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Abstract. This work focuses on the validation of a magnetohydrodynamic (MHD) and ferro-
hydrodynamic (FHD) model for non-isothermal flows in conjunction with Newtonian and non-
Newtonian fluids. The importance of this research field is to gain insight into the interaction of
non-linear viscous behaviour of blood flow in the presence of MHD and FHD effects, because
its biomedical application such as magneto resonance imaging (MRI) is in the centre of research
interest. For incompressible flows coupled with MHD and FHD models, the Lorentz force and
a Joule heating term appear due to the MHD effects and the magnetization and magnetocaloric
terms appear due to the FHD effects in the non-linear momentum and temperature equations,
respectively. Tzirtzilakis and Loukopoulos [1] investigated the effects of MHD and FHD for
incompressible non-isothermal flows in conjunction with Newtonian fluids in a small rectangu-
lar channel. Their model excluded the non-linear viscous behaviour of blood flows considering
blood as a Newtonian biofluid. Tzirakis et al. [2, 3] modelled the effects of MHD and FHD for
incompressible isothermal flows in a circular duct and through a stenosis in conjunction with
both Newtonian and non-Newtonian fluids, although their approach neglects the non-isothermal
magnetocaloric FHD effects. Due to the fact that there is a lack of experimental data available
for non-isothermal and non-Newtonian blood flows in the presence of MHD and FHD effects,
therefore the objective of this study is to establish adequate validation test cases in order to as-
sess the reliability of the implemented non-isothermal and non-Newtonian MHD-FHD models.
The non-isothermal Hartmann flow has been chosen as a benchmark physical problem to study
velocity and temperature distributions for Newtonian fluids and non-Newtonian blood flows in
a planar microfluidic channel. In addition to this, the numerical behaviour of an incompress-
ible and non-isothermal non-Newtonian blood flow has been investigated from computational
aspects when a dipole-like rotational magnetic field generated by infinite conducting wires. The
numerical results are compared to available computational data taken from literature [2].
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1 INTRODUCTION

For modelling incompressible flows coupled with magnetohydrodynamic (MHD) and ferro-
hydrodynamic (FHD) approaches, the Lorentz force and a Joule heating term appear due to the
MHD effects and the magnetization and magnetocaloric terms appear due to the FHD effects
in the non-linear momentum and temperature equations, respectively. This work focuses on the
validation of an implemented MHD-FHD model for non-isothermal flows in conjunction with
Newtonian and non-Newtonian fluids. The importance of this research work is to investigate
the interaction of non-linear viscous behaviour of blood flow with MHD and FHD effects, be-
cause its biomedical applications such as magneto resonance imaging (MRI) is in the centre of
interest. Due to the fact that there is a lack of experimental data available for non-isothermal
and non-Newtonian blood flows in the presence of MHD and FHD field effects, the objective
of this study is to establish adequate computational test cases for validation purposes in order
to assess the reliability of the non-isothermal and non-Newtonian MHD-FHD models.

A number of theoretical and numerical studies were carried out in the literature to investigate
the blood flow behaviour under the action of a magnetic field with particular interest to flows in
rectangular ducts and stenosed tubes [1, 2, 3]. Tzirtzilakis et al. [4] proposed a numerical ap-
proach to study a blood flow in a three-dimensional rectangular duct where an 8 Teslamagnetic
field was generated by an electrically conducing wire on the lower wall of the duct. The blood
was considered as a Newtonian electrically non-conducting biofluid and a FHD model was im-
plemented. In their model, the magnetization was assumed linearly dependent on the magnetic
field intensity and the magnetic field completely saturated the biofluid. They concluded that two
recirculation regions generated slowing down the flow when the magnetic field intensity was in-
creased, and the strong magnetic field also affected the wall stresses near to the area where it
was located. In addition to this, a secondary flow was found to be present and strengthen due
to the increase of the magnetic field intensity. Loukopoulos and Tzirtzilakis [5] investigated a
laminar, viscous incompressible flow of a Newtonian biomagnetic fluid in a two-dimensional
channel under the action of spatially varying magnetic field at a low Reynolds number (Re =
250). In this numerical study, the magnetic field was located on the lower wall of the planar
channel by taking into account FHD effects with a magnetization linearly dependent on the
temperature and magnetic field intensity. They considered realistic blood parameters, different
temperatures at the lower and upper walls and a fully developed velocity profile was prescribed
as a boundary condition at the inlet. It was observed that a recirculation region developed in
proximity of the magnetic field and extended when the magnetic field intensity increased. The
flow separated close to the magnetic source and reattached downstream. The velocity profile
became fully developed while temperature perturbations were observed at the outlet.

Another numerical study was carried out by Tzirtzilakis and Loukopoulos [1] to investigate
the behaviour of blood flows in a two-dimensional small planar channel under the action of a
uniform external magnetic field of 8 Tesla generated from two finite disks. The blood was
considered as a Newtonian fluid with constant electrical conductivity. The combination of both
MHD and FHD models were taken into account in this numerical study and the formation of two
recirculation regions was observed where the magnetic field started and ended. In addition to
this, two secondary eddies were generated downstream close to the second recirculation region
on the lower and upper plates. Due to the rotation of these two vortices, the fluid is pushed on
the upper wall within the region of constant magnetic field and the flow slowed down near to the
first recirculation region. Furthermore, the velocity profile became fully developed downstream
behind the applied uniform magnetic field. It is important to note that the temperature increased
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dramatically closer to the lower plate in proximity of the source of the magnetic field and further
increased slowly in the downstream flow regime. In contrast with the velocity field behaviour,
the temperature distribution showed a perturbed profile even at the outlet. A variable trend of
the wall shear stress inside the magnetized region was also observed in this study.

It has been emphasized in [6] that the effects of temperature field on the numerical solu-
tion in conjunction with MHD-FHD models have to be further investigated for biomedical and
microfluidic applications. This is due to the fact that there is a lack of experimental data avail-
able on the interaction between the temperature and MHD-FHD fields for non-Newtonian blood
flows. Therefore this interaction is further investigated and the existing MHD-FHD models are
further validated by considering computational aspects in this paper.

Tzirakis et al. [2] conducted a remarkable numerical investigation on the effect of three
different magnetic fields for blood flows in four different geometrical configurations. They
investigated an incompressible and isothermal flow considering blood as a Newtonian magneti-
zable and electrically conducting fluid. In their numerical study, a constant magnetic field was
applied to plane Couette and Hartmann flows for validating their model implementation. A spa-
tially variable magnetic field generated by an external wire was used for investigating the plane
Couette flow and a three-component rotational magnetic field were applied to the flow through
a stenosed tube. Their results showed that an irrotational magnetic field does not affect the ve-
locity field, however a rotational magnetic field brakes the flow symmetry inducing separations
and altering the velocity distribution. The work of Tzirakis et al. [2] represented an in-depth
analysis of magnetic field effects and its investigation of blood flow behaviour, therefore their
benchmark test case has also been further validated for non-isothermal flows in this paper.

As a matter of fact, there is a lack of experimental data available for non-isothermal non-
Newtonian blood flows in the presence of MHD and FHD effects, therefore the interaction
between the temperature field and MHD-FHD models for non-Newtonian blood flows has been
investigated in this paper. A two-dimensional, incompressible, laminar and non-isothermal
Hartmann flow has been chosen as a benchmark physical problem to study velocity and temper-
ature distributions for Newtonian fluids and non-Newtonian blood flows in a planar microfluidic
channel. In addition to this, the numerical behaviour of an incompressible and non-isothermal
non-Newtonian blood flow has been investigated from computational aspects when a dipole-
like rotational magnetic field generated by infinite conducting wires. The numerical results are
compared to available computational data taken from literature [2].

2 MATHEMATICAL FORMULATION AND SOLUTION METHODOLOGY

2.1 Governing equations in conjunction with combined MHD-FHD models

In this study, for modelling incompressible non-isothermal flows in conjunction with MHD
and FHD models, we adopt the mathematical model equations proposed by Tzirtzilakis [7]. The
system of governing equations consists of the continuity, momentum and energy equations, thus
the mass conservation for incompressible flows can be written in a vector form as

∇ · u = 0, (1)

which is the divergence-free (incompressibility) constraint for the velocity field u. For steady-
state incompressible flows, the momentum equation in conjunction with the source terms of
MHD and FHD models can be expressed by

ρ (u · ∇)u = ρg −∇p+∇ · τ + µ0 (M · ∇)H+ J×B, (2)
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where ρ is the fluid density, g represents the gravity field, p is the hydrodynamic pressure,
τ is the viscous stress tensor which can be defined for both Newtonian and non-Newtonian
fluids, µ0 is the magnetic permeability of vacuum, M is the magnetization vector, H is the
magnetic field intensity, J is the current density vector and B is the magnetic flux density,
respectively. For modelling non-isothermal flows of Newtonian and non-Newtonian fluids with
various rheological behaviours, the energy equation for the temperature field can be written as

ρcp (u · ∇)T = λ∇2T − µ0T
∂M

∂T
(u · ∇)H+

J2

σ
+ τ · · (∇⊗ u) , (3)

where cp is the specific heat at constant pressure, T is the temperature, and σ is the electric
conductivity of the fluid. The first term on the right hand side of the temperature equation rep-
resents heat transfer through conduction, the second term represents the magnetocaloric effect
of FHD, the third term represents the effect of MHD, and the fourth term ϕD = τ · · (∇⊗ u)
is the viscous dissipation function which is the double dot (inner) product of the viscous stress
tensor and the velocity gradient tensor. In the set of governing equations of incompressible non-
isothermal flows in conjunction with MHD and FHD models, the current density vector can be
expressed by the rotation (curl) of the magnetic field intensity vector H as

J = ∇×H = σ (u×B) , (4)

where the electric field effect has been neglected in the present case. We assume that the mag-
netic flux density field B is divergence-free as

∇ ·B = 0. (5)

For modelling MHD-FHD flows for Newtonian and non-Newtonian fluids, the magnetization
force term appears as an external force on the right hand side of the non-linear momentum
equation (2) due to the effect of FHD as

fM = fFHD = µ0 (M · ∇)H, (6)

and the Lorentz-force appears due to the effect of MHD which can be written as

fL = fMHD = J×B = σ (u×B)×B. (7)

When the fluid is directly sensitive to a magnetic field, its behaviour can be described by FHD
model equations and by a magnetic state through the magnetization equation M = M (H, T ),
which is usually dependent on the magnetic field intensity and the temperature often through too
complex or very simple non-realistic relations. However, for some weak magnetic conductors
such as blood, a simplified equation can be employed as

M = χH, (8)

which expresses the relationship between the magnetization field M and the magnetic field
intensity H through the magnetic susceptibility of the fluid χ, which can be defined by

H =
1

µ0

1

(1 + χ)
B, (9)
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thus the momentum equation (2) for incompressible, stationary, non-isothermal flows for New-
tonian and non-Newtonian fluids can also be written as

ρ (u · ∇)u = −∇p+∇ · τ + α (B · ∇)B+ σ (u×B)×B, (10)

and the temperature equation (3) becomes

ρcp (u · ∇)T = λ∇2T +
J2

σ
+ τ · · (∇⊗ u) , (11)

and the parameter α can be defined by

α =
1

µ0

χ

(1 + χ)2
, (12)

where χ is the magnetic susceptibility which expresses the material reactivity to an external
magnetic field and can change according to the oxygenation of blood in the present case. For
oxygenated blood, the magnetic susceptibility can be chosen as χox = −6.6 · 10−7 which is
related to the diamagnetic behaviour of blood, and χdeox = 3.5 · 10−6 for de-oxygenated blood
according to [2] which characterizes a paramagnetic behaviour. In the present numerical study,
the magnetic susceptibility of blood has been considered as de-oxygenated.

The magnetization force appears in Eq. (2) due to the FHD effects which can be written as

fM = fFHD = α (B · ∇)B = fMxex + fMyey, (13)

where the scalar components of the magnetization vector fM can be defined as

fMx = α

(
Bx

∂Bx

∂x
+By

∂Bx

∂y

)
, (14)

fMy = α

(
Bx

∂By

∂x
+By

∂By

∂y

)
, (15)

which terms appear as additional source terms in the scalar momentum equations for x and y
spatial directions for two-dimensional flows. The Lorentz-force appears due to the MHD effects
in the momentum equation (2) which can be expressed as

fL = fMHD = J×B = σ (u×B)×B, (16)

where the scalar components of the Lorentz force vector fL can be written as

fLx = σ
(
−uB2

y + vBxBy

)
, (17)

fLy = σ
(
uBxBy − vB2

x

)
, (18)

which terms again appear as additional source terms in the scalar momentum equations for x
and y spatial directions. The magnetic field can be considered as a dipole-like rotational field
which was also used by Tzirakis et al. [2] as

B = B (x, y) = Bxex +Byey, (19)
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where the scalar components of the magnetic flux density vector B can be defined by

Bx = −C
[
2 (x− xi)2 − r2

r6

]
, (20)

By = −C
[
2 (x− xi) · (y − yi)

r6

]
, (21)

where the dipole radius is defined for a two-dimensional problem as

r =
√
(x− xi)2 + (y − yi)2, (22)

where xi and yi are the spatial coordinates of field application points, and C is an appropriately
chosen constant (C = 1.72 · 10−10 Tm4 in the present numerical study).

2.2 Non-Newtonian Power-Law Fluid (PLF) Model

The momentum equation (10) is valid for either Newtonian or non-Newtonian fluids depend-
ing on the definition of the viscous stress tensor τ . Blood is known to be a non-Newtonian fluid
which exhibits a shear thinning attitude in particuler to those flows when the Reynolds number
is low and the viscous term is dominant. In consequence of this, the non-linear relationship
between the viscous stress tensor and the rate of strain has to be taken into account in order to
model the non-Newtonain fluid flow behaviour. For non-Newtonian fluids, the dynamic viscos-
ity coefficient which is also called as apparent viscosity is a function of the shear rate as

µa = µa

(∣∣∣γ̇∣∣∣) , (23)

therefore the relationship between the viscous stress and shear rate tensors is non-linear as

τ = µa

(∣∣∣γ̇∣∣∣) γ, (24)

where the shear rate tensor is defined as two times of the rate of strain (deformation) tensor as

γ = 2S = ∇⊗ u+ (∇⊗ u)T , (25)

and the magnitude of the shear rate tensor can be defined by

γ̇ =
∣∣∣γ∣∣∣ =

√
1

2
γ · ·γ. (26)

For modelling non-Newtonian blood flows, different blood rheological approaches are available
in the literature such as Power-Law Fluid (PLF), Quemada and Casson models to make an
attempt to describe the realistic rheological behaviour of blood [8]. In the present study, we
choose the aforementioned PLF model due to its simplicity to model the non-Newtonian non-
linear viscous behaviour of blood. In the PLF blood rheological model, the shear stress is a
function of an n-power coefficient of the shear strain rate as

τ = k0γ̇
n, (27)
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where k0 and n are appropriately chosen coefficients of the PLF model, and these parameters
are suggested to be selected as k0 = 14.67 · 10−7Pa · sn and n = 0.7755 [8]. Relying on the
non-Newtonial PLF model, the viscous stress tensor can be written as

τ = k0γ̇
n−1γ, (28)

and the Reynolds number definition for the non-Newtonian viscous model can be written [8] as

RePLF =
ρhn

k0Un−2
∞

. (29)

2.3 The Hartmann Flow

The Hartmann flow in its initial configuration is a planar flow between two parallel flat plates
in the presence of a constant magnetic field B = B0j normal to the plates. In this case, the
Lorentz force component fLx appears in the momentum equation as

fLx = −σuB2
0 . (30)

Due to the fact that the magnetic field is constant and parallel to the y-axis, the flow is af-
fected along the x-direction only, which represents the main advantage of the Hartmann flow
for validation purposes. When the Hartmann flow is considered to be a one-dimensional flow,
it is possible to derive an analytical solution for the outlet velocity profile which can be com-
pared to the numerical implementation of an MHD model. The outlet velocity profile of a
two-dimensional laminar Hartmann flow for a Newtonian fluid can be written [2] as

u (y) =
1

σB2
0

(
dp

dx

)1− cosh
(
Hy
h

)
cosh (H)

 , (31)

where the dimensionless Hartmann number can be defined as

Ha = hB0

√
σ

µ
. (32)

The effect of the magnetic field acting on the non-isotermal flow field is studied also in relation
to the temperature perturbations. The temperature-velocity coupling is made clear in the energy
equation where an additional source term appears as

eMHD = B2
xu

2 +B2
yv

2. (33)

2.4 Implementation of MHD-FHD model equations

The combination of MHD and FHD models [2, 7] described in this Section is not available
in the ANSYS-FLUENT commercial software package by default. Therefore, the MHD-FHD
model for the governing momentum (10) and energy (11) equations in conjunction with the
magnetization (13) and Lorentz force (16) source terms has been implemented in the ANSYS-
FLUENT environment with User-Defined Functions (UDFs) in the C programming language.
The scalar components of the magnetization force (14) and (15), and scalar components of
the Lorentz force (17) and (18) has been added to the ANSYS-FLUENT Navier-Stokes solver
by employing the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) pressure-
correction algorithm [10] with second-order discretization scheme for the convective flux terms.
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The magnetic field intensity with a single-wire and the rotational magnetic field have been
initialized through the UDF implementing its components along the spatial directions. It should
be mentioned in terms of the UDF C code implementation that the source terms have to be
defined in a ”generation-rate/volume” unit. The magnetic field components (xi, yi) have been
stored at the cell-centre on the computational domain and the appropriately chosen C constant
has been defined by the actual 4Tesla field area of action which can be easily adapted and
modified according to the requirements. The reason for choosing the magnetic field strength as
4Tesla is in fact that it was difficult to obtain converged solution for the governing equations
(10) and (11) by taking higher values above this value. In order to establish reliable validation
test cases for MHD-FHD applications, the convergence of the solution has been considered
as a requirement within a small threshold value (smaller than 10−7 or 10−8). The simulation
parameters, geometrical data of a two-dimensional microfluidic benchmark channel including
realistic material properties for blood have been summarized in Table 1.

Symbol Value Description Units
h 0.01 Height of the channel (m)
L 0.12 Length of the channel (m)
µ0 1.256637 · 10−6 Magnetic permeability of vacuum (H/m)
χdeox 3.5 · 10−6 Magnetic susceptibility of de-oxygenated blood (−)
B 4 Magnetic field intensity (T )
x0 0.03 Magnetic field location in direction-x (m)
y0 7.42 · 10−3 Magnetic field location in direction-y (m)
C 1.72 · 10−10 Rotational magnetic field constant (T ·m4)
ρ 1050 Density of blood (kg/m3)
µNewt 0.0035 Dynamic viscosity of the Newtonian fluid (Pa · s)
Cp 3617 Specific heat of blood (J/Kg ·K)
k 0.52 Thermal conductivity of blood (W/m ·K)
σ 0.8 Electrical conductivity of blood (S/m)
T 300 Temperature of blood (K)
Tlw 283.65 Lower wall temperature (K)
Tuw 315.15 Upper wall temperature (K)
Re 100 Reynolds number (−)
RePLF 120.025 Reynolds number of the Power-Law Fluid (−)
k0 14.67 · 10−3 Power-Law viscosity coefficient (−)
n 0.7755 Power-Law exponent (−)
U∞ 0.1 Inlet flow velocity (m/s)

Table 1: Simulation parameters, geometrical data and material properties for blood.

For the temperature distribution at the inlet section of the microfluidic channel, a linear
temperature profile has been prescribed as a boundary condition as

Tinlet (y) = y(Tuw − Tlw) + Tlw, (34)

and for the velocity field, a uniform inlet velocity distribution has been taken with an average
velocity magnitude of 0.1m/s (see Table 1).
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3 RESULTS AND DISCUSSION

3.1 Non-isothermal Hartmann flow for Newtonian and non-Newtonian fluids

In this subsection, we investigate an incompressible, laminar and non-isothermal Hartmann
flow in conjunction with Newtonian and non-Newtonian rheological approaches for blood in
a two-dimensional microfluidic channel. The computational data has been compared to the
numerical data taken from Tzirakis et al. [1] where the fluid has been considered as Newtonian.
For this simple preliminary analysis, differently from [1] where a computational mesh consists
of 2000 quadrilateral elements was used, a grid of approximately 14000 elements has been
found [9] to be more effective in the present study providing high-accuracy and agreement
with the results of Tzirakis et al. [1]. A uniform inlet velocity profile has been considered
relying on [1] as well as the magnetic field strength has been taken as B0 = 25

√
7Tesla.

The Hartmann number defined by Eq. (32) has been taken as equal to 5. It is important to
remark from a practical point-of-view that this value of magnetic field strength is considerably
high and unsuitable for biomedical applications. However, the two-dimensional Hartmann flow
as a first preliminary case is considered for the validation of the implemented UDFs in the
ANSYS-FLUENT environment, because the flow physics is relatively simple and the size of
the computational domain is small. The fully developed outlet velocity profile of the Hartmann
flow compared to the computational data of Tzirakis et al. [1] is shown in Figure 1.

Figure 1: Comparison of outlet velocity profiles for a Hartmann flow in a microfluidic channel against computa-
tional data of Tzirakis et al. [2].

It can be seen in Figure 1 that the outlet velocity profile of a fully developed Hartmann flow
is different from the fully developed velocity distribution of an incompressible laminar flow
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without the presence of a magnetic field as it is expected. The effect of the magnetic force can
be observed as the flow slows down under the action of a constant magnetic field. In addition to
this, comparing the Hartmann flow and the laminar flow between parallel flat plates, it can be
inferred that the first one develops quicker with a flatter velocity profile at the outlet compared
to the second one (see the contour plots in Figures 2 and 3). This behaviour is caused by the
magnetic field which slows down the blood flow (see Figures 3 and 5). The contour plot of the
temperature field in the presence of a constant magnetic field is shown in Figures 4 and 6.

Figure 2: Contours of the velocity component U for a non-isothermal Hartmann flow in a two-dimensional mi-
crofluidic channel in conjunction with a Newtonian fluid with a uniform inlet velocity distribution.

Figure 3: Contours of the velocity component U for a non-isothermal Hartmann flow in a two-dimensional mi-
crofluidic channel in conjunction with a non-Newtonian fluid (blood) with a uniform inlet velocity distribution.

Figure 4: Contours of the temperature field for a non-isothermal Hartmann flow in a two-dimensional microfluidic
channel in conjunction with a non-Newtonian fluid (blood) with a linear inlet temperature distribution.

The velocity profiles in a two-dimensional microfluidic channel at different cross-sections
have been shown in Figure 5. It can be seen that there are minor differences between the cross-
sectional velocity profiles for considering blood as a Newtonian and a non-Newtonian fluid
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corresponding to the assumtion that blood can be considered as a weak non-Newtonian fluid.
The effect of a constant magnetic field on the incompressible and laminar flow can also be
observed in Figures 2 and 3, because the cross-sectional velocity profiles appear in a round-
like shape compared to the fully developed laminar velocity profile without the presence of a
constant magnetic field (see the blue curve in Figure 1).

Figure 5: Comparison of velocity profiles for Newtonian and non-Newtonian blood rheological approaches in
conjunction with a non-isothermal Hartmann flow in a microfluidic channel at different cross-sections.

For non-isothermal Hartmann flows in conjunction with Newtonian and non-Newtonian rhe-
ological models for blood, the temperature field is affected by the presence of the Lorentz force
due to the effect of MHD. In this case, the source terms appearing due to the theory of FHD
are neglected in the momentum and energy equations. The upper and lower wall temperatures
can be found in Table 1, which are Tlw = 283.65K and Tuw = 315.15K, respectively. The
total temperature difference between the lower and upper walls is 31.5K which is a relatively
small variation, however considering the small size of the microchannel, temperature profiles
can also be affected by the presence of a constant magnetic field. It is valid in particular for
those problems when a high magnetic field strength is applied perpendicular to the microflu-
idic channel. However, for the present Hartmann flow case, the effect of the MHD source
term on the right hand side of the temperature equation is small due to the fact that the applied
magnetic field strength is also small. The inlet temperature profile has been considered as a
linear temperature distribution which can be seen in Figure 6. Since the temperature difference
between the lower and upper walls as well as the applied constant magnetic field strength is
also small, the temperature distribution at different cross-sections of the microfluidic channel
exhibits minor differences between Newtonian and non-Newtonian rheological approaches for
blood. The presence of the applied constant magnetic field affects slightly the temperature dis-
tribution compared to the assumed inlet linear profile. One can see in the following subsections
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that the effect of the applied magnetic field becomes significant when a single wire or two wires
are located at different axial coordinates in the microfluidic channel. This fact was also observed
by Tzirtzilakis et al. [1] when a strong uniform magnetic field was applied.

Figure 6: Comparison of temperature profiles for Newtonian and non-Newtonian blood rheological approaches in
conjunction with a non-isothermal Hartmann flow in a microfluidic channel at different cross-sections.

The convergence history of the numerical solution for non-isothermal Hartmann flow in con-
junction with Newtonian and non-Newtonian blood rheological models can be seen in Figure
7. For solving a steady-state fluid flow problem, the convergence criterion has been prescribed
within a small threshold value (smaller than 10−8). The maximum number of iterations for New-
tonian and non-Newtonian fluids was 145 to obtain convergence to the approximate solution of
the governing equations. The numerical results show that the ANSYS-FLUENT environment
by using UDFs in C programming language is capable of solving MHD non-isothermal New-
tonian and non-Newtonian fluid flows within a relatively small number of iterations on a fine
computational mesh consists of approximately 14000 control volume elements. It has been
observed that the magnetic field strength has to be also small in particular to non-Newtonian
fluids, otherwise the approximate solution of the system of equations can lead to oscillatory and
non-physical solutions. For taking a high value of the applied constant magnetic field strength,
the source terms in the momentum (10) and temperature equations (11) might become very stiff,
thus a careful numerical treatment and even advanced method development could be required
within the framework of an in-house code implementation to obtain physically reasonable so-
lutions for the system of governing equations. The stiffness of the MHD source terms in the
set of model equations could lead to a numerical solution when the convergence of the numer-
ical procedure could be difficult to ensure. Therefore, the applied magnetic field strength is
not higher than 4Tesla in the following subsections for the investigated validation test cases to
ensure numerical solution which converges to a small threshold value.
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Figure 7: Residual history of non-isothermal Hartmann flow simulations: Newtonian fluid flow (left) and non-
Newtonian blood flow (right).

3.2 Single wire problem

In this subsection, we present a benchmark problem for solving incompressible, laminar
and non-isothermal flows in conjunction with MHD and FHD models and Newtonian and non-
Newtonian blood rheological approaches. A single wire has been located in a two-dimensional
microfluidic channel at the spatial coordinate x1 = 0.03m where the magnetic field strength
has been taken as 4Tesla. The local arrangement of the single wire in the two-dimensional
microfluidic channel has been shown in Figure 8.

Figure 8: Contours of a single wire induced magnetic field of 4Tesla on the lower wall at x1 = 0.03m.

This benchmark problem is a hybridization of the single wire model used by Tzirakis et al.
[2] and the mathematical model for blood flows and magnetic fields proposed by Tzitzilakis
[7]. The magnetization force due to the effect of FHD and the Lorentz force due to the effect
of MHD have been taken into account in the momentum equation (10). We assume that the
magnetic state through the magnetization equation M = M (H) depends only on the magnetic
field intensity H, however the magnetization depends on the temperature T in reality. Relying
on this assumption which can be used for weak magnetic conductors such as blood [2], the
effects of MHD and FHD is taken into account in the momentum equation (10), however, only
the effect of MHD appears in the temperature equation (11). This is due to the fact that the
temperature derivative of the magnetization vector M vanishes from the energy equation (3),
because it is assumed that the magnetization is function of the magnetic field intensity, but not
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function of the temperature. In other words, it also means that the magneticaloric effect of FHD
has been neglected in the MHD-FHD set of model equations in conjunction with Newtonian
and non-Newtonian fluids, because the blood can be considered as a weak magnetic conductor.

Figure 9: Contours of the velocity component U for a non-isothermal non-Newtonian blood flow in a microfluidic
channel with a uniform inlet velocity distribution when the applied magnetic field is induced by a single wire.

Figure 10: Contours of the temperature field for a non-isothermal non-Newtonian blood flow in a microfluidic
channel with a linear inlet temperature distribution when the applied magnetic field is induced by a single wire.

The reason for investigating incompressible and non-isothermal MHD-FHD Newtonian and
non-Newtonian fluid flows with the hybridization of Tzirakis et al. [2] and Tzitzilakis [7] MHD-
FHD models is to study further the interaction between the temperature and MHD-FHD fields
for non-Newtonian blood flows, because there is a lack of experimental data available in the
literature. In addition to this, there is a lack of well-established and reliable numerical bench-
mark test case available for verification and validation purposes, thus we also focus on the
computational fluid dynamics (CFD) aspects of this physical problem. For steady-state flows,
the governing equations (10)-(11) with MHD and FHD models in conjunction with Newtonian
and non-Newtonian fluids can be implemented in an in-house code or in a commercial software
environment by using User-Defined Functions. The governing equations of the combination of
MHD and FHD models [2, 7] described in Section 2 is not available in the ANSYS-FLUENT
software package by default, therefore the implementation of a complex multiphysics problem
related to MHD and FHD models gives an opportunity to study the strength and limitations of
these models from computational aspects. Therefore, it is important to mention from a numer-
ical modelling point-of-view that it has been observed that the presence of the magnetocaloric
term of FHD on the right hand side of the temperature equation (3) could lead to numerically
unstable and non-physical results when the magnetization vector M is depending on the temper-
ature. This can be explained by the fact that the temperature dependence of the magnetization
can be expressed through either too complex mathematical relationships or may be described
with very simple and non-realistic functions. As an example, our numerical experience shows
that the fully coupled MHD-FHD model for non-isothermal Newtonian flows under the action
of a uniform localized magnetic field proposed by Tzirtzilakis and Loukopoulos [1] led to un-
stable numerical solution by using the ANSYS-FLUENT environment at high dimensionless
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magnetic numbers. In other words, the computational benchmark problem of Tzirtzilakis and
Loukopoulos [1] might be difficult to investigate and further validate with a commercial soft-
ware package even though their research work contains a relevant study on the the interaction
between the temperature and MHD-FHD fields by considering blood as a Newtonian fluid. As it
has been mentioned above that there is a lack of experimental data available on investigation of
the interaction between the temperature and MHD-FHD fields for non-Newtonian blood flows,
the computational benchmark presented in this subsection could be used in both in-house and
commercial software package environment to validate the implementation of an MHD-FHD
model for non-isothermal non-Newtonian blood flows.

Figure 11: Comparison of velocity profiles for a non-isothermal blood flow in a microfluidic channel at different
cross-sections when the applied magnetic field is induced by a single wire.

In the present benchmark problem, the magnetic field is applied through a single wire located
in a two-dimensional microfluidic channel and when the temperature dependence of the magne-
tization is neglected, the effect of MHD and FHD appears in the momentum equation (10) and
the temperature equation (11) is only affected by the source term due to MHD. In order to avoid
observed numerical oscillations and possible non-physical solution for the benchmark problem
presented in this subsection, the MHD-FHD model equations have been set up to cancel out the
magnetocaloric effect of FHD on the right hand side of the energy equation (3) which would
be a numerically sensitive term in the temperature equation if the magnetization would depend
on the temperature field as well. It can be seen in Figure 13 that when the incompressible
and non-isothermal flow was influenced by an applied single wire magnetic field along with the
temperature independent magnetization, the numerical convergence of the approximate solution
of the fully coupled governing equations was ensured for both Newtonian and non-Newtonian
blood rheological approaches. In other words, the combination of existing MHD and FHD mod-
els [2, 7] proposed in this paper leads to an appropriate computational benchmark test case to
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ensure convergence and accurate solution of MHD-FHD model equations with a convergence
criterion smaller than 10−7 (see Figure 13) up to the magnitude of the applied magnetic field
strength of 4Tesla (see Figures 8 to 12).

Figure 12: Comparison of temperature profiles for a non-isothermal blood flow in a microfluidic channel at differ-
ent cross-sections when the applied magnetic field is induced by a single wire.

For incompressible and non-isothermal flow influenced by an applied single wire magnetic
field for Newtonian and non-Newtonian fluids, the velocity and temperature profiles at dif-
ferent locations of the two-dimensional microfluidic channel have been shown in Figures 11
and 12, respectively. The velocity and temperature fields are strongly affected by the location
area of the applied magnetic field through a single wire as well as the downstream location
behind the wire (see Figures from 9 to 12). The velocity field of the incompressible, laminar
and non-isothermal flow becomes fully developed far from the applied magnetic field area. It
can be seen in Figure 12 that the outlet velocity profile is not affected by the magnetic field
strength, thus the profile is similar to the fully developed laminar velocity distribution for both
Newtonian and non-Newtonian fluids. The temperature field behaviour is different compared
to the non-isothermal Hartmann flow due to the fact that the effects of MHD and FHD terms
in the momentum equation (10) has impact on the temperature distribution through convection
even if the magnetocaloric effect of the FHD term does not appear in the temperature equation
(11). The outlet temperature profile (see Figure 12) exhibits a non-linear behaviour compared
to the outlet temperature distribution of the non-isothermal Hartmann flow whereas the pro-
file becomes quasi-linear at the outlet section of the microfluidic channel (see Figure 6). For
steady-state Newtonian and non-Newtonian fluid flows, the numerical solution converged to a
small threshold value of 10−7 by performing 450 total number of iterations. For this numerical
test case, approximately 3 times more total number of iterations were required compared to the
non-isothermal Hartmann flow simulation, because the magnetization force due the effect of
FHD has been taken into account on the right hand side of the momentum equation (10).
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Figure 13: Residual history of non-isothermal blood flow simulations for a single wire problem: Newtonian fluid
flow (left) and non-Newtonian blood flow (right).

The computational benchmark problem presented in this subsection could be considered as a
reliable verification and validation test case for non-isothermal Newtonain and non-Newtonian
MHD-FHD fluid flows when microfluidic applications are concerned, because the numerical
solution was converged to a very small threshold value of 10−7 within a relatively small total
number of iterations. Furthermore, the obtained results are well-explainable comparing them to
the non-isothermal Hartmann flow. It is important to mention again the limitation of the current
implementation, because it has been observed relying on numerical experience that when the
applied magnetic field strength is higher than 4Tesla, it was difficult to ensure convergence of
the numerical solution for both Newtonian and non-Newtonian fluids. In consequence of this, it
is recommended to employ higher than second-order treatment of the convective and/or MHD-
FHD terms in the system of governing equation in order to overcome the oscillatory numerical
behaviour of the stiff MHD and FHD source terms at high dimensionless magnetic numbers.

3.3 Double wire problem

In this subsection, a benchmark problem has been presented for an incompressible, laminar
and non-isothermal MHD-FHD blood flow in conjunction with Newtonian and non-Newtonian
rheological models when the fluid flow is influenced by a double wire arrangement of the ap-
plied magnetic field strength. Similar to the numerical example presented in the previous sub-
section, a wire is located at the spatial coordinate x1 = 0.03m on the lower wall in a two-
dimensional microfluidic channel where the magnetic field strength is taken as 4Tesla. In
addition to this, another wire is located at the spatial coordinate x2 = 0.07m on the upper wall
where the magnetic field strength is equal to 1.2Tesla. The set of governing equations are
relying on the mathematical model equations proposed by Tzitzilakis [7], however, we define
the viscous stress tensor τ according to the constitutive equation related to a viscous Newtonian
and a power-law non-Newtonian fluid model for non-isothermal blood flows. This benchmark
test case represents a more complicated multiphysics problem in conjunction with MHD-FHD
flows which triggers off vortical structures in a two-dimensional microfluidic channel similar
to the benchmark problem investigated by Tzirtzilakis and Loukopoulos [1] in the presence of
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a localized uniform magnetic field. For this multiphysics problem, we assume again that the
magnetic state through the magnetization equation M = M (H) depends only on the magnetic
field intensity H and it is independent from the temperature field T . It means that the effects of
MHD and FHD have been taken into account in the momentum equation (10) and the FHD ef-
fect have been neglected in the temperature equation (11). For an incompressible, laminar and
non-isothermal non-Newtonian blood flow, the velocity and temperature field contours have
been shown in Figures 14 and 15, respectively.

Figure 14: Contours of the velocity component U for a non-isothermal non-Newtonian blood flow in a microfluidic
channel with a uniform inlet velocity distribution when the applied magnetic field is induced by a double wire.

Figure 15: Contours of the temperature field for a non-isothermal non-Newtonian blood flow in a microfluidic
channel with a linear inlet temperature distribution when the applied magnetic field is induced by a double wire.

Tzirtzilakis and Loukopoulos [1] investigated a non-isothermal Newtonian flow under the
action of a uniform localized magnetic field of 8Tesla which was two times more than the
magnitude of the applied magnetic field through a wire for the benchmark problem presented
in this subsection. Furthermore, they took into account the magnetocaloric effect of FHD in
the energy equation which could be a stiff source term in the set of governing equations. The
streamfunction-vorticity formulation was used by Tzirtzilakis and Loukopoulos [1] for solving
the MHD-FHD model equations along with a line by line implicit method. Their numerical
solution was reduced to solve the discretized system of equations by using the Thomas algo-
rithm which also means that this numerical approach was basically a one-dimensional solution
of the discretized governing equations along the axial direction, and the effect of the other di-
rection was taken into account on the right hand side of the system of linear equations. It might
be important to highlight that the numerical solution of a fully coupled MHD-FHD govern-
ing equations by using an approximate one-dimensional line by line approach is not equiva-
lent to a fully two-dimensional explicit or implicit numerical solution to the set of MHD-FHD
model equations. Therefore the convergence properties in conjunction with the presence of stiff
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MHD-FHD source terms could lead to different numerical behaviours when various methods
are used for the same computational benchmark problem. According to our numerical experi-
ence related to a fully two-dimensional computational approach, the relatively stiff MHD-FHD
source terms, implemented in the ANSYS-FLUENT environment, caused numerical instabili-
ties when the magnitude of the applied uniform localized magnetic field was 8Tesla. In other
words, the fully two-dimensional numerical solution of the benchmark problem of Tzirtzilakis
and Loukopoulos [1] in the ANSYS-FLUENT environment was not converged to the threshold
value of 10−5 as it was prescribed in [1] for an approximate line by line solution method.

Figure 16: Comparison of velocity profiles for a non-isothermal blood flow in a microfluidic channel at different
cross-sections when the applied magnetic field is induced by wires located on the lower and upper walls.

For an incompressible, laminar and non-isothermal MHD-FHD flow influenced by an ap-
plied double wire magnetic field for Newtonian and non-Newtonian fluids, the velocity and
temperature profiles at different locations of the microfluidic channel have been shown in Fig-
ures 16 and 17, respectively. The reason for the numerical investigation presented in this sub-
section is that the double wire magnetic field arrangement has to trigger off a counter-clockwise
and another clockwise rotating vortex at the location of the wires which leads to a similar vorti-
cal flow pattern to the benchmark problem of Tzirtzilakis and Loukopoulos [1] even if the fluid
has to flow through a non-uniform applied magnetic field. The velocity and temperature fields
are strongly affected at the locations of the applied magnetic field along with the flow upstream
and downstream as well. A strong circulation regime can be observed closed to the magnetic
field sources and the perturbation of the velocity field is significant about the wire located on
the upper wall of the channel. When the fluid moves upstream, the flow influenced the fluid
motion close to the wire located on the lower wall. The fluid flow downstream exhibits strong
mixing due to the effect of the wire located on the upper wall. The difference between the
Newtonian and non-Newtonian blood rheology approaches can be seen in Figures 16 and 17.
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In both cases, the velocity profile does not become fully-developed at the outlet section of the
channel which is also valid for the temperature field. It also means that the flow supposed to
be become fully-develop far downstream from the second wire located on the upper wall which
could occur in a longer microfluidic channel. The difference of velocity and temperature dis-
tributions between Newtonian and non-Newtonian fluids becomes significant at the downsteam
flow regime and at the outlet section of the channel. This phenomenon can be explained by
supposing that the non-linear viscous effect of non-Newtonian blood flows turns out to be dom-
inant when the magnetic field intensity is increased which comes from the material behaviour
of blood. The difference could also arise purely due to the unstable numerical behaviour of the
non-Newtonian blood flow in the presence of a strong magnetic field, because the numerical
solution was not converging to a small threshold value for the steady-state non-Newtonian fluid
flow in this case, thus the residual history appears to be strongly oscillatory (see Figure 18).

Figure 17: Comparison of temperature profiles for a non-isothermal blood flow in a microfluidic channel at differ-
ent cross-sections when the applied magnetic field is induced by wires located on the lower and upper walls.

For the investigated steady-state Newtonian fluid flow in a microfluidic channel, the numer-
ical solution of continuity and momentum equations was converging to a small threshold value
of 10−14 while the solution of the temperature equation was converging up to the threshold
value of 10−4 by performing 4000 total number of iterations. For non-Newtonian blood flow,
the numerical solution exhibited strongly oscillatory behaviour (see Figure 18). Furthermore,
this benchmark problem required the highest total number of iterations compared to the previ-
ous two numerical examples presented in this paper. It can also be seen relying on the residual
histories (see Figure 18) that this benchmark could be used for MHD-FHD code verification
and model validation for Newtonian fluids, however it might be considered as a non-conclusive
example for non-Newtonian blood flows when the power-law fluid model is employed.

Relying on the obtained results, it can be seen that the simulation of non-isothermal MHD-
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Figure 18: Residual history of non-isothermal blood flow simulations for a double wire problem: Newtonian fluid
flow (left) and non-Newtonian blood flow (right).

FHD flows in conjunction with Newtonian and non-Newtonain blood rheological approaches
for microfluidic and biomedical applications could be challenging. This is due to the fact that the
stiff MHD and FHD source terms in the governing equations including the non-linear viscous
behaviour of non-Newtonain blood flows could lead to oscillatory numerical solutions when
the applied magnetic field strength is a high value. Therefore the behaviour of other numerical
solution methods in conjunction with non-isothermal non-Newtonian blood flows has to be
further investigated which could be a subject of another study.

4 CONCLUSIONS

In this paper, we proposed an incompressible, laminar and non-isothermal MHD-FHD model
for Newtonian and non-Newtonian rheological models of blood relying on the combination of
existing MHD-FHD approaches of Tzirakis et al. [2] and Tzirtzilakis [7]. This paper focused
on the implementation of the proposed MHD and FHD models in the ANSYS-FLUENT envi-
ronment for a) non-isothermal Newtonian and non-Newtonian Hartmann flows in the presence
of an applied constant magnetic field and b) non-isothermal non-Newtonian blood flows relying
on the power-law fluid model when the flow field was influenced by a single and double wire
arrangement of an applied magnetic field in a microfluidic planar channel. The objective of this
work was to provide reliable computational benchmark problems for CFD code verification and
MHD-FHD model validation purposes. The following conclusions can be drawn as

• For solving an incompressible steady-state non-isothermal Hartmann flow problem in
conjunction with Newtonian and non-Newtonian blood rheological models, the numerical
solution of the MHD governing equations was converging to a small threshold value
of 10−8 within 145 number of iterations. The obtained results have been compared to
the computational data of Tzirakis et al. [2] taken from the literature. This benchmark
problem can be considered as a reliable benchmark test case for code verification and
MHD model validation purposes for non-isothermal non-Newtonian blood flows.

• When a single wire induced magnetic field was located on the lower wall of the microflu-
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idic channel for solving an incompressible steady-state non-isothermal MHD-FHD flow
problem in conjunction with Newtonian and non-Newtonian blood rheological models,
the numerical solution of the MHD-FHD governing equations was converging to a small
threshold value of 10−7 within 450 total number of iterations. This validation test case
can also be considered as a reliable computational benchmark to investigate the inter-
action between the temperature and MHD-FHD fields for non-Newtonian blood flows,
because there is a lack of experimental data available in the literature.

• When a double wire arrangement of the applied magnetic field was located on the lower
and upper walls of the microfluidic channel for solving an incompressible steady-state
non-isothermal MHD-FHD flow problem related to Newtonian and non-Newtonian blood
rheological models, the numerical solution of the MHD-FHD governing equations exhib-
ited strongly oscillatory behaviour for non-Newtonian blood flows. Relying on these re-
sults, this benchmark case could only be used for MHD-FHD code verification and model
validation for Newtonian fluids, however, it might be considered as a non-conclusive ex-
ample for non-Newtonian blood flows when the power-law fluid model is employed.

• For solving incompressible non-isothermal MHD-FHD problems, it has been observed
that the limitation of the current implementation is that when the applied magnetic field
strength was higher than 4Tesla, it was difficult to ensure convergence of the numerical
solution for both Newtonian and non-Newtonian fluids. This limitation can be explained
by the fact that the MHD-FHD source terms are stiff source terms in the momentum and
energy equations, therefore the numerical behaviour of higher-order methods [11] should
be further investigated for MHD-FHD problems at high dimensionless magnetic numbers.
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