2,452 research outputs found

    Heuristic Optimisation in Financial Modelling

    Get PDF
    There is a large number of optimisation problems in theoretical and applied finance that are difficult to solve as they exhibit multiple local optima or are not ‘well- behaved’ in other ways (eg, discontinuities in the objective function). One way to deal with such problems is to adjust and to simplify them, for instance by dropping constraints, until they can be solved with standard numerical methods. This paper argues that an alternative approach is the application of optimisation heuristics like Simulated Annealing or Genetic Algorithms. These methods have been shown to be capable to handle non-convex optimisation problems with all kinds of constraints. To motivate the use of such techniques in finance, the paper presents several actual problems where classical methods fail. Next, several well-known heuristic techniques that may be deployed in such cases are described. Since such presentations are quite general, the paper describes in some detail how a particular problem, portfolio selection, can be tackled by a particular heuristic method, Threshold Accepting. Finally, the stochastics of the solutions obtained from heuristics are discussed. It is shown, again for the example from portfolio selection, how this random character of the solutions can be exploited to inform the distribution of computations.Optimisation heuristics, Financial Optimisation, Portfolio Optimisation

    Which Surrogate Works for Empirical Performance Modelling? A Case Study with Differential Evolution

    Full text link
    It is not uncommon that meta-heuristic algorithms contain some intrinsic parameters, the optimal configuration of which is crucial for achieving their peak performance. However, evaluating the effectiveness of a configuration is expensive, as it involves many costly runs of the target algorithm. Perhaps surprisingly, it is possible to build a cheap-to-evaluate surrogate that models the algorithm's empirical performance as a function of its parameters. Such surrogates constitute an important building block for understanding algorithm performance, algorithm portfolio/selection, and the automatic algorithm configuration. In principle, many off-the-shelf machine learning techniques can be used to build surrogates. In this paper, we take the differential evolution (DE) as the baseline algorithm for proof-of-concept study. Regression models are trained to model the DE's empirical performance given a parameter configuration. In particular, we evaluate and compare four popular regression algorithms both in terms of how well they predict the empirical performance with respect to a particular parameter configuration, and also how well they approximate the parameter versus the empirical performance landscapes

    Ortalama-varyans portföy optimizasyonunda genetik algoritma uygulamaları üzerine bir literatür araştırması

    Get PDF
    Mean-variance portfolio optimization model, introduced by Markowitz, provides a fundamental answer to the problem of portfolio management. This model seeks an efficient frontier with the best trade-offs between two conflicting objectives of maximizing return and minimizing risk. The problem of determining an efficient frontier is known to be NP-hard. Due to the complexity of the problem, genetic algorithms have been widely employed by a growing number of researchers to solve this problem. In this study, a literature review of genetic algorithms implementations on mean-variance portfolio optimization is examined from the recent published literature. Main specifications of the problems studied and the specifications of suggested genetic algorithms have been summarized

    Heuristic optimisation in financial modelling

    Get PDF
    There is a large number of optimisation problems in theoretical and applied finance that are difficult to solve as they exhibit multiple local optima or are not ‘well-behaved' in other ways (e.g., discontinuities in the objective function). One way to deal with such problems is to adjust and to simplify them, for instance by dropping constraints, until they can be solved with standard numerical methods. We argue that an alternative approach is the application of optimisation heuristics like Simulated Annealing or Genetic Algorithms. These methods have been shown to be capable of handling non-convex optimisation problems with all kinds of constraints. To motivate the use of such techniques in finance, we present several actual problems where classical methods fail. Next, several well-known heuristic techniques that may be deployed in such cases are described. Since such presentations are quite general, we then describe in some detail how a particular problem, portfolio selection, can be tackled by a particular heuristic method, Threshold Accepting. Finally, the stochastics of the solutions obtained from heuristics are discussed. We show, again for the example from portfolio selection, how this random character of the solutions can be exploited to inform the distribution of computation

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    SUNNY-CP and the MiniZinc Challenge

    Get PDF
    In Constraint Programming (CP) a portfolio solver combines a variety of different constraint solvers for solving a given problem. This fairly recent approach enables to significantly boost the performance of single solvers, especially when multicore architectures are exploited. In this work we give a brief overview of the portfolio solver sunny-cp, and we discuss its performance in the MiniZinc Challenge---the annual international competition for CP solvers---where it won two gold medals in 2015 and 2016. Under consideration in Theory and Practice of Logic Programming (TPLP)Comment: Under consideration in Theory and Practice of Logic Programming (TPLP
    corecore