2,660 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Application of Fuzzy-Neural Network in Classification of Soils using Ground-penetrating Radar Imagery

    Get PDF
    Errors associated with visual inspection and interpretation of radargrams often inhibits the intensive surveying of widespread areas using ground-penetrating radar (GPR). To automate the interpretive process, this paper presents an application of a fuzzy-neural network (F-NN) classifier for unsupervised clustering and classification of soil profile using GPR imagery. The classifier clusters and classifies soil profiles strips along a traverse based on common pattern similarities that can relate to physical features of the soil (e.g., number of horizons; depth, texture and structure of the horizons; and relative arrangement of the horizons, etc). This paper illustrates this classification procedure by its application on GPR data, both simulated and actual real-world. Results show that the procedure is able to classify the profile into zones that corresponded with those obtained by visual inspection and interpretation of radargrams. Results indicate that an F-NN model can supply real-time soil profile clustering and classification during field surveys

    Application of Fuzzy-Neural Network in Classification of Soils using Ground-penetrating Radar Imagery

    Get PDF
    Errors associated with visual inspection and interpretation of radargrams often inhibits the intensive surveying of widespread areas using ground-penetrating radar (GPR). To automate the interpretive process, this paper presents an application of a fuzzy-neural network (F-NN) classifier for unsupervised clustering and classification of soil profile using GPR imagery. The classifier clusters and classifies soil profiles strips along a traverse based on common pattern similarities that can relate to physical features of the soil (e.g., number of horizons; depth, texture and structure of the horizons; and relative arrangement of the horizons, etc). This paper illustrates this classification procedure by its application on GPR data, both simulated and actual real-world. Results show that the procedure is able to classify the profile into zones that corresponded with those obtained by visual inspection and interpretation of radargrams. Results indicate that an F-NN model can supply real-time soil profile clustering and classification during field surveys

    Classification of Pre-Filtered Multichannel Remote Sensing Images

    Get PDF
    Open acces: http://www.intechopen.com/books/remote-sensing-advanced-techniques-and-platforms/classification-of-pre-filtered-multichanel-rs-imagesInternational audienc

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Investigation Of A Fuzzy-Neural Network Application In Classification Of Soils Using Ground-Penetrating Radar Imagery

    Get PDF
    Errors associated with visual inspection and interpretations of radargrams often inhibit the intensive surveying of widespread areas using ground-penetrating radar (GPR). To automate the interpretive process, this article presents an application of a fuzzy-neural network (F-NN) classifier for unsupervised clustering and classification of soil profiles using GPR imagery. The classifier clusters and classifies soil profile strips along a traverse based on common pattern similarities that can relate to physical features of the soil (e.g., number of horizons; depth, texture, and structure of the horizons; and relative arrangement of the horizons, etc.). This article illustrates this classification procedure by its application on GPR data, both simulated and actual. Results show that the procedure is able to classify the profile into zones that corresponded with the classifications obtained by visual inspection and interpretation of radar grams. Application of F-NN to a study site in southwest Tennessee gave soil groupings that are in close correspondence with the groupings obtained in a previous study, which used the traditional methods of complete soil morphological, chemical, and physical characterization. At a crossover value of 3.0, the F-NN soil grouping boundary locations fall within a range of ±2.7 m from the soil groupings determined by the traditional methods. These results indicate that F-NN can supply accurate real-time soil profile clustering and classification during field surveys

    Effects of Training Set Size on Supervised Machine-Learning Land-Cover Classification of Large-Area High-Resolution Remotely Sensed Data

    Get PDF
    The size of the training data set is a major determinant of classification accuracy. Neverthe- less, the collection of a large training data set for supervised classifiers can be a challenge, especially for studies covering a large area, which may be typical of many real-world applied projects. This work investigates how variations in training set size, ranging from a large sample size (n = 10,000) to a very small sample size (n = 40), affect the performance of six supervised machine-learning algo- rithms applied to classify large-area high-spatial-resolution (HR) (1–5 m) remotely sensed data within the context of a geographic object-based image analysis (GEOBIA) approach. GEOBIA, in which adjacent similar pixels are grouped into image-objects that form the unit of the classification, offers the potential benefit of allowing multiple additional variables, such as measures of object geometry and texture, thus increasing the dimensionality of the classification input data. The six supervised machine-learning algorithms are support vector machines (SVM), random forests (RF), k-nearest neighbors (k-NN), single-layer perceptron neural networks (NEU), learning vector quantization (LVQ), and gradient-boosted trees (GBM). RF, the algorithm with the highest overall accuracy, was notable for its negligible decrease in overall accuracy, 1.0%, when training sample size decreased from 10,000 to 315 samples. GBM provided similar overall accuracy to RF; however, the algorithm was very expensive in terms of training time and computational resources, especially with large training sets. In contrast to RF and GBM, NEU, and SVM were particularly sensitive to decreasing sample size, with NEU classifications generally producing overall accuracies that were on average slightly higher than SVM classifications for larger sample sizes, but lower than SVM for the smallest sample sizes. NEU however required a longer processing time. The k-NN classifier saw less of a drop in overall accuracy than NEU and SVM as training set size decreased; however, the overall accuracies of k-NN were typically less than RF, NEU, and SVM classifiers. LVQ generally had the lowest overall accuracy of all six methods, but was relatively insensitive to sample size, down to the smallest sample sizes. Overall, due to its relatively high accuracy with small training sample sets, and minimal variations in overall accuracy between very large and small sample sets, as well as relatively short processing time, RF was a good classifier for large-area land-cover classifications of HR remotely sensed data, especially when training data are scarce. However, as performance of different supervised classifiers varies in response to training set size, investigating multiple classification algorithms is recommended to achieve optimal accuracy for a project

    Determining crop residue type and class using satellite acquired data

    Get PDF
    LANDSAT Thematic Mapper (TM) data for March 23, 1987 with accompanying ground truth data for the study area in Miami County, IN were used to determine crop residue type and class. Principle components and spectral ratioing transformations were applied to the LANDSAT TM data. One graphic information system (GIS) layer of land ownership was added to each original image as the eighth band of data in an attempt to improve classification. Maximum likelihood, minimum distance, and neural networks were used to classify the original, transformed, and GIS-enhanced remotely sensed data. Crop residues could be separated from one another and from bare soil and other biomass. Two types of crop residue and four classes were identified from each LANDSAT TM image. The maximum likelihood classifier performed the best classification for each original image without need of any transformation. The neural network classifier was able to improve the classification by incorporating a GIS-layer of land ownership as an eighth band of data. The maximum likelihood classifier was unable to consider this eighth band of data and thus, its results could not be improved by its consideration

    Optimized neural architecture for automatic landslide detection from high-resolution airborne laser scanning data

    Full text link
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. An accurate inventory map is a prerequisite for the analysis of landslide susceptibility, hazard, and risk. Field survey, optical remote sensing, and synthetic aperture radar techniques are traditional techniques for landslide detection in tropical regions. However, such techniques are time consuming and costly. In addition, the dense vegetation of tropical forests complicates the generation of an accurate landslide inventory map for these regions. Given its ability to penetrate vegetation cover, high-resolution airborne light detection and ranging (LiDAR) has been used to generate accurate landslide maps. This study proposes the use of recurrent neural networks (RNN) and multi-layer perceptron neural networks (MLP-NN) in landscape detection. These efficient neural architectures require little or no prior knowledge compared with traditional classification methods. The proposed methods were tested in the Cameron Highlands, Malaysia. Segmentation parameters and feature selection were respectively optimized using a supervised approach and correlation-based feature selection. The hyper-parameters of network architecture were defined based on a systematic grid search. The accuracies of the RNN and MLP-NN models in the analysis area were 83.33% and 78.38%, respectively. The accuracies of the RNN and MLP-NN models in the test area were 81.11%, and 74.56%, respectively. These results indicated that the proposed models with optimized hyper-parameters produced the most accurate classification results. LiDAR-derived data, orthophotos, and textural features significantly affected the classification results. Therefore, the results indicated that the proposed methods have the potential to produce accurate and appropriate landslide inventory in tropical regions such as Malaysia

    A Markov Chain Random Field Cosimulation-Based Approach for Land Cover Post-classification and Urban Growth Detection

    Get PDF
    The recently proposed Markov chain random field (MCRF) approach has great potential to significantly improve land cover classification accuracy when used as a post-classification method by taking advantage of expert-interpreted data and pre-classified image data. This doctoral dissertation explores the effectiveness of the MCRF cosimulation (coMCRF) model in land cover post-classification and further improves it for land cover post-classification and urban growth detection. The intellectual merits of this research include the following aspects: First, by examining the coMCRF method in different conditions, this study provides land cover classification researchers with a solid reference regarding the performance of the coMCRF method for land cover post-classification. Second, this study provides a creative idea to reduce the smoothing effect in land cover post-classification by incorporating spectral similarity into the coMCRF method, which should be also applicable to other geostatistical models. Third, developing an integrated framework by integrating multisource data, spatial statistical models, and morphological operator reasoning for large area urban vertical and horizontal growth detection from medium resolution remotely sensed images enables us to detect and study the footprint of vertical and horizontal urbanization so that we can understand global urbanization from a new angle. Such a new technology can be transformative to urban growth study. The broader impacts of this research are concentrated on several points: The first point is that the coMCRF method and the integrated approach will be turned into open access user-friendly software with a graphical user interface (GUI) and an ArcGIS tool. Researchers and other users will be able to use them to produce high-quality land cover maps or improve the quality of existing land cover maps. The second point is that these research results will lead to a better insight of urban growth in terms of horizontal and vertical dimensions, as well as the spatial and temporal relationships between urban horizontal and vertical growth and changes in socioeconomic variables. The third point is that all products will be archived and shared on the Internet
    • …
    corecore