that is, the branch length of e) can be obtained by the four-
point condition equations (Pachter and Sturmfels 2005, Theorem 2.36) characterizing
the tree topology t . For example, let t = ((1,2), (3,4)), let ei be the edge adjacent
to leaf i, let e be the internal edge, and let bei

, be be their corresponding lengths.
Then πt (D) := (be1(D), be2(D), be3(D), be4(D), be(D)), where be1(D) = (D31 −
D32 + D12)/2, be2(D) = (D32 − D31 + D12)/2, be3(D) = (D23 − D24 + D34)/2,
be4(D) = (D24 − D23 + D34)/2, and be(D) = (D13 + D24 − D12 − D34)/2. The
map πt has the property that it identifies the cone of tree metrics realizing t with
R

2n−3+ .
Our goal for this subsection is to understand the interplay between the branch

lengths of a tree metric D ∈ Tt and the possible upper trees one can obtain by lifting
this metric. In particular, we wish to characterize the branch lengths of lower trees
admitting a prescribed upper tree s. It is clear that if we start from a tree metric
D = dt and its corresponding branch-length vector πt (D), we can easily lift D to a
tree metric D̃ whose underlying tree s contains t as a subtree. Hence, the union of the
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sets {πt (D) : D s.t. ∃ D̃ ∈ C+
s } as s varies among possible upper BME trees equals

the set R
2n−3+ . We want to understand each one of these sets. In particular, we want

to answer the following challenge:

Problem 4.4 Given a tree topology t on n taxa and s ∈ Tn+1, describe the cone of
dissimilarity maps on n + 1 taxa whose BME tree equals s and whose restriction to
the first n taxa is a tree metric of combinatorial type t .

For each upper tree s, the elements of the corresponding set in Problem 4.4 can
be thought of as vectors in R

3n−3+ , where the first 2n − 3 entries encode the branch
lengths of the lower tree t , and the remaining ones refer to distances to the new taxon.
That is,

Xs(t) := {(
πt (D), D̃1,n+1, . . . , D̃n,n+1

) : D ∈ Tt , D̃ ∈ C+
s

}
. (3)

By construction, these sets are polyhedral cones, and they partition the set R
3n−3+ :

Proposition 4.5 Xs(t) is a rational (possibly empty) polyhedral cone for every s

and t . It is described by two types of homogeneous linear constraints:

• All entries D̃ij ≥ 0, and πt (D) ≥ 0.
• Inequalities describing Cs : they correspond to the directions ωs − ωu for all triva-

lent trees u on n + 1 taxa, and all constants are zero. That is: 〈ωs − ωu, D̃〉 ≥ 0
for all trivalent trees u.

Proof Xs(t) is a polyhedral cone because it is the image of the linear map D̃ �→
(πt (D̃

∣∣[n] ), D̃1,n+1, . . . , D̃n,n+1), where D̃ ∈ C+
s ∩ (Tt × R

n+). The inequalities de-
scribing Xs(t) follow by construction. The entries of D̃|[n] are expressed as linear
combinations of the entries πt (D̃|[n]). The second group of inequalities include facet
inequalities of the cone Cs : whose directions are given by the edges containing ver-
tex ωs . To simplify the construction, we add the inequalities coming from differences
between ωs and all other vertices of P and not only of vertices ωu adjacent to ωs .
Adding these inequalities makes no harm, and it simplifies the problem by avoiding
the computation of the edges adjacent to ωs , which can be hard if the number of taxa
is too big. �

4.2 The Reduced BME Polytope

We now present an equivalent approach to our lifting task in the setting of this section,
i.e., when D is a tree metric on n taxa with (trivalent) tree t and branch lengths be.
As shown below, all that is needed to study the restricted BME problem is a change
of order of summation followed by a grouping of appropriate terms. This small mod-
ification reduces the problem from having a quadratic number of free variables to a
linear number, as well as simplifying the constraints. After introducing the reduced
polytope, we show that it has dimension 2n − 4 by characterizing its affine hull.
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The set of edges of t will be denoted by E(t). Pick any lifting D̃ of D, and any
tree s with n + 1 leaves. The BME length of s with respect to D̃ can be calculated as
follows:

λ(s, D̃) = 〈
ωs, D̃

〉 =
∑

i,j �=n+1

ωs
ijDi,j +

n∑

i=1

ωs
i,n+1D̃i,n+1.

Now we simply substitute the definition of the dissimilarity map D:

Di,j =
∑

e∈t (i↔j)

be,

where e ∈ t (i ↔ j) indicates that edge e ∈ E(t) lies in the path between leaves i and
j in tree t . Exchanging order of summation and regrouping, we have

〈ωs, D̃〉 =
∑

e∈E(t)

( ∑

i,j �=n+1
e∈t (i↔j)

ωs
ij

)
be +

n∑

i=1

ωs
i,n+1D̃i,n+1, (4)

which is again a simple inner product with a rational vector. For a tree s on n + 1
taxa, define (νs)· ∈ R

3n−3 by

{
(νs)e = ∑

i,j �=n+1
e∈t (i↔j)

ωs
ij , e edge of lower tree,

(νs)i = ωs
i,n+1, 1 ≤ i ≤ n.

(5)

Note that this definition depends on the fixed tree t , but we do not incorporate it to
the notation, as we will typically be fixing a lower tree.

To find the BME tree for a tree metric (t, {be}e∈E(t)), we build a vector νs ∈ R
3n−3

for each tree s ∈ Tn+1. Each vector has entries indexed by the 2n − 3 edges of t

and the n distances {D̃i,n+1 : i = 1, . . . , n}. Our goal is to find s minimizing the
quantity (4). As in the case of the BME problem, we build a polytope Bt (here in
(3n − 3)-space) which is the convex hull of the points νs and study its properties.

Definition 4.6 Fix a tree t on n taxa and consider the points (νs)e,i as in (5). The
convex hull of these points is called the “reduced BME polytope,” and we denote it
by Bt . It only depends on the combinatorial type of the tree t , and it is symmetric
with respect to the group of symmetries of the tree t . The points {νs : s ∈ Tn+1} are
called “reduced weights.” The inner normal fan of Bt is called the “reduced fan.”
Cones in this fan are called “reduced cones” and their intersections with the positive
orthant are to be called “positive reduced cones.”

From the previous construction it is clear that the BME polytope and the reduced
BME polytope are closely related. We now explain this connection. The linear map

αt : R(n+1
2 ) → R

3n−3 assigning the reduced weight νs to the BME weight ωs sends
the polytope P surjectively onto the polytope Bt . That is, the reduced polytope is a
linear projection of the BME polytope. On the dual side, the dual of the linear map
αt will inject the dual space of the polytope Bt into the dual space of the polytope P ,
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Table 1 Reduced weights for trivalent trees on five taxa, starting from the lower tree t = ((1,2), (3,4)),
up to symmetry of the lower tree t . The column labels show the quantity for which the entry is the cor-
responding coefficient in the reduced weight vector: e.g., the first entry of the table shows that 7/8 is the
coefficient of b1 for topology ((1,2), (3, (4,5)))

Upper tree b1 b2 b3 b4 b0 x1 x2 x3 x4

((1,2), (3, (4,5))) 7/8 7/8 6/8 4/8 6/8 1/8 1/8 2/8 4/8

((1,2), (5, (3,4))) 6/8 6/8 6/8 6/8 4/8 2/8 2/8 2/8 2/8

((1,3), (2, (4,5))) 7/8 6/8 7/8 4/8 9/8 1/8 2/8 1/8 4/8

((1,3), (5, (2,4))) 6/8 6/8 6/8 6/8 10/8 2/8 2/8 2/8 2/8

((1,3), (4, (2,5))) 7/8 4/8 7/8 6/8 9/8 1/8 4/8 1/8 2/8

((1,5), (2, (3,4))) 4/8 6/8 7/8 7/8 6/8 4/8 2/8 1/8 1/8

and in this case the linear spaces of both polytopes are identified by the map αt

(Proposition 4.9). We refer the interested reader to Ziegler (2006, Sect. 7.2) for more
information about projections of polytopes.

Example 4.7 We illustrate the previous construction in the case of liftings of the
quartet tree t = ((1,2), (3,4)), describing the reduced weights νs for six trivalent
trees s in Table 1. The remaining reduced weights can be obtained by relabelings
of s that respect the combinatorial type of t . The table is organized as follows. The
first five columns encode the branch lengths of the lower tree: b0 for the internal
edge of t , and bi for the edge pendant to taxon i. The rest, x1 through x4, are the
four distances to the new taxon. The polytope B((1,2),(3,4)) ⊂ R

9 is four-dimensional,
has 14 vertices and f -vector (14,46,52,20). The vertices of P5 corresponding to
the trees ((1,3), (5, (2,4))) and ((1,4), (5, (2,3))) project to the same vertex of Bt .
Among all 14 vertices, only 5 correspond to upper BME trees: the reduced weight
corresponding to the tree s = ((2,5), (3, (1,4))) and its five relabelings that fix t . The
affine hull of Bt has five defining linear equations x1 + x2 + x3 + x4 = 1 and bi + xi

for i = 1,2,3,4. Analogous equations will define the affine hull for all reduced BME
polytopes, as we show in Proposition 4.9.

One can compute the dimension, number of vertices, and f -vector of the reduced
polytope Bt as we did in the case of the BME polytope. We can also study the behav-
ior of the vertices of the BME polytope under the projection map, and see how many
of its vertices collapse to a single vertex in Bt , how many lie in the interior and how
many lie in proper faces of positive dimension. We now show that the reduced poly-
tope has dimension 2n − 4 by characterizing its affine hull. First we state a technical
lemma. Questions involving vertices and their behavior under the projection map will
be deferred to the next section.

Lemma 4.8 Given a tree t on n taxa, let ω denote the BME weight for t . Then

∑

j �=i

ωij = 1 ∀1 ≤ i ≤ n.
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Proof If a nonbacktracking random walk starts at i, then wij is the probability of that
walk ending at j . �

Proposition 4.9 The affine hull of Bt is characterized by n + 1 linearly independent
linear equations. More precisely, they are given by Ax = 1 ∈ R

n+1, where

A :=
(

In 0 In

0 0 1

)
∈ Z

(n+1)×(3n−3),

and the columns of A and points in R
3n−3 are labeled by partitioning the coordi-

nates as (be1 , . . . ,ben | be : e interior edges of t | D̃1,n+1, . . . , D̃n,n+1). Here, ei de-
notes the edge pendant to the leaf i in tree t . In particular, dim Bt = 2n − 4, and the
(n + 1)-dimensional lineality space of the reduced fan coincides with the row span
of A.

Proof First, we rewrite the equations in terms of the coordinates of reduced weights
and then apply Lemma 4.8. Fix an upper tree s and write ν and ω for νs and ωs ,
respectively. The following equalities hold:

n∑

j=1

νj =
∑

j �=n+1

ωi n+1 = 1,

νei
+ νi =

∑

j �=i

ωij = 1 ∀1 ≤ i ≤ n.

These are precisely the linear equations described by matrix A.
We now prove that these equations characterize the space. To simplify notation,

let ψ be the surjective map ψ(p) = (πt (p|[n]),p1,n+1, . . . , pn,n+1) for any lifting p

of a tree metric with tree t . We proceed by dimensionality arguments. We know that
rk(A) = n + 1, so dim Bt ≤ 3n − 3 − (n + 1) = 2n − 4. Our goal is to show that
equality holds. It will suffice to show that the dimension of the lineality space of the
“reduced fan” equals n + 1.

By construction, the shift vectors {ha : 1 ≤ a ≤ n + 1} represent tree metrics as-
sociated with a degeneration of the trivalent tree t with two nodes and one edge:
a leaf labeled a, and the other leaf labeled by the set {1, . . . , â, . . . , n + 1}. Hence,
these tree metrics can be expressed as points h̃a = ψ(ha) in R

3n−3, and they gen-
erate an (n + 1)-dimensional vector space. These points are precisely the rows of A

as described in the statement. Hence, it suffices to show that these vectors span the
lineality space of the “reduced fan.”

Fix any trivalent tree s0 on n+1 taxa. Given p ∈ R
3n−3 in the lineality space of the

reduced fan, by definition we have 〈p,νs〉 = 〈p,νs0〉 for all trees s. By construction,
p lies in the image of ψ , so fix q with p = ψ(q). Thus, 〈q,ωs〉 = 〈p,νs〉 for all
s by (4), and so 〈q,ωs〉 = 〈q,ωs0〉 for all s. By definition, we have that q is in the
lineality space of the BME fan, and so it is a linear combination of the shift vectors.
After applying the map ψ , the same holds for p and the vectors h̃a , and the result
follows. �
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4.3 Analysis of the Reduced BME Polytope

In this section we focus on combinatorial properties of the reduced BME polytope
and the behavior of the vertices of the BME polytope under the projection map αt ,
as t varies along the set of combinatorial types of trees on n taxa. In particular, we
give a complete description of the vertices for up to six taxa (see Table 2). As we
mentioned earlier, two tree topologies on n + 1 taxa can give the same vertex in the
polytope Bt , and vertices of the BME polytope can map to interior points in Bt under
the projection map. As Example 4.7 shows, for four taxa, there exists a pair of tree
topologies with the same associated reduced weight, but all fourteen reduced weights
are still vertices of Bt

4. Similarly, in the case of five taxa, a Polymake computation
shows that all 94 possible (out of 105) reduced weights {νs : s ∈ T6} are vertices. This
is no longer true for six taxa.

By construction, the polytope Bt encodes an optimization problem where we re-

strict our ambient space R(n+1
2 ) to the space of extensions of tree metrics with associ-

ated tree t . In terms of the BME fan, this means cutting out the fan with the (2n− 3)-

dimensional cone R+Tt ⊂ R(n+1
2 ). Note that by intersecting the BME chambers with

this cone, we may get a cone with dimension less than 2n−3. Moreover, it could very
well happen that this intersection is just the lineality space R(αt (ha) : 1 ≤ a ≤ n+ 1)

of the cone. This would imply that the point νs lies in the interior of the polytope.
This is indeed what happens for six taxa, as we have found through computation:

Proposition 4.10 Let t = ((1,2), (3,4), (5,6)) be the snowflake tree. Then the re-
duced polytope Bt

6 is generated by the 792 reduced weights (out of the possible 945
reduced trivalent points) and it has 780 vertices and 83 227 facets. The remaining
twelve reduced trivalent weights νs that are not vertices of Bt

6 lie in the interior of the
polytope. They are associated with pairs of trivalent trees with topologies:

(1,((((2,3),(4,6)),7),5)) (1,((((2,4),(3,6)),7),5))
(1,((((2,3),7),(4,6)),5)) (1,((((2,3),7),(4,5)),6))
(1,(((2,3),((4,6),7)),5)) (1,(((2,5),((4,6),7)),3))
(1,((((2,5),(3,6)),7),4)) (1,((((2,6),(3,5)),7),4))
(1,((((2,5),7),(3,6)),4)) (1,((((2,5),7),(4,6)),3))
(1,(((2,5),((3,6),7)),4)) (1,(((2,4),((3,6),7)),5))
(1,((((2,6),7),(3,5)),4)) (1,((((2,6),7),(4,5)),3))
(1,(((2,6),((3,5),7)),4)) (1,(((2,4),((3,5),7)),6))
(1,((((2,3),(4,5)),7),6)) (1,((((2,4),(3,5)),7),6))
(1,(((2,3),((4,5),7)),6)) (1,(((2,6),((4,5),7)),3))
(1,((((2,4),7),(3,6)),5)) (1,((((2,4),7),(3,5)),6))
(1,((((2,5),(4,6)),7),3)) (1,((((2,6),(4,5)),7),3)).

Similarly if t is the lower tree (1, (((3,4),6),5),2) (the caterpillar tree), then the
polytope Bt

6 has 804 distinct reduced weights, 800 vertices, and 116 701 facets. In
this case, all four reduced trivalent weights νs that are not vertices of Bt

6 lie in the
interior. In this case, each point corresponds to a single topology, and they are:
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(1,((((2,(3,5)),7),4),6))
(1,((((2,6),3),7),(4,5)))
(1,((((2,(4,5)),7),3),6))
(1,((((2,6),4),7),(3,5))).

From the previous examples we see that in the case of four and five taxa, all re-
duced points are vertices. And for six taxa, reduced points are either vertices or in-
terior points (Proposition 4.10). Thus, it is natural to ask whether these are the only
two possibilities:

Question 4.11 For n ≥ 7 and any tree t ∈ Tn, are all reduced trivalent points either
vertices or interior points of the reduced polytope Bt ?

We expect the answer to be positive, provided that the projection map αt is generic.
We now switch gears and focus on the number of upper BME trees we can ob-

tain from a lifting of a given tree metric with topology t . This study will highlight
the behavior of “rogue taxa.” Equivalently, we want to know how many positive re-
duced cones C+

s (Bt ) (for s trivalent trees on n + 1 taxa) are nonempty. We provide a
complete answer for up to six taxa in Table 2 below.

The next natural question to ask is what are the asymptotics (or provide an upper
bound) of the number of such nonempty positive reduced cones. As a first attempt,
we give some insight about which topologies can be ruled out for upper BME trees.
In other words, which are the blocking topologies for upper trees.

Definition 4.12 Fix t ∈ Tn and let νs be the reduced weight for a trivalent tree
s ∈ Tn+1. We define a partial order on the set {νs : s ∈ Tn+1} as follows: νs � νs′

if and only if (νs)l ≤ (νs′
)l for all 1 ≤ l ≤ 3n − 3. We say that s blocks s′ if νs � νs′

.

Lemma 4.13 Let t ∈ Tn, and let s, s′ ∈ Tn+1 be such that s blocks s′. Then, s′ cannot
be a BME tree for any lifting D̃ of D ∈ C+

t .

Table 2 A comparison between the BME and reduced BME polytopes for up to six taxa. In the case of six
taxa, we have more than one combinatorial type for the lower tree t . Each vector in the last column gives
the number of reduced BME positive cones classified by dimension, starting from dimension n + 1 and
up to dimension 3n − 3. The lowest-dimensional ones correspond to reduced weights of forbidden upper
BME trees, since they lie in the linear space spanned by the shift vectors. The discrepancy between the
first entry of these vectors and the entry of the column indicating the number of voided upper trees reflects
that several of these void trees have equal reduced weights

n dim. # vertices # void upper f -vector of reduced BME

BME red. BME red. trees for t positive cones

3 2 2 3 3 0 (0,0,3)

4 5 4 15 14 2 (1,0,0,0,13)

5 9 6 105 94 20 (16,1,6,0,0,0,71)

6a 14 8 945 800 208 (160,32,98,10,39,0,0,461)

6b 14 8 945 780 154 (123,0,144,9,39,0,0,0,465)
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Fig. 4 The blocking relations (up to symmetry) for trees on six taxa. Pairs of trees in a column are a single
blocking relation, with the tree in the second row blocking the corresponding tree in the first row. Note that
these blocking relations do not come from Theorem 3.5

Proof It suffices to show that for any D̃, λ(s, D̃) ≤ λ(s′, D̃), and this follows because
D̃ has nonnegative entries. �

We illustrate with examples on five taxa.

Example 4.14 Let t = (1, ((3,4),5),2). Out of all possible 94 vertices in Bt , there
are 19 reduced vertices that are blocked by other vertices, out of 20 empty positive re-
duced cones. The blocking relation is described in Fig. 4 and gives 26 blocking upper
tree topologies. We simplify the picture by reducing the relation modulo relabeling
of all leaves involved in each chain and that fix the lower tree t .

In particular we see that out of the 94 possible BME reduced vertices for t , we can
rule out 19 of these vertices for upper trees by “blocking” relations.

Unfortunately, this partial order set is not a sufficient criterion to determine if a
tree on n + 1 taxa can be an upper tree or not. In particular, it cannot explain the
obstruction to exchange subtrees “over” the new pendant edge (Theorem 3.5), except
in the case of quartet trees. However, understanding the blocking relation can give an
upper bound for the asymptotics of the upper BME trees.

We end this section with a table describing the relation between the BME and
reduced BME polytopes for up to six taxa. In the case of six taxa, we have two
combinatorial types of lower trees, and each one will label a row in our table. The
row starting with “6a” indicates the caterpillar tree on six taxa, whereas “6b” refers
to the snowflake tree (see Proposition 4.10).

We conclude with an interesting computationally challenging question:

Question 4.15 What are the asymptotics of the number of vertices of the Bt and of
the number of upper BME trees and upper BME reduced trees for different combina-
torial types of lower trees t?
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Table 3 The extremal rays of the polyhedral cone Xs(t) for four lower taxa for t = ((1,2), (3,4)) and s =
(((1,5),3), (2,4)). The rows represent the rays. Labeling conventions for rows and columns are described
in the text

b1 b2 b3 b4 b0 x1 x2 x3 x4

c1 4 0 3 3 1 0 0 0 0

c2 3 0 3 0 1 0 0 0 0

c3 1 0 0 0 1 0 3 0 0

c4 0 0 0 0 1 0 4 1 1

c5 0 0 0 0 1 0 3 0 3

e1 1 1 1 1 0 0 0 0 0

e2 1 1 1 0 0 0 0 0 0

e3 1 0 1 1 0 0 0 0 0

e4 1 0 1 0 0 0 0 0 0

e5 1 0 0 0 0 0 0 0 0

f1 0 0 0 0 0 1 1 1 1

f2 0 0 0 0 0 0 1 1 1

f3 0 0 0 0 0 0 1 0 0

f4 0 0 0 0 0 0 0 0 1

h1 1 0 0 0 0 1 0 0 0

h2 0 1 0 0 0 0 1 0 0

h3 0 0 1 0 0 0 0 1 0

h4 0 0 0 1 0 0 0 0 1

4.4 The Rogue Taxon Effect for Four Taxa

The extremal rays of each reduced cone can be interpreted to give precise information
on the rogue taxon effect. In this section, we explore the reduced polyhedral cone
associated with the lower tree ((1,2), (3,4)) and the upper tree (((1,5),3), (2,4)).
Up to symmetry, this is the only lower/upper combination for this number of taxa
such that the new taxon has “rogue” behavior. By understanding the extremal rays of
the polyhedral cone, we establish Propositions 4.16 and 4.17.

Table 3 gives the extremal rays of the cone Xs(t). We follow the notation of Ex-
ample 4.7 to label the columns. The rows label the extremal rays of the cone, and
are divided into sections. In the first section, labeled with c are the rays which give
branch length/extra taxon distances with a nontrivial internal branch length for the
lower tree. This is visible because of the 1 in the b0 column. These rays are inter-
esting as they represent the “minimal” rogue taxon examples. We analyze these ci in
more detail below.

The second section, labeled with e, f , and h, shows how the pendant (leading to a
leaf) branch lengths of the lower tree and the distances to the new taxon can be mod-
ified without changing the upper tree. That is, any positive multiple of these vectors
can be added to a point in the cone while staying in the same polyhedral cone. For
instance, e4 says that we can increase the branch lengths b1 and b3 simultaneously
while maintaining the same upper tree. The ray f3 (which is all-zero except for the
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x2 column), for example, says that we can increase the distance of the new taxon to
the second original taxon without changing the upper tree. The hi are simply the shift
vectors corresponding to the pendant branches. Thus hi means that we can increase
the ith pendant branch length while increasing the distance of the new taxon to the
ith original taxon without changing the upper tree.

These extremal rays can give some sufficient conditions for rogue taxon behavior.
We specify branch lengths of quartets by a vector giving branch lengths in the order
(b0, . . . ,b4). We say that a vector x is a rogue vector for a branch-length vector b if
the BME tree for the combined data as in Table 3 is the tree (((1,5),3), (2,4)). We
will call the cone given by positive linear combinations of the set

{
(0,1,1,1,1), (0,1,1,1,0), (0,1,0,1,1), (0,1,0,1,0), (0,1,0,0,0)

}

the extension cone. Any element from this cone can be added to a branch-length set
without changing the polyhedral cone; this can be seen by looking at the ei vectors
above.

Note that any vector satisfying 0 ≤ x1 ≤ x3 ≤ min(x2, x4) sits in the cone gener-
ated by the fi restricted to their last four coordinates. Therefore we conclude:

Proposition 4.16 Any vector satisfying 0 ≤ x1 ≤ x3 ≤ min(x2, x4) is a rogue vector
for any tree with branch-length vector given by either (1,4,0,3,3) or (1,3,0,3,0)

plus any element of the extension cone.

The next proposition gives rogue criteria for a quartet tree with arbitrary inter-
nal branch length. The proof is simple: just look at c5 in Table 3, which shows that
(0,3,0,3) is a rogue vector for the quartet with trivial pendant branch lengths and
internal branch length 1.

Proposition 4.17 Any quartet tree has a rogue vector with an entry greater than or
equal to three times the internal branch length of the lower tree.

Although the above propositions do give some conditions on when the rogue taxon
effect appears for four taxa, they do not specify how likely are we to end up in a rogue
taxon situation. They also give no information about trees on larger number of taxa.
In the next section, we gain some intuition about these questions via simulation.

4.5 Simulations

Here we describe simulations performed to better understand the rogue taxon effect
as it might appear in biological data. These simulations show that, at least for small
numbers of taxa, the rogue taxon effect is common when the extra distances are cho-
sen without reference to the original tree. They also suggest that the effect gets worse
as the number of taxa increases.

We assume a random distribution for the branch lengths and distances to the new
taxon. Such simulations are not the only way to address these sorts of questions.
Volume computations of, e.g., spheres intersected with our polyhedral cones are in
principle possible, but they do not seem to admit a closed-form solution. Thus our
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Table 4 Simulation results for 107 exponentially distributed branch lengths and distances to rogue taxa.
The columns are labeled by the topology of the lower tree. The numbers in the table represent the fraction
of time that the corresponding Robinson–Foulds distance between the upper and lower trees appeared via
the rogue taxon effect

δRF ((1,2), (3,4)) ((1,2),3, (4,5)) (((1,2),5), ((3,4),6)) ((1,2), (3,4), (5,6))

0 0.705071 0.502925 0.380863 0.381869

1 0.294929 0.364874 0.367523 0.363955

2 – 0.132201 0.195223 0.209066

3 – – 0.0563907 0.04511

understanding of such volumes still depends strongly on Monte Carlo simulations
(Eickmeyer et al. 2008). Furthermore, such a volume may give less practical infor-
mation than simulation using a reasonable model of branch lengths.

To better understand the frequency with which the rogue taxon phenomenon can
occur, we simulate using the exponential distribution. Although a simple arbitrary
choice, the exponential distribution is realistic enough to be a branch length prior for
Bayesian phylogenetic inference (Ronquist et al. 2005). For a given lower tree, we
generate branch lengths for that tree according to the mean one exponential distribu-
tion, then generate distances to the extra taxon via the exponential distribution with
mean equal to the expected pairwise distance between tips of the tree. Then, we find
the upper tree (i.e., the BME tree for the original data set plus the rogue taxon) and
check to see how many bipartitions of the upper tree (restricted to the lower taxa)
are not contained in the lower tree. This number is the Robinson–Foulds distance
between the upper and lower trees used in Sect. 3.1.

The results of 107 exponentially drawn branch lengths are shown in Table 4; it
shows that a taxon added with random data can substantially alter the structure of the
phylogenetic tree. Indeed, almost 30% of the lifted four taxon trees do not contain
the original topology, growing to almost 50% for five taxa, then almost 62% for the
six taxon topologies.

We emphasize that such simulations do not paint an accurate picture of the rogue
taxon effect for real data. Indeed, even the worst data does not have completely ran-
dom distances: even “random” sequence data will not have random distances to the
rest of the tree. Nevertheless, we believe that these results indicate that this area mer-
its further investigation and that the effective volume of these “rogue” polyhedral
cones is not small.

In the reduced BME setting it can happen that multiple bifurcating upper trees are
associated with a cone of the reduced normal fan for a given lower tree. That is, the
trees all have the same BME length for given lower tree branch lengths and rogue
taxon distances. We have observed in the example presented here that when there are
these multiple trees, the Robinson–Foulds distances between the lower tree and these
multiple upper trees (restricted to the lower taxa) for a given cone are equal. It would
be interesting to know if this is true in the general case.

The equivalent fact for the quartet distance is not true. In the case of the lower tree
being (((1,2),5), ((3,4),6)), there is a cone of the reduced normal fan associated
with both (1, ((((2,3), (4,7)),6),5)) and (1, ((((2,6), (4,7)),3),5)). Restricting to
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the lower taxa, these trees are (1, ((((2,3),4),6),5)) and (1, ((((2,6),4),3),5)),
which have quartet distances 10 and 11, respectively, to the lower tree.

5 Conclusions and Future Directions

We have investigated the effect of adding an extra “rogue” taxon into a phylogenetic
data set for BME phylogenetic inference. We have shown that rogue taxa can have
significant though not arbitrary effects on the tree. For a small number of taxa, we
can delineate the domain of the rogue taxon effect. Simulations show that the rogue
taxon effect is very significant when the data for the rogue taxon is chosen randomly
without reference to the topology of the original tree.

The results presented here may have algorithmic consequences for phylogenetic
inference. It is common for inference programs to start with a tree on three taxa
and then build a tree by adding taxa sequentially. Software packages using sequen-
tial taxon addition, such as PHYLIP (Felsenstein 1995) and fastDNAml (Olsen et
al. 1994), do optimize the tree after addition using rearrangements; the question of
strict sequential addition performance is still important in order to determine the
amount of post-addition optimization required. Furthermore, “evolutionary place-
ment algorithms” for large amounts of sequence data have been proposed whereby a
“query” sequences are inserted into a fixed “reference tree” (Von Mering et al. 2007;
Berger and Stamatakis 2009). The accuracy of such algorithms compared to tradi-
tional phylogenetics algorithms can be seen as an aspect of the rogue taxon problem.

An interesting next direction would be to consider situations where rogue taxa do
not have arbitrary data but appear via misspecified evolutionary models. This will
hopefully give a clearer understanding of the actual impact of rogue taxa. It would
also be interesting to see if some of the results presented here also extend to other in-
ference criteria, such as parsimony or maximum likelihood. Some results, such as the
simulation results presented above, will certainly be different in this new setting, but
others may correspond well. Maximum likelihood and parsimony are considerably
more difficult to analyze, but hopefully the results presented here can act as a guide.
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