28,626 research outputs found

    A numerical investigation of velocity-pressure reduced order models for incompressible flows

    Get PDF
    This report has two main goals. First, it numerically investigates three velocity-pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authors' knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the ROMs accuracy. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. It turns out that, both in terms of accuracy and efficiency, the two ROMs that utilize pressure modes are clearly superior to the ROM that uses only velocity modes. The numerical results also show a strong correlation of the accuracy of the snap shots with the accuracy of the ROMs

    POD model order reduction with space-adapted snapshots for incompressible flows

    Full text link
    We consider model order reduction based on proper orthogonal decomposition (POD) for unsteady incompressible Navier-Stokes problems, assuming that the snapshots are given by spatially adapted finite element solutions. We propose two approaches of deriving stable POD-Galerkin reduced-order models for this context. In the first approach, the pressure term and the continuity equation are eliminated by imposing a weak incompressibility constraint with respect to a pressure reference space. In the second approach, we derive an inf-sup stable velocity-pressure reduced-order model by enriching the velocity reduced space with supremizers computed on a velocity reference space. For problems with inhomogeneous Dirichlet conditions, we show how suitable lifting functions can be obtained from standard adaptive finite element computations. We provide a numerical comparison of the considered methods for a regularized lid-driven cavity problem

    Numerical investigation of separated transonic turbulent flows with a multiple-time-scale turbulence model

    Get PDF
    A numerical investigation of transonic turbulent flows separated by curvature and shock wave - boundary layer interaction is presented. The free stream Mach numbers considered are 0.4, 0.5, 0.6, 0.7, 0.8, 0.825, 0.85, 0.875, 0.90, and 0.925. In the numerical method, the conservation of mass equation is replaced by a pressure correction equation for compressible flows and thus incremental pressure is solved for instead of density. The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence model. The present numerical results show that there exists a reversed flow region at all free stream Mach numbers considered whereas various k-epsilon turbulence models fail to predict such a reversed flow region at low free stream Mach numbers. The numerical results also show that the size of the reversed flow region grows extensively due to the shock wave - turbulent boundary layer interaction as the free stream Mach number is increased. These numerical results show that the turbulence model can resolve the turbulence field subjected to extra strains caused by the curvature and the shock wave - turbulent boundary layer interaction and that the numerical method yields a significantly accurate solution for the complex compressible turbulent flow

    Validation of a magneto- and ferro-hydrodynamic model for non-isothermal flows in conjunction with Newtonian and non-Newtonian fluids

    Get PDF
    This work focuses on the validation of a magnetohydrodynamic (MHD) and ferrohydrodynamic (FHD) model for non-isothermal flows in conjunction with Newtonian and non- Newtonian fluids. The importance of this research field is to gain insight into the interaction of non-linear viscous behaviour of blood flow in the presence of MHD and FHD effects, because its biomedical application such as magneto resonance imaging (MRI) is in the centre of research interest. For incompressible flows coupled with MHD and FHD models, the Lorentz force and a Joule heating term appear due to the MHD effects and the magnetization and magnetocaloric terms appear due to the FHD effects in the non-linear momentum and temperature equations, respectively. Tzirtzilakis and Loukopoulos [1] investigated the effects of MHD and FHD for incompressible non-isothermal flows in conjunction with Newtonian fluids in a small rectangular channel. Their model excluded the non-linear viscous behaviour of blood flows considering blood as a Newtonian biofluid. Tzirakis et al. [2, 3] modelled the effects of MHD and FHD for incompressible isothermal flows in a circular duct and through a stenosis in conjunction with both Newtonian and non-Newtonian fluids, although their approach neglects the non-isothermal magnetocaloric FHD effects. Due to the fact that there is a lack of experimental data available for non-isothermal and non-Newtonian blood flows in the presence of MHD and FHD effects, therefore the objective of this study is to establish adequate validation test cases in order to assess the reliability of the implemented non-isothermal and non-Newtonian MHD-FHD models. The non-isothermal Hartmann flow has been chosen as a benchmark physical problem to study velocity and temperature distributions for Newtonian fluids and non-Newtonian blood flows in a planar microfluidic channel. In addition to this, the numerical behaviour of an incompressible and non-isothermal non-Newtonian blood flow has been investigated from computational aspects when a dipole-like rotational magnetic field generated by infinite conducting wires. The numerical results are compared to available computational data taken from literature

    The computational complexity of traditional Lattice-Boltzmann methods for incompressible fluids

    Full text link
    It is well-known that in fluid dynamics an alternative to customary direct solution methods (based on the discretization of the fluid fields) is provided by so-called \emph{particle simulation methods}. Particle simulation methods rely typically on appropriate \emph{kinetic models} for the fluid equations which permit the evaluation of the fluid fields in terms of suitable expectation values (or \emph{momenta}) of the kinetic distribution function f(r,v,t),f(\mathbf{r,v},t), being respectively r\mathbf{r} and\textbf{\}v\mathbf{v} the position an velocity of a test particle with probability density f(r,v,t)f(\mathbf{r,v},t). These kinetic models can be continuous or discrete in phase space, yielding respectively \emph{continuous} or \emph{discrete kinetic models} for the fluids. However, also particle simulation methods may be biased by an undesirable computational complexity. In particular, a fundamental issue is to estimate the algorithmic complexity of numerical simulations based on traditional LBM's (Lattice-Boltzmann methods; for review see Succi, 2001 \cite{Succi}). These methods, based on a discrete kinetic approach, represent currently an interesting alternative to direct solution methods. Here we intend to prove that for incompressible fluids fluids LBM's may present a high complexity. The goal of the investigation is to present a detailed account of the origin of the various complexity sources appearing in customary LBM's. The result is relevant to establish possible strategies for improving the numerical efficiency of existing numerical methods.Comment: Contributed paper at RGD26 (Kyoto, Japan, July 2008

    A matrix-free high-order discontinuous Galerkin compressible Navier-Stokes solver: A performance comparison of compressible and incompressible formulations for turbulent incompressible flows

    Full text link
    Both compressible and incompressible Navier-Stokes solvers can be used and are used to solve incompressible turbulent flow problems. In the compressible case, the Mach number is then considered as a solver parameter that is set to a small value, M0.1\mathrm{M}\approx 0.1, in order to mimic incompressible flows. This strategy is widely used for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. The present work raises the question regarding the computational efficiency of compressible DG solvers as compared to a genuinely incompressible formulation. Our contributions to the state-of-the-art are twofold: Firstly, we present a high-performance discontinuous Galerkin solver for the compressible Navier-Stokes equations based on a highly efficient matrix-free implementation that targets modern cache-based multicore architectures. The performance results presented in this work focus on the node-level performance and our results suggest that there is great potential for further performance improvements for current state-of-the-art discontinuous Galerkin implementations of the compressible Navier-Stokes equations. Secondly, this compressible Navier-Stokes solver is put into perspective by comparing it to an incompressible DG solver that uses the same matrix-free implementation. We discuss algorithmic differences between both solution strategies and present an in-depth numerical investigation of the performance. The considered benchmark test cases are the three-dimensional Taylor-Green vortex problem as a representative of transitional flows and the turbulent channel flow problem as a representative of wall-bounded turbulent flows
    corecore