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ABSTRACT

Zhuang, Xin. M.S.E., Purdue University, December 1990. Determining Crop Residue Type and

Class Using Satellite Acquired Data. Major Professor: Bernard A. Engel.

Landsat TM data for March 23, 1987 and April 26, 1988 with accompanying ground truth

data for the study area in Miami County, IN were used in this study to determine crop residue

type and class. Principal components and spectral ratioing transformations were applied to the

Landsat TM data. One GIS layer of land ownership was added to each original image as the

eighth band of data in an attempt to improve classification. Maximum Likelihood, Minimum

Distance, and neural networks, which are an emerging artificial intelligence technique, were

used to classify the original, transformed and GIS-enhanced remotely sensed data. Crop resi-

dues could be separated from one another and from bare soil and other biomass. Two types of

crop residues and four classes were identified from each Landsat TM image. The Maximum

Likelihood classifier performed the best classification for each original image without need of

any transformation. The neural network classifier was able to improve the classification by

incorporating a GIS-layer of land ownership as an eighth band of data. The Maximum Likeli-

hood classifier was unable to consider this eighth band of data and thus its results could not be

improved by its consideration.



I. INTRODUCTION

Cropresiduesaretheportionsof acropthatareleft in thefieldafter harvest. They are a

tremendous natural resource -- not a waste as some have termed them. They add organic matter

content to soils and this adds plant nutrients; improves soil structure; influences soil water, air,

and temperature relations; helps control runoff and erosion; and makes tillage easier. Crop resi-

dues can also improve water quality. Therefore, the management of crop residues has a large

impact on the quantity and quality of soil and water resources.

Soil erosion is a problem in the United States. Water erosion is more serious than wind

erosion in Indiana and most of the Midwest. Recent U.S. Department of Agriculture surveys

(Mannering, 1990) of average erosion rates on Indiana cropland estimate 7_h tons per acre per

year on gentle slopes (2-6%), 11 tons annually on moderate slopes (6-12%), and 29 tons on

steep slopes (12-18%). This indicates that on sloping croplands the rates of soil loss are exceed-

ing the annual rate of soil formation, which is considered to be about five tons per acre or less.

Erosion rates greater than five tons per acre will eventually reduce soil productivity.

Studies relating cropland agriculture to water quality show that 4-5 billion tons of sedi-

ment are being deposited in this nation's streams each year, with over half coming from crop-

land (Mannering, 1990). It gets there largely as a result of runoff associated with rainstorms.

Moreover, sediment often carries chemicals, such as phosphorus, that cause contamination of

water.



Conservation tillage is the best nation-wide solution to maintaining soil productivity and

improving water quality. A conservation tillage system is a tillage system which reduces runoff

and soil loss either by: 1) leaving appreciable crop residues on the soil surface; 2) leaving the

surface rough and cloddy or ridged; or 3) a combination of the two.

Surface residue is effective because it protects the soil from detachment; it minimizes sur-

face crusting, thus increasing infiltration rates; and it slows runoff velocities, thus reducing its

ability to transport sediment.

Research on residue effectiveness in reducing soil erosion (Wischemeier, 1978) showed

that if 50% of the surface is covered, soil loss will be reduced to 32% of that with no mulch

present. A surface cover of 80% will reduce soil loss to 13% of that with no mulch, and 100%

cover will practically eliminate soil loss. At low mulch application rates, a well-anchored mulch

covering 20% of the soil surface will reduce soil loss to 60% of that with no mulch.

Modeling soil erosion is useful for understanding its control. Several soil erosion models

require residue cover data. They include the Universal Soil Loss Equation (USLE)

(Wischemeier and Smith, 1978), the Areal Nonpoint Source Watershed Environmental

Response Simulation (ANSWERS) (Beasley et od., 1980), the Water Erosion Prediction Project

(WEPP) (Foster and Lane, 1987), and the Chemical, Runoff and Erosion Agricultural Manage-

merit System (CREAMS) (Knisel, 1980).

The estimation of cropland residue cover is vital for conservation tillage programs. Five

methods of estimating crop residues have been commonly used. They are the meterstick method

(I-lartwig, 1978), the line-transect method, the photographic method, the scanning microdensi-

tometry method (Lowery et al., 1984), and the empirical method (Hill et al., 1989). Each of

them has limitations to a range of cover and topographic conditions.



Remotelysenseddata,suchassatelliteimageshavebeenusedin theapplicationsof crop

inventoryandlanduseandhavepotentialfor determiningcropresiduetypeandamount.One

satelliteimagecoversamuchlargerareathantheconventionalmethodsmentionedpreviously.

Forexample,aLandsatTM scenecovers185x185km2.Giventhegroundtruthcorresponding

toaportionof asatellitescene,thescenecanbeclassifiedtoestimatecropresiduecover.Based

onresearchin theareaof remotesensing,thehybridclassificationof satelliteimages,i.e.the

combinationof supervisedclassificationsand unsupervisedclassifications,nearlyalways

presentsthebestsresultfortheapplicationsofcropinventoryandlanduse.

Researchin thedisciplineof artificialintelligencehasshownthatneuralnetworks,one

branchof artificialintelligence,arethe latestalternativefor classificationof multispectral

remotelysenseddata.A neuralnetwork(NN)isacomputingsystemwithanumberof simple,

highly interconnectedprocessingelementswhichprocessinformationin parallelby their

dynamicstateresponseto extemalinputs.Theclassificationof asatelliteimageusinga neural

networkwithback-propagation,whichis a widely-usedlearningrulefor neuralnetworks,is

calledneuro-classification in this research.

Although neuro-classification follows procedures similar to conventional (statistical)

classifications such as Maximum Likelihood and L1 Minimum Distance, it has major advan-

tages over them in terms of statistical assumptions. In addition, it can theoretically integrate

non-remotely sensed data into the process to improve classification accuracy. However, neuro-

classification did not perform better than conventional classifications on a very high dimen-

sional (more than 20 channels) image (Benediktsson et al., 1990b).



1.1 Objectives

Theprimaryobjective of this research is to develop methods for determining crop residue

type and class using satellite data.

Specific objectives required to achieve the primary objective are:

1. to determine crop residue type and class (amount) using conventional classification

methods.

2. to explore improvements to classification methodology using neural networks.

3. to make a comparison of the classification results from objectives 1 and 2.

1.2 Organization

This thesis documents the methodology of estimating crop residue cover using remotely

sensed data and several remote sensing techniques.

The next chapter, LITERATURE REVIEW, reviews the related background literature.

The first portion of this chapter includes several remote sensing techniques and applications in

agriculture. The second portion of this chapter is a review of neural networks which are an

emerging artificial intelligence technique, including the concept, a most commonly-used learn-

ing algorithm, back-propagation, and the application in image classification. The third portion

of this chapter examines five conventional techniques for measuring crop residues. These

methods are the meterstick method, the line-transect method, the photographic method, the

scanning microdensitometry method and the empirical method.



Chapter3 is MATERIALS AND METHODS. It describes the data resources, ground

truth data processing, neural network classifiers and the remote sensing methods for estimating

crop residue cover developed in this study.

The next chapter, RESULTS AND DISCUSSION, presents and discusses the results

obtained from all methods used in this study. Comparisons for the different methods are made

based on the results. Consequently, the best methods are recommended.

Chapter 5 presents a SUMMARY AND CONCLUSIONS from this study. The final

chapter, RECOMMENDATIONS FOR FURTHER RESEARCH, provides suggestions for

further study.



2. LITERATUREREVIEW

This chapter will review: applications of remote sensing related to agriculture; neural net-

works with a learning rule suitable for image processing; and methods of estimating crop resi-

dues.

2.1 Remote Sensing

The review of image transformations, three conventional types of classification of

remotely sensed data, and the applications of remote sensing in agriculture follows.

2.1.1 Image Transformation

Image transformations can either enhance multispectral image data or improve image

classification. This review focuses on the two most-commonly used transformations, spectral

ratioing and principal components.

Spectral Ratioing

An image generated from spectral ratioing is the enhancement resulting from the division

of digital number values in one spectral band by the corresponding values in another band. It is

often useful for discriminating subde spectral variations in a scene because of the following two



reasons(Mather,1987):a) certainaspectsof the shape of spectral reflectance curves of dif-

ferent Earth-surface cover types can be brought out by ratioing; and b) undesirable effects on

the recorded radiances such as the effect of variable illumination resulting from variations in

topography can be reduced.

Principal Components

The principal components transformation is used to transform image data to uncorrelated

data in a new coordinate system and to reduce the dimension of multispectral information. That

is, the principal components transformation is one of the techniques designed to compress the

multispectral information into a smaller number of bands. As a preprocessing procedure prior to

image classification, this transformation generally increases the computational efficiency of the

classification process because of the uncorrelated transformed data and the ability of analysis

based on a smaller number of bands. All of the information represented are usually dominated

by the first few components in the new coordinate system and this subset of wavelength bands

may then be used for viewing and for classification. However, the importance of the lower-

order principal components was pointed out by P.M. Mather (1987). The principal components

transformation does not enhance separability since it is a linear transformation that rotates and

translates the original coordinate system.

2.1.2 Image Classification

The purpose of computer classification of remotely sensed data is to categorize all pixels

based on their numerical properties into physical classes. One way to categorize conventional

types of classification is as follows:



a. supervised,

b. unsupervised,and

c. hybrid, i.e. the combination of supervised and unsupervised.

Supervised Classification

In supervised classification, every pixel is categorized into one of the training classes

which are determined from ground reference data. Training fields are chosen interactively by

the analyst.

L1 Minimum Distance is one of the supervised classifiers that identifies an unknown

pixel by computing the absolute distance between the value of the unknown pixel and each of

the information class means. The information category means are calculated before

classification. An example of this classifier is illustrated in Figure 1. The unknown pixels have

been plotted at points 1 and 2. The distance between unknown pixel 1 and each class mean

value is shown by dashed lines in Figure 1. After computing the distances, the unknown pixel

(Pixel 1) is assigned to the "closest" class, in this case "com."

L1 Minimum Distance is mathematically simple and computationally efficient, but it has

certain limitations. Most importantly, it is insensitive to different degrees of variance and corre-

lation in the spectral response data (Lillesand and Kiefer, 1987). In Figure 1, unknown pixel 2

would be assigned by this classifier to the category "sand," in spite of the fact that the greater

variability in category "urban" suggests that "urban" would be a more appropriate class assign-

ment Because of such problems, this classifier is not widely used in applications where spec-

tral classes are close to one another in the measurement space and have high variances.

Maximum Likelihood is the most widely used supervised classifier for remote sensing
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imagedata.It quantitativelyevaluates both the variance and covariance, as well as the mean, of

the class spectral response patterns when classifying an unknown pixel. Under the assumption

of normality, the distribution of a class response pattern can be completely described by the

mean vector and the covariance matrix. Given these parameters, we may compute the statistical

probability of a given pixel value being a member of a particular land-cover class.

Compared to L1 Minimum Distance, Maximum Likelihood almost always presents an

acceptable result, if the distribution of data is Gaussian, though it is mathematically and compu-

tationally complicated. Figure 2 illustrates a Maximum Likelihood classifier applied to the same

data set as shown in Figure 1. In this case, the classification of unknown pixel 1 was in agree-

ment with that in Figure 1, but unknown pixel 2 was correctly identified as "urban" by the Max-

imum Likelihood classifier.

L1 Minimum Distance and Maximum Likelihood are often used because they are easily

implemented on a computer. As described above, LI Minimum Distance considers only the first

order statistic, mean; while Maximum Likelihood includes both the first order and second order

statistics, mean and covariance. Therefore, the latter one is better in classification than the

former one if the decision boundaries are not easy to separate the classes in the measurement

space.

Unsupervised Classification

In unsupervised classification, all pixels in an image are first aggregated into the natural

spectral groupings or clusters presented in the scene based on the given criteria. There is no

training data as the basis for classification. Then, these clusters are identified and labeled by

comparing to ground reference data.
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Hybrid Classification

Usually, ground reference data are available for only a portion of the area of an image. It

is difficult to select training samples for some areas such as rivers and streams. Therefore, the
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typesof classification described above have to be used together. In classification, training sam-

ples are first chosen for the fields for which ground reference data has been collected. Then clus-

tering is performed for those areas without ground truth data or for which adequate pixels can-

not be selected. The clustering groups are labeled and added into the training samples as a

whole afterwards. Finally, the image is classified based on the entire training set using the

supervised approach. The entire process is called hybrid classification. Hybrid classification

almost always gives a higher result accuracy than either supervised or unsupervised

classification alone.

2.1.3 Remote Sensing Applications in Agriculture

The development of remote sensing started more than twenty years ago. Certainly, there

are more than the two applications in agriculture which will be described below. However, what

is presented here focuses on applications in crop inventory and soils.

Crop Inventory

Crop inventory has long been recognized as an important application of remote sensing.

With the rapidly increasing world demand for food, the value of accurate and timely crop pro-

duction information is substantial. The wide-area, sequential coverage from Landsat combined

with the capabilities of computer processing offers a new opportunity to improve the accuracy,

precision and timeliness of crop production estimates.

Quantitative evaluations of computer processed Landsat data show that major crop

species can be accurately identified. Comparisons of area estimates from Landsat classifications

and conventional surveys agree well, and the Landsat estimates have a very small sampling
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errorcompared with estimates from ground surveys (Colwell, 1983). Current investigations are

verifying the applicability of computer-aided analysis of Landsat data for identifying crops and

making area estimates over a wide range of environments with differing soils, weather and cul-

tural practices.

In other studies the use of remotely sensed data for determining crop condition and

predicting yield is being investigated. The extent and severity of stresses, such as disease and

&ought, have been determined from remotely sensed data. At this time, remotely sensed data

are being used for the prediction of crop yields.

Soils

Soil investigations, soil survey, and soil mapping are three types of applications using

remotely sensed data. They include three kinds of studies: the effects of soil properties on

reflectance, the influence of soil surface conditions on reflectance, and the use of imagery in soil

mapping (Wu, 1988).

The research on the characteristic variations in soil reflectance (Baumgardner and Stoner,

1982) showed five distinct soil spectral reflectance curves (see Table 1 and Figure 3), consider-

ing curve shape, the presence or absence of absorption bands, and the predominance of soil

organic matter, iron oxide composition and soil moisture. The results are important for the

study of spectral reflectance of low residue cover since reflectance is influenced by soil beneath.

Remotely sensed data also were used to monitor conservation tillage practices with an

acceptable classification accuracy (DeGloria, 1986) and to estimate the crop rotation (C) values

for the USLE (Stephen, 1985). The estimation of crop residues using remotely sensed data will

be described in more detail following the next section.
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!

2.4

Figure 3. Representative reflectance spectra of surface samples of five mineral soils (Table 1):

a. organic-dominated (high organic content, moderately fine texture)

b. minimally altered (low organic, medium iron content)

c. iron-affected (low organic, medium iron content)

d. organic-affected (high organic content, moderately coarse texture)

e. iron-dominated (high iron content, fine texture)

(Source: Baumgardner and Stoner, 1982)

2.2 Neural Networks

Development of neural networks in engineering in recent years has been rapid and

surprising, although neural networks have been studied biologically for a couple of decades.

Applications of neural networks include pattern recognition, knowledge data bases for stochas-

tic information, optimization computation, robot control and decision making. Neural networks
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havebeenproposedfor tasksrangingfrom battlefieldmanagementto mindingthe baby

(Wasserman,1989).Potentialapplicationsarethosewhereintelligentfunctionsareperformed

effortlesslyandconventionalcomputationhasprovencumbersomeor inadequate.

The followingsectionintroducesthe conceptsof neuralnetworks,back-propagation

(whichis a widely-usedneuralnetworklearningalgorithm)andclassificationof remotely

senseddatausingneuralnetworks.

2.2.1 NeuralNetworkTerminology

Neuralnetworksarebrain-likecomputers.Like all computers,theyhavehardwareand

software.Whatispresentedin thefollowingsectionfocusesontheirsoftware.

Thehumanbrain is the oldest,the mostcomplex,powerfulandmystifiedcomputer

knownto man.Thebrain'spowerfulthinking,remembering,andproblem-solvingcapabilities

haveinspiredseveralgenerationsof scientiststo attemptcomputermodelingof its operation.

Somescientistshavesoughtacomputermodeltomimicthefunctionalityof thebraininavery

simplifiedmanner,i.e.thestudyof neuralnetworks.

What is a Neural Network?

A neural network is a computing system that is made up of numerous simple, highly

interconnected processing elements which process information in parallel by their dynamic state

response to external inputs. This means that the neural network does not execute a series of

instructions; it responds, in parallel, to the inputs presented to it. The results are stored in both

distributed and associative memory, namely called neural computing memory, after it has

reached some equilibrium condition. Neural networks don't "execute programs" as much as
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they"behave",givenaspecificinput.Instead,they"react,""self-organize,""learn,"and"forget"

(Caudill,1988).

Neuralnetworkscanmimic thehumanbrainfunctionallyin that therearedifferent

weightsfor connectionswhicharesimilarto thoseonhumansynapses(ZhuangandEngel,

1990a).Thisisakeypointforneuralnetworkapplicationsinmanyareas.

Neuralnetworksdonotworkwellatprecise,numericalcomputationsuchascalculating

thepayroll(Wasserman,1989).Ontheotherhand,this formof computationis notanatural

applicationfor peopleeither.A neuralnetworkisanexcellentpartnerto moretraditionalsys-

tems,suchasexpertsystemsor simulation.Combined systems will coexist with neural net-

works performing the tasks for which they are best suited.

The Brain and Neural Networks

The structure of neural networks in contrast with the nervous system will be described.

The neuron is the fundamental cellular unit of the nervous system and in particular of the brain.

In a neural network, the corresponding unit is a processing element (PE). Figures 4 and 5 illus-

trate the structures of a neuron and a PE, respectively. The basic components of a neuron and a

PE are listed in Table 2.

The human brain consists of tens of billions of densely interconnected neurons. However,

a neural network usually is made up of several thousand PEs at most, considering the capability

and speed of a computer. They join in a manner similar to that shown in Figure 5. Elements are

then organized into a sequence of layers which can be described by matrices with full or ran-

dom connections between successive layers.
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Figure 4. Structure of a neuron.
(Source: NeuralWare, 1989)
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Figure 5. Structure of a processing element.
(Source: NeuralWare, 1989)
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Table 2. Neuron and processing element components.

Component Name

Nucleus
Sum & Transfer

Function

Dendrite

Input Path

Axon

Output path

Synaptic strength

Weight

Function

Receives & combines signals from its dendrites.

Combines input values and thresholds them.

Channel from other neurons.

Channel from other PEs.

Passes output signals to other neurons.

Passes output signals to other PEs.

Amount of signal transferred across synapse"

A major parameter of connection

* Synapse : a junction from a neuron to the dendrites of another one.

Neural Network Operation

There are two main phrases in the operation of a neural network -- learning and recal

(NeuralWare, 1989). Learning is the process of self-adjusting the connection weights in

response to stimuli presented at the input layer and optionally at the output layer. If a desired

output to a given input is shown, the learning is supervised learning; if a desired output is not

shown, the learning is unsupervised learning. There is still a third kind of learning falling

between supervised and unsupervised learning called reinforcement learning where an external

teacher indicates whether the response to an input is good or bad. Recall refers to how the net-

work globally processes a stimulus presented at its input layer and creates a response at the out-

put layer.
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2.2.2 Historical Perspecdve

The work of scientists and biologists in the past thirty years has shaped the development

of neural networks. The first project in neural computing, Perceptron (NeuralWare, 1989), was

initiated in 1957 by Frank Rosenblatt at Comell Aeronautical Lab. Two years later, Bernard

Widrow, at Stanford University, contributed a great deal in neural computing with his adaptive

linear element called Adaline (Widrow and Hoff, 1960). James A. Anderson continued his

work developing the linear associator (NeuralWare, 1989). Can neural networks self-organize?

The answer is provided by the Kohonen model, proposed by Teuvo Kohonen of the Helsinki

Technology University in Finland. Self-organization (Kohonen, 1984) means to learn without

being given the correct answer for a set of inputs. The neurode wins through competitive leam-

ing. This kind of philosophy is called "winner takes all". One of the most complex neural net-

works ever invented was developed by Stephen Grossherg and Gall Carpenter of the Center for

Adaptive Systems at Boston University which is based on adapave resonance theory (ART)

(CaudiU, 1988). ART networks and algorithms maintain the plasticity required to leam a new

pattern, while preventing the modification of patterns that have been learned previously

(Wasserman, 1989).

2.2.3 Back-propagation

The most popular, successful and widely used learning algorithm today is back-

propagation. To solve a problem with a back-propagation network, you show it training inputs

with the desired outputs, namely called I/O pairs, over and over, while the network learns by

adjusting its weights on connections. Once it arrives at the desired error, it will have found a set
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of weights that produce the correct output for every input, and remembers these weights which

will be used to solve the problem.

backward

error

flow

f

(.
J I J

forward

activalion

flow

Figure 6. Activation flows forward while errors flow back through the network.

Back-propagation consists of two passes, as shown in Figure 6. which are the forward

pass and backward pass. In the forward pass, inputs proceed through the network and generatc

an output. Then, in the backward pass, the difference between the actual and desired outputs

generates an error signal that is propagated back through the network to teach it to come closer

to producing the desired output.

The first generation of the back-propagation algorithm was the Delta rule or Least Mean

Squared (/..MS) rule (Widrow and Hoff, 1960). The best known network using the Delta rule is

called ADALINE which uses the Delta rule to adjust the weights on its input connections to

learn to son input patterns into categories. Another generation of the Delta rule is called the

generalized delta rule which adjusts the weights on internal units based on the error at the out-
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2.2.4 Neuro-classification
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Although improvements in remote sensing techniques have been made continuously, few

of them have had the impact on quality and quantity of classification as has classification using

mural networks. Neuro-classification of Landsat data has created a new horizon for remote

sensing.

The advantage of neuro-classificafion over conventional approaches lies in that we do not

need to make a distribution assumption about the image data, and can easily combine other than

remotely sensed data that may improve the classification accuracy. Neuro-classification is non-

parametric. The key point of successful neuro-classification is the representativeness of its

training data.

Neural networks have been applied to several types of classification of multispectral

remotely sensed data. Neuro-classification, when applied to Landsat MSS data merged with

geographic data including elevation, slope, and aspect, was better than conventional

classifications (Benediktsson et al., 1990a), and was worse than them when it was employed to

very high dimensional data (more than 20 channels) (Benediktsson et al., 1990b). A four-band

(bands 1, 2, 3 and 4) Landsat TM image (459 x 368 pixels ) with four land-cover classes (water,

urban, forest and grass) was classified by Hepner et al. (1990). It was concluded that the neural

classifier, which used a minimal training set compared with the Maximum Likelihood classifier,

performed well for all areas including those for which the conventional approach did not.

Decatur's (1989) conclusion conceming his classification of the SAR data (896 x 1024 pixels)
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with threeclasses(urban,parkandocean)wasthattheneuro-classifierpresentedbetterresults

thantheBayesianclassifierwhenaccurateassumptionsaboutprobabilitydensityfunctions

couldnotbemadeandapriori probability could not be given. A merged image of AVHRR and

SMMR data for an Arctic area was classified by Key et al. (1989) using traditional and neural

classifiers. They showed that the neural classifier had greater flexibility than the Maximum

Likelihood classifier for classifying indistinct classes, for example, classes containing pixels

with spectral values that differ significantly from those in the training areas, while ignoring

assumptions of statistical normality.

2.3 Estimation of Crop Residues

Crop residue cover estimation is not only useful in planning field operations to maintain

erosion control and water quality but is sometimes needed to determine if a particular field

qualifies for certain federal, state, or local conservation programs (Hill et al., 1990). It is also

useful for determining pesticide and fertilizer application rates.

2.3.1 Traditional Methods for Estimating Crop Residues

Following are five methods for estimating the percentage of crop residue cover in an area.

They are the meterstick method, the line-transect method, the photographic method, the scan-

ning microdensitometric method, and the empirical method. The first four are accomplished

with field observations; the last requires generalizations and calculations and is used primarily

for conservation planning purposes.
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Meterstick Method

The meterstick method (Hartwig et al., 1978) involves placing a meterstick on the soil

surface perpendicular to the plant row. Beginning at one row and ending at an adjacent row, the

total length of residue under the meterstick, along one edge of the meterstick, is measured. The

percentage of the total row width covered by residue is the residue cover value. The meterstick

method is seldom used now because of the effort required to collect the data.

Line-Transect Method

For the line-transect method (Hill et al., 1989), a commercially available tape or rope, 50

feet long, is stretched diagonally across the crop rows (see Figure 7). The percentage of residue

is then determined by counting the number of foot marks that intersect or lie directly over a

piece of residue and multiplying by two. At least five measurements at sites typical of the entire

field, except in turn-way areas, are taken and averaged to obtain the residue estimate.

The line-transect method is actually a sampling procedure used to estimate the percentage

of the length of a line over residue. If used properly, without operator bias, it is an accurate

method. However, significant effort is required to collect the residue data.
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Figure7. Overview (inset) and close-up of the fine-transect method.
(Source: Hill et al., 1989.)

Photographic Method

The photographic method consists of photographing the area between adjacent crop rows

from a nearly vertical angle. The slide is then projected on a gridded screen. Residue cover is

the percentage of the intersections of the grid over residue. An alternative procedure is to photo-

graph a grid on the ground surface and to determine from the projected slides the percentage of

intersections over residue.

The photographic method is also a sampling procedure used to estimate the percentage of

an area covered with residue. However, it has a lower accuracy than the line-transect method

(Laflen et al., 1981). This method also requires a significant amount of time to collect residue

data for large areas.
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Scanning Microdensitometric Method

The scanning microdensitometer assigns digital values to light intensities on a photo-

graph. The device measures density by shining light through film lransparencies. The amount of

light passing through a transparency depends on the opacity of the image. The darker the image,

the less light passes through and the higher the density. The percentage of residue cover is

determined by the density (Lowery et al., 1984). The densitometric method produces results

with similar accuracies to the three methods discussed above but requires less time and labor.

Empirical Method

This method is different from those described above in that the empirical method calcu-

lates the likely percentage of residue cover after weathering and individual tillage operations,

rather than requiring field observation (Hill et al., 1989). This method is adequate for long-

range conservation planning and for predicting tillage effects on residue cover, although it is

less accurate on a year-to-year basis due to variation in weathering and tillage equipment use.

Table 3 shows the ranges in percent of residue remaining after various tillage or planting

operations. For a given implement, actual percentage remaining is a result of several factors,

including operating speed, operating depth, and soil and residue condition. In the table, the

lower end of the percentage ranges should be used for fragile residues like soybeans, while the

upper range corresponds to corn residue.
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Table 3. Influence of various field operations on surface residue remaining.

Tillige and planting Implements

Residue
remalnlng
after each
operation °

Moldboard plow 3 to 5%

Chisel plow
Straight points 50 to 80%
Twisted points 30 to 60%

Knife-type fertilizer applicator 50 to 80%
Disk (tandem or offset)

3" deep 40 to 80%
6" deep 30 to 60%

Field cultivator 50 to 80%
Planter

Smooth or no coulter 90 to 95%
Narrow ripple coulter 85 to 90%

(less than 13" flutes)
Wide fluted coulter 80 to 85%

(greater than 1.5" flutes)
Sweeps or double disk furrowers 60 to 80%

(till-plant)
Drills

Disk openers 90 to 95%
Hoe openers 50 to 80%

Winter weathering 75 to 85%

• Use higher values for corn residue and lower values
for fragile residue, such as from soybeans.

(Source: Hill et al., 1989.)

For an estimate of residue remaining after planting, a multiplication of initial crop cover

(approximately 95% for 120-bu corn, 85% for 38-bu. soybeans), winter weathering loss, and

the appropriate percentage for each operation that makes up a tillage-planting system is per-

formed. The empirical method provides only rough estimates since the variables involved

prevent accurate determination of residue cover. However, Table 3 can be helpful in comparing

tillage systems because it empirically gives the residue data remaining after specific tillage and

planting operations.
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Remotely sensed data, which refers to aerial photographs and satellite images, have

advantages in the range of cover and topographic conditions for which it is applicable compared

to the conventional methods for determining residue cover. This method could also substan-

tially reduce the field time needed to ensure compliance of agricultural conservation practices in

the U.S. Department of Agriculture cost-sharing programs (Whiting et al., 1987).

Compared to an aerial photograph, a satellite scene is less expensive on an area basis, less

disturbed, and larger in the area of cover, and thus, the estimation of residue cover using satel-

lite images is of interest for large areas and will be discussed further.

Using this method, the training and testing fields corresponding to sound ground truth

within the area of coverage are first selected. The ground truth of residue cover on the area can

be collected using one of the methods described in the previous sections or be calculated by the

empirical method according to information on crop yields, weathering, tillage and planting.

Then based on the satisfactory classification of these fields, the satellite image corresponding to

the entire area of interest can be classified to determine crop residues for the entire area.

The project that estimated crop residues in Seneca County, Ohio using Landsat TM data

showed that if sound ground truth could be obtained, determining crop residues using satellite

data could be a fast and cost effective way of monitoring tillage (Olsen, 1986). However,

improvements in the classification process and accuracy of results are needed.
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3. MATERIALSAND METHODS

3.I SiteDescription

A studyareaof approximately 2.56 x 103 acres was included in this research. It was com-

posed of sections 3, 4, 9 and 10 located in T28N, R5E Richland township of Miami County,

Indiana. The four sections' land uses included corn, soybeans, grasslands, forest, roads, an aban-

doned railroad, famlsteads and the Eel River. Portions of the area are owned by 58 farmers (see

Figure 8). This area is representative of much of northern Indiana and other Midwestem U.S.

states.

Figure 8. Ownership boundaries for sections 3, 4, 9 and 10.
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3.2 Data Sources

The following were the data sources utilized in this study:

1. Ground cover survey data for section 9 for years 1986, 1987 and 1988.

2. Landsat thematic mapper data for March 23, 1987, and April 26, 1988.

3. Copies of airphoto mosaics for Miami County, T28N, R5E Rich.land township, sections 3,

4, 9 and 10, 1987, approximate scale: 1:24,000.

4. USGS (U.S. Geological Survey) topographic map (Roann, Indiana Quadrangle),

1:24,000.

5. Digitized ownership map, scale: 1:24,000.

Since the latest Landsat TM data were not provided by NASA for this study, the

corresponding ground truth data had to be collected through a survey which will be described in

the following section. Theoretically speaking, ground truth data should be collected at the same

time as the satellite crosses the area of interest.

3.3 Ground Truth Data

Since the ground truth data could not be collected directly from the fields for the dates

corresponding to the Landsat data (March 23, 1987 and April 26, 1988), estimates of crop resi-

dues were obtained through a survey. Ground truth data accompanying the corresponding
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copiesof the flown aerial photographs of the area were provided by Jack Hart of the Coopera-

tive Extension Service office of Miami County, Indiana in the form shown in Figure 9. They

contain the information about ownership, field number, acreage, crop type, tillage-planting sys-

tems used, date of Fall or Spring tillage, date of planting, date of harvest, and soil management.

All survey data are listed in Appendix A. The copies of the flown aerial photographs are listed

in Appendix B. Crop yields were obtained in the form of average values from the Extension

office and are listed in Table 4.

Table 4. Crop yields including residue cover after harvesting for Miami County, Indiana.

Year Corn Soybeans Wheat Oats Hay

Cou/%) (bu/%) (bu) (bu) (tons)

1986 124 / 98%* 38 / 85% 44 79 3.1

1987 137/100% 44 / 98% 62 73 3.7

1988 80 / 63% 28 / 63% 48 44 1.7
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Residue cover percentage (i.e. ground truth data) was calculated by the following formula

(Hill, 1989):

R=IxWxTxP [3.1]

where

R is the residue cover percentage,

I is initial crop residue cover related to yields (given in Table 4),

W is the winter weathering loss (if not Fall moldboard plowed): 85% for corn and 75% for

soybeans.

T is the tillage operation(s) factor given in Table 3.

P is the planting operation factor given in Table 3.

The residue cover results are for the Spring after harvesting the crop. However, there were no

satellite data in agreement with the exact time for which residue data were available, and the

crops of com, soybeans and wheat were planted at different times. Therefore, besides the resi-

due cover after the spring planting, the residue cover percentage coinciding with each satellite

crossing date was also computed and listed in Tables 5 and 6.

As shown in each table, all information related to field number, acreage, crop type,

tillage-planting practices, harvesting time and crop yield were preprocessed and listed. The last

two columns in the tables refer to residue percentages: the first one corresponding to residue

cover after the next spring planting, and the second corresponding to residue cover on the satel-

lite crossing date of that year (March 23, 1987 or April 26, 1988).
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3.4 Neural Network Classifier

The learning algorithm used for the neural network classifier, back-propagation; the

neural network configurations used for classifications of original, transformed, and generated

images; the neural network software package used in this study; and its interface routines will

be discussed in detail in the following sections.

3.4.1 Neuro-classifier Algorithm: Back-propagation

The three-layer back-propagation system used by the classifiers previously shown in Fig-

ure 6 will be described. Its result can be extended to systems with more than three layers by

induction. A t-D input vector v shown in Figure 10, for which every component denotes a unit

(neurode or node) in the input layer, is first multiplied by the matrix N, which is a s x t matrix

and illustrates the connection between the input layer and the hidden layer, to produce a s-D

vector z for the set of hidden units:

z = Nv, [3.2]

and then z is multiplied by M, which is a r x s matrix and illustrates the connection between the

hidden layer and the output layer, to produce a r-D output vector u:

u = Mz. [3.3]

in which its every component denotes a unit in the output layer. Substituting Nv for z yields the

response for the composite system:
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u -- M('Nv). [3.4]

output

layer

hidden

.layer

Input

layer

II

13"
M

N

V

Figure 10. Network structure of a three-layer back-propagation system.

This equation relates the input vector v to the output vector u. Substituting W for (MN), the

equation becomes:

U = M(Nv) = (MN)v = Wv. [3.5]

The i, jth element of W is the inner product of the ith row of M with the jth column of N. Note

that matrix multiplication is not commutative. Figure 11 shows a matrix-mapping structure of

the three-layer back-propagation system. Therefore, there will be k transform matrices for a k+l

layered system; the number of transform matrices in a specific system equals the number of

layers minus one, that is:
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W= Nk...N2NI. [3.61

Here, Ni refers to the connection between the ith layer and the i+lth layer in one system. Note

that the order of multiplication is impmaant. The matrix denoting the connection with the suc-

cessive layer must be premultiplied each time.
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....
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Figure 11. Matrix-mapping structure of the three-layer back-propagation system.

nid : an entry of matrix N

mid : an entry of matrix M

In matrix notation the back-propagation algorithm can be written as:

W(n+l) = W(n) + rlS(n)vX(n)+ ot(W(n) - W(n-l)) [3.71

n = 1,2, • • •

where W(n) is the the state of the connection matrix after n presentations, v(n) is the input

presented on the nth presentation, 1] is the learning constant which is a scalar constant referring

to learning speed, ix is the momentum constant which is a scalar and determines the effects of
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pastweightson the convergence in weight space, and _ (n) is the difference between the desired

and actual output on trial n, such that

5(n) =t(n) -W(n-1)v(n) [3.81

where t(n) is the desired output for presentation n and W(n-1)v(n) = u(n) is the output actually

produced on that presentation. W(0) is assumed to be an identity matrix.

3.4.2 Neural Networks for Classification

Based on research previously done in neuro-classification of satellite image data, the

three-layer back-propagation scheme was employed for the neural networks used in this study.

The data preprocessing methods for neural networks including coding and connections are

described in this section.

Decimal coding was tested for the input layer, but the neural training did not converge.

This was most likely became the normalization of this coding diminished the feature of each

input unit rather than increasing it. If the normalization was not performed, the unit value range

was too great (256 levels) to learn for the neural network. Therefore, a two dimensional array of

units with binary coding was used for the input layer. Because 8-bit Landsat TM data was used,

each of the eight units of a column in the input layer referred to one bit and each of the units in

a row represented one spectral channel. Therefore, the two dimensional array was seven units in

row length by eight units in column length (i.e. 7 x 8 units) for Landsat TM data. Since each

image had different spectral features, each neural network had its own representation for the

hidden layer.
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Thermometer coding was adopted for the output layer. Units in this layer were designed

in one dimension, and the number of its units equals the number of spectral classes. For exam-

ple, class 5 out of 10 possible categories would be represented as 1 in the first five nodes and 0

in the remaining five nodes (e.g. 5 = 1 1 1 1 1 0 0 0 0 0).

The full connection was applied to the linkages of layers input to hidden and layers hid-

den to output. This indicates that each unit in a layer was connected with every unit in adjacent

layers. There were no connections between nodes located in a common layer. Although this

type of connection takes a lot of memory and computation, it makes the design of the network

simple, the weight-adjustment easy, and the training able to be monitored and adjusted.

o .............-o o.... OLIt_rt-hyQr

Hkldc_liy_'

Irput-llyer

Figure 12. Three-layer back-propagation neural network.
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3.4.3 Neural Network Configurations

The three-layer back-propagation configuration for the mural network classification was

used, as shown in Figure 12. Representations for each input layer, hidden layer, and output layer

for all neural networks used are listed in Table 7. As seen in Table 7, there are seven images

listed. In addition to the two original Landsat TM images (March 23, 1987 and April 26, 1988),

there were another five images which were transformed and generated from the original images.

They will be defined in later sections. The determination of representations for each input layer

was based on the definition in the last section. The representations for each hidden layer were

initialized with thirty units. After initial training, they were changed to arrive at the values

shown in Table 7. The rule for changing the initial number of units in a hidden layer was based

on the two monitoring parameters set up in NASA NETS. They are the Max and RMS errors. A

Max error was the maximum among the differences between each actual output and desired out-

put on the output layer, whereas a RMS error referred to the mot mean square of the differences.

If Max and RMS errors decreased very slow or did not decrease, increasing the number of hid-

den layer units was required; if Max errors decreased during 25 or 30 cycles, and then went up

again and stayed at a very high error value, decreasing the number of hidden layer units was

required. The reason for assigning seven units for every output layer will be discussed in a later

section as will information class creation.
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Table7. Representationsfortheneuralnetworkclassifiers.

Imagedescription Input layer Hidden layer Output layer

(units) (units) (units)

Landsat TM data

March 23, 1987
PC' transformed data

March 23, 1987
Landsat TM data

April 26, 1988
PC" transformed data

April 26, 1988
SR b transformed data

March 23, 1987
Landsat TM Plus c data

March 23, 1987
Landsat TM Plus c data

April 26, 1988

7 x 8 array

7 x 8 array

7 x 8 array

7 x 8 array

7 x 8 array

8 x8 array

8 x 8 array

35

25

35

35

21

35

35

7

7

7

7

7

7

7

aPrincipal components.
bSpectral ratioing.
CGIS-enhanced Landsat TM data.

3.4.4 NASA NETS 2.0

The neural network simulator tool used was NASA NETS (Baffes, 1989). It can be run

on a variety of machines including SUN workstations and PCs. The simulator's primary func-

tions are twofold: 1) to provide a flexible system for manipulating a variety of neural network

configurations using the generalized delta back propagation learning algorithm; and 2) to pro-

vide the general user community a means for learning about neural network technology without

the need for specialized hardware (Baffes, 1989). The NETS software used for image

classification was run on SUN SPARC workstations.

The interface routines, including those for converting an ERDAS BIL file (ERDAS,

1988) to an ASCII file, subsetting an image, encoding and decoding an image as required by
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NETS,andcomputingclassificationaccuracy,were written to make it possible for NETS to be

used for image classification. NETS was incorporated with MacLARSYS ° allowing it to be util-

ized more effectively because MacLARSYS provides a LIST function that can list training and

testing data or a portion of or an entire image in ASCII format. The results of classification can

be easily imported back into MacLARSYS for display. These routines for interfacing NETS

with MacLARSYS are listed in Appendix C.

3.5 Method for Estimating Residue Percentage

3.5.1 Preprocessing of Data

Although both TM data sets were collected in early Spring (March 23, 1987 and April 26,

1988), there were differences among them. In March, the weather is still cool, tillage-planting

practices have not yet started and there are no or few leaves growing on plants. In contrast, the

weather has changed significantly in late April, some fields have been tilled and planted, and

young leaves are growing on trees. The spectral response patterns were different in each of the

seven Landsat TM wavelength bands for the images, but the tendency of reflectance changes

followed a similar pattem. The spectral ranges for different wavelengths of all seven Landsat

TM bands are listed in Table 8. The color composition of band 4 (near infrared) for red, band 3

(red) for green, and band 5 (middle infrared) for blue was adopted for the data sets to enhance

MacLARSYS is an image processing software package running on the Macintosh computer

and has been developing by the Laboratory for Application of Remote Sensing (LARS) at
Purdue University, West Lafayette, Indiana.
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the visualization of crop residue classes when the image was displayed.

Table 8. The characteristics of Landsat TM data.

Wavelength Nominal spectral Spatial
Band (l_m) location resolution (m)

1

2

3

4

5

6*

7*

0.45 - 0.52

0.52 - 0.60

0.63 - 0.69

0.76 - 0.90

1.55- 1.75

2.08 - 2.35

10.4 - 12.5

Blue

Green

Red

Near-infrared

Mid-infrared

Mid-infrared

Thermal infrared

30

30

30

30

30

30

120

*Bands 6 and 7 were switched when the original TM images were down-loaded from tape.

Information Class Creation

According to the ground truth data, there were water, trees, bare soil (fallow), crop resi-

dues, and five types of pasture/grass including red clover, alfalfa, oats, CRP' and ACR '. Since

the focus of this research was on crop residues, the decision-making tree analysis method of

systems engineering was adopted to construct the decision-making tree of the information

classes. In order to look at how many branches, nodes, and leaves existed for the tree, a top-

down analysis was applied to the ground truth data. Two hierarchical decision trees of the infor-

marion classes resulted as shown in Figures 13 and 14 corresponding to the two TM data sets.

Then a bottom-up analysis was employed to produce the information classes from each tree.

Consequently, two sets of training classes were generated with seven training classes each as

listed in Figures 13 and 14. Therefore, there would he seven units in an output layer of each

neural network used for classification.

1 Conservation Reserve Program which could refer to weeds or grasses.

2 Agriculture Crop Reserve which could refer to different types of grasses.
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Principal Components

Principal components transformation was performed to enhance images with maximum

contrast and to make images visually more interpretable. Although principal components

transformation does not enhance separability for the traditional classification techniques as

reviewed earlier, it was employed to investigate whether neural network classification tech-

niques perform differently atter such a transformation. A neural classifier treated the

transformed data, which was uncorrelated after transformation in the multispectral vector space,

as a new image and determined the features from the transformed training data.

Principal components transformation was applied to the two Landsat TM data sets. Con-

sidering the awareness of the lower-order principal components reviewed earlier and the

configuration of the neural networks, all seven components were utilized in this study.

Spectral Ratioing

As reviewed in Chapter 2, an enhanced image can be generated from the division of digi-

tal values in one spectral band by the corresponding values in another band. These ratios clearly

portray the variations in the slopes of the spectral reflectance curves between the two bands

involved.

In this research, the difference between crop residues and bare soil was greater in band 5

than in band 6 for March data. Therefore, spectral ratioing was applied for crop residue discrim-

ination. The function of this computing procedure was a modification of the Normalized Differ-

ence Vegetation Index (NDVI) (Mather, 1987). It can be called the Normalized Difference Resi-

due Index (NDRI) and was defined as:
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Xs - X_
NDRI- x 255. [3.9]

X5 +X_

The symbols X5 and X_ refer to the values of Landsat TM bands 5 and 6, respectively. The

transformed data were used to replace the thermal infrared band of data (band 7) for the March

23, 1987 scene.

3.5.2 Classification Using Traditional Methods

With the aid of displaying an image given the color composition defined previously,

training fields were selected interactively for section 9. In addition to portions of known fields,

extra training data were chosen from the other three sections (sections 3, 4 and 10) based on the

spectral features of fields. The training data for class river were obtained by statistical cluster-

ing.

Two traditional methods, Maximum Likelihood and L1 Minimum Distance (reviewed in

Chapter 2), were used to classify images. The same procedure was applied to all image data.

3.5.3 Classification Using Neural Networks

Neural network training was different from the training approach for traditional

classification. However, the training data sets were the same in both cases to allow comparisons

of classification results. The training data sets used for traditional methods were first exported

from MacLARSYS. Then the digital values corresponding to each training field were binary-

coded, the class numbers matching each training field were thermometer-coded, and they were
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coupled as input-output pairs to be used as inputs for the training of the neural network

classifier.

3.5.4 Classification with the Aid of a GIS Layer

Motivated by the successful classification of Landsat MSS data merged with geographic

data (Benediktsson et al., 1990a) and the performance of neural networks integrated with GIS

(Arnold et aL, 1990), a GIS layer was incorporated into the neuro-classification technique. The

GIS layer was the ownership map associated with the four sections studied. It was digitized

using ERDAS and then added as an eighth band to the original Landsat TM image data, as illus-

trated in Figure 15. The eight-band merged data were called Landsat TM Plus.

band 8

Landsat TM Data

a GIS Ipyer _ Ownership

/ / / .._ /

Figire 15. Creation of Landsat TM Plus data.
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The reasons of chosing the ownership layer were that a) the boundaries representing dif-

ferent owners matched u-aining field boundaries, b) an enclosed region stood for one owner, c)

one area was coded with a digital number (i.e. there existed the same reflectance inside one

area), and d) the classification results may be improved because of the unique digital number

inside a polygon.

For these types of data, Maximum Likelihood sometimes does not work because one

spectral class may only exist inside one region. This means that the class exhibits the same digi-

tal value in the eighth band and thereby there is no variance in the band. Consequently, ele-

ments related to this band in the corresponding covariance matrix are zero and the determinant

for the covariance matrix is zero. Therefore, the covariance matrix cannot be inverted and

thereby Maximum Likelihood classification cannot be performed in this case. However, this is

not a problem for a neural classifier because it does not address the second order statistic, vari-

ance. Minimum Distance can also be applied to the classification of these types of data because

it considers only the first order statistic, mean.

Neural networks and L1 Minimum

merged eight-band data. All procedures

classifications of seven-band data.

Distance were used for the classifications of this

involved were similar to those adopted in the
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4. RESULTSAND DISCUSSION

4.1 SpectralBehaviorof CropResidues

Cropresiduecoverchangesasa result of the season's changing from Winter to Spring,

i.e., the temperature goes up and earth becomes defrosted in that time period. In Indiana, plant-

ing usually starts in April. Reflectance differences between crop residues and other biomass and

a river were included in this study. Spectral variations caused by the changing season are dis-

cussed in the following sections.

4.1.1 Discrimination of Crop Residue Cover in March, 1987

Figure 16 shows the spectral curves for the selected six-band Landsat TM data* of March

23, 1987, which were plotted based on the training class means in each of the six wavelength

bands. Each of them corresponds to one category in the study sections. There are three curves

indicating crop residues which are classes cornl50%, corn/83% and soybeans/64%. These crop

residue classes were previously generated from the corresponding ground truth data.

* Band 7, thermal infrared band, is not included in Figure 16 because of its 120m resolution.
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It can be seen in Hgure 16 that both intra-discrimination of crop residues, including

inside one category like corn, and inter-discrimination of biomass categories were distinguish-

able, especially in the first middle infrared wavelength, 1.55 to 1.75 lain. Class cornl50% had

the highest reflectance in this wavelength because it held less moisture than any other class.

Class river had the lowest reflectance in every band as water should exhibit. Classes corn183%

and soybeans�64% ranked in the middle but the former had a smaller digital number than the

latter in the middle infrared wavelength. Class forest showed the second lowest reflectance in

every band because leaves were not on trees at that time. Classes pasture�grass and bare soil

had lower reflectance values than class corn�50% and higher reflectance than any other class,

probably because they were moderately dry.

Moreover, class cornl50% had higher reflectance in every wavelength band than class

corn/83%. The reason is that class corn�50% has a lower density than class corn183%, and thus,

it has less moisture content and absorbs less electromagnetic energy. In other words, class

cornl50% radiates more energy than class corn183%. Therefore, it can be concluded that the

lower the residue percentage, the higher the reflectance and the greater the digital number. This

is similar to soil spectral characteristics changing along with moisture content as reviewed pre-

viously.

4.1.2 Discrimination of Crop Residue Cover in April, 1988

The spectral characteristics of the crop residues and bare soil had changed markedly in

April as seen in Figure 17. All crop residue classes could be separated from class bare soil only

in the first middle infrared wavelength. Class corn/51% had higher reflectance than the compar-
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ableclass,corn�50% in March, 1987. Similarly, class bare soil had higher reflectance values in

April, 1988 than in March, 1987. The masons are that the moisture content for March, 1987

data was higher than that of April, 1988 and crop residues have lower density than bare soil.

However, the decrease of soil moisture content is usually slower than that of crop residues since

crop residues reside above the land surface and their moisture contents are more directly

influenced by weather. The difference between the two corn residue classes is very small, most

likely because the residue percentage of class corn�unknown was close to that of class

corn�51%. Class soybeans/74% had a smaller digital number than the corn residue classes

because it had a higher density of residue coverage. Moreover, each crop residue class and the

bare soil class had apparent increases of their individual digital numbers in every spectral

wavelength band because of dryer conditions and higher solar angle in April, especially their

digital values in the first middle infrared wavelength that were greater than 150 as compared to

less than this value in March as shown in Figure 16. Class pasture�grass had a similar trend in

the near infrared wavelength due to chlorophyll in young grass leave cells. However, classes

river and forest had the first and second lowest reflectance in every wavelength band even

though most trees had buds or young leaves in April.

4.2 Evaluation of Classification for the Original Data

The classification results for both training and testing data for March 23, 1987 and April,

1988 are shown in Figures 18 through 21. These training and testing data were selected from the

two original images without any transformation. The discussion of the classification perfor-

mances for the March and April data follows.
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As seen in Figure 18, the neural classifier (NN) obtained the highest accuracy, whereas

L1 Minimum Distance (L1) had the lowest accuracy among the three classifiers compared for

the training data set. Although Maximum Likelihood (ML) did not have as high an accuracy as

NN, it gave more than 95% accuracy for both individual classes and the entire training data set.

The reason for the 100% accuracy of the training data set for NN is that NN was able to com-

pletely learn the training data set. Comparable performances were obtained for each of the other

training data sets which will be discussed in latter sections

The classifiers performed differently for the testing data as shown in Figure 19. The rela-

tive performances for NN and ML are switched with each other. ML achieved 90% or better

accuracy for each class and 96% accuracy for the entire testing data set, whereas the NN's

lowest accuracy was 81% for the soybean residue class and 92% accuracy for the entire testing

data set. L1 obtained 70% accuracy for both the soybean residue class and the entire testing data

set which was not as good as ML and NN classifiers. Because the class pasture�grass was a

mixture of several types of pasture and grass, it had variable spectral features and L1 had a 67%

classification error (accuracy: 33%) for this class due to its consideration of first order statistics

alone.



56

OJ

o, //

- //

o_

0.1'

n • a

* * - 3 •

° " -; 1 -
.: [

Figure 18. Training Performance for the March, 1987 data.

1.0 __

OJ .......................

i:
0.0

: • .= ;

| , [ :
i l

Figure 19, Testing performance for the March, 1987 data.
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One confusion matrix for each classifier was produced from the classification of the test-

ing data, and they are listed in Tables 9, 10 and 1I. The percentages listed in the tables

represent the proportion of ground truth pixels, in each case, correctly and incorrectly labeled

by the classifier. The numbers without percentages beside them indicate that their correspond-

ing percentages were less than 0.5%. In each table, columns refer to errors of omission

corresponding to those pixels belonging to the class of interest that the classifier has failed to

reconize; rows refer to errors of commission corresponding to pixels from other classes that the

classifier has labeled as belonging to the class of interest (Richards, 1989). For example, the

value located in column 5 and row 1 in Table 9 indicates that 6 pixels belonging to class soybe-

ans/64% have failed to be recognized by L1. In other words, 10% of the class soybeans/64%

has been mislabeled by L1 to corral50%. For the confusion tables (including those shown in

later sections), ground truth classes river and bare soil are not included because adequate

numbers of pixels could not be selected for training, and the name of the class pasture�grass

was shortened to pasture.

As seen in Tables 9, 10 and 11, the classification confusion between the crop residue

classes and the bare soil class is 5% for class soybeans/64% for L1, 1% for class cor_50% for

ML and 3% for soybeans�64% for NN. In addition, confusion exists among crop residue classes.

The maximum confusion is 10% (class soybeans/64%) for L1, 3% (class corn�83%) for ML and

18% (class corn183%) for NN.
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Table9. Confusion matrix for the March, 1987 testing data classified using L1.

TM

classes

com/50%

com/83%

forest

pasture

river

soybeans/64%

bare soil

Number of ground

truth pixels

Ground truth classes

corn/soq_ com/s3_ forest pasture soybeans/64_, i

721(85%) 0 0

47(6%) 183(95%) 12(4%)

0 2(1%)

32(4%) 0
0 0

45(5%) 8(4%)

3 0

87(14%) 6(10%)

9(1%) 2(3%)

244(88%) 9(1%) 0

0 199(33%) 8(13%)
19(7%) 0 0

1 215(36%) 44(70%)
o 85(14%) 3(5%)

848 193 276 604 63

Total

814

253

255

239

19

313

91

1984

Table 10. Confusion matrix for the March, 1987 testing data classified using ML.

TM

classes

corn/50%

corn/83%

forest

pasture
river

soybeans/64%
bare soil

Number of ground

truth pixels

Ground truth classes

com/5o_ corn/s3_o forest pasture soybeans/64_r,

1838(99%) 6(3%) 0

4 187(97%) 0
0 0

0 0

0 0

0 0

6(1%) 0

1 0

0 0

269(97%) 3(1%) 0

7(3%) 554(90%) 0

0 0 0

0 21(3%) 63(100%)

0 35(6%) 0

848 193 276 604 63

Total

845

191

272

551

0

84

41

1984

v
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Table 11. Confusion matrix for the March, 1987 testing data classified using NN.

TM

classes

corn/50%

com/83%

forest

pasture

fiver

soybeans/64%
bare soil

Number of ground

truth pixels

Ground truth classes

corn/so,_ com/s3_, forest pasture soybeans/64_

833(98%) 34(18%) 4(1%)

8(1%) 159(82%) 5(2%)

1 0

4 0

0 0

2 0

0 0

23(4%) 1(2%)

13(2%) 3(5%)

259(94%) 13(2%) 0

7(3%) 513(85%) 5(8%)

1 11(2%) 1(2%)

0 26(4%) 51(81%)

0 5(1%) 2(3%)

848 193 276 604 63

Total

895

188

273

529

13

79

7

1984

Table 12. Confusion matrix for the April, 1988 testing data classified using L1.

corn/51%

"I'M com/unknown

forest

classes pasture

fiver

soybeans/74%

bare soil

Number of ground

Lruth pixels

Ground truth classes

corn/sl_ com/unknown

489(57%) 0

65(8%) 183(77%)
0 0

5(1%) 0

0 0

236(27%) 2(1%)

69(8%) 42(22%)

864 190

forest pasture soybeans/74%

0 0 23(23%)

0 0 0

259(92%) 187(37%) 0

0 311(62%) 2(2%)

24(8%) 3(1%) 0

0 0 39(40%)

0 3(1%) 34(35%)

283 504 98

Total

512

211

446

318

27

277

148

1939
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Table13. ConfusionmatrixfortheApril,1988testingdata classified using ML.

rM

zlasses

corn/51%

com/unknown

forest

pasture

Ground truth classes

com/51% comAmknown forest pasture soybean_4%

river

soybeans/74%
bare soil

637(74%) 10(5%) 0 0 20(20%)

0 177(93%) 0 0 0

0 0 278(98%) 1 0

5(1%) 3(2%) 4(1%) 503(100%) 0

Number of ground

truth pixels

0 0 1 0 0

220(25%) 0 0 0 73(74%)

2 0 0 0 0

864 190 283 504 98

Total

667

177

279

520

1

293

2

1939

Table 14. Confusion matrix for the April, 1988 testing data classified using NN.

I'M

zlasses

Number

truth

corn/51%

corn/unknown

forest

pasture
river

soybeans/74%
bare soil

of ground

pixels

Ground truth classes

cornBl_ corn/unknown forest pasture soybeans/74,_

704(81%) 34(18%) 7(2%)

23(3%) 146(77%) 16(6%)

7(1%) 0 226(80%)

12(1%) 7(4%) 22(8%)

'1 0 12(4%)

113(13%) 2(1%) 0

4 0 0

864 190

1 45(46%)

12(2%) 4(4%)

91(18%) 1(1%)

382(76%) 11(11%)

10(2%) 0

6(1%) 37(38%)

2 0

283 504 98

Total

792

201

325

434

23

158

6

1939
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Figure 20. Training performance for the April, 1988 data.
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Figure 21. Testing performance for the April, 1988 data.



4.2.2 Performance for April, 1988 Data
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Figures 20 and 21 illustrate classification results obtained by using L1, ML, and NN for

the training and testing data. As shown in Figure 20, these three classifiers showed a similar ten-

dency to that of the March, 1987 training data, i.e. NN obtained perfect accuracy, ML 96%

accuracy and L1 66% accuracy. L1 dropped seven percent compared to 73% for the March,

1987 training data. This is because the differences of reflectance among the crop residue classes

and between the crop residue classes and the bare soil class for the April, 1988 data were less

than those for the March, 1987 data, as described earlier.

Although these three classifiers had the same tendency of performance for the testing data

as they did for the March, 1987 testing data, NN and L1 obtained less than 50 percent accuracy

for the soybean residue class and the overall testing accuracy for all three classifiers as a whole

decreased 10 percent on average compared to that for the March testing data. ML, as it did for

the March data, performed with the highest accuracy. Confusion matrices were also generated

for the April, 1988 testing data, and axe listed in Tables 12, 13 and 14 corresponding to

classifiers L1, ML, and NN. From these tables, the maximum confusion among crop residue

classes is 27% (class corn�51%) for L1, 25% (class corn�51%) for ML and 46% (class soybe-

ans/74%) for NN, and the confusion between crop residues and bare soil is 8% from class

corn/51%, 22% from class corn�unknown and 35% from class soybeans/74% for L1. This type

of confusion was less than 0.5% for ML and NN. Therefore, the confusions among the crop

residue classes and between the crop residue classes and the bare soil class are much greater

than those for the March, 1987 testing data. The reason is the same as that for the April, 1988

training data mentioned above.
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4.3 Evaluation of Classification for the Transformed Data

Two types of transformations, principal components and spectral ratioing, were per-

formed to enhance the images. Principal components transformation was applied to both March

1987 and April, 1988 data whereas spectral ratioing transformation only to March, 1987 data.

For the following descriptions, the three images were called PC March and PC April

corresponding to the original March and April data transformed by principal components and

SR March corresponding to the original March data transformed by spectral ratioing. The

classification results for training and testing data from these transformed images are discussed

in the following sections.

4.3.1 Performance for PC March, 1987 Data

As seen in Figure 22, the three classifiers had classification results similar to those for the

untransformed March data, i.e., the order of performance from best to worst was NN, ML and

L1 for the training data set. For the testing data, the order of performance changed as shown in

Figure 23. This also happened for the March testing data. ML presented 96% or better accuracy

for the crop residue classes and 97% accuracy for the entire testing data set. L1 had an 82%

accuracy for the entire testing data set. NN performed at 81% accuracy for the soybean residue

class, 91% or better for the corn residue classes, and 91% for the entire training data set. The

confusion matrices for the testing data are listed in Tables 15, 16 and 17. There was no confu-

sion between crop residues and bare soil for any of the classifiers. The maximum confusion

among crop residue classes is 12% (from corn/50%) for L1, 2% (from corn/50%) for ML and

9% (from class com/83%) for NN. Therefore, the testing classification result for the class
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corn/83% was improved by applying NN to the PC March, 1987 data. This indicates that biN

treated the PC transformed data as a new data set.

¢0

0.0

1917 data.
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, , l .: || i . _ , -
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Figure 23. Testing performance for the PC March, 1987 data.
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Table 15. Confusion matrix for the PC March, 1987 testing data classified using L1.

TM

classes

Number

truth

corn/50%

com/83%

forest

pasture

river

soybeans/64%
bare soil

of ground

pixels

Ground truth classes

corn/5o_ com/83% forest pasture soybeans/64%

782(85%) 1(1%) 0 10(2%) 5(6%)

111(12%) 139(99%) 1 4(1%) 2(2%)

0 0 300(95%) 3(1%) 0

11(1%) 0 3(1%) 301(63%) 0

0 0 9(3%) 0 0

18(2%) 1(1%) 2(1%) 52(11%) 83(92%)

0 0 0 109(23%) 0

922 141 315 479 90

Total

798

257

303

315

9

156

109

1947

Table 16. Confusion matrix for the PC March, 1987 tes_ng data classified using ML.

TM

classes

corn/50%

corn/83%

forest

pasture

river

soybeans/64%

bare soil

Number of ground

truth pixels

Ground truth classes

corn/so% com/s3,r, forest pasture soybeans/64%

892(97%) 2(1%) 0 0 0

21(2%) 139(96%) 0 0 0

0 0 306(97%) I 0

I 0 9(3%) 467(97%) 0

0 0 0 0 0

8(1%) 0 0 5(1%) 90(100%)

0 0 0 6(1%) 0

922 141 315 479 90

Total

894

160

307

477

0

103

6

1947



Table17.Confusionmatrix for the PC March, 1987 testing data classified using NN.
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TM

classes

corn/50%

com/83%

forest

pasture

river

soybeans/64% ]

bare soil

Number of ground

truth pixels

Ground truth classes

combo% corrds3% forest pasture soybeans/64%

900(98%) 12(9%) 4(1%)

19(2%) 129(91%) 3(1%)

1 0

1 0

1 0

0 0

0 0

13(3%) 2(2%)

0 2(2%)

300(95%) 16(3%) 5(6%)

6(2%) 383(80%) 8(9%)

2(1%) 5(1%) 0

0 12(10%) 73(81%)

0 12(3%) 0

922 141 315 479 90

Total

931

153

322

389

8

123

12

1947

4.3.2 Performance for PC April, 1988 Data

Figures 24 and 25 show the classification results obtained by using L1, ML and NN for

the training and test data. As seen in Figure 24, both ML and NN were more than 90 percent

accurate for each training class, whereas L1 was 73% accurate for the entire training data set

(66% for class corn 51%, 99% for class corn�unknown and 86% for class soybeans 74%). The

testing accuracies for L1, ML and NN were 78%, 88% and 83%, respectively. However, L1 and

NN only obtained about 51% accuracy for class soybeans 74%. The confusion matrices are

listed in Tables 18, 19 and 20. From these tables, the confusion between crop residues and bare

soil is 5% for class corn�51%, 7% for class corn/unknown and 11% for class soybeans/74% for

L1 classification. There is little confusion for ML and NN classifiers. However, confusion

among crop residue classes still exists. The maximum confusion percentages for L1, ML and

NN are 35% for class soybeans�74%, 15% for class corn�51% and 36% for class soybeans/74%,
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respectively. Again, the maximum confusion percentage was decreased 10% by applying NN to

the PC transformed data set. The confusions among the crop residue classes for the April, 1988

PC data were greater than those for the March, 1987 PC data. This indicates that the April,

1988 PC data was more difficult to classify than the March, 1987 PC data.

Table 18. Confusion matrix for the PC April, 1988 testing data classified using L1.

TM

classes

corn/51%

com/un_own

forest

pasture
river

soybeans/74%

bare soil

Number of ground

lruth pixels

Ground truth classes Total

corn/51,_ corn/unknown forest pasture soybeans/74,r,

589(71%) 0 0 0 47(35%)

71(9%) 115(93%) 0 0 0

0 0 125(84%) 73(12%) 1(1%)

0 0 1(1%) 546(88%) 2(1%)

0 0 20(14%) 0 0

120(15%) 0 0 0 70(52%)

44(5%) 9(7%) 2(1%) 1 15(11%)

!824 124 148 620 135

636

186

199

549

20

190

71

1851
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Table19.Confusionmatrix for the PC April, 1988 testing data classified using ML.

TM

classes

com/51%

corn/unknown

forest

pasture

Ground truth classes

corn/sl_ com/unknown forest pasture soybeans/74,_

river

soybeans/74%
bare soil

692(84%) 7(6%) 0

2 106(85%) 0

0 0 117(79%)

4 1 I(9%) 12(8%)

0 16(12%)

0 0

6(1%) 0

614(99%) 13(10%)

Number of ground

truth pixels

0 0 3(2%) 0 0

123(15%) 0 0 0 105(78%)

3 0 16(11%) 0 1(1%)

824 124 148 620 135

Total

715

108

123

654

3

228

20

1851

Table 20. Confusion matrix for the PC April, 1988 testing data classified using NN.

TM

classes

corn/51%

com/unknown

forest

pasture
river

soybeans/74%

bare soil

Number of ground

truth pixels

Ground truth classes

c0m/51% com/unknown forest pasture soybeans/74%

692(84%) 19(15%) 0

38(5%) 103(83%) 2(1%)

3 2(2%) 138(93%)

9(1%) 0 7(5%)

0 1(1%) 2

78(9%) 0 0

4 0 0

4(1%) 48(36%)

3 2(1%)

72(12%) 4(3%)

536(86%) 12(9%)

0 0

3 69(51%)

0 0

824 124 148 620 135

Total

763

148

219

564

3

150

4

1851
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Figure 24. Training performance for the PC April. 1988 data.
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Figure 25. Testing performance for the PC April, 1988 data.
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4.3.3 Performancefor SRMarch, 1987Data

As seenin Figure26,L1,ML andNN obtained 82%, 98% and 100% accuracies for the

training data, respectively. This coincided with the performances of these classifiers for the

March and PC March training data. However, the testing accuracies of the SR March data, as

shown in Figure 27, were less than those of the March and PC March data for ML and NN

whereas the testing accuracy for the SR March data (87%) was higher than the March and PC

March data for L1 classification. The confusion matrices corresponding to the three classifiers

are listed in Tables 21, 22 and 23. There is almost no confusion between crop residues and bare

soil as shown in these tables. The confusion among the crop residue classes has maximums of

11% (class corrg50%) for L1, 4% (class corn/83%) for ML and 29% (class corn/83%) for NN.

Table 21. Confusion matrix for the SR March, 1987 testing data classified using L1.

TM

classes

Number

truth

com/50%

corn/83%

forest

pasture
river

soybeans/64%

bare soil

of ground

pixels

Ground truth classes

com/so_ corrt/s3% forest pasture soybeans/64%

839(86%) 1(1%) 0

108(11%) 112(99%) 0

0 0

4 0

0 0

20(2%) 0

0 0

3(1%) 3(3%)

0 1(1%)

188(87%) 7(1%) 1(1%)

8(4%) 516(86%) 6(6%)

9(3%) o o
o 22(1%) 81(87%)

o 50(8%) 1(1%)

971 113 217 602 93

Total

846

221

196

534

25

123

51

1996
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Table22. ConfusionmatrixfortheSRMarch,1987 testing data classified using ML.

TM

classes

Number

truth

corn/50%

com/83%

forest

pasture
fiver

soybeans/64%
bare soil

of ground

pixels

Ground truth classes Total

combo% corn/s3% forest pasture soybeans/64%

874(90%)

7(1%)

0

61(6%)

0

28(3%)

4(4%) 0 1 0

109(96%) 0 0 0

0 193(89%) 2 0

0 11(5%) 506(84%) 2(2%)

0 13(6%) 5(1%) 0

0 0 6(1%) 91(98%)

0 0 82(14%) 0

971 113 217 602 93

879

116

195

580

18

125

83

1996

Table 23. Confusion matrix for the SR March, 1987 testing data classified using NN.

TM

classes

Number

truth

corn/50%

corn/83%

forest

pasture

fiver

soybeans/64%
bare soil

of ground

pixels

Ground truth classes

corn/5o% com/83% forest pasture soybcans164%

880(91%)

27(3%)
4

44(5%)

3

13(1%)

0

33(29%) 2(1%) 4(1%) 3(3%)

80(71%) 1 1 2(2%)

0 137(63%) 9(1%) 0

0 56(63%) 558(93%) 30(32%)

0 21(10%) 13(2%) 0

0 0 11(2%) 57(61%)

0 0 6(1%) 1

971 113 217 602 93

Total

922

111

150

688

37

81

7

1996
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In .......

OJ .................................

OA

OJ .............

0.0

-_ i " _

11 II | |- 1
i f

Figure 27. Testing performance for the SR March, 1987 data.



4.4 Evaluation of GIS-Aided Classification
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A GIS layer, ownership, was added to each of the original data as an eighth band of data

and called March Plus and April Plus data as described previously. The classification results for

both image dates are shown in Figures 28 through 31. The training and testing data were

selected from the two eight-band Landsat TM Plus images. The discussion related to the April

Plus data follows the explanation of the March Plus data.

As seen in Figure 28 and 29, ML is not included due to the inability to invert the covari-

ance matrix because of the river class. L1 obtained only 27% and 39% accuracies for the

March Plus training and testing data for class pasture�grass because of its consideration of only

the first order statistic as discussed earlier. However, NN still obtained a perfect classification as

before for the training data, and about 90% accuracy for individual classes of the testing data

and 95% for the entire testing data set. Confusion matrices corresponding to L1 and NN are

listed in Tables 24 and 25. It can be seen that L1 mis-classified 13% of class corn 50% into

class soybeans 64%, 5% of class corn 83% into class soybeans 64%, and 5% of class soybeans

64% into class corn 50%. Confusion between the crop residue classes still existed for LI. The

confusion between crop residues and bare soil was 3% for L1. However, there is none of this

type of confusion for the NN classification. The confusion among crop residue classes for NN is

12% for class corng50% and 1% for class soybeans�64%. Therefore, the overall testing

classification accuracy was better by applying NN to the March Plus data set than to the March,

1987 data set, the PC March, 1987 data set and the SR March, 1987 data set, and the NN's

classification accuracy for the entire March Plus testing data was similar to ML's classification

accuracy for the March, 1987 testing data set.
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Figures 30 and 31 show the classification performance for the training and testing of

April Plus data. Again, ML could not be used for the same reason as for the March Plus data set.

L1 obtained 62% and 54% accuracies, while NN obtained 100% and 87% accuracies for the

training and testing data set, respectively. As seen in Tables 26 and 27, there is a certain amount

of confusion between the crop residue classes and bare soil for L1 but no confusion for NN.

Again, the overall testing classification accuracy was much better by applying NN to the April

Plus data set than to the April, 1988 data set and the PC April, 1988 data set, and the NN's

classification accuracy for the entire April Plus testing data set was higher than ML's

classification accuracy for the April, 1988 testing data set. Therefore, the classification for the

April, 1988 data set was improved by applying NN to the GIS-enhanced April data set.

Table 24. Confusion matrix for the March Plus testing data classified using L1.

TM

Iclasses

corn/50%

com/83%

forest

pasture

river

soybeans/64%

bare soil

Number of ground

truth pixels

Ground truth classes

corn/5o_ com/s3_ forest pasture soybeans/64_

589(81%) 2(3%)

14(2%) 66(88%)

0 2(3%)

4(1%) 1(1%)

0 0

96(13%) 4(5%)

22(3%) 0

0 2 4(5%)

2(1%) 7(2%) 1(1%)

133(92%) 2 0

0 176(39%) 0

10(7%) 0 0

0 167(37%) 78(94%)

0 95(21%) 0

725 75 145 449 83

Total

597

90

137

181

I0

345

117

1477
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Table 25. Confusion matrix for the March Plus testing data classified using NN.

TM

classes

corn/50%

com/83%

forest

pasture
river

soybeans/64%
bare soil

Number of ground

truth pixels

Ground truth classes

com/.so_ corn/s3_ forest pasture soybeans/64_

723(100%) 9(12%) 1(1%)

1 66(88%) 0
1 0

0 0

0 0

0 0

0 0

17(4%) 1(1%)

6(1%) 0

144(99%) 5(1%) 1(1%)

0 401(89%) 5(6%)

0 1 1(1%)

0 12(3%) 75(90%)

0 7(2%) 0

725 75 145 449 83

Total

751

73

151

406

2

87

7

1477

11.0

Figure 28. Training performance for the March Plus, 1987 data.
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Figure 29. Testing performance for the March Plus, 1987 data.

Table 26. Confusion matrix for the April Plus testing data classified using L1.

com/51%

TM com/unknown

forest

classes pasture

river

soybeans/74%

bare soil

Number of ground

truth pixels

Ground truth classes

com/5]_ corn/unknown forest pasture soybeans]74%

383(62%) 0 0 4(1%) 68(53%)

92(15%) 70(66%) 0 85(20%) 3(2%)

0 0 123(77%) 133(31%) 0

0 3(3%) 0 156(36%) 2(2%)

0 0 37(23%) 0 0

142(23%) 0 0 10(2%) 53(42%)

3 33(31%) 0 43(10%) 1(1%)

620 106 160 431 127

Total

455

250

256

161

37

205

80

1444
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Table27. Confusionmatrix for the April Plus testing data classified using NN.

corral51%

FM corn/unknown

forest

:lasses pasture
river

soybeans/74 %

bare soil

Number of ground

truth pixels

Ground truth classes

com/st_ corn/unknown forest pasture soybeans/74_

582(94%) 12(11%) 0 34(8%) 4(3%)

24(4%) 83(78%) 0 34(8%) 3(39'0)

,10(2%) 1(1%) 153(96%) 35(8%) 2(2%)

3 10(9%) 7(4%) 328(76%) 2(2%)

0 0 0 0 1(1%)

1 0 0 0 115(91%)
0 0 0 0 0

620 106 160 431 127

Total

632

144

201

350

1

116

0

1444

1.0

O.I "

i °.
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OJ
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Figure 30. Training performance for the April Plus data.
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Figure 31. Testing performance for the April Plus data.

4.5 Comparison of the Classifiers for Different Data Sets

The three classifiers, L1, ML and NN, used for each type of data (the original data, the

principal components transformed data, the spectral ratioing transformed data and the original

data incorporating a GIS layer) obtained different classification results. Before the comparisons

are to be made, it is necessary to point out that L1 is not going to be included because of the

unsatisfactory results obtained with it as discussed in the previous sections. Therefore, the

classifiers to be compared are ML and NN. The comparison between ML and NN will be made

after comparisons of each classitier applied for all types of data are made.
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4.5.1 Comparison of ML Classifiers

Figure 32 illustrates the testing performance of the ML classifier for the three types of

March, 1987 data while Figure 33 shows the testing performance of the ML classifier for the

two types of April, 1988 data. In each legend of the figures, ML-I, MI.,-2 and ML-3 refer to the

ML used for the Landsat TM data, the PC transformed data and the SR transformed data,

respectively. ML is not shown in both Figure 32 and Figure 33 for the Landsat TM Plus data

because ML could not classify them, and ML-3 is not shown in Figure 33 because there was no

SR April, 1988 data.

As seen in Figures 32 and 33, the differences between the comparable classification accu-

racies which were obtained by applying ML to the original and PC data for the March and April

images, are 1% and 2% respectively. The differences are because of the slightly different train-

ing data. Therefore, using the original data would cost less because it does not required a

transformation, although principal components transformed images were visually more inter-

pretable than the original ones when displayed on a screen. However, the testing accuracies for

the April data decreased about ten percent each compared to 96% and 97% accuracy for the

March, 1987 data and the PC March, 1987 data. This indicates that the March images were

easier to classify than the April images whether principal components transformation was

applied or not. In addition, the accuracies for both individual classes and the entire testing data

set for the SR March, 1987 data are less than those for the other two types of data as shown in

Figure 32.
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Figure 32. Testing performance of all MLs for March. 1987 data.
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4.5.2 Comparison of NN Classifiers
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The testing NN classification results for all types of March and April data are depicted in

Figures 34 and 35. In each legend of the figures, NN-1, NN-2, NN-3 and NN-4 refer to the NN

used for the Landsat TM data, the PC transformed data, the SR transformed data and the

Landsat TM Plus data, respectively. NN-3 is not listed in Figure 35 because there was no SR

April, 1988 data,

As shown in Figures 34 and 35, neum-classification of Landsat TM Plus data (NN-4)

gave the highest accuracies for both the March and April images and a marked accuracy

increase for each crop residue class. Moreover, as reported earlier, there was no confusion

between the crop residue classes and the bare soil class for both the March and April Plus data.

This indicates that the separability for the crop residue classes and the bare soil class has been

increased after incorporating the GIS-layer, ownership, as the eighth band of data for each origi-

nal Landsat TM image, and thus classification results improved. Neuro-classification of PC

transformed data (NN-2) almost always presented better accuracies for each individual crop

residue class except for class corn�50% for March, 1987 data, and had a higher accuracy than

that of the original April, 1988 data. Neuro-classifications had almost the same accuracies for

the March, 1987 testing data set and the March Plus testing data set. Therefore, it can be con-

cluded that NN performed equally well or better for the principal components transformed

images. However, the testing accuracies related to the SR March, 1987 data are less than any

other in Figure 34.
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Figure 34. Testing performance of all NNs for March, 1987 data.
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Figure 35. Testing performance of all NNs for April, 1988 data.

[] NN- I: Am|

I"1 hqq-Z: PC _mOl

P'I I_qq-4: Awll Pin*



83

0.0

! ! _ } I '
Figure 36. The best classifiers for March, 1987 data.
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Figure 37. The best classifiers for April, 1988 data.
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4.5.3 Comparisonof theBestML andNN

Basedontheresultsshownin thesectionsabove,thebestclassifiersin thisstudyfor each

datasetwereselectedandareillustratedin Figures36and37.Thebestclassifierfor eachorigi-

nalLandsatTM imagewasML, whereasthebestclassifierfor eachLandsatTM Plusimage

generatedby incorporatinga GIS-layerwasNN. As seenin Figures36and37,NN presented

equalorbetteraccuraciesthanML fortheentiretestingdatasetsof MarchandApril. Therefore,

if the image processing system was integrated with a GIS, it would be better to incorporate

some GIS layer like ownership field boundaries, into an original image and then to classify it

using a neural network classifier. In addition to the quantified performances, it can be seen in

Figures 38 and 39 that the classification results of the study area for NN showed less or similar

confusion among the crop residue classes, higher absolute classification accuracies for the crop

residue classes and the bare soil class than those for ML, and very clear crop residue fields and

their boundaries. In Figure 38, the NN's result shows some noise inside soybean174% and corn

83% fields as indicated in their confusion matrices shown earlier, whereas the ML's result has

many pixels mis-classified into class bare soil in addition to a field confusion with class

corn183% shown in the upper center portion of the figure. In Figure 39, the NN's result shows

some confusion as indicated in the corresponding confusion matrices, whereas the ML's result

has much more confusion among the crop residue classes, especially between class corral51%

and class soybeans�74%, which was also shown earlier in their confusion matrices. In both

cases, the corresponding L1 's results obtained by classifying the original images were also dep-

icted to illustrate the large amount of mis-classification. For NN classification, if the image pro-

cessing system is not integrated with a GIS, it would require a certain amount of work merging

a GIS layer into the original satellite image before image classification.
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4.6 Evaluation of Neural Network Training

Figures 40 and 41 show the neural network training processes and results for all seven

images used. Table 28 lists the time spent for each neural network training. The corresponding

configurations of the seven neural classifiers were previously listed in Table 7. Although three

out of the seven images were produced by applying principal components and spectral ratioing

transformations to the original Landsat TM images, the neural classifiers recognized them as

new images as mentioned earlier. Therefore, there were a total of seven independent neuro-

classifications corresponding to the images used. As seen in Figures 40 and 41, and Table 28,

their training characteristics are different from one another, especially the maximum (Max)

errors shown in Figure 40. First, the convergence for each eight-band image (March Plus and

April Plus) starts at the very beginning of training whereas there is at least a thirty-cycle (half

hour or so) plateau period of training for each seven-band image (March, April, PC March, PC

April and SR March), and the trainings for both eight-band images arrive at the stable 10% error

in less than one hundred cycles as shown in Table 28. Incorporating a GIS-layer made the

neural training markedly faster compared to the trainings for all seven-band images except the

original March, 1987 data, and made the neural training more predictable because it had no pla-

teau period. Secondly, each seven-band April, 1988 data set took much longer to converge than

its corresponding March, 1987 data set most likely because of the closer spectral characteristics

for the crop residue classes and the bare soil class as described earlier. This shows again that the

seven-band April images, either original or transformed, were more difficult to classify than the

corresponding March images in this study. Thirdly, the PC data took a much longer time to

converge than the corresponding original data. In addition to the accuracy consideration dis-

cussed earlier, it is shown again that the original images cost much less in terms of training time
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thanthePC images.Fourthly,alltransformeddatahad alongerplateautrainingperiod,and the

PC April,1988 datahad abouttwice as longor more of a plateauperiodas the PC and SR

March, 1987data.Thisindicatesthatthetrainingforthetransformeddata,eitherprincipalcom-

ponentsorspectralratioing,was more unpredictablethanthatfortheoriginaldata.Finally,the

trainingtime forthe SR March, 1987 datawas longerthanthatfortheoriginalMarch, 1987

databutshorterthanthatforthePC March, 1987 data.

.... March

......... April

PC March

PC April

-- SR March

March Plus

AprilPlus

I I I I I I
0 50 100 150 200 250 300

Cycle

Figure40. Max errorsforallneuraltrainings.

For the Root Mean Squared (RMS) errors shown in Figure 41, the sharp drops start at the

very beginning of training the classifiers for the Landsat TM Plus data. All RMS errors

decreased relatively smoothly and there was no plateau period although there were a couple of

peak points for the PC April, 1988 training data.
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..... March
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.2 --_ " _ SR March
I_ " _ MarchPlus

'i. _ April Plus

am , _qI

error" [__k_'- _

"11 _"

0 50 1GO 150 200 250 300

Cycle

Figure 41. RMS errors for all neural trainings.

Table 28. Training behavior for the neural classifiers.

Data Training cycles Max RMS

(cycle = 65sec) error error

March

April
PC March

PC April

SR March

March Plus

April Plus

83

223

202

256

167

94

64

0.104

0.100

0.104

0.105

0.101

0.104

0.104

0.088

0.082

0.086

0.089

0.090

0.084

0.076

Maximum and RMS errors are two parameters to monitor and improve the training for

neural networks. The RMS errors always decreased if there were adequate hidden layer units.

In other words, if RMS errors did not decrease in the way shown in Figure 41, it would be
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necessaryto increaseunitsfor thecorrespondinghiddenlayer. However, too many units in a

hidden layer would cause training to fall into a local minimum and become static at an

undesired error. As seen in Figure 41, all RMS error curves dropped to less than 10% in about

fifty cycles. If the error was greater than this percentage, for example 15%, it indicated that the

learning rate factor, 11,was too large and needed to be reduced. For the maximum errors, if they

were unchanged within one hundred cycles, for example they were more than 89% at that time,

the momentum, _ needed to be decreased because it was too big to reach the minimum. In

summary, the adjustments for the learning rate factor, the momentum, and the number of units

in the hidden layer were tradeoffs.
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5. SUMMARY AND CONCLUSIONS

LandsatTM dataforMarch23,1987 and April 26, 1988 with accompanying ground truth

data for the study area in Miami County, Indiana were used to determine crop residue type and

class. Three methods for image classification including Maximum Likelihood, L1 Minimum

Distance, and neural networks, which are an emerging artificial intelligence technique, were

utilized to investigate the best classifier for the estimation of crop residues.

Landsat TM data were able to determine crop residue type and class in a large area. This

remote sensing approach overcomes the problems of range and topography that traditional

methods of estimating crop residues have, and is suitable for ensuring USDA program compli-

ance.

The spectral characteristics among the crop residue classes and between the crop residue

classes and and the bare soil class and other biomass classes were investigated using the

Landsat TM scenes for the study area. Crop residue classes in the study area were separated

from one another and from the hare soil class and other biomass classes, and two types of crop

residue with four classes identified from each Landsat TM image. The lower the crop residue

cover percentage, the less the moisture content and the higher the reflectance. The reflectance

for crop residue classes was higher, and the differences among the crop residue classes and

between the crop residue classes and the bare soil class were lower in April, 1988 than in

March, 1987 because of the lower moisture content. Therefore, the crop residue classes were

less separable in April, 1988 than in March, 1987.
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Theneuralnetworkclassifier obtained better accuracies for the GIS-enhanced Landsat

TM (Landsat TM Plus) data than the L1 Minimum Distance classifier, whereas the Maximum

Likelihood classifier was not able to classify them because of its consideration of inverting the

covariance matrix. However, the Maximum Likelihood classifier performed better

classifications for the original Landsat TM data than the L1 Minimum Distance classifier and

the neural network classifier. The L1 Minimum Distance classifier obtained worse accuracies

for the original Landsat TM data and the Landsat TM Plus data.

A GIS layer, ownership, was added to each original Landsat TM image as the eighth band

of data in an attempt to improve the classification results using the neural network back-

propagation classifier. The classification results obtained by using the neural classifier showed

clearer fields for crop residues and clear boundaries for these fields, less confusion among the

crop residue classes, and no confusion between the crop residue classes and the bare soil class,

compared to the results obtained by applying the Maximum Likelihood classifier to the original

seven-band Landsat TM image data. Moreover, Maximum Likelihood could not be used for the

generated eight-band data because the covafiance matrices corresponding to each eight-band

image had zero value determinants, and thus, the covariance matrices could not be inverted and

thereby Maximum Likelihood could not be utilized. The minimum distance classifier did not

obtain satisfactory classification accuracies because it does not consider the second order statis-

tics, the eovariances between image bands.

Principal components and spectral ratioing transformations were performed for the two

original Landsat TM data sets to investigate the performances of the neural network classifiers.

The neural network trainings for the transformed data sets took much longer than those for the

original data sets, and the testing accuracies obtained by applying the maximum likelihood

classifier and the neural classifier to the spectral ratioing transformed data were less than those
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forothertypesof data.Therefore,usingtheoriginaldatawould be less costly because it does

not require a transformation However, the principal components and spectral ratioing

transformed images were visually more interpretable than the original ones when displayed on

screen, and the neural classifier treated them as new data sets. In addition, the testing accuracies

obtained by applying the neural classifier to these transformed images were less than those for

the Maximum Likelihood classifier, but the corresponding training took longer times. There-

fore, it can be concluded that transformation was not needed for the two original data sets.

The neural training times for the GIS-enhanced Landsat TM data sets were less than the

times for other types of data including the original, and principal components and spectral ratio-

ing transformed data, except for the original March data. The training for each GIS-enhanced

eight-band data set converged at the very beginning of neural training whereas there was at least

a thirty-cycle (half hour or so) plateau period of maximum errors for each seven-band image.

The training for the seven-band April, 1988 data took much longer, and had a greater plateau

period of maximum errors than that for the seven-band March, 1987 data. Moreover, the train-

ing for the transformed seven-band data sets took a longer time, and had a greater plateau period

of maximum errors than that for the original seven-band data sets. Therefore, the neural

classifier applied to the eight-band data sets, which were generated by incorporating a GIS

layer, took the least time to converge to the desired error. However, neural training still required

50 cycles (more than 54 minutes) on SUN SPARC workstations. This was the major disadvan-

tage for the neural networks used for image classification. As new generations of computers

(faster and parallel processing computers) evolve, this problem will be overcome.

In the case of the neural classifiers, coding, including encoding and decoding, was impor-

tant for the neural networks' convergence and the classification accuracies since neural net-

works know about nothing except numbers. Although decimal coding did not work for the
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mum-classifications, binary coding always performed well. Thermometer coding was appropri-

ate for an output layer since it increased the accuracy of classification.

A fully interconnected three-layer mural network, which contained input, hidden and out-

put layers, worked well for the neum-classifications. However, it was necessary to scramble

input/output pairs in order to present inputs to it in a random fashion before starting to train the

mural network. This is required for back-propagation network theory to behave properly. Oth-

erwise, the neural network training converged very slowly, or did not converge at all.

In the neum-classification of all types of data, including both seven-band and eight-band,

the initial learning rate, _1, was 0.30 or 0.35. When the maximum error decreased to 0.1, it was

changed to 0.7. Generally speaking, the higher the learning rate factor, the faster the neural net-

work will learn, but the more reckless the learning and the greater the chances of the neural net-

work being unable to accomplish the overall desired result. The final momentum value, tx, was

0.9 while its initial value was 0.6 or 0.65 depending on the oscillation of neural network train-

ing.
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6. RECOMMENDATIONS FOR FURTHER RESEARCH

Results in this study suggest that Landsat TM data can be used to estimate crop residue

coverage in a large area for which traditional methods of determining residues would not be

economical. Further research, including classifications of a series of images from late October

to late May of the next year, and exact date-matching and sound ground truth is essential to

investigate how crop residues change along with changing seasons in Indiana and most of the

Midwest. The influence of soils beneath crop residues would be considered in the case of lower

percent crop residue coverage. An atlas for crop residue spectral characteristics is needed for the

future real time monitoring and classification of crop residues. In addition, an interactive satel-

lite image processing linkage with GIS tools is needed in order to really integrate remote sens-

ing with GIS. This would make a spatial database easy to enrich and update, and the

classification of multitemporal data would be a daily routine.

In consideration of ground truth, acreage, yields, tillage and planting practices could be

input into a spatial database of the study area in forms of GIS layers, and then the residue cover-

age corresponding to the ground truth could be spatially calculated based on these layers of

information using Equation 3.1 listed in Chapter 3. A new layer for the initial residue coverage

in the spatial database could be created as a result of the calculation. The new layer could be

used for selection of training fields for image classification, or may be added to original satellite

images as a new band of data to assist with the classification of multitemporal data.
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Since the key point of successful neuro-classification is the representativeness and agree-

ment of its training data, it is necessary to develop an effective selection procedure appropriate

to it. Just as described above, map-based ground truth can be very helpful for selection of train-

ing data, and probably can make automatic selection of training data possible.

Incorporating other GIS layers of information, such as soil moisture, soil type, elevation,

slope and drainage, may improve classification of remotely sensed data to estimate crop residue

coverage and should be investigated. Also, neural network techniques should be added to the

integrated GIS system.

Reducing training time for neuro-classification could be another area of further research,

including unsupervised neuro-classification and neuro-classification with other neural network

learning algorithms.
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Appendix A. GroundTruth DataSurveyForm

Table 1. Ground truth survey form A, 1986.

°-

CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED

FOIl NASA SATELLITE RESEARCII PROJECT

SOIL HANAOEHENT PHASE

F ..... 's,or ..rstor'., .... :

Farm location: _-_"J"/(_l_ .?t/_°Ta_ ff /_--e • _Co,,re,_EAsFda/e,,cE,4

3 or E

Inches

P|anter has:

Smooth or

no cotllter:

Harrow

Ripple
Coulter

( (I.5"):

Date of Fall

or SpFinE

tlllale:

Date of

Plantinl:

Date or

|[ervemt:

soil Hit.
Precttcee:

|6nswer 7eI

No)

Terrsceez

C0nt0ur|l

i

|
I
t

i

I /4o I_
I

Strip Crop: : A/O ...... 0_,_,
J

Tile Dral.ed_ ___ ...........

1¢ Crop use
CRP or

Set-a-side

What was

/

ORIGINAL PAGE IS

OF POOR QUALITY
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Table 2. Ground truth survey form A, 1987.

CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED

FOR NASA SATELLITE RESEA_CII PROJECT

501L HANAOEHENT PIIASE

F..... ,. ,or op...<o.'., ..... "_'LcP/_

f,
Cropping year I 1988 -_9 - 1988 I Circle one

-- Fill out o___mh¢___9__¢p_h year --

Field Number: : / | --: ........i ..... o

Ro. ot Acre,: i ,_/.b :
tf

i 7A t/oUi ,Crop: __l .... i

I I
Primerl I I

Tillage S/iteml I

Uiedi(chock) I
i 0 D

I_/ ----/

Ridge Till ..... idJt_J#¢_,--_/-_-_--_,--'
I

Chllel ,__, __ ,__I__ , --,----- ,

Straight orl l

Twleted Ptl ____,__,____I--,--.--

HB Piou ....... ,____,.__I_,-----'---'
¢

¢
Dilk ....... i--,--.--'-----'--

3 or S l

lnchel ..... , ..... ,__________t__,_

Planter has:

Smooth or

no coulter: __--*----*--i--_*_' _,

Narrow

Ripple
Coulter

( (1.5"): _,__,____ ,--*

Date of Fall

or Spring

tillale: , , _ *--'__a __0 ....

Date o¢

Planting: i , *--,

Deto of

Harvest: i , *___i

Sol| Hit.

Precticee:

IAnl_er yel

No)

Tirrsolsi i /_/0

l l
, HO , , ,

Contourll I______i -- --I-- --1

• i

Strip Crop: I , , t
s

'___Tile Drained: , __.__ , * ,--*

• IIrrlcatlon: # ___, . ,__ * ,

If Crop was I

CRP or l

Set-a-Ilde I

What was

Seeded? i__*--* i___i----.,--'
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Table 3. Ground truth survey form A, 1988.

CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED

FOR NASA SATELLITE flESEARCII PROJECT

SOIL HANAGEHENT PHASE

Croppln| year ( 1986 - 1987 - ) Circle one

-- Fill out olil_llill_i_t,_J_QJ___ar --

: /
Field Number: 'G__i__,__i__i__1__o

No. of Acree: ' _'_
s ...... , __.____t__.i,____¢

<:,op, 1o3__ ............
Prlmary I

Tlllale S)'s t ell

Uied : I check ) I

I
No-Till l____.______0____,__.__,__.

I
Rldce Till I__,__,__,__,__,__,

Chl lel I ..... ,----, .----, __,__ ,____,

Strslqht orl

T_lsted PtI _____,.__, __,__,__,__,

HB Plow
--1____, __1__ , __, __ ,

Disk v/ , , ,.... °__o .... ,

3 or 6 _._s
Inches ------1 __l__ 0__ l __ i __ +

Planter hell

SIooLb or

no coulter: --_l______,__,i°__,__,

Narrow

Ripple

Coulter

( <1.5"11 __ +__,___,__,__,

Date of Fill

or Spr in, ! /_//_/_
tilleR°: ,____, __i__ii,__i

Date or +_
Plantlnll : , __,__j__, ,__°__,

,ate or :'1 /_: -__/llervelt : . __1__i__°__i

Soil Hlt.

Precticee:

I Ansiter yes

.o, i ,'/o iTarricell I
i, ,,_, , , ,

Contourl : , t__l__i

+<,,,<,o,++_+_......
i

Tile Drain° , , , , , ,

:: #V'OIrrllition: , , + , ,

i
If Crop WaS

CRP or

Set-a-side

What WeB i ,

Seeded? . --, --, __,___, --, __,

+.:? C_ '

_"' "t _r+"
r_, _ .(iO_ _+y_,- --,-.,
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Table 4. Ground truth survey form B.

CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED

FOIl NASA SATELLITE ItESEARCII PROJECT

SO|b HANAOEHENT PIIASE

F ..... '. {or oper.tor', I ..... '_--"_"#or#,/" Z/_//14/_O411AI J

rs,,loc,tl .... ___._.._._._'C7)vti'............ _//___gN__'ES do.___,,_, '_ o/:
# . • ]

<:ro..,.,.at' CI,o,....
Field ltumber: ! / i.... i____ t t a

itio. Of Acresl .... _ __,_ i_ *_

i/+__,', R_<+e ' 0 a

I
Prlaary l

Tlilale Systeml

Used:lcheckl:

Ha-TIll |__,__

Rldde Till :__,

Chisel |_,

Straight or:

T_lmted Pts _____,

HB Plow __,

Disk

3 or 6

inches

Pllnter his:

Slooth or

no cotllter: __0__

Narrow

Ripple

Coulter

l <!.5"l:

Date of Fall

or Spring

tillale:

Date of

Planting:

Date Of

llsrvelt:

Soil Hit.

Practices:

|Answer yes

No)
Terraces:

Contours:

Strip Crop:

Tile Oreined:_____/_ ) ....
o

irriistio,: i__0 ....

It Crop wis
CRP or
Set-s-side

Vhst _as

Seeded? ___+____

__ i i__l__lm --I--

l i

!

m

+

o
I
a

.... l ____- i -- I .---- I +-- I

I
i

.... I l I I + : --I--I

I

o

I++ ' li+ I l I i I i' i
I
o
o

l__i__ __l--l--l--l

.... +__,__i__ __s-

o o o i

i i o i

__<_ ,
+ , i i

t_/go :........ ,__,__+
o i i__t ....

i o

i i _ __i.... i

i i

i i

o i

____I+I

ORIGINAL PAGE IS

OF POOR QUALITY



I05

Table 5. Ground truth survey form C, 1986.

i
CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED

FOR NASA SATELLITE RESEARCII PROJKCT

SOIL HANAQEHENT PHASE

DEna F_a45
Farmer's (or operator's) namex --'_"

,...,o°.<io.: eeer, q/ae /5 
,_d c_ae____Al_____nL _ E,4.<T-- o_ ,5"oo__

Cropping year 1_98_- 1987 - 1988 Circle one

-- FIll out oO__q__2£__)__;Ir --

Field Number: ,__,__,__,__,_,__,
I

' _7,o iNo. Of Acres: i I i I

crop: I _0_ .......___ a i i

Prilar7

111 la(e System:

Uied : ( check )

No-TIll ,

!

V' , I

I
g..... ,_____,__,__t__,__l

I

i I

, , : , , ,

: t
: I
: I
: l

o_____ i

I
: I

i o J ,

i e__r_z_7...........
I
1

i

h_.__Nc2 ..........
i

,' A/O
i

i /vO__.__ , * *
I

Tile Dralnedl _,__,__o__,--,--t

o

Irritation: ,__,__,_,_,_,

o

If Crop was l

CRP or l

Sat-a-side :

What was I

See(lad ? I

Ridge Till

Chisel

Stral(ht orl

Twllted PLs

lib Plow

Disk

3 or 6

Inches

Planter has:

Smooth or

11o coulter:

Narrow

Ripple

Coulter

I <1.5"):

Date of Fall

or Sprlnq

tlllals:

_ste of

Planting:

Date o[

liarvesL:

Soil lit.
Practices:

fAnswer yel

No)

Terrlcee:

ContoureI

Strip Crop:

ORIGINAL PAGE IS

OF POOR QUALITY
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Table 6. Ground truth survey form C, 1987.

CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED

FOI4 NASA SATELLITE RESEARCII PROJECT

SOIL HANAGEtlENT PIIASE

Farier'* (or operator's) na.o: /'_'_-/_/'_'(_/'_'/:t:'" /3"-':/'_"'/11"_ _-"T'_JC

5_;'_ rw,] " " -
F_tm tocatJ

_)d_ ............. Z__ /7_

Croppln I year I [986 - 7 - 1988 ) Circle one

-- FIII out onq__lh¢_e_o_g.r.__opgll_y©ojr__-_=

Field Nllmbe r :

H_. of Acrel:

I:rop:

7

$7
*

,_OR_______ ............

Prlmar7

l'llIale System[

Used:lcheck)_

1
No-Till I------*---,--*--,--,--*

1 ,
_tdte TIll ___ ,

Ch,,.l ! /
Strallht ori_

|

I

I
1

=l____t I

Dick

3 or 8

inches

Planter h_l:

Smooth or

no coulter

Narro_

Ripple

Coulter

( (I.5"1:

Dete of Fall

or Sprlnl

Illlsle:

Date or

Planting:

Dste of

l:_rvelt:

Soil Nit.

Practices:

(Answer yes

Nol

Terraces:

Contours:

;( r;a
I

:/,_p,q j._':

--=t--l--t=l-- --

l

I

i ,'Vo

': NO , , ,

Strip Crop= _ /_ ......

Tile Drelned : , , , , ,

Irrigation: 1 ,__, ____ ___,__ ,__ ,

If Crop ual

CRP or

Set-_-eide

What was

Seeded? i

• ,,._r. iS
OF  ;AtJTY
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Table 7. Ground truth survey form C, 1988.

.°

CROPPING IllSTORV FOR FARHS IN SECTIONS SELECTED

FOIl NASA SATELLITE RESEARCll PROJECT

SOIL HANAGEHENT PHASE

Fnrmer°l Ior operator',! ..... /p_-/ff/_/_,_/7/C'. FF'f.]/'_I)I_ "

,.r. ,o°at,o.:sEe_,o._ q/_S_Aj_e ,,-_,,_
)/ ,..:

Cropp|n 8 year ( 1886 - 1981 -(1988) 1 Circle one

-- Fill out onej_hie_t____C_CFE/Y'_elr --

7--/J_

Field Numb .... 7 , i , , ]

5q ' '
No. of Acres: ,_____._I__I ,--,__,__I

A._/ i I
Crop: , _1 I

Prlsery

Tlllese Sylteml

Ueed:lcheck},

No-Till __,__, , ,,i----_ ....
Rid|e Tlll .____ 1--.--,__ __1__1

i V 'Chllel _ . . , , .

Straight or:_

T-i,ted Pt. /_e_/_r____Di ...................

HB Plom ° ......... ,______,____ __,____,__,

Dllk , ...... , __,___,__.__.
3 or 6

inches ' .... ,------,--,--t--__,__,

/
Pllnter has:

Smooth or

no colllter:

Narrow

Ripple

Coulter

| <1.5"):

D&te Of Fall

or Sprinq

tlllale:

Date of

Plantill( :

Dire Of

Ilarve|t:

Soil Hgt

Practices

IAnlwer yes

No)
Terraces

.... i__ --I-- l--,--____i__+l

/_ .,._+, -- .... ',__+___ ...... : __,
I : I

:_O_+._: .... :__,

I
I

'__o__:___
I I

co to :JLI__
: /t/_

Strip Crop: : , , ,

Tile Dlalnedlj_

1r,i,.tlon: + ___ I--I__I ____I__I__i

If Crop _ee

CRP or

Set-l-side i

What was

Seeded? I ,--,--+--.t__,___

oRIGINAL PAGE IS

OF pOOR (LH,J/kLtTY
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Table 8. Ground truth survey form D, 1986.

CROPPINO IIIS1"OR¥ FOR FARtIS IN SECTIONS SELECTED

FOR NASA SATELLITE RESEARC)I PROJECT

SOIL HANAOEHERT PIIASE

F .... r'e (or operator'a) .... :., "_'-_ _/v"/" '/_--_'q/d'/')_/_

.r. loc.tl.., _EC/_O.V q.."_f_//SE WESrar/O_- o_
d_ $_£ /_)_'z- o¢ a/oP.r;cEAar /V 5gar, o_/ '

Cropping yenr 1(|986_- 1987 - 1988 I Circle one

-- Fill out on_L-fPtl_LffLr__e_._itlr ._-

) i,_. ) // : _ !Field Number; I -- | -- *.... 1____)__e__e__,

" _q ! ja_! /3 "
No. of Acres: i , ,__ *--|--* .... *I _,

, l
Primary _

71Ilsse STmteml i

Uledl (check) : i

Ho-T I 1 i

Ridge Till :__,.__,__,__,__,___
I

Chleel :___, __.__,__,__.____

StralSI, t or:

Twisted Pta| _,____,__,__,__,__,

HB Plow : , , _ ,__

3 or 8

lnchel )_,. --)--*--*--*--i

I
Planter lima: |

S.ooth or l ./ ,/
ho

coulter:___., . j r.r _v -- .... )----*
• *

Harrow _ :

Ripple : :

Coul Ler : |

( <i.S'): *---:.--:____I__,__,__,

Date of Fall * * ' - , *
' ' ' /}A_ ,

or Spring t .| | : Itil,.,.: i I.....
• - ) ) ,

0.re o_ :l/itS, ._K:,¢/4V /f : IIPR _I :
Planting! *----i--- *__.__.__,__)

• _..ll.¢lil#_. * .Z/ * / ) *
Date of * , . I ,

,,..... t, .....
Soil Hgt. i :

Practicea: : i *

(Answer yea : |

He) * *

i Nm__' ,¢o i og_ _Terracee: I __, , °
*

Contourl: :_i • , , "i
: "" | A./O :* .I. , ,

Strip Crop, _..._...._O | /V(,/ .... :.__

' ' ' Mn
Tile Drained: _/_._i.____/O i "_*_ .... :__:' |

Irrigation, * fjC) ) ,i/'d , /_O , ,

l * : , ,
If Crop vii I l l , ,

CRP or l I l

Set-a-side : : : * *

_hst was l l l

Seeded? :--i__:__i__ |__,__

O_QTrT._L PAGE" IS

OF PC_R QUALITY
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Table 9. Ground truth survey form D, 1987.

CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED

FOIl NASA SATELLITE RESEARCII PROJECT

SOIL HANAGEHENT PHASE

F..... ', tot opareto,',_ ..... _EX/_- _4/¢IHO_E

_I/G� _Oe_ P, qEri" OF ,flo*rlcE_Sr )p 5ic77oU

Cropping year ( 1986 -19_- 1988 | Circle one

-- Fill out op_i__llllti__tJiLq_aqh.__llL_:_-

,,.,d ..._.., __Z__i__//___:i 114[i1_, I_ .....
i i i

No..rA .... .. 13.o i de i _'g : 07 ,

(:ropi • + +.... i ....

Prlierl I

llllafa Systeml

Uiidl (checkl

Ho-rill ,__,.__,__,___,__,__0

Radii Till __,.__,____,_____,__,__,

i

Chilli ____I.____ I__I_____i__i__i

Strellht or:

twllted Pts ___++______+__,________,

HS Plow : _ ........ L_ .....

/V , -¢' , , , ,Disk :__, ......

3 or 6 l 3
..... i

Planter has: :

Smooth or : i// _/no coulter _____

: : l --:--'--'
Nerrov : : l :

Ripple : : : i

Coulter : : : :

( <1.5"1: ,--__:__l__l__l ,__,

I l l l I

Ditl or Fall l l l l l

or Sprinl !/]p_ I ' ' '<,,i.,., :__ vve i i/+ i ....
+ i ! p i

' ' 4_ 'Aim ,_ ' A,ooto or , I;1/_ , , 0, i
Plantlnl: , ° ,__,__,

I, _-++ _l i
Date of . L_7"_ , f" , _ /

• _EP' _______' _ _tllrveit: : :__. l_. .__.

Soil Hit. l

PrICtICII:

IAne_er yes {

Nol , l ,

i l i

Cont .... : i /14'0 i /I/#a l /_/a _/_) i ....

s<.,pcrop:_i WO I W+' ,VO .....
.,...,.in.d. ,t/O i.V__.V_40__I .....
.rl,atlo.: :_i NO i a/o ._____@__0....

I
If Crop wla I

CRP or :_:#/_
Set-I-side
What _as : /_ l_I/

Seeded? _____,_________°___

ORIGINAL PAGE IS
OF POOR QUALITY
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Table 10. Ground truth survey form D, 1988.

CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED

FOR NASA SATELLITE RESEARCII PROJECT

SOIL HANAOEHENT PIIASE

Fer.er'. (or operator's,,,..e: __(__F.</_ _'#/_'O_E
/ ]

O_

Croppinl year ( 1986 - 1981 -_988_) Circle one
o --_---- Fill out n_L_ll_cLf_g_LJLecJl_¢r --

i , ¢ i

i _._:_ /3 i ._7 , : ._,
No. of Acres_ ,...... : _/___/_/_/_/_/_/_/___ _

Primery : J'

Tillage System: :

Ueed: (check) : : |

No-Till ' '

Ridge Till

Chisel , , ,

Streilht or;

HB rio- :: , , / , ,

i,i._ ,__¢__.___..........
_or. ! 3" J'

i

Planter has:

S_ooth or _ / ,/

no coulter: :y,r____,__,_,_,_.

Nerro_ _' , : :

Ripple [ . : :

Coulter _ , :

( (I.5"): :____,__°

Date of Fsll : , _

_ill,,,: :Iii /0' _ /#"

_mt. or ,/_._Y /0. tl//_Y I_, /_/_/_Y-<I , ,
i : r- :---;;_,_/ t : : :

Soll HSt.

Practices :

| Answer yes

NO) '
T@ r r_ces : ..... +i__i ___

I I
: /I,0

Contoure : ,_____,__, __.__,--.

Strip Crop: /_/_ ,__,_,__,__,__,

Tile Drained: _Z_ ........ ,__,

Irrigation: [ /_0 .__+_,__,_,__,

I r crop eel '+

CAP or

Set-e-side

_het _ss

Seeded? ,

ORIGINAL PAGE IS
OF POOR Q¢IALITY
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Table 11. Ground truth su_ey form E, 1986.

CROPI'IHG IIISTORV FOR FARHS IN SECTIONS SELECTED

FOIt NASA SATELLITE RESEARCII PROJECT

SOIL HANAGEHgNT PIIASg

Fa, m location: _ q_lO,*/ ..... _

/.,.:e ,f'oo £ _o,,r_)g_.x; /'¢ _:cr,o//

Croppln 8 year l(I888) - 1987 - 1988 I Circle one

-- Fill o._ on.e._ij_m__fmc___emh_zljtr__o-
0 i 0 i

Field Number: __ ,_,__,

' ' 'd,q ' ._d._' /0 ' /_4 g .....
NO. of AcreI_ ' ' ' ] | '

' '
: .... 1---- : ---

Primary : :

TiJlaqe System; ;

Uled:[check}: ;

No-TIll + +

Ridge Till ' '
0 0

_.l..l i__, ___C__, v i......
str.i_ht or: :-Y Z. _-------_: t : :

H_ PIo_

e

Disk , ...... )____,__, ...., ) )

3 or 8

l_oheo ___,____,__+__)__+__)

Planter hal:

Smooth or

no coulter|

Narrow : :

Ripple : :

co.It+r v" : _/ :
I <!.5"): ' '

Date ot F_II : : :

! _7;-/.:. i O_tl_ior Spring

tillage: .__.__,____)__,__,__,

Date of ' + .... _ /J/_3_..
PllnLlnd: : /]/'_ +'_ ,

D.t. of :j,_ _? : j_.+ ,. ..... _: :___! :__,_ .........

Soil HEr. I

PrecLlcee:

IAnawer yes

.0) ; _o ! A/<; : /_) I/0 .....Terraces: 1___-_._._, "L,:.<.------.____ __

_onto.r,: _ /yo _i _I_2_.__i b____,_________/o ....
i l i

StrI_ C,op: i '_+ i.___!(_ +_ ,+_" __/o .....
! l , l /,,

) l

If Crop mar : !

cap or ,y.... : : : _,d_,LmS
c_4++_ ! + +:

eeL-a-side _,_.¢._het vO| , + , , , "¢'+
$.eded? I_/_}_77¢,_'_ I ' vJ"_|'_°l" '_='') !!..... _; ....... ) ,__,

ORIGINAL PAGE IS

OF POOR ,OUAI.rrY
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Table 12. Ground truth survey form E, 1987.

CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED
FOR NASA SATELLITE RESEARCII PROJECT

SOIL HANAGEHENT PIIASE

I, ,¢/
Farmer's (or operitor'$) .... : /'J!Ok/il/ _ _'//l"U_

F.,. looetlon, _'_Cr, ov "_¢a/,/_-__ E, gsr 5/e.v"
OP _OOAz) J'oa E W_,r_Itx/,_Jr" J'_ SEeT,_,v

Cropplnl year { 1986 - - 1988 I Circle one

-o FIll out o0$_tJ_¢_._,__-.r__a_£h_3"_L_r_--

Field Nu,,,her: ! /A , //3 ._/r ! _d
I ........... I --l--__. I __I

No. ot ^ores: : /0 /31,6" 6. ,R_,.
o........ , _____, .....

Primary I
11 1 la!Je System:

Used: {check I I

No-TIll : .... , .... ,____:__,__,____,

Rldln Till : ..... ,.____: ..... ,--,
: o , , :

Chisel ° ' it/ : I/

--0 .....

HB PLow

Disk
3 or 8
Inches

Planter has:
Smooth or

he coulter

Narrow
Ripple
Coulter

( <1.5"):

Data of Fall
or Sprtn|
tillage:

Data of

Plant|riB:

Date of
Ilmrveit:

So|1 Nst.
Practices:

|Answer yes
Nol

Terraces:

Contours:

Strip Crop:

I

:
: ....... :__

, ____:
:

_: ____;__

|

t
I

- ,--i ,___
--'--g--i

........ #.,,r-_#"-Per_,f i .... .

. .O;'.r / _rl
o

o
o
l
o

l
A/o : /Vo A/o _/o .....

i _o i__ wa ,__,
o o !

wo i ____._i No zvo i__, ,
Tl_..'>ralned. ,,'lid i _,"# i /,/a i ,,4/0 i__, o

o a
' NO ' ' ' I' ' Y/--_ . Ye# , /v'o

Irrllstlon: l __ l .__,,,_..__._.__. i __ I ..... ,

if Crop was l I :

Set-s-ilde ' : :

What was !/_/ I 'Seeded? ; / ' _////Z_;'_¢_--"'

ORIGINAL PAGE IS

OF POOR QUALITY
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Table 13. Ground truth survey form E, 1988.

CROPPING HISTORY FOR FARHS IN SECTIONS SELECTEO

FON NASA SAT£LLITE RESEARCII PROJgCT

SOiL HANAGEHENT PItASE

Farller'li {or operator ', ) ..... _/O_ el/ _/, _##/_O//

,arm,oc.t,o., G,c-

Narrow

Ripple

Coulter

t <1.5"):

Date of Fell

or Sprini

tillage:

Date of

Plantllil:

Date of

Ilarvlsli

Soil llt.

Practices:

(Aneuer yes

No)

Terraceil

Contouri:

Strip Crop:

Cropp|n! )'ear ( 1986 - 1987 -_88j/! Circle one

-- ¥tl! out OD_q_lJle_iti_l_]i_il!!r --
i ! t

Field Number: : //_ : 113 _._,_ : ._,,13

,o. of, ..... { Io i I315 6_.
crop: :_./_g_ . _,eA/ _,¢_v' ', ,_t_

Primary l l

Tllie|e System: I

Used/ I check I I **

I l
No-Till I__,__,_ I __,__ __,

I , I
lldlo liil ;____,____,__I_____,__,__,

<:hie., i......... __C._ / !

5<,.l,.,1..,,hap__-i....... :_7_-_"_'t'_ i .7<_"_4_'_____i ....
I

H! P i Ot I ...... I ......... I ...... I .... I lill. ll

l
Dlik I ..... i ____,__i___,__,__l

3 or 6

Planter has: I

Smooth or :

no co_ilter: :--____,--__,__,__,__,__i

: I
I
, I
: I

• j J
I B i

: 1

...... _,_ ;o I ,4/'_ ;o!

,--, ° . i l

, ,Vo /v'd _o ,V_ !

I I
Till Drained: #4//__ _ l/V//_) /VO l ....

lrrilitlon: : : __,__,

0-,-, I I I
Sot-a-lade : i I

Sam,., ....
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Table 14. Ground troth survey form F, 1986.

CROPPING II151"0R¥ FOR FARHS IN SECTIONS SELECTED

FOR NASA SATELI, 1TE RESEARCII PROJECT

SOIL HAfIAGEMENT PIIASE

/_g goo x/ i,J_____r-o__ 6,_aE

Cropping year I _- 1987 - 19B8 ) Circle one

-- Fill out one_Tl|lic___f_or__¢___L.y_lAr --

o t o _ i: V_ , _.._ ', /._.3- ', i_,a_ ',
NO. of Acres: : : i *

_rop: pO_S I ! : :__:__,, l
Prl|ar! _ :

Tllllle 8yetem:

Used:(check):

No-Till :__:__

l
__:__:__,__,__0

Rld|e TIll :--:----:--|____o__,__,
o • a oo a oChlsel , / , _" V : _/
__ i -._...._..z_..._._._i__ o

RB Plou ,______: _____

Disk , ..... : ..... ____
3 or 8

Inches _ ....

t

| t

Pleater has:

Smooth or

no coulter:

Harrow

RIpple

Coulter

/

I
( <1.5"}: ,____ '

:
Date of Fall :

/

I

__l___f__i

1
a' v'o

I

: : : : :
Date ot ' *

a o

D,t. or :C_ ,Ct:z-- ! c::_T- C_7-
Ilsrvest :

.Roll Hit. |

Practices: :

(Ansuer)'el :

Nol :

Terraces: ....... *--,

Contour,: :: .._.___ ___ ______/_) :: NO _lf_ i__i__,
o . a

i _o ' :/o ' ,Vo '____m_.'Strip Cropx --___ I._ I I I_
0 _

: N<) Uo :h:Tile Drained: A/'_ :__I__:____,_____,

' ,,u_ ' AI_ ' No ' qOlrrl_atlon: :__ ; : : l , , ,

It Crop _ae

CRP or

Set-a-aide

_hat _am

Seeded? i__l__¢__i__ ,__,

CRIGI,"_ALPACE '"_o

OF. POOR _UmJTY
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Table 15. Ground truth survey form F, 1987.

CROPPING IIISTORY FOR FARHS IN SECTIONS SELECTED

FOR NASA SATELLITE RESEARCII PROJECT

SOIL HANAOEHENT PIIASE

:d 2ao# /.df__z o: _o E
f---_

Cropplnl Fear ( 1986 -_1987_/-1988 I Circle one

-- FIll out oll_.__Lh_tP.__r_____f.J___:_l_r --
i o i o o

J ' ____'__3___'_'i i o o oField Number: ,_ ___t__ , ,

, , , _,:, _,_'.o..t A..... , ¢¢ , .9_,:_ ,o_____, ____,__,__ __ __
D , e . 0 _ a • *

Crop: __ __ -_---_l I__,__,

Pr|mery I I I I

lIllale Syltem_ I _

Ueed : ( check ) : : : :

RId/e Till _ ..... : ------ L-- :------,--,--__,

chl,.l :: v" ! v ! v" ! v
Streliht or: [__ [ : . .

Twtet.ed pt.:7_',sr:J :/J(._J_.._:_: 7"WIJ_T_R_____;__,
l

H9 Plow :____, __,__,__,__,__,

.... i __l__ __l__t__o

p/ v"" p/ /

L

0 _ . o 0 i , ,

I ; l I
o o e a

i o i

icy_L__ a:_L__ia:_K__i ce: ,....

Dlmk

3 or 6

lnchel

Planter ham:

Smooth or

no Coillter:

Nerrow

Ripple

Coulter

I <1.5" ):

Date of Fell

or Sprlnl

tlll_le:

D_te of

Plen_lnq:

Date of

ilerveeL:

Roll Hgt0

Prtcttcee:

(Ansuer yee

No) ,

Terrice_: I__--_

Contour,: i _O

Strip Crop: : /t/_

_/: i#o
i

/_ ___,__,

, , , I I I I
,rrllttlon, IZI /V+'O 1 /_/0 t ____ l__l__l

I
If Crop _ae l

CEP or

Set-e-side

Seeded? ,___,__,__l*__,

ORIGINAL PAGE IS

OF POOR QUALITY
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Table 16. Ground truth survey form F, 1988.

¢

CROPPIHG IIISTORY FOR FARHS IN SECTIONS SELECTED

FOR NASA SATELLITE RESEARCII PROJECT

SOIL HANAQEHENT PilASE

,..... ,. ,oroper.<o.',,..... I.E_;,zP,_ D._ _+<//

Sd Woo N _;_7- oF _ E

Nmrrow

Ripple

Coulter

( <1.5"):

Date of Fell

or SprinR

tilleBei

Dmto of

Planting:

Date or

Harriet:

Soil NEt.

Practicell

(Answer yel

No)
Terrlcel:

Contours:

Strip Crop= i _/0 _
I

Tile Drained: _/0

Cropping year ( 1986 - I987 -(.119_888jl Circle one

-- Fill out o_lcj___r ea_b year --

_ i _Field Number: : /

.0. o,Acre,, i q"/ _s.,,..',.. /a._i g_.__.___i__i___
,:top, ::dgP d.4f-" C_'___P_P::_____ ....

Primary [ [

Tillele Syetem_

Used : ( check ) :

No-TIll :__,__,_:__,__,__,

: , :
Rldle Till ' ' ,

Chisel :____:__:___,__,__,__,

Strll(ht or: _

I
HB Plow ,______; ...... I__,__,__,__,

Disk ._____: ______: v____. _ .....
3 or 6inches '_" : _" i #" "_"

Plantar heel

Smooth or

rio co%liter," : ,

I I ' I

' : I :

: ; I t

i_/,__d_df___i,,/,h' I_IA/___ ......
I
I

l+l--:--i+l--,--i

i:,,]Wo : ,v'_ h/_____o//o .....
i_d_o_. ,"_ __'o__ ._/o i__i__+

__!/o ,Vo___iffL________
i i i

,V___ AP , ,4,_ ,

,rrIsetIo., ; No ,vo +_t A'__O+__+__,

,, _,o,.. _ o,_;,sI _ +o.+_i :Clip or l
set-.-.l. ,I t-. , d t. : :
_het.. /Doe+ dl_,,,_ i dove,<,, de_e,_ I i__.
Seeded? i__,__l__ ___

ORIGINAL PAGE IS

OF POOR QUALITY
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Appendix B. Flown Aerial Photographs

Section 3:

J

i! ,;,;.r,:

:;: , .!.

Figure 1. Photocopy A of flown aerial photograph for section 3.

..... ::_ ,'-- , _CiE IS
OF PG(.)_ _ _ ,'rv
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Section 4:

Figure 2. Photocopy A of flown aerial photograph for section 4.

ORIGINAL PAGE IS

OF POOR QUALITY
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Figure 3. Photocopy B of flown aerial photograph for section 4.

i,Dli_iQi' ',:._c.+_ :r>,,,<--.

OF PO0_ QUALn'Y
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Section 9:

Figure 4. Photocopy A of flown aerial photograph for section 9, 1987.

ORIGINAL _/_GE IS

OF POOR QUALITY
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Section 10:

Figure 5. Photocopy A of flown aerial photograph for section 10, 1987.

ORIGINAL PAGE IS

OF POOR QUALITY
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Appendix C. NETS Interface Routine Code

Mac to_NETS.c

****************************************************

Date: 6/17/90

Prog_ Xin Zhumg. AGEN, Purdue Univ.,
W. l.affayetxe, IN 47906

Routine ratine: Mac_to_NE'I_.c
De_critxion: Converting an ASCII data file listed on

M_LARSYS to NASA NETS format

wh/chisbimuy-cod_.
******************************************************

#include <_lio.h>

#defineminus(v_) (y-x)

FILE *folxmO;
*infile;

FILE *infile_image4
FILE *infile._dass;
FILE *ouaile_image; p • file for • multi-brad image */
FILE *ouaile_class;P • fileforclasses*I
FILE *otnlile._iol_/*•NETS trainingfile*I

h_t MaxCl_s = 7;

char Mm:File[ 101;

char lnuqle[10l;

char C_s[10];

char NetsFtle[ 10];

mtin0
{

GetMacFile..Name0;

Get_ImalleHleand ClusFile NarnesO;

MacFde_to_lmage_md_Cks ,0;

De.groupa MacFiletoa imagefileand •classfile

getting rid of the row & colum# and Field #.
:t O:be@/

C_te_NmFile0;
pl, O_J_

GeneratetheASCIIaypebinarycodesforNETS.

Get_MacFileName0

{

Ixintf("EnterI_Fde Name> ");

scanfC%s',MaeFile)_

Get_ImageFile_mdClassFileNames0
{

int i,j;

i=j =0;

while((Im_e[i++]= MacFile[j++])I=' ')

--i;

Imag_i++l= '.';

Image[i]= T;

The co¢_q_xxlingimagefilen_ne _ withmumsion T.

i =j =0;

while((Cl_s[i++]= MacFile[j++])I=' ')

--i;

Clm(i++] = '.';
Cl_,[il = 'C';

"I_ _g class file n_me i_ with entemion "F.

MacFile_to_Irmge_md Ci -, s0
{

int Row, Cd, d-.s, field;

im l_endl, bind7., l_md3, band4, trendS, band6, bandT, l_mdS;

infile = fol_n(MacFtle, "r");

outftle_inutge: folma(Image,"w');

outftle_class: fol_m(Clas,,"w");

while(f_,mf(infile,"q_l%dqbdqlxl%dq_lq_l%dq_lq_lq_l%d0,
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&.Row,&Col,&class, &field,
&b_dl, 8dmnd2,&band3,_, &bandS,

&b_d6, &bandT, &band8) I= EOF)
{
_rintf(o_am_imase,"(');,

fprinff(oatlile_imase,"qkl%d %d 'lEd%d %<I%d %d',

bandl,band2,band3,brad4,bandS,bsnd6,bandT)l_nd8);

fl_atf(outlile_image,")0);

The pale=atSesesarefortheMakeBin rotatine.
O****/

fprintf(_tfile_class,"qkiO,class);

fl_rintf(omfdc..elass,"");

fclole(in61e);

fclme(otatftle_image);

fclose(omfile_class);

l

Create_NeuFileO

{

int c;

infde_image= fopen(Image,"r");

infile_clus= fopea(Class,'r');

Get NETS..iopFile_Name0;

outfile_iop = fope_(NetsFde,"w');

primf('%sO,NcuFilc);

Write_ASCII_Bha_Imase0;

fdose(inlile_im_e_,

fdc_(intile..cl_s);
fd_.(omfile..iop);

}

Get_NETS_icpFile_NameO

{
im i, j;

i=j=O;

while((NeuFile[i++] = MacFile[i++]) I=' ')

--i;

NeuFite[i++] = '.';
Net_File[i++] = T;

NeuFile[i++] = 'o';

NetsFile[i] = 'p';

The coctespondmg classfile name is with entemion "iop".

OSs**O/

}

W rim_ASCII_Bin_ImageO

This fun_im was wrim= by Ranjan Muaiah for

cc_vertin 8 • ASCII file to a ASCII-binay file.
It was modified to be m/talde fo¢ cenven_ns
an image fieL
***********************************************

{

int c, k, i, ok, 1,junk, temp=O;
char ch[5];

unsigned number;,

_c('(', o_amjo_),

w_c ((c = sere(in, re_image)) t= EO_ {

mgetc(c, infile_image);
ck = YES;

junk = NO;,

for (i=O;i<=5;i++) ch[i] =

i=0;

while((ok _ YES) && ((¢ = getc(infile_image)) I=' ')) {

iff((c _-_ EOF)II(c = 'O)tl(c_-_ '-')I1(¢ _-_ ')')ll(c = '(')))
ok =N_

else ( ch[i++l = c;temp++; }
}

if (c _ '-') (while ((¢ = getc(infile_image)) l= '0);if (temp == O)junk = YES;}

if(i I= 0) number = stci(eh); /t' First element is '('*/

I= (Y,k=0;

while ((l++ < 8) && (i I= 0))
(

if ((number & I)_ 1)
{

pu_('O', _tfile iop_,
puw.('.', c_aile..i_p);
putc('9', _atfilejop);

if (chill t= '0)
pure(' ', outfik .iop):

if ((ch[i] _ '0) && (k++ < 7))
irate(' ', o_ailejap);

)
else

{
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l_c('0', out_le._i_)_

imtc('. ', outfile..ioo )_
pmc(' 1', ouUile_iop);

(_[i] i= 'o)

putt(' ',oufffle_iop):
if((ch[i]_ '0)&& (k++< 7))

l_tC(' ', o_e..iop);
}
number = number >> 1;

}

if (¢ _ '0 && junk _ NO && (¢ = setc(infile_image)) _=EOF)
{

W_te_ASCII Bin_C'lassO;

pule(')', ouele iop);

puu:('O,outlile iop);

pu_'(', outCae .i_);

unsew.(c,infile_image);

u_np= O;

}

}

Write_ASCll_Bin_ClassO;

putc(')', outlile_iop);

su_(s)
char ,[.];
{

_i,n:
n= O;

for O=O;s[i] >= '0' && s[i] <= '9': _i)
n = 10 *n + s[i]- '0';

return(n);

}

Wnte_ASCII_Bin_CIas.0

{

intclass;/*variablefortheclassnumber */

intzero; p # ofz_o m classthermometercoding*I

fscanf(inffle_class," %d',&class);

zero = minus(MaxClass, class);

Prim_out_Class Code(zero, din);

}

for (i=l; i<=nmn ¢¢_e;i++)
{

fprinff(ouff__iop," .9");

}

for (i=l; i<=num, null_ i++)

{

_intt(o__iop,-. i -);

}

dccodc.c

Dim: 6/17/90

Programmer: Xin Zhtmng, AGEN, Purdue Univ.,
W. Lafayeim, IN 47906

Routine name." _code.c

Descripuon: Decoding a NASA NETS result to a
ASCII-binary ill,-.

_nd_le <sulio.h>

#defineminus(y_x) (y-x)

#define MXPXL 940*220 P maximum # of pixcls */
#define MXGRY_I..BVEL 16 P maximum # of pixeb */
#define THRSHLD 0.70 /* decoding threshold

(if THRSHLD>0.51, thegnthe code vslue is 1) */
#define MX_ 13 /* maximum # of classes */

#define NAMELEN 32 /* maximum length of output fileaame */

FILE *fopenO;
FILE *infile;

FILE *outfde;

FILE *logRle;

int row_num, /* # of lines of the somce file *I
cd_num, /* # of pixels of the source file */
toud_num__xek

Pri_o_ Clas s_Code(num_nuU, num__le)
int num_null, num_one;
{

int i;

char file OUq'NAMELEN];

char file_in[NAMEIN_.N];

float ima$e._giJ[MXCLSS];

int dass[MXCLSS];

/*name of the ouq_m file "1

P name of the output file */
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main(argc,arllv)
int argc;
char*argYll:
(

int i..pixel, j:

char indication[4l[ 10],bracketJe.ft,bracket_right;

input..ptraO;

infile --fopen(file._in,"r');
outtile = fope_file_eut, "w');

get_toud..mn_pixelO;

for(i.._el_, i_pixflaaal _ma_l_iX_ i_pi_el++)
{

for (i=O:j<4. j++)
{
fscaaqi_file, "_,s',indic_on[j]);

/* p_tf('%sO, indie,,tionlj]);*/
)
rs,::,_(in6_;O);

fscanf(infile,"%c", &bracket_left);
P Ix'intfC%c', bracketJcft);*l

input image..gis dataO;
outtmt..gis gmy_cod¢O;

fscanf(inflle,'q[,cO,&btac.ket_right);

fdose(infde);
fclose(outfile);

printfEEnterimage_.gisdatafile _> "y,
sc.,,nf("'_s',__in);

printfC >> Eater# o( lines of eachinputfile :");
scaafCSkl', &rOW_hUm);

printf(" >> Enter# o_pixels in • line : ");
sc.mfC'r,,d',m_olaw);

printfCEach sourcefileis ['_l x %d].O,row_hum,col_am);

Set_tot,l..num..pixdO
{

toud._nm'n..pixed=row_hum*col_tram;

}

input imsse..sis_d.t.O
{

P

P

int i..class;

for(i_dass--O;i_chss<MXCLSS; i_class++)
{

fscanf(infile,"%if.&image._gis[i_das sl);

printfC%f ",image..gis[icla,s]);*l

printfCO);*l

}

fscanf(infile,'O);

output_gis..graycodeO
i

int i class;

for(i_ehss-_, i_class<MXCLSS; iclass++)
{

ff ( image_gis[i_classi < THRSHLD)
ftaintf(outfile,'0.1 ");

else
fprintf(outfile,'0.9");

fprintf(outfile,'O);

printfC >>Enterthenameo/theoutputfile:");
scanfC%s",file_out);
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makegis.c

Date: 6/17/90

Proltrmnna:r: Xin Zhuang, AGEN, Pmdue Univ.,

W. Lafayette, IN 47906

Routine name: makegi,.c

De_ription: Making a GIS file which bothMacLARSYS
md ERDAS can read b,tsed on the rcmlt

decoded using "dccodc.c'.

#include <stdio.h>

#define THRSI-ILD 0.7 /* decoding threshold

(/f THRSHLD>0.7. th,m the code value i. I) *I

#define nil_or_one(x) (x > THRSHLD 7 1 : O)

#define MXPXL 940*220
#define MXGRY_LEVEL 16

#define MXCLSS 13

(

input_imase___dataO;
ouqxlt...gis_ltrty_code0;

}

ft_intf(ot=fd=,'0);

}

fclme(inlile);

fclo_(otmr_);

}

/* maximum # of pixeis */ input..para0

/* maximum # of pixcls */ {

/* m_mua'n # of ¢.Ltsset *1

#define NAMELEN 32 * maximum imgth of output ftlmame */

FILE *folmaO;
FILE *iaffle;
HLE *oudile;
FK.E *loCale;

int row..num, /" it el lines of the source file "/
col_hum, /* # of pixel, of the umrce file */
tcttl_nmn..pixel,

clus_.gray_level;

char lile_omlNAMELEN];
char f__mtNAMELENI;

float imalle_gisIMXCLSS];
hat cI_[MXCLSS];

main(argc,argv)
int argc;
char *argv[_i;
{

/* name of the output file */
/* frame of the in_t file */

int i_row, i_ml, j;

prinff('Entet imase..gis data file _> ");

scanfC%,', file in);

prinff(" >> Enter # of line, of each input file : ");
,canfC_Gd', &row hum);

printf(" >> Enter # of pixels in • line : ");

,caJffC_l', &col_hum);

printf('Ew.h meree file is [7_i x 7,,di.0, row_num, col_hum);

printf(" >> Enter the name of the output file : ");
scanfC%,", file..oety,

get_ta=l..nu=n_pixel0
(

total_mma..pixel = rOW_hUm * col..hum;

}

input_ftra0;,

infile = fep_(file._in, "¢');
outfile = fopea(file_out, "w");

get_total_num_pixelO;

for (i..row=0; i_row<row_num; i_row++)

(
for (i_eol=0; i_col<eol_num; i_cxd++)

i.p.t..im*se___d,t,O

I

im i_class;

P # of NTES om4mt equah # of ela=ses, *l
p so each ouqmt has MXCLSS diKm. *1

for (i ¢tu_&, i..¢I=,s<MXCI._; i e_ss++)

(
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/*

fscanf(infile,'%f',&image_.gis[i._dass]),

prinffC%f ",image..gis[J_clas=]);*/

printfCO):*l

}

fs,mff(infde,'O);

output _my cod, O

{

im i class;
char gray_level;

class,gray level = O;

foe (i cl_O;, i_c._s<MXCLSS; i_el,us++)
(
if ( nil_oc_onc(imase._gig[i_classl) > O.t )

elass._gnty level++;
else

i clm = MXCLSS;

}

switch (e.._|..grayJevel) {

$myJevd = '0';
txt_;

case 1:

8ray..levd= '1 ';
I_.=k;

case2:

IptyJevel = "2';
bw.tk;

case3:

Ipr=yJevel = '3';
break;

case 4:

=rty_l,_ml = '4';
bleak;

case 5:

_prayJevel = '5';
break;

case 6:

IpayJcveJ = '6';
break;

case7:

ipty_leveJ = '7';
bw.ak;

case8:

Ip_yJevel = '8';
break;

cae¢9:

IptyJevel = '9';
break;
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cue I0:

srayJevd = ' A';
bt_k;

¢u¢ II:

grtyJevd = 'B';

case 12:

gray levd = 'C';

c=_ 13:

gmyJevd = 'D';
break;

]

fprinff(outfile,'%c',Ip'ayJevcl);

perCellt.c

Date: 6/17/90

Programmer:. Xin Zhuang, AGEN. Purdue Univ.,

W. Lafayette, IN 4?906
Routinename: pemem.c

De_rip60n: Th_ rtmt_ is for c.alculating
correct l_rammge ¢_ dusificadon.

************************************************

#indude <stdio.h>

#&firm NAMELEN 32

/* maximum ieagth of ouqmt filename*/

#¢_fim Get Con_a_Perce_(x, y) lO0*x/(x + y)

FILE*fopenO;
FILE *inflle;

FILE *omfde;
FILE *losfil_

chm'file om[NAMELI_; /* name of the output file */
char file_m[NAMELEN]; /* name of the output file *7

int cla=t_num;
flo=t mu= =0;,
float false = 0;

float Percent;

main(arSc,argv)

intargc;
char *=rl_fl;
{

char c;
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iltt OUe Of ZedO;

float trm..#us_false;

input_fm=0;

p Get_OutlmtFile_Name0; */

infile = fopen(file, in, "r");

while( (¢ = $etcOn/ile)) t= EOF )

{

if(c I= '0)
{

me_or_zero = atoi(c);

ff ( me o¢_zero -_ ctsss...nm )
tree =ta_m ÷1;

else
false=false+ 1;

}

}

Percent = Get Contct_Pemmt(tme, false);

fdose(milk);

tree plus fslse = true + false;

ptinffC %4.2t0, Percent);

outfde = fopcn(fil_in,'a");

i=j=@,

while ((file out(i++! = file in[j++l) t=' ')

--i;

file_o_tIi++l = '.';

file_out[i] ='P';

ttoi(c)
char c;

im image_sis;

,wtt4_(¢)(
e,aK: '0';

ImaSe_#s =
bresk;

C.lu;e '|':

unsse_#s = 1;
bt_.sk;

case '2':

wasgc_lOs= 2;
bt_.sk;

case '3':

smslte.._ = 3;
I_reak;

case °4_:

mutg¢..,gis = 4;
break;

fate '4["

fprinff(outftle," %7.2f / %7.2f ) = %4,2f0, tree, tme.#us..fahte, PercentS,

fdme(outlile);

input_tara0

(

primfCEnlzr file => ");
scmffC%s', file_in);

printfC ds. num"Y.

scmffCq_, &clus nea0;

C_ Outpu#ile_YsmeO
{

inti,j;

anage_gb : 5;
break;

case '6':

unage._ ---6;
break;

tmage_gts = 7;
bt_;

cue '8':

umtge.gm : 8;
break;

C&S4_Pg*"

tmage..jpl = 9;

breast;
case 'A':

tmage_gts= 10;

break;

case '[3"

tmage..gts= 11;
break;

case 'C'"

unM,c_gxt = 12;
btttk;

case 'D'"

nnaSe..gis = 13;
break;

)
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}

subset.c

_ee&eeeooo _&eeeee_oee_oeeeeoee_eese _I eoeeo_

Date: 6/I 7/90

Prognann_r:. Xin Zhuang. AGEN. Purdue Univ..

W. Lafayette, IN 47906
Routine name: subeet.c

Description: This r_tine is fo¢ subletting and
co_verdnj • binary ERDAS file. which
has beamremoved iu header, to m
ASCII one.

#include <_dio.h>
#include _h.h>

#define MXBUF 256 p rmvfimmn size d buffer */
#define MXBND i 2 /* maximum number of data channell */

#define NAMELEN 32 /* numimum length o[ output filenam¢ */

FILE *fopen0;
FILE *¢xafil¢;

main(argc,argv)
intargc;
char *acgv_;
{

hat fd[MXBNI_I ].
hi.

rip.
d.

m_d.

ndu_.

nv_d[MXBND][MXBUF] [MXB UF].
¢=fi,i,ii,ii_d_,
UL_X. UL_Y.
BR_X. BRY.
UL_BR X. UL_BR Y;

p file dew.rip/or d files *I
/* # of lines of the source file *I

P # d pixels d the source file *I

_:anW'$.",ocd);
prinffC >> Enu_r(row.col) d the u@per-lef-t:");
scanfC_lq_d'. &UL_Y. &UL X);
prinffC >> Enu_r(row.col) af _he boaom-fight: ");

scanfC%dq_l'. &BRY. &BR_X);

UL_BR_Y = BR_Y- UL_Y + l;

UL_BR_X = BR_X - UL_X + I;

prinffC >> The ,ubset is [%d x %d].0. UL BR Y. UL_BR X):

¢a_d¢ = fopen(ouff,"w");

fo_fj_ I ;j_.argc;++jj)

{

fd_l=opm(ar_v_].0).

}

/*read imagedata */

for(ii= I;h'<=nl;++ii)
{

fortij=_;i/<=ge;++i_)
{

c_'r_(fdtiJlAmgtiil,_p);
]

for(kk=_.kk<np:++kk)
(

forilk-l; ii<_rsc;++_)
{

nval[jj][kk][ii] = imgtij][kk];

if (ii >= UL_Y && ii <= BR_Y)

if (kk >= UL_X- 1 && kk <= BR_X - 1)

{

_rinff(_le,'qod ",nvaI_][kk][il]);
}

)
}

if (ii >= UL_Y _ ii <= BRY)

fprinff(outfile,"0);
}

fdo_(ou_le);

.n.i_ned charimg[MXB_DI[MXBUF1,
o_patIMXBUF]; /* buffer*/

char outlTNAM_; p name o( the outputfile */

prinffC >> Enter#dline_ deaw.hinput file :");
scaaf('S_d'. _a);

pfimfC >> En_r # d l_xd_ in a line : ")_

scanfC'l,d', &aO);
prinffCEach so_rce file is Wod x '$d].O, nl,ap);

pdnff C >> Enter_hename d the ouq:mtfile: ")_


