4,851 research outputs found

    Deformation Control in Rest-to-Rest Motion of Mechanisms with Flexible Links

    Get PDF
    This paper develops and validates experimentally a feedback strategy for the reduction of the link deformations in rest-to-rest motion of mechanisms with flexible links, named Delayed Reference Control (DRC). The technique takes advantage of the inertial coupling between rigid-bodymotion and elasticmotion to control the undesired link deformations by shifting in time the position reference through an action reference parameter. The action reference parameter is computed on the fly based on the sensed strains by solving analytically an optimization problem. An outer control loop is closed to compute the references for the position controllers of each actuator, which can be thought of as the inner control loop. The resulting multiloop architecture of the DRC is a relevant advantage over several traditional feedback controllers: DRC can be implemented by just adding an outer control loop to standard position controllers. A validation of the proposed control strategy is provided by applying the DRC to the real-time control of a four-bar linkage

    Adaptive computed reference computed torque control of flexible manipulators

    Get PDF

    ์™ธ๋ž€ ๋ฐ ํ† ํฌ ๋Œ€์—ญํญ ์ œํ•œ์„ ๊ณ ๋ คํ•œ ํ† ํฌ ๊ธฐ๋ฐ˜์˜ ์ž‘์—… ๊ณต๊ฐ„ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2021.8. ๋ฐ•์žฌํฅ.The thesis aims to improve the control performance of the torque-based operational space controller under disturbance and torque bandwidth limitation. Torque-based robot controllers command the desired torque as an input signal to the actuator. Since the torque is at force-level, the torque-controlled robot is more compliant to external forces from the environment or people than the position-controlled robot. Therefore, it can be used effectively for the tasks involving contact such as legged locomotion or human-robot interaction. Operational space control strengthens this advantage for redundant robots due to the inherent compliance in the null space of given tasks. However, high-level torque-based controllers have not been widely used for transitional robots such as industrial manipulators due to the low performance of precise control. One of the reasons is the uncertainty or disturbance in the kinematic and dynamic properties of the robot model. It leads to the inaccurate computation of the desired torque, deteriorating the control stability and performance. To estimate and compensate the disturbance using only proprioceptive sensors, the disturbance observer has been developed using inverse dynamics. It requires the joint acceleration information, which is noisy due to the numerical error in the second-order derivative of the joint position. In this work, a contact-consistent disturbance observer for a floating-base robot is proposed. The method uses the fixed contact position of the supporting foot as the kinematic constraints to estimate the joint acceleration error. It is incorporated into the dynamics model to reduce its effect on the disturbance torque solution, by which the observer becomes less dependent on the low-pass filter design. Another reason for the low performance of precise control is torque bandwidth limitation. Torque bandwidth is determined by the relationship between the input torque commanded to the actuator and the torque actually transmitted into the link. It can be regulated by various factors such as inner torque feedback loop, actuator dynamics, and joint elasticity, which deteriorates the control stability and performance. Operational space control is especially prone to this problem, since the limited bandwidth of a single actuator can reduce the performance of all related tasks simultaneously. In this work, an intuitive way to penalize low performance actuators is proposed for the operational space controller. The basic concept is to add joint torques only to high performance actuators recursively, which has the physical meaning of the joint-weighted torque solution considering each actuator performance. By penalizing the low performance actuators, the torque transmission error is reduced and the task performance is significantly improved. In addition, the joint trajectory is not required, which allows compliance in redundancy. The results of the thesis were verified by experiments using the 12-DOF biped robot DYROS-RED and the 7-DOF robot manipulator Franka Emika Panda.๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ ์™ธ๋ž€๊ณผ ํ† ํฌ ๋Œ€์—ญํญ ์ œํ•œ์ด ์กด์žฌํ•  ๋•Œ ํ† ํฌ ๊ธฐ๋ฐ˜ ์ž‘์—… ๊ณต๊ฐ„ ์ œ์–ด๊ธฐ์˜ ์ œ์–ด ์„ฑ๋Šฅ์„ ๋†’์ด๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ํ† ํฌ ๊ธฐ๋ฐ˜์˜ ๋กœ๋ด‡ ์ œ์–ด๊ธฐ๋Š” ๋ชฉํ‘œ ํ† ํฌ๋ฅผ ์ž…๋ ฅ ์‹ ํ˜ธ๋กœ์„œ ๊ตฌ๋™๊ธฐ์— ์ „๋‹ฌํ•œ๋‹ค. ํ† ํฌ๋Š” ํž˜ ๋ ˆ๋ฒจ์ด๊ธฐ ๋•Œ๋ฌธ์—, ํ† ํฌ ์ œ์–ด ๋กœ๋ด‡์€ ์œ„์น˜ ์ œ์–ด ๋กœ๋ด‡์— ๋น„ํ•ด ์™ธ๋ถ€ ํ™˜๊ฒฝ์ด๋‚˜ ์‚ฌ๋žŒ์œผ๋กœ๋ถ€ํ„ฐ ๊ฐ€ํ•ด์ง€๋Š” ์™ธ๋ ฅ์— ๋” ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ํ† ํฌ ์ œ์–ด๋Š” ๋ณดํ–‰์ด๋‚˜ ์ธ๊ฐ„-๋กœ๋ด‡ ์ƒํ˜ธ์ž‘์šฉ๊ณผ ๊ฐ™์€ ์ ‘์ด‰์„ ํฌํ•จํ•˜๋Š” ์ž‘์—…์„ ์œ„ํ•ด ํšจ๊ณผ์ ์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ž‘์—… ๊ณต๊ฐ„ ์ œ์–ด๋Š” ์ด๋Ÿฌํ•œ ํ† ํฌ ์ œ์–ด์˜ ์žฅ์ ์„ ๋” ๊ฐ•ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š”๋ฐ, ๋กœ๋ด‡์ด ์—ฌ์œ  ์ž์œ ๋„๊ฐ€ ์žˆ์„ ๋•Œ ์ž‘์—…์˜ ์˜๊ณต๊ฐ„์—์„œ ์กด์žฌํ•˜๋Š” ๋ชจ์…˜๋“ค์ด ๋‚ด์žฌ์ ์œผ๋กœ ์œ ์—ฐํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์žฅ์ ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ† ํฌ ๊ธฐ๋ฐ˜์˜ ๋กœ๋ด‡ ์ œ์–ด๊ธฐ๋Š” ์ •๋ฐ€ ์ œ์–ด ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๊ธฐ ๋•Œ๋ฌธ์— ์‚ฐ์—…์šฉ ๋กœ๋ด‡ ํŒ”๊ณผ ๊ฐ™์€ ์ „ํ†ต์ ์ธ ๋กœ๋ด‡์—๋Š” ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์ง€ ๋ชปํ–ˆ๋‹ค. ๊ทธ ์ด์œ  ์ค‘ ํ•œ ๊ฐ€์ง€๋Š” ๋กœ๋ด‡ ๋ชจ๋ธ์˜ ๊ธฐ๊ตฌํ•™ ๋ฐ ๋™์—ญํ•™ ๋ฌผ์„ฑ์น˜์— ์กด์žฌํ•˜๋Š” ์™ธ๋ž€์ด๋‹ค. ๋ชจ๋ธ ์˜ค์ฐจ๋Š” ๋ชฉํ‘œ ํ† ํฌ๋ฅผ ๊ณ„์‚ฐํ•  ๋•Œ ์˜ค์ฐจ๋ฅผ ์œ ๋ฐœํ•˜๋ฉฐ, ์ด๊ฒƒ์ด ์ œ์–ด ์•ˆ์ •์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ์•ฝํ™”์‹œํ‚ค๊ฒŒ ๋œ๋‹ค. ์™ธ๋ž€์„ ๋‚ด์žฌ ์„ผ์„œ๋งŒ์„ ์ด์šฉํ•˜์—ฌ ์ถ”์ • ๋ฐ ๋ณด์ƒํ•˜๊ธฐ ์œ„ํ•ด ์—ญ๋™์—ญํ•™ ๊ธฐ๋ฐ˜์˜ ์™ธ๋ž€ ๊ด€์ธก๊ธฐ๊ฐ€ ๊ฐœ๋ฐœ๋˜์–ด ์™”๋‹ค. ์™ธ๋ž€ ๊ด€์ธก๊ธฐ๋Š” ์—ญ๋™์—ญํ•™ ๊ณ„์‚ฐ์„ ์œ„ํ•ด ๊ด€์ ˆ ๊ฐ๊ฐ€์†๋„ ์ •๋ณด๊ฐ€ ํ•„์š”ํ•œ๋ฐ, ์ด ๊ฐ’์ด ๊ด€์ ˆ ์œ„์น˜๋ฅผ ๋‘ ๋ฒˆ ๋ฏธ๋ถ„ํ•œ ๊ฐ’์ด๊ธฐ ๋•Œ๋ฌธ์— ์ˆ˜์น˜์ ์ธ ์˜ค์ฐจ๋กœ ๋…ธ์ด์ฆˆํ•ด์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ถ€์œ ํ˜• ๊ธฐ์ € ๋กœ๋ด‡์„ ์œ„ํ•œ ์ ‘์ด‰ ์กฐ๊ฑด์ด ๊ณ ๋ ค๋œ ์™ธ๋ž€ ๊ด€์ธก๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๋กœ๋ด‡์˜ ๊ณ ์ •๋œ ์ ‘์ด‰ ์ง€์ ์— ๋Œ€ํ•œ ๊ธฐ๊ตฌํ•™์ ์ธ ๊ตฌ์† ์กฐ๊ฑด์„ ์ด์šฉํ•˜์—ฌ ๊ด€์ ˆ ๊ฐ๊ฐ€์†๋„ ์˜ค์ฐจ๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ์ถ”์ •๋œ ์˜ค์ฐจ๋ฅผ ๋™์—ญํ•™ ๋ชจ๋ธ์— ๋ฐ˜์˜ํ•˜์—ฌ ์™ธ๋ž€ ํ† ํฌ๋ฅผ ๊ณ„์‚ฐํ•จ์œผ๋กœ์จ ์ €์—ญ ํ†ต๊ณผ ํ•„ํ„ฐ ์„ฑ๋Šฅ์— ๋Œ€ํ•œ ์˜์กด๋„๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ํ† ํฌ ๊ธฐ๋ฐ˜ ์ œ์–ด์˜ ์ •๋ฐ€ ์ œ์–ด ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๋Š” ๋˜ ๋‹ค๋ฅธ ์ด์œ  ์ค‘ ํ•˜๋‚˜๋Š” ํ† ํฌ ๋Œ€์—ญํญ ์ œํ•œ์ด๋‹ค. ํ† ํฌ ๋Œ€์—ญํญ์€ ๊ตฌ๋™๊ธฐ์— ์ „๋‹ฌ๋˜๋Š” ์ž…๋ ฅ ํ† ํฌ์™€ ์‹ค์ œ ๋งํฌ์— ์ „๋‹ฌ๋˜๋Š” ํ† ํฌ์™€์˜ ๊ด€๊ณ„๋กœ ๊ฒฐ์ •๋œ๋‹ค. ํ† ํฌ ๋Œ€์—ญํญ์€ ๊ตฌ๋™๊ธฐ ๋‚ด๋ถ€์˜ ํ† ํฌ ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„, ๊ตฌ๋™๊ธฐ ๋™์—ญํ•™, ๊ด€์ ˆ ํƒ„์„ฑ ๋“ฑ์˜ ์š”์ธ๋“ค์— ์˜ํ•ด ์ œํ•œ๋  ์ˆ˜ ์žˆ๋Š”๋ฐ ์ด๊ฒƒ์ด ์ œ์–ด ์•ˆ์ •์„ฑ ๋ฐ ์„ฑ๋Šฅ์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ์ž‘์—… ๊ณต๊ฐ„ ์ œ์–ด๋Š” ํŠนํžˆ ์ด ๋ฌธ์ œ์— ์ทจ์•ฝํ•œ๋ฐ, ๋Œ€์—ญํญ์ด ์ œํ•œ๋œ ๊ตฌ๋™๊ธฐ ํ•˜๋‚˜๊ฐ€ ๊ทธ์™€ ์—ฐ๊ด€๋œ ๋ชจ๋“  ์ž‘์—… ๊ณต๊ฐ„์˜ ์ œ์–ด ์„ฑ๋Šฅ์„ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž‘์—… ๊ณต๊ฐ„ ์ œ์–ด๊ธฐ์—์„œ ์„ฑ๋Šฅ์ด ๋‚ฎ์€ ๊ตฌ๋™๊ธฐ์˜ ์‚ฌ์šฉ์„ ์ œํ•œํ•˜๊ธฐ ์œ„ํ•œ ์ง๊ด€์ ์ธ ์ „๋žต์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๊ธฐ๋ณธ ์ปจ์…‰์€ ์ž‘์—… ์ œ์–ด๋ฅผ ์œ„ํ•œ ํ† ํฌ ์†”๋ฃจ์…˜์— ์„ฑ๋Šฅ์ด ์ข‹์€ ๊ด€์ ˆ์—๋งŒ ์ถ”๊ฐ€์ ์œผ๋กœ ํ† ํฌ ์†”๋ฃจ์…˜์„ ๋”ํ•ด๋‚˜๊ฐ€๋Š” ๊ฒƒ์œผ๋กœ, ์ด๊ฒƒ์€ ๊ฐ ๊ด€์ ˆ์˜ ๊ฐ€์ค‘์น˜๊ฐ€ ๊ณ ๋ ค๋œ ํ† ํฌ ์†”๋ฃจ์…˜์ด ๋˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์„ฑ๋Šฅ์ด ๋‚ฎ์€ ๊ตฌ๋™๊ธฐ์˜ ์‚ฌ์šฉ์„ ์ œํ•œํ•จ์œผ๋กœ์จ ํ† ํฌ ์ „๋‹ฌ ์˜ค์ฐจ๊ฐ€ ์ค„์–ด๋“ค๊ณ  ์ž‘์—… ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์€ 12์ž์œ ๋„ ์ด์กฑ ๋ณดํ–‰ ๋กœ๋ด‡ DYROS-RED์™€ 7์ž์œ ๋„ ๋กœ๋ด‡ ํŒ” Franka Emika Panda๋ฅผ ์ด์šฉํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค.1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 BACKGROUNDS 6 2.1 Operational Space Control . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Dynamics Formulation . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Fixed-Base Dynamics . . . . . . . . . . . . . . . . . . . . 9 2.2.1.1 Joint Space Formulation . . . . . . . . . . . . . 9 2.2.1.2 Operational Space Formulation . . . . . . . . . . 11 2.2.2 Floating-Base Dynamics . . . . . . . . . . . . . . . . . . . 12 2.2.2.1 Joint Space Formulation . . . . . . . . . . . . . 12 2.2.2.2 Operational Space Formulation . . . . . . . . . . 14 2.3 Position Tracking via PD Control . . . . . . . . . . . . . . . . . . 17 2.3.1 Torque Solution . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Orientation Control . . . . . . . . . . . . . . . . . . . . . 19 3 CONTACT-CONSISTENT DISTURBANCE OBSERVER FOR FLOATING-BASE ROBOTS 22 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Momentum-Based Disturbance Observer . . . . . . . . . . . . . . 24 3.3 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.2 External Force Estimation . . . . . . . . . . . . . . . . . . 33 3.4.3 Internal Disturbance Rejection . . . . . . . . . . . . . . . 35 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 OPERATIONAL SPACE CONTROL UNDER ACTUATOR BANDWIDTH LIMITATION 40 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.2 OSF-Based Torque Solution . . . . . . . . . . . . . . . . . 45 4.2.3 Comparison With a Typical Method . . . . . . . . . . . . 47 4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Comparison With Other Approaches . . . . . . . . . . . . . . . . 61 4.4.1 Controller Formulation . . . . . . . . . . . . . . . . . . . . 62 4.4.1.1 The Proposed Method . . . . . . . . . . . . . . . 62 4.4.1.2 The OSF Controller . . . . . . . . . . . . . . . . 62 4.4.1.3 The OSF-Filter Controller . . . . . . . . . . . . 62 4.4.1.4 The OSF-Joint Controller . . . . . . . . . . . . . 67 4.4.1.5 The Joint Controller . . . . . . . . . . . . . . . . 68 4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 Frequency Response of Joint Torque . . . . . . . . . . . . . . . . 72 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 CONCLUSION 85 Abstract (In Korean) 100๋ฐ•

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio
    • โ€ฆ
    corecore