146 research outputs found

    ๋†’์€ ์ „๋ฅ˜ ๊ตฌ๋™๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๋Š” SiGe ๋‚˜๋…ธ์‹œํŠธ ๊ตฌ์กฐ์˜ ํ„ฐ๋„๋ง ์ „๊ณ„ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ๋ฐ•๋ณ‘๊ตญ.The development of very-large-scale integration (VLSI) technology has continuously demanded smaller devices to achieve high integration density for faster computing speed or higher capacity. However, in the recent complementary-metal-oxide-semiconductor (CMOS) technology, simple downsizing the dimension of metal-oxide-semiconductor field-effect transistor (MOSFET) no longer guarantees the boosting performance of IC chips. In particular, static power consumption is not reduced while device size is decreasing because voltage scaling is slowed down at some point. The increased off-current due to short-channel effect (SCE) of MOSFET is a representative cause of the difficulty in voltage scaling. To overcome these fundamental limits of MOSFET, many researchers have been looking for the next generation of FET device over the last ten years. Tunnel field-effect transistor (TFET) has been intensively studied for its steep switching characteristics. Nevertheless, the poor current drivability of TFET is the most serious obstacle to become competitive device for MOSFET. In this thesis, TFET with high current drivability in which above-mentioned problem is significantly solved is proposed. Vertically-stacked SiGe nanosheet channels are used to boost carrier injection and gate control. The fabrication technique to form highly-condensed SiGe nanosheets is introduced. TFET is fabricated with MOSFET with the same structure in the CMOS-compatible process. Both technology-computer-aided-design (TCAD) simulation and experimental results are utilized to support and examine the advantages of proposed TFET. From the perspective of the single device, the improvement in switching characteristics and current drivability are quantitatively and qualitatively analyzed. In addition, the device performance is compared to the benchmark of previously reported TFET and co-fabricated MOSFET. Through those processes, the feasibility of SiGe nanosheet TFET is verified. It is revealed that the proposed SiGe nanosheet TFET has notable steeper switching and low leakage in the low drive voltage as an alternative to conventional MOSFET.์ดˆ๊ณ ๋ฐ€๋„ ์ง‘์ ํšŒ๋กœ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ๊ณ ์ง‘์ ๋„ ๋‹ฌ์„ฑ์„ ํ†ตํ•ด ๋‹จ์œ„ ์นฉ์˜ ์—ฐ์‚ฐ ์†๋„ ๋ฐ ์šฉ๋Ÿ‰ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ•  ์†Œํ˜•์˜ ์†Œ์ž๋ฅผ ๋Š์ž„์—†์ด ์š”๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ตœ์‹ ์˜ ์ƒ๋ณดํ˜• ๊ธˆ์†-์‚ฐํ™”๋ง‰-๋ฐ˜๋„์ฒด (CMOS) ๊ธฐ์ˆ ์—์„œ ๊ธˆ์†-์‚ฐํ™”๋ง‰-๋ฐ˜๋„์ฒด ์ „๊ณ„ ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ (MOSFET) ์˜ ๋‹จ์ˆœํ•œ ์†Œํ˜•ํ™”๋Š” ๋” ์ด์ƒ ์ง‘์ ํšŒ๋กœ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋ณด์žฅํ•ด ์ฃผ์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์†Œ์ž์˜ ํฌ๊ธฐ๊ฐ€ ์ค„์–ด๋“œ๋Š” ๋ฐ˜๋ฉด ์ •์  ์ „๋ ฅ ์†Œ๋ชจ๋Ÿ‰์€ ์ „์•• ์Šค์ผ€์ผ๋ง์˜ ๋‘”ํ™”๋กœ ์ธํ•ด ๊ฐ์†Œ๋˜์ง€ ์•Š๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์ด๋‹ค. MOSFET์˜ ์งง์€ ์ฑ„๋„ ํšจ๊ณผ๋กœ ์ธํ•ด ์ฆ๊ฐ€๋œ ๋ˆ„์„ค ์ „๋ฅ˜๊ฐ€ ์ „์•• ์Šค์ผ€์ผ๋ง์˜ ์–ด๋ ค์›€์„ ์ฃผ๋Š” ๋Œ€ํ‘œ์  ์›์ธ์œผ๋กœ ๊ผฝํžŒ๋‹ค. ์ด๋Ÿฌํ•œ ๊ทผ๋ณธ์ ์ธ MOSFET์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ง€๋‚œ 10์—ฌ๋…„๊ฐ„ ์ƒˆ๋กœ์šด ๋‹จ๊ณ„์˜ ์ „๊ณ„ ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ ์†Œ์ž๋“ค์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘ ํ„ฐ๋„ ์ „๊ณ„ ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ(TFET)์€ ๊ทธ ํŠน์œ ์˜ ์šฐ์ˆ˜ํ•œ ์ „์› ํŠน์„ฑ์œผ๋กœ ๊ฐ๊ด‘๋ฐ›์•„ ์ง‘์ค‘์ ์œผ๋กœ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋งŽ์€ ์—ฐ๊ตฌ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , TFET์˜ ๋ถ€์กฑํ•œ ์ „๋ฅ˜ ๊ตฌ๋™ ๋Šฅ๋ ฅ์€ MOSFET์˜ ๋Œ€์ฒด์žฌ๋กœ ์ž๋ฆฌ๋งค๊น€ํ•˜๋Š” ๋ฐ ๊ฐ€์žฅ ํฐ ๋ฌธ์ œ์ ์ด ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ƒ๊ธฐ๋œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์šฐ์ˆ˜ํ•œ ์ „๋ฅ˜ ๊ตฌ๋™ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง„ TFET์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋ฐ˜์†ก์ž ์œ ์ž…๊ณผ ๊ฒŒ์ดํŠธ ์ปจํŠธ๋กค์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ง ์ ์ธต๋œ ์‹ค๋ฆฌ์ฝ˜์ €๋งˆ๋Š„(SiGe) ๋‚˜๋…ธ์‹œํŠธ ์ฑ„๋„์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ TFET์€ CMOS ๊ธฐ๋ฐ˜ ๊ณต์ •์„ ํ™œ์šฉํ•˜์—ฌ MOSFET๊ณผ ํ•จ๊ป˜ ์ œ์ž‘๋˜์—ˆ๋‹ค. ํ…Œํฌ๋†€๋กœ์ง€ ์ปดํ“จํ„ฐ ์ง€์› ์„ค๊ณ„(TCAD) ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ์ธก์ • ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ œ์•ˆ๋œ ์†Œ์ž์˜ ์šฐ์ˆ˜์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋‹จ์œ„ CMOS ์†Œ์ž์˜ ๊ด€์ ์—์„œ, ์ „์› ํŠน์„ฑ๊ณผ ์ „๋ฅ˜ ๊ตฌ๋™ ๋Šฅ๋ ฅ์˜ ํ–ฅ์ƒ์„ ์ •๋Ÿ‰์ , ์ •์„ฑ์  ๋ฐฉ๋ฒ•์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ , ์ œ์ž‘๋œ ์†Œ์ž์˜ ์„ฑ๋Šฅ์„ ๊ธฐ์กด ์ œ์ž‘ ๋ฐ ๋ณด๊ณ ๋œ TFET ๋ฐ ํ•จ๊ป˜ ์ œ์ž‘๋œ MOSSFET๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์„ ํ†ตํ•ด, ์‹ค๋ฆฌ์ฝ˜์ €๋งˆ๋Š„ ๋‚˜๋…ธ์‹œํŠธ TFET์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ์ž…์ฆ๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ์‹ค๋ฆฌ์ฝ˜์ €๋งˆ๋Š„ ๋‚˜๋…ธ์‹œํŠธ ์†Œ์ž๋Š” ์ฃผ๋ชฉํ•  ๋งŒํ•œ ์ „์› ํŠน์„ฑ์„ ๊ฐ€์กŒ๊ณ  ์ €์ „์•• ๊ตฌ๋™ ํ™˜๊ฒฝ์—์„œ ํ•œ์ธต ๋” ๋‚ฎ์€ ๋ˆ„์„ค ์ „๋ฅ˜๋ฅผ ๊ฐ€์ง์œผ๋กœ์จ ํ–ฅํ›„ MOSFET์„ ๋Œ€์ฒดํ• ๋งŒํ•œ ์ถฉ๋ถ„ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.Chapter 1 Introduction 1 1.1. Power Crisis of Conventional CMOS Technology 1 1.2. Tunnel Field-Effect Transistor (TFET) 6 1.3. Feasibility and Challenges of TFET 9 1.4. Scope of Thesis 11 Chapter 2 Device Characterization 13 2.1. SiGe Nanosheet TFET 13 2.2. Device Concept 15 2.3. Calibration Procedure for TCAD simulation 17 2.4. Device Verification with TCAD simulation 21 Chapter 3 Device Fabrication 31 3.1. Fabrication Process Flow 31 3.2. Key Processes for SiGe Nanosheet TFET 33 3.2.1. Key Process 1 : SiGe Nanosheet Formation 34 3.2.2. Key Process 2 : Source/Drain Implantation 41 3.2.3. Key Process 3 : High-ฮบ/Metal gate Formation 43 Chapter 4 Results and Discussion 53 4.1. Measurement Results 53 4.2. Analysis of Device Characteristics 56 4.2.1. Improved Factors to Performance in SiGe Nanosheet TFET 56 4.2.2. Performance Comparison with SiGe Nanosheet MOSFET 62 4.3. Performance Evaluation through Benchmarks 64 4.4. Optimization Plan for SiGe nanosheet TFET 66 4.4.1. Improvement of Quality of Gate Dielectric 66 4.4.2. Optimization of Doping Junction at Source 67 Chapter 5 Conclusion 71 Bibliography 73 Abstract in Korean 81 List of Publications 83Docto

    InGaAs/GaAsSb type-two heterojunction vertical tunnel-FETs

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 59-62).The supply voltage (VDD) scaling of conventional CMOS technology is approaching its limit due to the physical limit of 60 mV/dec subthreshold swing (SS) at room temperature and the requirement for controlled leakage current. In order to continue VDD scaling for low power applications, novel device structures with steep SS have been proposed. Tunnel-FETs (TFETs) are among the most attractive device structure due to their compatibility with conventional CMOS technology and the potential for outstanding VDD scalability. Heterostructure vertical TFETs with enhanced gate modulation promise significantly improved electrostatic control and drive current relative to lateral tunneling designs. In this thesis, vertical TFETs based on InGaAs/GaAsSb heterostructure are investigated in terms of design, fabrication and electrical characterization. Ino.53Gao.47As/ GaAso.5Sb0.5 heterostructure vertical TFETs are fabricated with an airbridge structure, designed to prevent parasitic tunneling path in the device, with a two-step highly selective undercut process. Electrical measurement of the devices with various gate areas demonstrates area-dependent tunneling current. The Ino.53Gao.47As/ GaAs0 .5 Sb. 5 vertical TFETs with HfO2 high-k gate dielectric (EOT ~ 1.3 nm) exhibit minimum sub-threshold swings of 140 and 58 mV/dec at 300 and 150 K respectively, with an ON-current density of 0.5 [mu]A/[mu]m2 at VDD = 0.5 V at 300 K. A physical model of TFET operation in the ON-state is proposed based on temperature dependent measurements, which reveal a current barrier due to an ungated region near the drain. Simulations illustrate that the gate-to-drain distance must be scaled to eliminate this barrier. In diode-mode operation, outstanding backward diode performance is demonstrated in this system for the first time, with gate-tunable curvature coefficient of 30 V1 near VDS= 0 V. These results indicate the potential of vertical TFETs in hybrid IC applications.by Tao Yu.S.M

    High-Performance Silicon Nanowire Electronics

    Get PDF
    This thesis explores 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications via the fabrication and testing of SiNW-based ring oscillators. Both SiNW surface treatments and dielectric annealing are reported for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (~108), low drain-induced barrier lowering (~30 mV), high carrier mobilities (~269 cm2/Vโ€ขs), and low subthreshold swing (~80 mV/dec). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs is explored as well. The inverter demonstrates the highest voltage gain (~148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications. A set of novel charge-trap non-volatile memory devices based on high-performance SiNW FETs are well investigated. These memory devices integrate Fe2O3 quantum dots (FeO QDs) as charge storage elements. A template-assisted assembly technique is used to align FeO QDs into a close-packed, ordered matrix within the trenches that separate highly aligned SiNWs, and thus store injected charges. A Fowler-Nordheim tunneling mechanism describes both the program and erase operations. The memory prototype demonstrates promising characteristics in terms of large threshold voltage shift (~1.3 V) and long data retention time (~3 ร— 106 s), and also allows for key components to be systematically varied. For example, varying the size of the QDs indicates that larger diameter QDs exhibit a larger memory window, suggesting the QD charging energy plays an important role in the carrier transport. The device temperature characteristics reveal an optimal window for device performance between 275K and 350K. The flexibility of integrating the charge-trap memory devices with the SiNW logic devices offers a low-cost embedded non-volatile memory solution. A building block for a SiNW-based field-programmable gate array (FPGA) is proposed in the future work.</p

    Design, Modeling and Analysis of Non-classical Field Effect Transistors

    Get PDF
    Transistor scaling following per Moore\u27s Law slows down its pace when entering into nanometer regime where short channel effects (SCEs), including threshold voltage fluctuation, increased leakage current and mobility degradation, become pronounced in the traditional planar silicon MOSFET. In addition, as the demand of diversified functionalities rises, conventional silicon technologies cannot satisfy all non-digital applications requirements because of restrictions that stem from the fundamental material properties. Therefore, novel device materials and structures are desirable to fuel further evolution of semiconductor technologies. In this dissertation, I have proposed innovative device structures and addressed design considerations of those non-classical field effect transistors for digital, analog/RF and power applications with projected benefits. Considering device process difficulties and the dramatic fabrication cost, application-oriented device design and optimization are performed through device physics analysis and TCAD modeling methodology to develop design guidelines utilizing transistor\u27s improved characteristics toward application-specific circuit performance enhancement. Results support proposed device design methodologies that will allow development of novel transistors capable of overcoming limitation of planar nanoscale MOSFETs. In this work, both silicon and III-V compound devices are designed, optimized and characterized for digital and non-digital applications through calibrated 2-D and 3-D TCAD simulation. For digital functionalities, silicon and InGaAs MOSFETs have been investigated. Optimized 3-D silicon-on-insulator (SOI) and body-on-insulator (BOI) FinFETs are simulated to demonstrate their impact on the performance of volatile memory SRAM module with consideration of self-heating effects. Comprehensive simulation results suggest that the current drivability degradation due to increased device temperature is modest for both devices and corresponding digital circuits. However, SOI FinFET is recommended for the design of low voltage operation digital modules because of its faster AC response and better SCEs management than the BOI structure. The FinFET concept is also applied to the non-volatile memory cell at 22 nm technology node for low voltage operation with suppressed SCEs. In addition to the silicon technology, our TCAD estimation based on upper projections show that the InGaAs FinFET, with superior mobility and improved interface conditions, achieve tremendous drive current boost and aggressively suppressed SCEs and thereby a strong contender for low-power high-performance applications over the silicon counterpart. For non-digital functionalities, multi-fin FETs and GaN HEMT have been studied. Mixed-mode simulations along with developed optimization guidelines establish the realistic application potential of underlap design of silicon multi-Fin FETs for analog/RF operation. The device with underlap design shows compromised current drivability but improve analog intrinsic gain and high frequency performance. To investigate the potential of the novel N-polar GaN material, for the first time, I have provided calibrated TCAD modeling of E-mode N-polar GaN single-channel HEMT. In this work, I have also proposed a novel E-mode dual-channel hybrid MIS-HEMT showing greatly enhanced current carrying capability. The impact of GaN layer scaling has been investigated through extensive TCAD simulations and demonstrated techniques for device optimization

    Proceedings of the Cold Electronics Workshop

    Get PDF
    The benefits and problems of the use of cold semiconductor electronics and the research and development effort required to bring cold electronics into more widespread use were examined

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond siliconโ€™s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Tunnel Field-Effect Transistor: Impact of the Asymmetric and Symmetric Ambipolarity on Fault and Performance in Digital Circuits

    Get PDF
    Tunnel Field-Effect Transistors (TFETs) have been considered one of the most promising technologies to complement or replace CMOS for ultra-low-power applications, thanks to their subthreshold slope below the well-known limit of 60 mV/dec at room temperature holding for the MOSFET technologies. Nevertheless, TFET technology still suffers of ambipolar conduction, limiting its applicability in digital systems. In this work, we analyze through SPICE simulations, the impact of the symmetric and asymmetric ambipolarity in failure and power consumption for TFET-based complementary logic circuits. Our results clarify the circuit-level effects induced by the ambipolarity feature, demonstrating that it affects the correct functioning of logic gates and strongly impacts power consumption. We believe that our outcomes motivate further research towards technological solutions for ambipolarity suppression in TFET technology for near-future ultra-low-power application

    Modeling Of Two Dimensional Graphene And Non-graphene Material Based Tunnel Field Effect Transistors For Integrated Circuit Design

    Get PDF
    The Mooreโ€™s law of scaling of metal oxide semiconductor field effect transistor (MOSFET) had been a driving force toward the unprecedented advancement in development of integrated circuit over the last five decades. As the technology scales down to 7 nm node and below following the Mooreโ€™s law, conventional MOSFETs are becoming more vulnerable to extremely high off-state leakage current exhibiting a tremendous amount of standby power dissipation. Moreover, the fundamental physical limit of MOSFET of 60 mV/decade subthreshold slope exacerbates the situation further requiring current transport mechanism other than drift and diffusion for the operation of transistors. One way to limit such unrestrained amount of power dissipation is to explore novel materials with superior thermal and electrical properties compared to traditional bulk materials. On the other hand, energy efficient steep subthreshold slope devices are the other possible alternatives to conventional MOSFET based on emerging novel materials. This dissertation addresses the potential of both advanced materials and devices for development of next generation energy efficient integrated circuits. Among the different steep subthreshold slope devices, tunnel field effect transistor (TFET) has been considered as a promising candidate after MOSFET. A superior gate control on source-channel band-to-band tunneling providing subthreshold slopes well below than 60 mV/decade. With the emergence of atomically thin two-dimensional (2D) materials, interest in the design of TFET based on such novel 2D materials has also grown significantly. Graphene being the first and the most studied among 2D materials with exotic electronic and thermal properties. This dissertation primarily considers current transport modeling of graphene based tunnel devices from transport phenomena to energy efficient integrated circuit design. Three current transport models: semi-classical, semi-quantum and numerical simulations are described for the modeling of graphene nanoribbon tunnel field effect transistor (GNR TFET) where the semi-classical model is in close agreement with the quantum transport simulation. Moreover, the models produced are also extended for integrated circuit design using Verilog-A hardware description language for logic design. In order to overcome the challenges associated with the band gap engineering for making graphene transistor for logic operation, the promise of graphene based interlayer tunneling transistors are discussed along with their existing fundamental physical limitation of subthreshold slope. It has been found that such interlayer tunnel transistor has very poor electrostatic gate control on drain current. It gives subthreshold slope greater than the thermionic limit of 60 mV/decade at room temperature. In order to resolve such limitation of interlayer tunneling transistors, a new type of transistor named โ€œjunctionless tunnel effect transistor (JTET)โ€ has been invented and modeled for the first time considering graphene-boron nitride (BN)-graphene and molybdenum disulfide (MoS2)-boron nitride (BN) heterostructures, where the interlayer tunneling mechanism controls the source-drain ballistic transport instead of depleting carriers in the channel. Steep subthreshold slope, low power and high frequency THz operation are few of the promising features studied for such graphene and MoS2 JTETs. From current transport modeling to energy efficient integrated circuit design using Verilog-A has been carried out for these new devices as well. Thus, findings in this dissertation would suggest the exciting opportunity of a new class of next generation energy efficient material based transistors as switches

    Vertical Heterostructure III-V MOSFETs for CMOS, RF and Memory Applications

    Get PDF
    This thesis focuses mainly on the co-integration of vertical nanowiren-type InAs and p-type GaSb MOSFETs on Si (Paper I & II), whereMOVPE grown vertical InAs-GaSb heterostructure nanowires areused for realizing monolithically integrated and co-processed all-III-V CMOS.Utilizing a bottom-up approach based on MOVPE grown nanowires enablesdesign flexibilities, such as in-situ doping and heterostructure formation,which serves to reduce the amount of mask steps during fabrication. By refiningthe fabrication techniques, using a self-aligned gate-last process, scaled10-20 nm diameters are achieved for balanced drive currents at Ion โˆผ 100ฮผA/ฮผm, considering Ioff at 100 nA/ฮผm (VDD = 0.5 V). This is enabledby greatly improved p-type MOSFET performance reaching a maximumtransconductance of 260 ฮผA/ฮผm at VDS = 0.5 V. Lowered power dissipationfor CMOS circuits requires good threshold voltage VT matching of the n- andp-type device, which is also demonstrated for basic inverter circuits. Thevarious effects contributing to VT-shifts are also studied in detail focusing onthe InAs channel devices (with highest transconductance of 2.6 mA/ฮผm), byusing Electron Holography and a novel gate position variation method (PaperV).The advancements in all-III-V CMOS integration spawned individual studiesinto the strengths of the n- and p-type III-V devices, respectively. Traditionallymaterials such as InAs and InGaAs provide excellent electrontransport properties, therefore they are frequently used in devices for highfrequency RF applications. In contrast, the III-V p-type alternatives have beenlacking performance mostly due to the difficult oxidation properties of Sb-based materials. Therefore, a study of the GaSb properties, in a MOSFETchannel, was designed and enabled by new manufacturing techniques, whichallowed gate-length scaling from 40 to 140 nm for p-type Sb-based MOSFETs(Paper III). The new fabrication method allowed for integration of deviceswith symmetrical contacts as compared to previous work which relied on atunnel-contact at the source-side. By modelling based on measured data fieldeffecthole mobility of 70 cm2/Vs was calculated, well in line with previouslyreported studies on GaSb nanowires. The oxidation properties of the GaSbgate-stack was further characterized by XPS, where high intensities of xraysare achieved using a synchrotron source allowed for characterization ofnanowires (Paper VI). Here, in-situ H2-plasma treatment, in parallel with XPSmeasurements, enabled a study of the time-dependence during full removalof GaSb native oxides.The last focus of the thesis was building on the existing strengths of verticalheterostructure III-V n-type (InAs-InGaAs graded channel) devices. Typically,these devices demonstrate high-current densities (gm >3 mS/ฮผm) and excellentmodulation properties (off-state current down to 1 nA/ฮผm). However,minimizing the parasitic capacitances, due to various overlaps originatingfrom a low access-resistance design, has proven difficult. Therefore, newmethods for spacers in both the vertical and planar directions was developedand studied in detail. The new fabrication methods including sidewall spacersachieved gate-drain capacitance CGD levels close to 0.2 fF/ฮผm, which isthe established limit by optimized high-speed devices. The vertical spacertechnology, using SiO2 on the nanowire sidewalls, is further improved inthis thesis which enables new co-integration schemes for memory arrays.Namely, the refined sidewall spacer method is used to realize selective recessetching of the channel and reduced capacitance for large array memoryselector devices (InAs channel) vertically integrated with Resistive RandomAccess Memory (RRAM) memristors. (Paper IV) The fabricated 1-transistor-1-memristor (1T1R) demonstrator cell shows excellent endurance and retentionfor the RRAM by maintaining constant ratio of the high and low resistive state(HRS/LRS) after 106 switching cycles

    Vertical III-V Nanowire Transistors for Low-Power Logic and Reconfigurable Applications

    Get PDF
    With rapid increase in energy consumption of electronics used in our daily life, the building blocks โ€” transistors โ€” need to work in a way that has high energy efficiency and functional density to meet the demand of further scaling. III-V channel combined with vertical nanowire gate-all-around (GAA) device architecture is a promising alternative to conventional Si transistors due to its excellent electrical properties in the channel and electrostatic control across the gate oxide in addition to reduced footprint. Based on this platform, two major objectives of this thesis are included: 1) to improve the performance of III-V p-type metal-oxide-semiconductor field-effect transistors (MOSFETs) and tunnel FETs (TFETs) for low-power digital applications; 2) to integrate HfO2-based ferroelectric gate onto III-V FETs (FeFETs) and TFETs (ferro-TFETs) to enable reconfigurable operation for high functional density.The key bottleneck for all-III-V CMOS is its p-type MOSFETs (p-FETs) which are mainly made of GaSb or InGaSb. Rich surface states of III-Sb materials not only lead to decreased effective channel mobility due to more scattering, but also deteriorate the electrostatics. In this thesis, several approaches to improve p-FET performance have been explored. One strategy is to enhance the hole mobility by introducing compressive strain into III-Sb channel. For the first time, a high and uniform compressive strain near 1% along the transport direction has been achieved in downscaled GaSb nanowires by growing and engineering GaSb-GaAsSb core-shell structure, aiming for potential hole mobility enhancement. In addition, surface passivation using digital etch has been developed to improve the electrostatics with subthreshold swing (SS) down to 107 mV/dec. Moreover, the on-state performance including on-current (Ion) and transconductance (gm) have been enhanced by โˆผ50% using annealing with H2-based forming gas. Lastly, a novel p-FET structure with (In)GaAsSb channel has been developed and further improved off-state performance with SS = 71 mV/dec, which is the lowest value among all reported III-V p-FETs.Despite subthermionic operation, TFETs usually suffer from low drive current as well as the current operating below 60 mV/dec (I60). The second focus of this thesis is to fine-tune the InAs/(In)GaAsSb heterostructure tunnel junction and the doping in the source segment during epitaxy. As a result, a substantially increased I60 (>1 ยตA/ยตm) and Ion up to 40 ยตA/ยตm at source-drain bias of 0.5 V have been achieved, reaching a record compared to other reported TFETs.Finally, emerging ferroelectric oxide based on Zr-doped HfO2 (HZO) has been successfully integrated onto III-V vertical nanowire transistors to form FeFETs and ferro-TFETs with GAA architecture. The corresponding electrical performance and reliability have been carefully characterized with both DC and pulsed I-V measurements. The unique band-to-band tunneling in InAs/(In)GaAsSb/GaSb heterostructure TFET creates an ultrashort effective channel, leading to detection of localized potential variation induced by single domains and defects in nanoscale ferroelectric HZO without physical gate-length scaling. By introducing gate/source overlap structure in the ferro-TFET, non-volatile reconfigurable signal modulation with multiple modes including signal transmission, phase shift, frequency doubling, and mixing has been achieved in a single device with low drive voltage and only โˆผ0.01 ยตm2 footprint, thus increasing both functional density andenergy efficiency
    • โ€ฆ
    corecore