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Abstract. Errors associated with visual inspection and interpretation of radargrams often inhibits 
the intensive surveying of widespread areas using ground-penetrating radar (GPR). To 
automate the interpretive process, this paper presents an application of a fuzzy-neural network 
(F-NN) classifier for unsupervised clustering and classification of soil profile using GPR imagery. 
The classifier clusters and classifies soil profiles strips along a traverse based on common 
pattern similarities that can relate to physical features of the soil (e.g., number of horizons; 
depth, texture and structure of the horizons; and relative arrangement of the horizons, etc). This 
paper illustrates this classification procedure by its application on GPR data, both simulated and 
actual real-world. Results show that the procedure is able to classify the profile into zones that 
corresponded with those obtained by visual inspection and interpretation of radargrams. Results 
indicate that an F-NN model can supply real-time soil profile clustering and classification during 
field surveys. 
Keywords. Automation, Clustering, Soil mapping, Soil survey, Unsupervised classification, 

Fuzzy neural networks 
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Introduction 
Ground-penetrating radar (GPR) probes soils nonintrusively, supplying high-resolution 
subsurface imagery of soil horizon profiles. The instrumentation transmits electromagnetic 
waves into the ground at user-selected frequencies. Soil boundaries having differing dielectric 
properties reflect radar waves back to a receiving antenna. The resulting GPR image 
(radargram) is a high-resolution profile image that highlights boundary interfaces of abrupt 
dielectric discontinuities, which often correlate to soil horizon boundaries and to regions of 
heterogeneity. This technology allows for continuous subsurface profiling; thereby yielding 
continual 3-D spatial data—more than can be practically obtained by borehole or auger 
sampling. 
Soil scientists employ GPR to help assess soil properties that affect soil use, management, and 
classification (Doolittle and Amussen, 1992; Doolittle and Collins, 1995). A number of studies 
have demonstrated the ability of GPR to map important soil classification parameters. These 
studies have applied GPR technologies to map soil textural variations, organic matter content, 
thickness and depth of soil horizons and water tables, and soil compaction and plow pan 
development (Johnson et al., 1982; Doolittle, 1982; Doolittle, 1983; Olson and Doolittle, 1985; 
Collins and Doolittle, 1987; Schellentrager et al., 1988; Truman et al., 1988; Mokma et al., 1990; 
Raper et al., 1990; Doolittle and Amussen, 1992; Collins, 1992; Doolittle and Collins, 1995, 
Freeland et al., 1998 ). Traditional applications of GPR in soil mapping requires visual 
inspection and interpretation of the radargram regions into classes according to the perceived 
similarities in layers and other properties (Freeland, 1998; Adamson, 1999; Inman, 2000), with 
latter verification from ground-truthing. This method is somewhat similar to the traditional 
methods of soil judging, an evaluation procedure requiring considerable knowledge, skill, and 
experience, and often involving subjective judgment. In order to make full use of all the features 
collected in radar data and to reduce the requirement of subjective visual interpretation, we 
propose a quantitative procedure for systematic classification. 

Neural networks and Fuzzy Classification Methods 

Previous studies have traditionally used numerical and geostatistical methods to characterize 
soil variation (Cambell et al., 1970; Moore and Russel, 1972; Rea and Knight, 1998). However, 
neural networks (NN) and fuzzy system (FS) classifiers have recently emerged as promising 
alternatives to various conventional methods of pattern recognition and classification. For 
example, both methods have been used to classify radar images of groundcover taken from 
satellites. 
Neural networks interpret a wide-variety of real-world problems including image analysis and 
classification. Zhang (2000) presented a comprehensive literature survey of important issues 
and recent NN developments for classification problems. Specifically, he examined the issues of 
posterior probability estimation, the link between neural and conventional classifiers, learning 
and generalization tradeoff in classification, the feature variable selection, as well as the effect 
of misclassification costs. Paola and Schowengerdt (1995) presented a detailed review and 
analysis of the use of NN-based classifiers for classification of remotely sensed multi-spectral 
imagery. Types of NN classifiers are supervised and unsupervised classifiers. In the supervised 
classifiers, the NN is trained to classify the data based on input-output examples presented to 
the network (i.e., the data are made up of distinct classes known a priori.) Typically, the 
supervised NN classifiers consist of multi-layer feed-forward networks that are trained using 
back-propagation algorithms. These algorithms employ recursive learning and gradient-decent 
search methods. Example applications include classification of images acquired by LANDSAT 
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Multispectral Scanner (Benedicktsson et al., 1990), LANDSAT Thematic Mapper™ (Yoshida 
and Omatu, 1994), SPOT HRV (Tzeng et al., 1994), and ASAS (Abuelgasim et al., 1996). 
In contrast, unsupervised NN classifiers do not require input-output examples for training, but 
automatically classify the data based only on the information contained within the data. The 
network's ability to cluster the input data into natural homogeneous sets determines 
classification, whereby the elements of each set are as similar as possible, and are as dissimilar 
as possible from those elements of the other sets. Users may select set numbers beforehand, 
or they may result from pre-imposed constraints. Most unsupervised NN-based classifiers fall in 
the categories of modified Adaptive Resonance Theory (ART) (Carpenter and Grossberg, 
1988), the modified Learning Vector Quantization (Kohonen, 1989), and the Self-Organizing 
Maps (Kohonen, 1989). Applications that have utilized this type of classifiers for automatic 
classification of remotely sensed images include work by Hara et al. (1994). The performance of 
NN classifiers have been compared to conventional classifiers for a number of classification 
problems, and the results have shown that the accuracy of the NN approach is equivalent to, or 
slightly better than, conventional methods (Benediktsson et al., 1990; Hornik, 1991). 
Real-world systems, such as soils and land cover, generally do not occur in discrete, internally 
uniform units with sharp boundaries; but they occur in continuous variations in the geographic 
space. This means that a soil or land cover can have partial membership in more than one 
class, and there exists the possibility of overlap in classes. Under such conditions, fuzzy 
systems (FS) provide a more natural setting for the formulation and approximate solution of 
classification than approaches based on crisp logic. Fuzzy methods have successfully been 
applied in the classification land cover using remotely sensed data (Zhang and Foody, 1998; 
Seong and Usery, 2001; and Tatem et al., 2001). Burrough et al. (1997) traces the development 
of conceptual paradigms in soil classification from the pre-1960's model of crisp, non-
overlapping classes to modern approaches using FS for handling continuous variation in both 
attributes and location. There are several examples of application of FS in the classification of 
soils using soil grid data obtained by soil sampling from various points and depths (Chang and 
Burrough, 1987; Burrough et al., 1992; Odeh et al., 1992; McBratney and De Gruijter, 1992; De 
Gruitjter et al., 1997; Lark and Bolan, 1997; McBratney and Odeh, 1997, and Zhu, 1997). 
Although individual applications of NN and FS have been successful in solving classification 
problems, integration of the two methods has received considerable attention. Integration 
appears to be more effective for managing the uncertainness in class boundaries of real world 
system. Neural network and fuzzy systems combine in a variety of ways including, fusion, serial 
combination, and/or parallel combination (Tsoukalas and Uhrig. 1997). Much research and 
development in fuzzy neural systems for classification has focused on fuzzy modification of the 
Adaptive Resonance Theory (ART) and self-organizing map networks. The fuzzy ART 
developed by Carpenter et al. (1991) generalizes unsupervised ART to learn patterns in analog 
and binary data. The fuzzy ARTMAP (Carpenter and Crossberg, 1994) uses two fuzzy ART 
modules coupled by a map field for supervised learning of the patterns. The resulting fuzzy 
ARTMAP has classified vegetation cover at species level from LANDSAT and terrain data 
(Carpenter et al., 1997). Gopal et al. (1999) used fuzzy ARTMAP to classify global land cover 
from remotely sensed imagery from AVHRR satellites. Others applications include Lin et al. 
(2000) who developed a cascaded neural-fuzzy network with feature mapping to cluster satellite 
images, In all these studies, the fuzzy neural networks performed better than the conventional 
and/or pure NN classifiers. 

Objectives 

Moving toward automation for classification of soil radargrams, we propose the application of a 
fuzzy-neural network (F-NN) based classifier that implements an unsupervised classification of 
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the soil using digitized ground-penetrating radar imagery. Our objectives are: 1) to adapt a F-NN 
classifier to the application of interpreting soil radargrams, illustrated both by actual and 
simulated GPR data, and 2) to compare these results to those obtained from human 
interpretation of radargrams into pattern classes. 
 

Materials and Methods 
In choosing the type of network for soil classification, we considered two limiting conditions: 1) 
the characteristics of radargram, and 2) the soil variability. The characteristics of the radargram 
depend upon a number of variable factors, such as frequency of the transmitted electromagnetic 
waves, type of antenna, antenna speed on the ground surface, climate, soil-water content, etc. 
This means that the characteristics of a radargram are not stable and are liable to have 
variations owing to different surveying conditions and equipment. As such, there are no fixed 
input-output examples for use in neural training. Furthermore, soil variation is more continuous 
than discrete; therefore, it calls for a continuous classification. With no fixed input-output 
examples and continuous soil variation, we require unsupervised classification and a system 
that is able to handle fuzzy boundary conditions. The network algorithm developed by Adeli and 
Hung (1995) provides such an approach in that it quantitatively assigns individual patterns to 
geographically and taxonomically continuous classes.  
The Adeli-Hung algorithm was adapted for use in this study because of its suitability and 
simplicity. It consists of a NN and FS combined in series as shown in figure 1. The classification 
process proceeds in two stages. The first stage is an unsupervised NN clustering and 
classification process. In this stage, the NN classifies soil profile strips into a certain number of 
clusters determined dynamically. After all the profile strips have been classified, the values of 
the mean vector (prototype) for each cluster are stored in the weights associated with the 
connections between the input and output nodes. The second stage evaluates the fuzzy 
membership values for each profile strip in the set of classified clusters. 

Neural Network process 

The process of unsupervised clustering and classification uses a topology and weight change 
two-layer neural network (NN). The number of input nodes is equal to the number of patterns 
(M) in each soil profile strip. The number of output nodes is equal to the number of clusters. 
Since the number of clusters is determined through the classification process, the topology of 
the NN is changed and dynamically self-organized during the classification process. The profile 
strips are classified one by one. First, a NN with M input nodes and one output node, denoted 
as Φ(M,1), is generated and the first profile strip inputted. At this point, the first profile strip 
belongs to the first cluster. Then the second profile strip inputs into the network. If the second 
strip classifies to the first cluster, the output node, representing the first cluster, becomes active. 
In this case, the topology of the neural network does not change, but the connection weights 
update using a recursive estimate algorithm. The topology of the neural network is still a Φ(M,1) 
network. On the other hand, if the second strip classifies as a new cluster, an additional output 
node adds to the NN. The values of weights in the original NN do not alter. In this case, the 
topology of the NN modifies as an Φ(M,2) network. The classification follows this procedure until 
all the profile strips are classified. This unsupervised classification process is shown 
schematically in figure 2. 



 

5 

 

The classification of a soil profile strip into an existing cluster, or a new cluster, uses the concept 
of maximum likelihood. We define a function D(X C), called the degree of difference, to 
represent the difference between a profile strip X and a cluster C. This function maps two given 
vectors (X and C) to a real number (D). The patterns of each cluster (means of the patterns of 
the strips in the cluster) are stored in the links (weights) of NN during the classification process. 
A threshold value k is predefined as a crossover value. The implementation scheme is as 
follows:  
 

Equation 1. Calculate the degree of difference, D(X,C), between the profile strip, X 
and each cluster, Ci. The function D(X,C) is defined as the Euclidean 
distance represented by : 

 ( )
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Equation 2. Find the smallest degree of difference, Dmin, and assign the cluster with 
the smallest degree of difference as an active cluster. 

 ( ){ }{ }PiCXDCC iactive ,....,2,1,,min == .............................................. (2) 

Equation 3. Compare the value of Dmin with a predefined crossover value k. If the 
value of Dmin is greater than the crossover value, the profile strip is 
classified as a new cluster. 

 { }PiCXDkifXCnew ,...2,1),,(min~, =<= .....................................(3) 

The similarity function is the Euclidean distance between strip (X) and cluster (C). If the 
Euclidean distance for a given strip is less than the crossover value, the strip belongs to the 
cluster C and the fuzzy membership value is between zero and one. Otherwise, the strip does 
not belong to the cluster and the fuzzy membership value is equal to zero. 

Classified as a
new cluster?

Topology 
change 

Weight 
change Patterns 

C
lusters 

No

Yes

Membership functions 

Data space 

Neural clustering & 
classification 

Figure1 – Approach for determine 
membership functions of clusters 

Figure 2 – Unsupervised neural 
networks classification process 
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Evaluating Fuzzy Membership Functions 
After the process of neural classification is completed, classified clusters may be disjoint or 
partly overlapping. If the clusters are completely disjoint, each given strip in the soil profile 
belongs to only one of the classified clusters. However, if the classified clusters are partly 
overlapping, a given strip in the profile may belong to more than one cluster. In this case, the 
boundaries of the classified clusters are fuzzy rather than crisp. The algorithm for evaluating the 
membership functions assumes that there is a prototype for each cluster, defined as the mean 
of all profile strips in that cluster, and the degree of membership of each strip in the cluster is 
how similar this strip is to the prototype one. The similarity is a function of distance between the 
strip and the prototype of the cluster. Based on the triangular-shaped membership function, the 
fuzzy membership value of the X strip in the cluster C, µC(X), is defined as: 

 ( ) ( )( )
( )

( ) ( )
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Program development 

The program was implemented using MATLABTM (2001), a software package for high-
performance numerical computation and visualization. MATLAB offers programming features 
with hundreds of built-in functions that allow quick manipulation of data sets in a wide variety of 
ways. In addition, there are 'Toolboxes' for special application of neural networks and fuzzy 
systems. MATLAB offers graphical user interface (GUI) tools that allow the use of MATLAB as 
an application development tool.  
 

Application and Results 
The F-NN classifier accepts the GPR data in a two-dimensional format (lines x sample) that 
consists of continuous pixels. Each pixel value in the array represents the reflective intensity of 
multivariate soil properties in the actual soil profile. The digital intensity values range 0 - 65535, 
with zero representing no reflection and 65535 as maximum reflection. The image was 
decomposed into a reduced number of pixels by averaging the pixel values contained in 170 
lines by 200 samples. The resultant line vectors each represent arbitrary soil horizons and the 
column vectors each represent a soil profile strip. The decomposed data was normalized to 0-
100 scale to reduce the dimensionality of multivariate properties present. The classifier reads 
the pixel values of the profile strips through a classifier window passed a long the traverse. The 
ability of the F-NN to classify soils on the basis of properties and sequence of similar horizons is 
illustrated by its application to classify an idealized hypothetical soil profile with distinct 
diagnostic horizons shown in figure 3. 
The idealized profile consists of distinct diagnostic layers (black) located at two depths within a 
uniform soil profile formation (gray). Visual inspection and interpretation of the profile results in 
four soil classes (i.e. C1, C2, C3, and C4). Class C1 is uniform throughout its depth, class C2 
has a diagnostic layer located in its lower half depth, class C3 has a diagnostic layer located in 
both halves of its depth, and class C4 has the diagnostic layer located in the upper half of its 
depth. Application of the F-NN to this data at a tolerance value of 1.0 resulted in 100% 
agreement with visual inspection and interpretation as illustrated by the step plot in figure 3. 
Each stair in the plot represents a class in the profile, and stairs at the same level infer similarity 
in soil properties. These results confirm the validity of the F-NN approach. 
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Next, the F-NN was applied 
to real world data that were 
obtained from GPR 
surveying of two sites located 
in the southeastern U.S. Site 
1 is at the Ames Plantation 
located in the Coastal Plain 
Region of Tennessee The 
soils are formed in variable 
depths (<1 to 2 m) of loess 
overlying alluvium deposits 
underlain by tertiary-aged 
sand deposits. Site 2 is 
located in the Cumberland 
Plateau near Crossville, TN. 
The soils are fine sandy loam 
and loam, both underlain by 
sandstone bedrock found in 
the upper one meter of the 
soil profile.  
The radagrams and the 
resulting F-NN classifications 
at the two sites are given in 
figures 4 and 5 respectively. 

The horizontal scale on the radargram represents units of distance along the traverse, while the 
vertical scale represents soil depth. The radargrams consist of interfaces displayed in groups of 
multiple bands that represent different soil horizons, hard pans, strata, and/or water table that 
are present within the soil profile. The different tones represent other soil properties such as 
texture, color, structure, moisture content, and organic mater content. The horizontal changes in 
vertical properties of soils are inferred from changes in the intensity and width of the bands. The 
profile image at site 1 show gradual changes in the tone and width of the bands within line 
ranges 0-40, 80-110, and 340-370 as we move along the traverse. The profile image at the site 
2 has a single distinct horizon (bedrock) cutting across a soil profile with rather uniform 
properties. The distinct horizon varies in depth, width, and consistency along the traverse. 
Sections of fractured bedrock are observed at different portions along the traverse (i.e. sample 
range 0 – 1100; 1600 –1800; and 2500 –2900). The locations of all the class division 
boundaries in both profiles are not obvious from visual inspection. 
Application of the F-NN to the radargrams results in a number of clusters and classes 
determined by the crossover value. There are more clusters at lower crossover values than at 
higher values. For example, at site 1 (Fig. 4), crossover values 2.0, 3.0, and 3.7 results in 9, 4, 
and 2 classes respectively. At lower crossover values, the computed fuzzy membership values 
indicates no overlapping in clusters and at higher levels, there is some overlapping. The same 
trend of clustering and classification is observed with data at site 2 (Fig. 5). The number of 
clusters and classes at crossover values of 4.5, 5.5 and 6.5 where 7, 4, and 3 respectively. The 
choice of crossover value appears to depend on internal variability of the profile and the level of 
resolution required in the classification. Careful visual inspections of the radargrams indicate 
that F-NN used the depth, width, and dispersion of diagnostic features in the layers to cluster 
and classify the profile. Some obviously similar sections of profile clusters in the same class. 

Figure – 3. Idealized hypothetical soil profile 
with distinct  horizons  
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Conclusion 
Soil classification has 
traditionally emphasized both 
the arrangement and 
properties of individual soil 
horizons. The F-NN classifier 
satisfied this tradition by 
making classification on the 
basis of properties and 
sequence of component 
horizons. The contribution of 
this method lies not only in 
the possibility of processing 
large amounts of data 
generated by GPR, but also 
provides a more rational 
classification of soils based 
on quantitative evaluation of 
soil properties rather than 
classifications based on 
descriptive properties. 
Possibilities exist supply for 
interfacing this method with 
other tools like GPS and GIS 
to provide real-time soil maps 
during field surveys. 
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