263 research outputs found

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    Structure in the 3D Galaxy Distribution: I. Methods and Example Results

    Full text link
    Three methods for detecting and characterizing structure in point data, such as that generated by redshift surveys, are described: classification using self-organizing maps, segmentation using Bayesian blocks, and density estimation using adaptive kernels. The first two methods are new, and allow detection and characterization of structures of arbitrary shape and at a wide range of spatial scales. These methods should elucidate not only clusters, but also the more distributed, wide-ranging filaments and sheets, and further allow the possibility of detecting and characterizing an even broader class of shapes. The methods are demonstrated and compared in application to three data sets: a carefully selected volume-limited sample from the Sloan Digital Sky Survey redshift data, a similarly selected sample from the Millennium Simulation, and a set of points independently drawn from a uniform probability distribution -- a so-called Poisson distribution. We demonstrate a few of the many ways in which these methods elucidate large scale structure in the distribution of galaxies in the nearby Universe.Comment: Re-posted after referee corrections along with partially re-written introduction. 80 pages, 31 figures, ApJ in Press. For full sized figures please download from: http://astrophysics.arc.nasa.gov/~mway/lss1.pd

    Singular Continuation: Generating Piece-wise Linear Approximations to Pareto Sets via Global Analysis

    Full text link
    We propose a strategy for approximating Pareto optimal sets based on the global analysis framework proposed by Smale (Dynamical systems, New York, 1973, pp. 531-544). The method highlights and exploits the underlying manifold structure of the Pareto sets, approximating Pareto optima by means of simplicial complexes. The method distinguishes the hierarchy between singular set, Pareto critical set and stable Pareto critical set, and can handle the problem of superposition of local Pareto fronts, occurring in the general nonconvex case. Furthermore, a quadratic convergence result in a suitable set-wise sense is proven and tested in a number of numerical examples.Comment: 29 pages, 12 figure

    Deterministic Linear Time Constrained Triangulation using Simplified Earcut

    Get PDF
    Triangulation algorithms that conform to a set of non-intersecting input segments typically proceed in an incremental fashion, by inserting points first, and then segments. Inserting a segment amounts to: (1) deleting all the triangles it intersects; (2) filling the so generated hole with two polygons that have the wanted segment as shared edge; (3) triangulate each polygon separately. In this paper we prove that these polygons are such that all their convex vertices but two can be used to form triangles in an earcut fashion, without the need to check whether other polygon points are located within each ear. The fact that any simple polygon contains at least three convex vertices guarantees the existence of a valid ear to cut, ensuring convergence. Not only this translates to an optimal deterministic linear time triangulation algorithm, but such algorithm is also trivial to implement. We formally prove the correctness of our approach, also validating it in practical applications and comparing it with prior art

    Local Anisotropy of Fluids using Minkowski Tensors

    Full text link
    Statistics of the free volume available to individual particles have previously been studied for simple and complex fluids, granular matter, amorphous solids, and structural glasses. Minkowski tensors provide a set of shape measures that are based on strong mathematical theorems and easily computed for polygonal and polyhedral bodies such as free volume cells (Voronoi cells). They characterize the local structure beyond the two-point correlation function and are suitable to define indices 0≤βνa,b≤10\leq \beta_\nu^{a,b}\leq 1 of local anisotropy. Here, we analyze the statistics of Minkowski tensors for configurations of simple liquid models, including the ideal gas (Poisson point process), the hard disks and hard spheres ensemble, and the Lennard-Jones fluid. We show that Minkowski tensors provide a robust characterization of local anisotropy, which ranges from βνa,b≈0.3\beta_\nu^{a,b}\approx 0.3 for vapor phases to βνa,b→1\beta_\nu^{a,b}\to 1 for ordered solids. We find that for fluids, local anisotropy decreases monotonously with increasing free volume and randomness of particle positions. Furthermore, the local anisotropy indices βνa,b\beta_\nu^{a,b} are sensitive to structural transitions in these simple fluids, as has been previously shown in granular systems for the transition from loose to jammed bead packs

    On some aspects of the CNEM implementation in 3D in order to simulate high speed machining or shearing

    Get PDF
    his paper deals with the implementation in 3D of the constrained natural element method (CNEM) in order to simulate material forming involving large strains. The CNEM is a member of the large family of mesh-free methods, but is at the same time very close to the finite element method. The CNEM’s shape function is built using the constrained Voronoï diagram (the dual of the constrained Delaunay tessella- tion) associated with a domain defined by a set of nodes and a description of its border. The use of the CNEM involves three main steps. First, the constrained Voronoï diagram is built. Thus, for each node, a Voronoï cell is geometrically defined, with respect of the boundary of the domain. Then, the Sibson-type CNEM shape functions are computed. Finally, the discretization of a generic variational for- mulation is defined by invoking an ‘‘stabilized conforming nodal integration’’. In this work, we focus especially on the two last points. In order to compute the Sibson shape function, five algorithms are pre- sented, analyzed and compared, two of them are developed. For the integration task, a discretization strategy is proposed to handle domains with strong non-convexities. These approaches are validated on some 3D benchmarks in elasticity under the hypothesis of small transformations. The obtained results are compared with analytical solutions and with finite elements results. Finally, the 3D CNEM is applied for addressing two forming processes: high speed shearing and machining
    • …
    corecore