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ABsTRACT

The Proceedings of the Cold Electronics Workshop held at the
Jet Propulsion Laboratory on October 3 and 4, 1984 are
documented. Papers presented and discussions centered on the
benefits and problems of the use of cold semiconductor
electronics and the research and development effort required to
bring cold electronics into more widespread use.

The report includes an overview of the status of cold
electronics usage and research, summaries of the invited
presentations and workshop discussions, recommendations for
future research and development and copies of papers which were
submitted by the invited speakers.

zP 0



PRECEDING PAGE BLANK NOT FILMED

V

E. Tward
Conference Chairman

i

PREFACE

This report documents the proceedings of the Cold

Electronics Workshop held at the Jet Propulsion Laboratory in

Pasadena, California on October 4 and 5, 1983. The workshop was

spinsored by the Office of Naval Research through Dr. E. A.

Edelsack and by the Jet Propulsion Laborato r y. The opinions,

findings and conclusions expressed are those of the authori

solely, who have attempted to represent to the best of their

ability the discussions of the participants.

The workshop was organized in four half—day sessions and

included presentations by invited speakers on a variety of

relevant topics. Following the presentations, three topical

discussion sessions and a final main discussion session were held

in order to ascertain the viewpoints of the participants with

respect to the potential for significant technical progress in

cold electronics and the research and development efforts

required for this progress to be achieved.

Because of the nature of the meeting, it was not ad,ertised.

All participants were invited personally by the undersigned, who

takes all the blame for being unaware of other worthy

contributors.	 The success of the meeting is due to the 65

participants whose efforts are gratefully acknowledged. I

especially wish to thank Mrs. Genevieve McKay for her excellent

help in organizing the conference.
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I.	 INTRODUCTION

Coaling of electronics to cryogenic temperatures is a
commonly used procedure in a number of scientific areas.
Semiconductor devices have been operated below room temperature
to temperatures as low as 1 K. Superconducting devices are
operated at temperatures below approximately 20 K where the
phenomenon of superconductivity exists. The Cold Electronics
Workshop focussed on the use of semiconductor devices at
cryogenic temperatures and did not discuss superconductivity.

The meeting was held because it was apparent to the
organizers that there was no common forum for discussion for both
the users of cold electronics and those wisiing to advance the
state of the art in this field. The users in fields such as
radio astronomy, infrared sensing and nuc-ear physics have
themselves traditionally found a way to satisfy their special
needs for essentially special purpose devices. These
applications make use of cold semiconductor devices to take
advantage of either low noise properties or the need for close
coupling of the devices. For some applications, e.g., infrared
sensing, the sensors themselves must be cooled as well and
therefore an independent cooling system for the electronics is
not required. For other applications, e.g., microwave receivers,
the antennae are warm but the front end receivers are cooled and
therefore require their own cooling systems.

i

	

The formal presentations and workshop discussions attempted 	 i
to cover the field of cold electronics as broadly as possible. 	 I
The topics addressed included novel fabrication techniques, new
promising devices (e.g., NEMT), the status of cold Si devices;
refrigeration, and the needs of users. A copy of the program is
appended in Appendix A. The invited participants were drawn from
industry, government laboratories and academia. A list of
attendees is appended in Appendix B. Included in Appendix C ar--
papers or summaries of presentations from the presenters who
responded to the seductive entreaties of the editors to do more
than their initial commitment to speak. Their additional efforts
in providing these materials are gratefully acknowledged.

The broad scope of the program reflects the situation of a
field in its infancy, with great promise for technical pay—off
and wide ranging opportunity and need for research and
development. The technical promise of cold electronics lies in
its potential for yielding improved performance and reliability.
For example, for VLSI devices, lowering operating temperatures
can provide increased speed due to higher carrier mobilities,
lowered interconnection resistances, improved heat removal,
lowered power dissipation, and orders of magnitude improvement of
reliability due to reduction of thermally activated degradation
mechanisms. For many IR sensor applications, low noise
requirements of amplifiers dictates the use of low temperatures.
For microwave receivers high frequency response and low noise are



prime considerations for applications in radio astronomy.

In any event, in most applications where cold electronics is

in use or is being considered for use, the enhancement of device

characteristics results from the basic improved physical
properties of the materials at low temperatures. For this reason

there is a great need for basic research into the properties of
materials as well as device design and engineering for low
temperature operation.

In order to put into context the present status of the

field, we include in the report an overview of cold electronics

which includes a bibliography as a starting point for those who

wish to investigate the field in greater depth.

J

2

__ o



• J• ^.	 _77

985-24221

M-

II. COLD ELECTRONICS - AN OVERVIEW

R. Kirschman

T he present trends in electronics toward
ultraminiaturization and higher performance are intimately tied
in with lower temperature operation. As materials are made purer
and more ordered, as structures are maae smaller, and as signal
levels are reduced in electronic devices and circuits, thermal
effects can become increasingly important and hence reducing the
temperature can lead to correspondingly greater benefits.

Cold electronic systems in use or contemplated range from
single-transistor amplifiers to computer systems employing many
VLSI integrated circuits. The primary areas, as described in this
overview, are listed in Table I. Generally speaking, several
roles are seen for low temperatures in electronics:

As a means of extracting better performance
from existing technology, avoiding expense
and delay required for the advances in design
or fabrication which would be needed to
achieve the same performance at room
temperature.

As a necessity in the quest for improved
performance, to counteract detrimental
effects which arise as technology is pushed
to extremes.

As an opportunity to take advantage of
effects made available by low temperature
operation, and to develop new devices based
on them.

The object of this overview is to briefly describe the
various devices, applications, and performance factors involved
in cold electronics, and how these relate to materials and
technology. The electronic devices and circuits treated in this
overview are those based on semiconductivity. Superconductive
devices and circuits are not included; information on these can
be found in references 2 through 10.

As is reasonable to expect, most work on cold electronics
has been along the lines of adapting and extending existing
technology. The potential of devices and circuits which are
designed and optimized with low-temperature operation in mind
from the outset is still largely unknown and unexplored.

3
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TABLE I

COLD SEMICONDUCTOR ELECTRONICS

Material	 Device	 Temperatures	 Applications

Ge	 Bipolar
	

> 100 K

discrete JFET
	

liquid helium
	

low frequency amplifiers,
and above
	

oscillators

Si	 Bipolar	 > 100 K

discrete JFET	 liquid helium
and above

discrete MOSFET	 liquid helium

and above

VLSI MOSFET	 liquid nitrogen

in

low frequency amplifiers,
oscillators

low frequency amplifiers,
oscillators

high- .speed logic

(proposed)

GaAs	 discrete MESFET	 20 K and above	 low-noise microwave

amplifiers

LSI/VLSI MESFET	 liquid nitrogen	 high-speed logic and

fast/high frequency
instruments (proposed)

GaAs/A1GaAs discrete HEMT	 20 K and above	 low-noise microwave

amplifiers (proposed)

LSI/VLSI HEMT	 liquid nitrogen	 high-speed logic and

fast/high-frequency
instruments (proposed)

4
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MATERIALS AND DEVICES

The use of semiconductor materia?.s for cold electronics by
and large reflects the situation at room temperature. The
principal mate-lal is Si, with GaAs showing promise, and Ge being
used for a fev specialized purposes. Other materials, 11 as well
as devices other than those discussed below, might be valuable
for low-Lemperature electronics, but it is unlikely that the
considerable effort needed to develop their fabrication
technologies would be undertaken solely on the basis of low-
temperature applications.

Nearly all active semiconductor devices being used and
considered for cold electronics are of the FET (field-effect
transistor) family. Bipolar transi-tors are not now being
considered to any degree because those made with standard
techniques and moterials do 15o> function satisfactorily at
temperatures below ,bout 100 K.

Almost since their commercial appearance about twenty years
ago, discrete Si and Ge JFETs (junction FETs) and Si MESFETs
(metal-oxide-semiconductor FETs) have been evaluated at low
temperatures and used in experimental research involving low
temperatures. 16-21 A prime example is the syste m in the Infrared
Astronomical Satellite (IRAS), 22,23 which uses Si JFETS as the
active elements in low-frequency impedance-matching preamplifiers
for the infrared detectors which are cooled to liquid-helium
temperatures.

Cooled GaAs MESFETs (metal-semiconductor FETs) have provided
outstandingg results in low-noise r eceivers at microwave
frequencies zu for applications such as radio astronomy, 25-26 The
HEMT, a recently developed type of FET described below, is
predict5d to yield =ien better performance, approaching that of
MASERs. 55

GaAs MESFETs are also being considered for high-speed
digital ICs expected to be several times faster than those based
on Si.' 2 Experiments indicate that their performance improves at
low temperatures. 27 Cold GaAs could provide high performance for
specialized applications feasible with low-complexity ICs. At
present GaAs is not capable of the integration complexity
attainable with Si since its fabrication has not matured;
however, such technology is being developed rapidly.

At this time the Si MOSFET is the prime candidate for low-
temperature digital applications because of its predominance in
room -temperature IC technology coupled with the fact that MOS
devices	 wgrk at	 low temperatures and exhibit increased
speed. 15,28,29 Conventional depletion-mode devices have
exhibited undesirable threshold voltage behavior and other
effects related to freeze-out of threshold-adjusting
impurities, 14,30,31 which has been an impediment to cold NMOS.

5



Although these difficulties could probably he overcome. interest
has shifted to CMOS, which is based on enhancemPnL—mode devices

and is coming to the forefront in room—temperature electronics.
Enhancement— odeexhibit better behavior at low

temperatures ll 2 and p— and n—channel types can be made to
exhibit symmetrical threshold variation with temperature,
allowing CMOS logic circuits to function from room temperature

down to liquid—helium temperatures. 33 Thus, it is likely that Si
CMOS will be the leading technology for cold electronics for
computers.

When bulk CMOS circuits are operated at low—temperature,

latch—up is suppressed because theains are reduced in the
parasitic bipolar structures. 28, 33'34 On the other hand charge
trapping in insulators, such as S10 2 which is a key ingredient in
MOS technology, and consequent unacceptable shift:, in device
character 34t3' s6 can become exaggerated at low
temperatures. , C,

DEVICE SHED

The switching speed of semiconductor devices, a central
concern for digital applications, can be increased by lowering
their temperature (Fig. 1). Increased device speed is useful.
only in the context of an integrated circuit, and here too,
reduced temperatures could provide benefits related to the
interconnections, heat removal, and power as described lat er.
The temperature most frequently considered in this context is
that of liquid nitrogen since it is convenient and can provide
significant improvements in performance.

Higher speed in FET devices at low temperatures reaults from
higher mobility and transconduz^tance which in turr result from
reduced thermal scattering of carriers. Factors of 2 to 3
improveg. nt in speed have been demonstra ed in Si
MOSFETs 14,2^ ,29.33,37,38 as well as GaAs MESFETs.27 

In conventional FETs this improvement occurs primarily on
cooling to liquid nitrogen temperatures, with relativel little
increase in speed for further reduction in temperature. 8 This
is because carrier flow is still disrupted by non—ther.nal
scattering, such as from ionized impurities, which persists at
low temperatures.

The situation can be improved by npacially separating the
carriers from the impurities necessary for their generatiorl^—Si
that non—thermal scattering is drastically reduced (Fig. 2).	 ^
This is achieved in the HEMT (high electron—mobility
transistor),	 a recently—developed FET device which is faster
than a conventional FET even at room temperature, and improves
rapidly as temperature is lowered. A switchi^g .43 me of 13 ps at
liquid—nitrogen temperature has been reported. 	 As mentioned

6
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earlier, the HEMT also shows great promise for low—noise
microwave amplification, 25 with predicted 12—GHz noise figures of
a fraction o  db even when cooled only to liquid—nitrogen
temperatures. 19

The present realization of the HEMT is with GaAs technology;
but its fabrication is more complicated than that of a
conventional GaAs FET, requiring the sophisticated techniques of
molecular-beam epitaxy (MBE) or organo—metallic vapor—phase
epitaxy (OMVPE) to deposit the layers essential to the device's
operation. 39 Thus, at present, the technology is in its infancy;
however, it is likely that development will be pursued vigorously
because of the HEMT's superior performance at room temperature.

Under certain conditions, one of which is low temperature,
carrier transport in these devices may not reach steady state,
and the effects of velocity overshoot and "ballistic" transport
become important. 44-4 Investigations in this area are still in
the early stages, but could lead to even faster, lower—noise
devices. 39

individual device speed increases, interconnections
devices on an IC chip become no less important than the
themselves in determining the overall speed in complex
circuits. ' Particularly so since as devices shrink,
expected to become more dense and at the same time
resulting in interconnecting lines of smaller cross
and greater length.

Thus, ultimately it may not matter which device or
semiconductor material is chosen for complex ICs since the speed
could be limited by the parasitic resistance and capacitance of
interconnections rather than by the inherent speed )f the
individual devices.

Whether the speed is interconnection limited or not,
reducing the temperature is seen as a possible means to improve
performance 1 2 %cgause it lowers the resistance of interconnecting
materials. The experimental data available (Fig. 3)
indicate about an order of magnitude reduction of resistance of
aluminum lines of the type used in integrated circuits aid slight
reduction for polygi33ep 

9 and for doped silicon such as used indevice contacts.ZZttSS1 44 These results are for dc; none are
available for fast pulses and high frequencies found in high-
speed logic and microwave applications. Likewise, data are
lacking for more recently developed metallization and contacting
schemes such as those incorporating refractory metals ar.d
silicides, or those used with newer semiconducting materials such
as GaAs.
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An attractive possibility for circuits operating at
temperatures below about 20 K is the use of superconducting
interconnecT& S^or highly efficient conduction and signal
transmission. rr '	 '

Dielectric characteristics of materials used in ICs also
affect the propagation of signals and circuit performance.
Although capacitance is not expected to change significantly,
dielectric losses should decrease at low temperatures.

HEAT REMOVAL

To achieve high speed in digital ICS the circuit elements
must be close together to keep signal propagation times short;
however, an increase in the density of circuit elements is
aczompanied by an Increase in power density, and for room
temperature this has become a limiting factor in circuit
pe r formance because of the difficulty of heat removal.12

Even for room temperature electronics, improvements in heat
removal can be made; 51 additional improvement may be possible at
lcwer temperatures by taking advantage of the fact that many
materials used in electronics exhibit an increase in thermal
conduction. This is the case for fairly pure, ordered materials;
those commonly encountered in electronics include single-crystal
semiconductors--Si, Ge, GaAs; single crystal dielectric
materials--sapphire, quartz, diamond; some polycrystalline
materials--alumina and beryllia;and relatively pure metals--

t copper or aluminum, usually. As shown in Fig. 4, their thermal
conductivity increases as temperature is reduced and peaks at as
high as a^ order of magnitude or more times its room temperature
value.	 How much practical use can be made of this effect in
actual electronic systems remains to be seen.

Unfortunately, the thermal conductivity of many of the other
materials commonly used in electronics, including metal alloys,
glasses, and polymers, decreases monotonically as temperature is
lowered. 5z In any case, careful attention to packaging will be
required for cold electronics as it is for room temperature
systems.

Liquids might also be employed in heat removal either by
direct contact with circuit chips or indirectly. However, the
amount of heat that can be removed by this means is reduced at
low temperatures, q^ing approximately proportional to the
absolute emperature.''++

POWER

Besides improving heat removal, another approach is to
attack the thermal problems of dense circuits at their source and
reduce power dissipation. Hence, reduction of power, besides

11
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being desirable in itself, has also become a central issue in
attaining higher speed.

One means of reducing power is through lowering operating
voltages. Operating temperature becomes a factor because voltages
in logic circu i ts must remain large compared to the thermal
voltage kT/e. 12,27,38 Consequently, if circuit voltages are to
be reduced beyond a certain point, about 1 volt, temperature nust
be reduced also.

Another effect pertinent to power consumption is that
leakage in p-n junctions and insulators is significantly reduced
as temperature is lowered. Thus, for example, memories baseo on
p-n junctions or MOS c aCitors will require less power to
maintain stored data.28,3 ►̂ 5c

NOTSF

Although noise has non-thermal as well as thermal origins,
substantial improvements have been made in some circumstances by
means of cooling. A prime example -s the use of GaAs FET
microwave amplifiers at about 20 K for radio astronomy as
mentioned earlier ?5-2 In some cases such as these the
improvements also result partly from changes in device parameters
such as transconductance which effectively reduce the noise.

Law frequency noise measurements on discrete Si and Ge JFETs
and Si MOSFETs have yielded mixed results, frequently showing an
increase in noise at low temperatures. A 1/f dependence is
commonly observe 0erJFETs appear to exhibit lower noise
than MOSFETs.16,20, 1'W25

i TMTTATTONS

There are bounds to the improvements in performance that can

be derived from the effects described above. Lowering of
operating temperature along with reduction of dimensions,

voltages, and energies can only be carried so.fac
limitations of a non-thermal nature appear. 	 '
Scattering of carriers by impurities or defects has been
mentioned; other examples are (1) statistical variation in device
characteristics which limits the extent to which voltages can be

reduced if noise margins sre to be retained, (2) cross-talk as
spacings of devices and interconnections shrink, and (3) quantum
effects.

RELIABILITY

Since nearly all degradation mechanisms in electronic
devices, such as interdiffusion, corrosion, and electromigration,
have a thermal-activation component and an exponential dependence
on temperature, ordersTQf-magnitude improvement in reliablity is
expected upon cooling. tj

13
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Although the effect of temperature on reliability has been
thoroughly verified empirically for elevated temperatures, it is
difficult to demonstrate that it holds true for reduced
temperatures as well because of the extremely low rates involved.
However, electronic devices now being developed with circuit
patterns smaller than 1 um and layers 10 nm thick may provide the
testing ground. Such devices may exhibit an unacceptably high
failure rate for room temperature operation and storage. 59 Thus,
reduced temperatures may prove essential in maintaining the
structure and characteristics of advanced electronic circuits as
the drive to ever-smaller dimensions continues.

THERMAL CYCLING

In actual practice the predicted improvement in reliability
outlined above is offset by the detrimental effect of mechanical
stresses and strains which result from differences in thermal
expansion of the various materials used in electronic components,
coupled with local and overall temperature differences arising
when the system is taken from room temperature to the lower
operating temperature or vice versa.

Such effects are already well known for the temperature
excursions experienced by conventional electronics, and although
troublesome, means have been developed of effectively dealing
with them. Thus, although the problem is more severe for cold
electronic.; because of the greater temperature differences, it is
reasonahle to believe that it can likewise be dealt with
effectively if appropriate development is undertaken.

Some background is already1 available as a result of
Josephson computer development. 61 well as from work on non-
electronic cryogenic equipment.

A Josephson computer would probably need the ability
survive several hundred cycles for commercial practicality.^^
Systems based on semiconducting devices might not require as many
cycles since, unlike Josephson devices, it is feasible to design
them to function at room temperature as well as at their lower
operating temperature. Thus, many basic tests could be performed
at room temperature both during initial testing and for
maintenance, although testing of ultimate erformance would
require cooling to the operating temperature. 2^

COOLING

Realizing the potential of cold electronics means that a
cold environment must be provided. In some situations this
environment is already available, such as for preamplifiers used
with sensors which must operate at reduced temperatures e3
Possibly for spacecraft where heat can be radiated to space. 	 b64

However, for the remaining systems cooling is a major concern.

14



Heat loads range from a few milliwatts for a single
ele:; ronic device or small component to an estimate of about a
hundred watts for the electronic system of an advanced computer.

For most applications, 'open-cycle" cooling by consumption
of a liquid cryogen is seen as impractical, leaving as the only
alternative at present the mechanical refrigerator. Although
other means of cooling exist, for one reason or another they are
not considered suitable.

A variety of mechanical refrigeration units is available to
cover the range of heat load and temperature requirements for
cold electronics; however, further development is needed,
primarily along the lines of furcher improvement in reliability,
effic^5 n6cy, and low-temperature capability (below about
20 K).	 ti	 Present designs also exhibit some undesirable
characteristics including:	 (1) mechanical vibration, (2)
magnetic interference, and (3) a periodic temperature fluctuation
or "ripple".

A cryogenic refrigeration syste ►.. is not a major obstacle in
the case of an advanced computer since it is a relatively large,
fixed piece of hardware. Besides which, such computers already
incorporate sophisticated cooling systems.

The concept of the hybrid cool'.ng systern has been proposed
for cold electronic systems such as computsrs. 69 In this system
the electronics package is immersed in a liquid cryogen bath
which is maintained by a closed-cycle refrigerator. The
undesirable characteristics of direct mechanical refrigeration
mentioned above can be minimized and it also provides: 	 (1) good	 t
heat transfer since the electronics may be directly immersed in
the cryogen, (2) greater dependability since the cryogen bath 	 z

would remain cold if the refrigerator malfunctioned or the power
failed, and (3) easier maintainability since either the 	 j
refrigerator or the electronics package could be removed for
maintenance without shutting down the remainder of the system.

For smaller-scale s y stems such as instruments, the
widespread use of cold electronics is hindered by a scarcity of
suitable small, self-contained coolers, particularly for the
lower temperatures, and by lack of experience with those that are
available. The Peltier effect, which provides cooling by passing
an electric current through a semiconductor, is an attractive
method since the cooler is small and has no moving parts.
Although it has been established as a practical means or cooling
electronic components, the temperatures possible with present
materials are not low enough for most of the applications
discussed in this overview. Joule-Thomson

67
 coolers are a

possibility if continuous, closed-cycle operation can be
developed.
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Because refrigeration for the temperatures apprpprW e for

cold electronics is characterized by lo",+ efficiency, bb55' it is

important that the heat load be minimized. A significant portion

of the heat load can arise from leakage through electrical and
mechanical interfaces which couple the cold electronics with room
temperature. Electrical connections carrying signals are

particularly troublesome, since they need low electrical
resistance without high thermal conductance. In the case of
high-speed or high-frequency measuring instruments it is also a
major challenge to preserve an input signal to be analyzed while
transferring it from room temperature to the cold electronics.5
A proposed means of signal transfer which could prove
advantageous is the use of optoelectronic techniques.

CONCLUSION

Cold electronic devices and circuits have already provided
substantial benefits in certain applications, and theory and
experiment indicate additional benefits to be derived from wider
use of reduced temperatures, although a great Jeal of research

and revelopment remains in overcoming the technical hurdles to
achieve practicality. Overall, it appears that lower operating
temperatures will go hand-in-hand with other advances in
electronic device and circuit technology for a variety of

applications requiring the highest performance and reliability.

ACKNOWLEDGEMENTS

In addition to the references indicated, many of the ideas

in this overview originated in the discussion sessions, formal
and informal, at the Workshop. The manuscript was reviewed by E.

Tward and V. Hadek, of the Jet Propulsion Laboratory, D. Ferry
and R. Grondin of Arizona State University, S. Weinreb of the
National Radio Astronomy Observatory, F. Gaensslen and P. Solomon
of IBM Corporation, W. Steyert of Air Products and Chemicals, and
M. Nisenoff of the Naval Research Laboratory, who provided
valuable comments. Support for the preparation of this overview
was provided by the Office o f Naval Research (Dr. E. Edelsack).

RFFFRFNrFR

1. J. Lambe, "Novel Low Temperature Devices", this Workshop.

2. Antonio Barone and Gianfranco Paterno, Fhysics and
Applications of the Josephson Effect, Wiley-Interscience,
New York, 1983.

3. T. Van Duzer and C. W. Turner, Principles of Superconductive
Devices and Circuits, Elsevier, New York, 1981.

4. Dorald G. McDonald, "Superconducting Electronics", Physics

Today, Vol. 34, p 2, p 36, February 1981.

16

1



0

i
I

5. Donald B. Sullivan, Clark A. Hamilton, and Richard L.

Kautz, "Recent Progress in Cryoelectronics", IEEE
Transactions on Instrumentation and Measurement, Vol. IM-29,

#4, p 319, December 1980.

6. Theodore Van Duzer, "Josephson Digital Devices and
Circuits", IEEE Transactions on Microwave Theory and

Techniques, Vol. MTT-28, #5, p 490, May 1980.

7. Richard E. Harris, "Space Applications of Superconductivity:

Digital Electronics", Cryogenics, Vol. 20, 114, p 171, April
1980.

8. Tushar Gheewala, "The Josephson Technology", Proceedings of
the IEEE, Vol. 70, 111, p 26, January 1982.

9. Arthur L. Robinson, "New Superconductors for a
Supercomputer", Science, Vol. 215, #4528, p 40, 1 January

1982.

10. W. Anacker, "Computing at 4 Degrees Kelvin", IEEE Spectrum,
Vol. 16, #5, p 26, May 1979.

11. Robert W. Keyes, "Low Temperature High Mobility Transistor

Materials", Comments on Solid State Physics, Vol. 8, #2, p
37, 1977.

12. Paul M. Solomon, "A Comparison of Semiconductor Devices for
High—Speed Logic", Proceedings of the IEEE, Vol. 70, 115,

p 489, May 1982.

13. William P. Dumke, "The Effect of Base Doping on the
Performance of Si Bipolar Transistors at Low
Temperatures", IEEE Transactions on Electron Devices,
Vol. ED-28, #5, p 4 94, May 1981.

14. Fukunobu Oosaka and Tetsuo Nakamura, "Low—Temperature
Operation of Bipolar and MOS Devices", Fujitsu Scientific

and Technical Journal, Vol. 14, #3, P 53, September 1978.

15. B. Lengeler, "Semiconductor Devices Suitable for Use in
Cryogenic Environments", Cryogenics, Vol. 14, #8, p 439,
August 1974.

16. R. F. Arent z, D. W. Strecker, J. H. Goebel, and C. R.
McCreight, "A Brief Characterization of Germanium Junction
FETs at 77, 4, and 1.8K 11 , Proceedings of the SPIE, Vol. 364,
p 141, 1982.

17. G. H. Rieke, E. F. Montgomery, M. J. Lebofsky, and P. R.
Eisenhardt,"High Sensitivity Operation of Discrete Solid
State Detectors at 4 K", Applied Optics, Vol. 20, #5, p

17

..^.:. .

	 iO 
_w



814, 1 March 1981.

18. G. Mossuz and J. J. Gagnepain, "Quartz Crystal Oscillator at

Very Low Temperature", Cryogenics, Vol. 16, 1111, p 652,

November 1976.

19. Hisao Yagi, Masasi Inoue, Takashi Naito, and Toshiaki

Tatsukawa, "NMR Marginal Oscillator with MOS-FET

Operating at Low Temperature", Japanese Journal of
Applied Physics, Vol. 12, 1111, p 1794, November 1973.

20. P. T. Anderson, B. Bertman, and R. R. Wagner, "Low Level
Signal Amplifiers at Cryogenic Temperatures", Cryophysics
and Cryoengineering, Bulletin de l'Institute International
du Froid, Supplement 1970-2, p 211, 1970.

21. M. D. Daybeil, "Field Effect Transistors for Sub-MHz
Applications at Temperatures Below 4.2 Kelvins",

Cryophysics and Cryotechnology, Bulletin de l'Institute
International du Froid, Supplement 1970-2, p 215, 1970.

22. F. 1,ow, "Cryogenic Amplifiers for IR Detection", this

Workshop.

23. F. J. Low, "Application of JFETs to Low Background Focal

Planes in Space", Proceedings of the SPIE, Vol. 280, p

56, 1981.

24 Charles A. Liechti and Roderic B. Larrick, "Performance of
GaAs MESFET's at Low Temperatures", IEEE Transactions on

Microwave Theory and Technique, Vol. MTT-24, 116, p 376,

'1ulm I y I U.

25. S. Weinreb, "Cryogenically-Cooled Low Noise Microwave
Receivers--Present Status and Future Needs", this Workshop.

26. Sander Weinreb, "Low-Noise Cooled GASFET Amplifiers", IEEE

Transactions on Microwave Theory and Techniques, Vol.
MTT-28, 1110, p 1041, October 1980.

27. Richard C. Eden, "Comparison of GaAs Device Approaches for
Ultra-High-Speed VLSI, Proceedings of the IEEE, Vol. 70, 111,
p 5, January 1982.

25. F. H. Gaensslen, "Why Consider MOSFET Operation in Liquid

Nitrogen?", this Workshop.

29. A. Kamgar, "SiMOS Devices at Low Temperatures", this
Workshop.

30. F. H. Gaensslen and R. C. Jaeger, "Temperature Dependent

Threshold Behavior of Depletion Mode MOSFETs--
Characterization and Simulation", Solid-State Electronics,

18

Im

(D



Vol. 22, 114, p 423, April 1979.

31. Richard C. Jaeger and Fritz H. Gaensslen, "Simple Analytical
Models for the Temperature Dependent Threshold Behavior of
Depletion-Mode Devices", IEEE Transactions on Electron
Devices, Vol. ED-26, 114, p 501, April 1979.

32. S. K. Tewksbury, "N-Channel Enhancement-Mode MOSFET
Characteristics from 10 to 300 K", IEEE Transactions on
Electron Devices, Vol. ED-28, #12, p 1519, December 1981.

33. S. Hanamura, M. Aoki, T. Masuhara, 0. Minato, Y. Sakai and
T. Hayashida, "Operation of Bulk CMOS Devices at Very Low
Temperatures", IEEE 1983 Symposium on VLSI Technology,
D_ igest of Papers, p 46, Maui, Hawaii, 13-15 September 1983
(IEEE 83 CH 1873-9).

34. F. H. Gaensslen, "MOS Devices and Integrated Circuits at
Liquid Nitrogen Temperature", IEEE 1980 International
Conference on Circuits and Computers, p 450, 1980.

35. Manabu Itsumi, "Electron Trapping in Thin Films of Thermal
Si0 2 at Temperatures between 30 and 300 K", Journal of
Applied Physics, Vol. 54, #4, p 1930, April 1983.

_ 36. J. R. Davis, "Degradation Behaviour of n-Channel
M OSFETs Operated at 77 K", IEE Proceedings, Vol. 127, Pt.
I, #4, p 183, August 1980.

37. Avid Kamgar and R. L. Johnston, "Delay Times in Si MOSFETs
in the 4.2-- 1:00 K Temperature Range", Solid-State
Electronics, Vol. 26, #4, p 291, April 1983.

38. Ph. Coeure, "Cryogenic Devices", 11th European So'id State
Device Research 1conference/6th Symposium on Solid State
Device Technolo U, p 153, Toulouse, France, 14-17 September
1981.

39. L. F. Eastman, "Physical Electronics of Cooled Operation of
Very Short Compound Semiconductor Transistors", this
Workshop.

40. L. C Witkowski, T. J. Drummond, S. A. Barnett, H. Morkoc,
A. Y. Cho and J. E. Greene, "High Mobility G3As-A1XGa1-XAs
Single Period Modulation-Doped Het:!rojunctions", Electronics

t	 Letters, Vol. 17, #3, p 136, 5 February 1981.

Ì 41. R. Dingle, H. L. Stormer, A. C. Gossard and W. Wiegmann,
"Electron Mobilities in Modulation-Doped Semiconductor
Heterojunction Superlattices", Applied Physics Letters,
Vol. 33, 117, p 665, 1 October 1978.

42. Satoshi Hiyamizu, Takashi Mimura, Toshio Fujii, Kazuo

19



Nanbu and Hisao Hashimoto, "Extremel y High Mobility of Two—

Dimensional Electron Gas in Selectively Doped GaAs/n-

Al x Ga l _x As Heterojunction Structures Grown by MBE", Japanese
Journal of Applied Physics, Vol. 20, A4, p L245, Aprii 1981.

43. Masayuki Abe, Takashi Mimura, Naoki Yo':oyama and Hajime
Ishikawa, "New Technology Towards GaAs I.SI/VLSI for

Computer Applications", IEEE Transactions on Electron

Devices, Vol. ED-29, U7, p 1088, July 1982.

44. "Submicron Circuits Beat Josephson Chips", High Technology,

Vol. 3, lit, p 62, February 1983.

45. Stephen Lewis Teitel an ,.' J. W. W 4-1Kir.s, "Ballistic Transport
and Velocity Overshoot in Semiconductors: Part I--Uniform
Field Effects", IEEE Transactions on Electron Devices, Vol.
ED-30, 112, p 150, February 1983.

46. A. Ghis, E. Constant and B. Boittiau,:, "Ballistic and

Overshoot Electron Transport in Bulk Semiconductors and in

Submicronic Devices", Journal o_ Applied Physics, Vol. 54,
#1, p 214, Janury 1983.

47. R. Grondin, "Effect of Cooling on Delay Time Limits in

Integrated Circuits", this Workshop.

48. Robert W. Keyes, Erik P. Harris and Karl L. Konnerth, "The

Role of low Temperatures in the Operation of Logic
Circuitry", Proceedings of the IEEE, Vol. 58, 1112, p 1514,
December 1970.

49. Fritz H. Gaensslen, V. Leo Rideout, E. J. walker, and John
J. Walker, "Very Small MOSFETs for Low Temperature
Operation.". IEEE Transactions on Electron Devices, Vol.
ED-24, 113, p 218, March 1977.

50. R. L. Kautz, "Picosecond Pulses on Superconducting
Striplines", Journal of Applied Physics, Vol. 49, #1, p
308, January 1978.

51. D. B. Tuckerman and R. F. W. Pease, "High—Performance Heat
Sinking for VLSI", IEEE Electron Device Letters, Vol. EDL-

2, 115, p 126, May 1981.

52. J. G. Hust, "Thermal Conductivity and Thermal Dif,usivity",

Ch. 4 of Materials at Low Temperatures, Ed. by Richard P.
Reed and Alan F. Clark, American Society for Metals, Metals
Park, OH, 1983.

53. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. K'_emens,
"Thermal Conauctivity", Vols. 1 and 2 of Thermophysical
Properties of Matter, Plenum Press, New York, 1970.

20



54. Robert W. Keyes, "Semiconductor Devices at Low

Temperatures", Comments on Solid State Physics, Vol. L,

#3, p 47, 1977.

55. R. F. Arentz, V. Hadek and V. L. Hoxie, "A New Cryogenic P-
Channel MOSFET with Optimized Doping Yielding Performance
Superior to the G-118, W-164, and 3N165 at 77 K, 4 K, and
1.8 K", Proceedings of the SPIE, Vol. 364, p 132, 1982.

56. Steve S. Sesnic and George R. Craig, "Thermal Effects in

JFET and MOSFET Devices at Cryogenic Temperatures", IEEE
Trarsactions on Electron Devices, Vol. ED-19, #8, p 933,

1972,

57. James W. Haslett and E. J. M. Kendall, "Temperature

Dependence of Low-Frequency Excess Noise in Junction-Gate
FET's", IEEE Transactions on Electron Devices, Vol. ED-19,

#8, p 9 4 3, August 1972.

58. Francois M. Klaassen and J& n R. Robinson, "Anomalous Noise

Behavior of the Junction-Gate Field-Effect Transistor at

Low Temperatures", IEEE Transactions on Electron Devices,
Vol. ED-17, F10, p 852, October 1970.

59. M. Yoder, "Recent Developments in Semiconductor Research",

this Workshop.

60. :>yamai K, Lahiri, H. Randall Bickford, Pieter Geldermans, K.

R. Grebe, Paul A. Moskowitz, Menachem Natan, M. J.
P<<lmer, Sampat', ' urushothaman, John Sokolowski, Bernard

J. C. van der Hoeven, David F. Waldman, R ,an-Han Wang, C.

T. Wu, and Tadashi Yogi, "Packaging Technology for
Josephson Integrated Circuits", IEEE Transactions on
Components, Hybrids, and Manufacturing Technology, Vol.
CHMT-5, #2, 'p 271, June 1982.

61. Alan V. Brown, "An Overview of Josephson Packaging", IBM

Journal of Research and Development, Vol. 24, #2, p 167,
March 1980.

62. H-C. Ward Huang, Suryadevar Basavaiah, Charles J. Kircher,
Erik P. Harris, Masanori Murakami, Stephen P. Klepner,
and James H. Greiner, "High-Reliability Pb-Alloy

Josephson Junctions for Integrated Circuits", IEEE
Transactions on Electron Devices, Vol. ED-27, #10, p

1979, October 1980.

63. Allan Sherman, "History, Status, and Future Applications of
Spaceborne Cryogenic Systems", Advances in Cryogenic

Engineering, Vol. 27, p 1007, 1981.

64. M. J. Donohoe, A. Sherman, and D. E. Hickman, "Radiant

Coolers---Theory, Flight Histories, Design Comparisons

21

O



and Future Applications", AIAA 13th Aerospace Sciences
Meeting, Pasadena, CA, 20-22 January 1975 (AIAA paper 75-
184).

65. R. Radebaugh, "Refrigeration", this Workshop.

66. Ray Radebaugh, "Refrigeration Fundamentals: A View Toward
Nea Refrigeration Systems" in Applications of Closed-Cycle
Cryocoolers to Small Superconducting Devices, NBS Special
Publication 508, p 7, 1978.

67. M. Nisenoff and E. A. Edelsack, "U.S. Navy Programme in
Small Cryocoolers", Cryogenics, Vol. 23, 117, p 353, July
1983.

68. A. L. Johnson, "Spacecraft Borne Long Life Cryogenic
Refrigeration Status and Trends", Cryogenics, Vol. 23,
117, p 339, July 1983.

69. R. C. Longsworth, "Interfacing Small Closed-Cycle

Refrigerators to Liquid Helium Cryostats", Small Cryogenic
Refrigerator Symposium, Oxford, England, 23 March 1983.

70. Robert M. Duboc, Jr., "Low Cost Microminiature Refrigerators
for Large Unit Volume Applications", Refrigeration for

Cryogenic Sensors, NASA Conference Publication 2287, p 431,

1983.

71. Robert H. Dennard, Fritz H. Gaensslen, Edward J. 'Talker and
Peter W. Cook, "1 µ m MOSFET VLSI Technology: Part II--
Device Designs and Characteristics for High-Performance
Logic Applications", IEEE Journal of Solid-State Circuits,
Vol. SC-14, 112, p 247, April 1979.

72. T. Mizutani, N. Kato, M. Ida and M. Ohmori, "High-Speed
Enhancement-Mode GaAs MOSFET Logic", IEEE Transactions on
Microwave Theory and Techniques, Vol. MTT-28, 115, pp 479,
May 1980.

73. Takashi Mimura, Kazukio Joshin, Satoshi Hiyamizu, Kohki
Hikosaka and Masayuki Abe, "High Electron Mobility
Transistor Logic", Japanese Journal of Applied Physics, Vol.
20, 08, p L598, August 1981.

22

.s s• .^ , ,0



^ yJ

III. SUMMARY OF PRESENTATIONS

The first session of presentations included three on

advanced semiconductor materials and devices and one on

refrigeration.

M. YODER--Recent Developments in Semiconductor Research

M. Yoder from the Office of Naval Research presented some

advanced topics in semiconductor materials and devices. A new
technique called "atomic layer epitaxy" is claimed to produce
crystalline films of certain semiconductor or other materials
with e;c eptional purity, uniformity, and control of structure. A
reliability problem is emerging for advanced electronic devices
incorporating extremely small geometries and thin crystal layers.
since diffusion, even at room temperatures, is sufficient to
alter their structure and properties. Possible solutions are
reduced temperatures or impeding the motion of impurities by
complexing them. Recent advances in growing single—crystal J3-

SiC would make possible its wider use in electronic devices to
take advantage of its excellent stability under adverse
environments and high temperatures.

J. LAMBS--Novel Low Temperature Devices

J. Lambe of the Jet Propulsion Laboratory discussed the
conditions under which quantum size effects would play a dominant

role in electronic structures and 'how these might be employed in
novel devices. An example is a "Stark—effect" transistor, a
quan t um—well structure in which the transfer characteristics
arise from a shifting of the energy levels by an electric 	 field

from a control electrode.	 It is conceivable that devices could
employ quantum effects even at liquid nitrogen temperatures.

R. RADEBAUGH--Refrigeration

R. Radebaugh of the National Bureau of Standards gave an

overview of refrigeration principles and technology. There are a

variety of refrigeration cycles and designs applicable to
electronics, of which the most popular are variations of the
Stirling and Gifford—McMahon. Effort is being devoted to
improving reliability. Refrigeration becomes less efficient the
lower the temperature and the smaller the capacity of a
refrigerator; also, heat transfer in materials and to liquids is
difficult at low temperatures. Proposed systems for cooling

electronics include not only existing commercial refrigerators,
but also a hybrid of mechanical refrigerator and liquid cryogen
bath and novel methods such as closed cycle Joule Thomson
refrigerators.
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L. EASTMAN--Physical Electronics of Cooled Operation of Very
Short Compound Semiconductor Transistors

L. Eastman of Cornell University described the dynamics of

electron motion in short compound-semiconductor FET devices, and
its bearing on their performance. Advanced fabrication
techniques and low-temperature operation are expected to increase

the already excellent high-frequency, low-noise capabilities of
FETs.	 Of particular interest is the modulation-doped
heterojunetion (HEMT) device, in which extremely high electron
velocities and mobilities have been obtained. Noise figures at
liquid nitrogen temperatures of a fraction of a db at 12 GHz are
predicted.

Session 2 contained three presentations on topics related to

large-scale digital integrated circuits.

F. GAENSSLEN--Why Consider MOSFET Operation in Liquid
Nitrogen?

F. Gaensslen of IBM described some of the reasons for

cooling MOSFET devices to liquid nitrogen temperatures. When MOS

devices are scaled down in size, some characteristics, such as
subthreshold current, do not scale. These effects become a

problem at about 1 pm gate length, but can be counteracted by a
reduction in temperature. Reduced temperatures can also help to
suppress latch-up as CMOS circuits are scaled down and to reduce

leakage in p-n junctions which allows higher efficiency in
semiconductor memory circuits. Advantage can also be taken of
increased el--ctrical and thermal conductivity at low
temperatures.

R. GRONDIN—Effect of Cooling on Delay Time Limits in

Integrated Circuits

R. Grondin of Arizona State University examined various
factors which limit the highest speed attainable in integrated
circuits. Speed is not only determined by the device technology
and material, but also depends on heat removal and
characteristics of the on-chip interconnections, particularly so
as devices become smaller ano IC chips become larger as the level
of integration increases. In such situations speed may be
increased )y reducing the voltage, which in turn requires that
the temperature be reduced also. In principle, this would allow
a sut33 ar.tial increase by cooling to liquid nitrogen temperatures
ant another order of magnitude for liquid helium temperatures.

A. KAMGAR--SiMOS Devices at Low Temperatures

A. Kamgar of A T & T Bell Laboratories described
improvements in the characteristics of silicon MO O) devices which

occur as temperature is reduced. Subthreshold slope increases so
that less gate voltage swing is needed, especially for short-
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channel devices. Punchthrough current in short-channel MOSFETs
is also reduced. Measurements at liquid nitrogen temperatures of

switching speed show about a factor 2 increase with a

corresponding increase in power dissipation when compared to room

temperature.

Session 3, the final two presentations, described the
applications of cold devices and circuits to astronomy.

S.WEINREB--Cryogenically Cooled Low Noise Microwave Receivers--
Present Status and Future Needs

S. Weinreb of the National Radio Astronomy Observatory
reviewed the current status of low-noise electronics used in

adio astronomy. Above about 100 GHz the SIS (superconductor-

insulator-superconductor) device is being used as a mixer. For
lower frequencies GaAs FETs are providing excellent results in
receivers, when cooled to approximately 20 K to achieve ultra-low
noise amplification. To make the actual receivers a number of
technical problems with materials and electronic components had

to be solved: for example, achieving minimum microwave signal
loss w'.iile interfacing betweer. 300 K and 20 K. The newly

develc-ped HEMT (nigh electron-mobility transistor, promises to
provice outstanding low-noise performance and plans are under way
to eval , iate it for microwave applications.

F. LOW--Cryogenic Amplifiers for IR Detection

F. Low of the University of Arizona described the
preamplifiers used with infrared detectors in the Infrared
Astronomical Satellite (IRAS). The preamplifiers are based on
sil:.con JFETs operating at approximately 60 K and are mounted

adjacent to the IR detectors which are cooled to 2 K. Work is

under way on a device with improved characteristics.

s
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IV. SUMMARY OF THE DISCUSSION SESSIONS

A. Silver

Specialized technical presentations occupied the first part

of the workshop. Three topical discussion sessions were

organized on the second day:

1. Silicon and VLSI,
2. Non-silicon materials (principally GaAs),
3. Refrigeration.

The topical sessions discussed the material which was

presented in the plenary sessions and developed a consensus. The
conclusions were reported back to the workshop as a whole. The
context in which the conclusions were discussed was:

a) advantages and disadvantages of cooling semiconductor
electronics,

b) other technology which will be required to implement
cold semiconductor electronics, and

c) recommendations for em .ohasis in R & D support.

The workshop covered widely diverse topics ranging from

cooling production CMOS near 77 K for computing machines, to
cooling commercial Si JFET's to 60 K for IR detectors,
quasiparticle tunnel junctions to 4 K for millimeter and
submillimeter wave detectors, and cooling GaAs HEMTs to 20 K.

The separate discussion sessions extrapolated from the technical
presentations to discuss other materials, processes, and

applications.

Josephson technology was not a topic of this workshop,
although passive superconductivity was discussed in the context

of lower temperature semiconductors. The anomalous absence of

this subject (Josephson technology) at a workshop on cold

electronics was noted in the discussion session. Superconductive
electronics was interpreted as a dis,inct technical area already

receiving considerable interest and attention. The recent IBM
project achieved notable successes in developing high performance
logic at the 10 3 gates per chip level and a 1 K RAM using 2.5
micron lithography. The development of the technology at this
point, particularly at IBM, points to near-term development of
Josephson technology for small system applications rather than
large general-purpose computing machines.

SILICON AND VLSI

Silicon CMOS can yield improved pe r formance with existing

:manufacturing facilities if the devices and circuits are cooled
to approximately 77 K (this temperature is chosen because it is



the boiling temperature of liquid nitrogen, commonly available in
research and development laboratories and is above the carrier
freezeout temperature of Si devices). The improvement is an
increase of 2 to 3 in speed, with a corresponding increase in

power dissipation. The use of cryogenic cooling to attain this

improvement would be most likely to occur at the point of

redesigning the circuitry for submicron lit:,ography in order to
achieve the next level of improvement in LSI, i.e., it may prove
to be more desirable to redesign the 1.5 micron chip for
cryogenic operation as compared to producing a submicron
technology given the investment requ4red in both chip design and

production facilities. In addition, latching in CMOS will be
greatly alleviated by cooling. Refrigeration for operation at

liquid nitrogen temperatures (LN G ) for a mainframe digital
computer may not present a significant penalty in total cost,

size, and reliability when compared to the contemporary use of
air conditioning equipment. One can expect to be able to test at
room temperature in production, and reliability should be
enhanced with respect to thermally activated failure mechanisms.

In addition to LN 2 operation of CMOS to achieve the increase
in speed which would also be provided by submicron technology,

there may be unknown advantages in operation of silicon devices
at much lower temperatures below carrier freezeout. This will

_ require new research and possibly novel devices in silicon. One
motivation for this endeavor is the need for integration of low
temperature sensors, both Si and other materials, with the
associated signal processing circuitry. Variations in dopant can
alter the carrier freezeout temperature. One may find new
dependencies on such effects as fluctuation in doping

concentration, radiation hardness dependence on lower
temperatures, and possibly replacement of oxide insulators with

(	 nitrides.

Disadvantages in low temperature operation revolve about the

refrigerator, access to the .e lectronic system, reduced heat
removal ability in LN 2 compared to fluorocarbons coupled with
increased heat dissipation for faster logic, and the added

problem of cryocooling for small digital systems.

Topics recommended for R & D reflected the areas of interest

and possible improvement in silicon devices, low temperature
CMOS, "carrier freezeout" devices, low temperature effects on
radiation hardness, possible process technology changes for low
temperature devices, and the design and process changes which

might further enhance reliability through reduction in thermally
activated degradation mechanisms.

NON-SILICON MATERIALS, PRINCIPALLY GaAs

This discussion session covered a wide range of materials
and structures including III-V and II-VI compound semiconductors,
epi-technologies and hetercjunction devices, and both analog and
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digital electronics. Since silicon is the established electronic
technology, suggestions were tested by comparison to silicon, and
to cooled silicon as presented at this workshop.

GaAs is presently finding a niche in analog microwave
circuitry. Cooling to low temperatures lowers the device noise,
except for 1/f noise, which will permit either deployment of
smaller antennas or greater probability of intercept for weak
signal transmissions. One may be able to develop a viable
insulated gate technology at low temperatures in non-silicon
because the surface state problems may be alleviated by extremely
long lifetimes. Better noise margins in low noise devices may
permit reduction of the digital voltage swings and hence lower
power dissipation in digital circuitry. Coupled with the much
greater mobilities of these materials, this could lead to faster
real-time digital signal processors. This large mobility
increase will also lead to higher frequency operation of
microwave devices. As with silicon, reliability is expected to
improve by reduction of thermal degradation mechanisms. Since
many of these materials continue to improve in a significant
manner well below 77 K, the reliability improvement should be
substantially better than in Si. Compared with Si, carrier
freezeout is much less of a problem, leading to the possibility
of both FET and bipolar devices.

As with silicon, the disadvantages of cooling are the
inconvenience of the refrigerator, the reduced heat removal rate,
the difficulty of optimizing designs and testing at the low
temperature, and the thermal cycling of the associated
structures. In addition, the problems of optimizing thermal
transition designs are more severe in analog applications where
one is required to minimize both thermal conductance and
microwave signal attenuation. Compared with silicon, where the
application of cooling appears to be large main frame computers,
the application of other cold semiconductors is projected in
smaller analog and digital systems. Thus, the refrigerator is
not merely a replacement for a conventional cooling system, but
an added burden on system integration. Nevertheless, in areas of
significant improvement this burden can be accommodated. An
example of this is the present trend in high performance radio
astronomy receivers which use both superconducting quasiparticle
mixers and cooled GaAs low noise amplifiers.

Recommendations for R & D in the area of non-silicon
materials relate to materials, processes, and system problems.
Specifically included were heterojunction structures such as
modulation doped and high -0 bipolar devices. Of particular
interest here were processing technology, noise performance, and
bandwidth. In the area of materials technology, epi-techniques
are used to significantly improve material purity, uniformity,
and stoichiometry, and to eliminate alloy scattering. Ternary
materials with improved transport properties, traveling wave
devices, and semiconductor insulators were suggested as
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potentially productive areas. Other materials which should be

I considered are small bandgap semiconductors because of their high
mobility and low voltage operation. This could include InAs,
InSb, and Ge, and also IGFET structures. The problem of both
intra-chip and inter-chip signal propagation was recognized as
one pushes to higher frequency or greater speed with high density
lithography. Both optical and superconducting interconnects were

a	
suggested as possible solutions, particularly if monolithic
structures could be developed.

REFRIGERATION

The introduction of cryogenic refrigeration will be a major
step required for cold semiconductor electronics. The
availability of closed-cycle cryocoolers will extend the
operating temperature to 77 K, 20 K, and even below 4 K,
depending on the semiconductor technology and application.
Generally speaking, at least in the near-term, silicon computers
would expect to operate near 77 K, with GaAs amplifiers and
signal processors near 20 K, and detectors and sensors at the
lowest temperatures. The nature of the refrigerator will depend
strongly on the application and the operating environment--
commercial, military, or space.

Refrigeration design choices will depend on the required
reliability, allowable service interval, and acceptable cost,
size, weight, and efficiency. Cryocoolers for large main frame
computers at 77 K fall into the Gifford-McMahon (G-M) type and
are available based on existing technology. This technology can
also provide cooling down to 10 K at the 1 W refrigeration level;
a combination of Joule-Thomson (J-T) and G-M cycles can provide
cooling below 10 K and down to the 1 W power level in an office
or laboratory environment with existing technology. Below 1 W,
the split Stirling provides cooling to 15 K and 100 mW capacity.
The region bounded by 1 W capacity and 15 K temperature is
presently unsupported by existing technology and requires
development for small system application. The very low power
region may be satisfied by "plastic split Stirling" and small J-T
machines.

A major problem with long continuous operation of a
cryocooler is contamination of the working gas, commonly from
seals or the compressor. Characteristically, regenerative
systems are less sensitive to contaminants than J-T. It is
desirable to keep the operating cryostat gas separate from the
refrigerator gas, and to avoid a common vacuum. For operational
purposes, it is desirable to have a liquid cryogen reservoir.
The entire refrigerator should be designed and constructed as a
self-contained unit.

Recommendations include a continuation of R & D on
regenerative cycles to achieve 4 K operation at the 10 mW to 1 W
power level, on closed cycle J-T systems, and on compressor
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development for low power, continuous operating systems. LaNi,
hydride H 2 solid state compressors, magnetic cold stages, and

pulse cubes were cited as examples of alternative approaches to

new refrigerator components.

r 
I
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V.	 NEEDED RESEARCH AND DEVELOPMENT

A primary goal of the Cold Electronics Workshop was to serve
as a forum for recommendations of needed research and
development. As a result of the Workshop, the following areas
for future work were identified:

1. Basic investigations should be carried out on low-
temperature properties of conductive and insulating materials
used in integrated circuits to complement the work done on device
characteristics. Systematic studies of resistivity and
electrciiiigration are needed for conductors, particularly for the
newer metallizati^^ zchemes being adopted in advanced-design ICs,
and of dielectric properties and charge trapping for insulators.

2. Experimental confirmation of predicted improvements in
reliability of electronic devices and circuits at low
temperatures should be undertaken.

3.. The tolerance at low temperature.; of semiconductor
devices and circuits to ionizing radiation should be investigated
since it is suspected that reducing the temperature will have a
detrimental effect.

4. Development should be continued and expanded on
applications of cold electronics for use in conjunction with low-
temperature sensors. Small-to-medium scale electronic systems
for processing of signals from IR detectors, superconducting
magnetometers, and similar scientific instruments would be
valuable for both earth-based and spacecraft-borne applications.

5. Research and development on devices and circuits should
be pursued vigorously, since they constitute the heart of any

electronic system. Evaluation of their low-temperature
applicability and performance should be continued as
technological advances are made for room-temperature electronics,
such as those arising from improved capabilities related to
device dimensions coupled with control of crystal growth on an
atomic scale. Equally important, additional research should be
undertaken on materials, devices, and fabrication methods more
suitable or optimized for low temperatures, many of which might
not be useful for room temperature electronics. Quantum effects
which could be troublesome in conventional devices might be taken
advantage of in novel device designs.

6. Development of assembly and packaging materials and
techniques is necessary to realize satisfactory performance in
practical electronic systems at low temperatures. The
electrical, thermal, and mechanical properties of materials at
low temperatures need to be considered to take full advantage of
the potential for improved performance of cold electronics.
Techniques for effective electrical and mechanical interfaces
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between cold electronics and room temperature electronics are
need. L

7. Refrigeration must continue to be developed concurrently
in order to make practical use of developments in cold
electronics. New techniques are needed to provide cooling for
measuring instruments for use outside the cryogenics laboratory
and by persons who do not have a background in cryogenic
techniques. For su--h applications, a need exists for the
development of coolers that are compact, convenient, and
reliable. In addition, many applications cannot tolerate the
vibration, and temperature and magnetic fluctuations common in
available designs. Cooling methods other than those based on
mechanical systems and gas-liquid phases should be investigated.

Finally, the many interesting opportunities for fundamental
research provided by electronic structures and devices at low
temperatures should not be overlooked. For example, there are
effects related to quantum behavior, "collisionless" carrier
dynamics, superlattices, and confined particles.
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APPENDIX A

COLD ELECTRONICS WORKSHOP

PROGRAM

Tuesday, October 4, 1983

9:00	 a.m. Welcome to JPL T.	 Cole
JPL

9:10 A Word From Our Sponsor E.	 Edelsack
ONR

9:15 Recent Developments in Semi— M.	 Yoder

conductor Research ONR

9:55 Novel Low Tem perature Devices J.	 Lambe
JPL

10:35 coffee break

10:55 Refrigeration R.	 Radebaugh
NBS

11:35 Physical Electronics of Cooled L.	 F.	 Eastman

Operation of Very Short Compound Cornell University

Semiconductor Transistors

12:15 lunch

1:30 Why Consider MOSFET Operation in F.	 H.	 Gaensslen

Liquid Nitrogen? IBM

2:10 Effect of Cooling on Delay Time R.	 Grondin

Limits in	 Integrated Circuits Arizona State Univ.

2:50 coffee break

3:10 SiMOS Devices at Low Temperatures A.	 Kamgar
A T & T

Bell Laboratories

4:15 Tour of JPL

7:00 Reception and Dinner Holiday Inn

11
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Wednesday, October 5, 1983

9:00 a.m. Cryogenically Cooled Low Noise

Microwave Receivers - Present
Status and Future Needs

9:40 Cryogenic Amplifiers for IR

Detection

10:15 coffee break

10:35 Individual Discu ssion Sessions

Si and VLSI	 Refrigeration
locations:180-10;	 230-115

12:15 lunch

1:3D Main Discussion Session

180-101

S. Weinreb

NRAO

F. Low

Univ. o p Arizona

Other Materials
264-739

Chairman:
A. Silver, TRW

r

Workshop Organizer:	 E. Tward (818') 354-6581
Secretary:	 Genevieve McKay (818) 354-2301
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1185-24222

Recent Developments
in

Semiconductor Research

by

M. N. YODER

Office of Naval Research

t
Abstract

Recent findings drawn from various laboratories around the world can be
focused toward a new understanding of the nature of crystal growth and how

impurities are incorporated or excluded from the lattice. From these
findings a heuristic approach is given for improving the uniformity and
charge carrier concentration of thin semiconductor films. Such improvement
is considered essential to achieve respectable yield on large scale integrated

circuits. A tentative conclusion is drawn which indicates that if the host
compound crystal reactants are provided to the growing crystal surface in a
reasonably stoichiometric manner, it is virtually impossible to include

impurities into a growing crystal surface held at a sufficiently low
temperature; impurities are incorporated into the cr ystal by "gettering"
action of crystal defects located one and two monolayers beneath the growing

surface. Devices in III-V semiconductors based on heterojunctions and two-
dimensional electron gases are noted and reliability concerns are voiced.
Alternatives and novel device structures such as truly single crystal high
quality silicon on insulator and beta silicon carbide devices are presented.
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ATOMIC LAYER EPITAXY
IA L E)

I. CLAIMS:

A. PURITY

B. PHENOMENAL CONTROL OF ABSOLUTE

THICKNESS

C. EXTREME UNIFORMITY OVER LARGE AREA

D. INEXPENSIVE PROFESS

ALE GROWTH PRINCIPLE

s A SUBSTRATE GROWTH TEMPERATURE

CAN BE FOUND WHEREIN THE CATION -

CATION BONDS AND THE ANION - ANION

BONDS WILL BREAK DURING THE

SUBLIMATION PORTION OF THE CYCLE.

• AT THE SAME SUBSTRATE TEMPERATURE,

CATION -ANION BONDS ARE T00

STRONG TO BREAK; THUS THE DESIRED

CRYSTAL GROWS.

{A
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EVAPORATED

ZINC
FILM

SUBSTRATE

42
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ALE GROWTH PRINCIPLE (con't)

• GROWTH RATE AND STOICHIOMETRY

ARE INDEPENDENT OF REACTANT FLOW

RATES o THE ONLY KNOWN CRYSTAL

GROWTH TECHNIQUE KNOWN TO BE

INDEPENDENT OF FLOW RATE AND

REACTANT UNIFORMITY.

ALE PROCESS

(Zli:v GULNHIGE ILLUSTRATION)

1. THOROUGHLY COVER SUBSTRATE WITH SEVERAL MONOMERS OF ZINC



PREVIOUS
ZINC

MONOIJIYFR

ALE PROCESS ICON'n

2. STOP ZINC EVAPORATION
3. ALLOW ALL EXCEPT ONE MONOLAYER OF ZINC TO SUBLIME

ONE MONOMER

OF ZINC

580°C SUBSTRATE

ALE PROCESS ICON'T)

4. EVAPORATE SUFFICIENT SULFUR TO COVER THE SUBSTRATE
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GROWN
EPITAXIAL

LAYER

ALE PROCESS ICON'TI

5. ALLOW ALL EXCEPT ONE MONOLAYER OF SULFUR TO SUBLIME

ALE PROCESS ICON'TI

6. REPEAT ABOVE SEQUENCE AT 4 CYCLESISECOND
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REFINED ALE

• ZINC INTRODUCED AS ZnCI

• SULFUR INTRODUCED AS H2S

• 11CI FORMED IN SUBLIMATION
PERIODS AND PUMPED OUT

III-V DEFECT MODEL

. • IMPURITY ATOM INCORPORATES INTO GROWING
SURFACE ONLY WHEN STOICHIOMETRIC CONTROL IS
POOR AND HOST CRYSTAL REACTANT ION SURFACE
MOBILITY IS LOW RELATIVE TO GROWTH RATE.

• DIFFUSIVITY OF IMPURITIES IN CRYSTAL IS FREQUENTLY
LARGER THAN THAT OF HOST CRYSTAL IONS.

COROLLARY:

IMPURITIES CAN BE RAPIDLY "GETTERE n" TO
UNDERLYING VACANCIES AND ANTISITE LOCATIONS;
THEIR SUBSTITUTION THERE REPRESENTS A LOWER
LOCAL ENERGY STATE.
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COMPOUND SEMICONDUCTOR DEFECTS

SRI \4e4pve4?ve

Sn INCORPORATION IN MBE — GROWN Ga As

COMPOUND SEMICONDUCTOR DEFECTS

VACANCIES LEADING TO IMPURITY GETTERING CENTERS
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COMPOUND SEMICONDUCTOR DEFECTS

UNBROKEN DIMER BONDS LEADING TO
(1) ANTISITE DEFECTS
(2) IMPURIrf IGETTERING CEWTERS

RELIABILITY SOLUTION?
IMPURITY COMPLEXES TOG LARGE TO DI,:FUSE

siioie 0000•••0 
0 

0 
00 

0 
0 

a
0 0 0 0 0 0

DOUBLE-WHAMMY; 111-V ADVANTAGE?
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SUPER LATTICE
PHOTO MULTIPLIER

hv\

v
RSUS
too v
ABED

• HOLE

o ELECTRONS

LESS NOISE SINCE ONLY ELECTRONS IONIZE

NOISE ACCRUES FROM THOSE ELECTRONS IN EACH STAGE
THAT DO NOT IONIZE

hv^	
GRADED INTERFACE
NEARLY NOISE-FREE MULTIPLICATION
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I Ga AI As Epi

I

Ga As Epi

Ga As SUBSTRATE

Y
1
	 RELIABILITY

• HEMT, 2DEG, QUANTUM WELL, SUPERLATTICES, AND RELATED
STRUCTURES HAVE LAYERS 'ti 200 A THICK.

• AT T < 100 C°, IMPURITIES CAN DIFFUSE < 10,000 HOURS!

• 1 µm HIGH SPEED Si AID CONVERTERS EXPERIENCING < 4000 HRS LIFE
IN FIELD

HEMT 2DEGT SDHT

PROBLEMS: RS.G, 77°K, RELIABILITY
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X85-24223

PHYSICAL ELECTRONICS OF COOLED OPERATION OF

VERY SHORT C(,' kWOUND SEMICONDUCTOR TRANSISTORS

Lester F. Eastman

School of Electrical Engineering and National

Research and Resource Facility for Submicron Structures

Cornell University, Ithaca, NY 14853

a
Very high performance is being developed in compound

semiconductor transistors. High frequency and low noise

figure operation in the GaAs FET have already been

established. Substantially more performance increases are

expected. This presentation covers a comparison of compound

semiconductor materials, and their alloys, the physical

fconcepts of high average electron velocity, and the special

benefits of modulation doped heterojunction FET devices.

Table 1 shows the properties of key compound

semiconductors. Not shown are the highest reproducible 770K

mobility values for pure epitaxial material. These are

about 150,000 cm 2/V-s, 70,000 cm `/V-s, and 90,000 cm2/V-s
	 1m

respectively for GaAs, In 
0.53Ga0.47As, 

and InP. The lower

value for the 
In0.53Ga0.47As 

is due to alloy scatterinc, in

this material, made more severe by lowering the temperature.

In order to make abrupt heterojunctions with precise

doping profiles, molecular beam epitaxy (MBE) is used.

Figure 1 shows a cross sectional drawing of such a machine.

It has a large vacuum chamber, with various attachments for

analysis of the semiconductor surface and the residual
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gases. It has several sources for thermally evaporated

chemicals to make up the semiconductor and dope it. Growth

rates are near one atomic layer per second. Mechanical

shutters allow interruption of growth in less than one

r i	 second, allowing atomic abruptness in composition.

Table 2 is a list of properties obtainable in MBE

research efforts to date, including the selectively doped

(or modulation doped) heterojunctions. Organometallic vapor 	
1

phase epitaxy (OMVPE) is also being developed for ultimate 	 j

use in production of compound semiconductors, their alloys

and heterojunctions. Results to date with OMVPE are given

in Table 3.

I-';

	

	 In order to get higher frequency response in FET

devices the gm/C ratio must be improved. This ratio is

proportional to the average electron transit velocity

through the drift region that has an elevated electric

field. Table 4 gives a moist of electron velocity values,

for several conditions in GaAs.

When pure GaAs is cooled to 77 0K, even long devices

have high velocity, as shown in Figure 2. An average

electron velocity of 2.4 x 10 7 cm/s or more is possible in

GaAs FET's, at 770K, with pure material. This compares with

the 1.2 x 10 7 cm/s at 300 0K with a GaAs channel doped at 1 x

10 17/cm 3 , common in FET's.

Modulation doped structures are shown schematically in

Figure 3 with their potential profiles with +.BV gate bias

(top) and +.3V gate bias (bottom). The electrons are in
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pure GaAs, thus they have higher velocity as shown in Figure

2. The electrons are separated from the donor ions by the

i
potential barrier at the heterojunction. The 100 2 spacer
layer keeps the electrons beyond the coulomb scattering

sphere of these ions.

Figure 4 shows the current in a modulation doped

channel as a function of electric field. The temperature is

a parameter. These data were taken at U. of Illinois by

Prof. H. Morkoc. Most of the electron velocity increase with

temperature has been accomplished by cooling to 77 0K. "he

dashed line represents the current expected in GaAs doped at

1 x 10 17/cm3 , for the same electron sheet density.

Figure 5 shows the collision-less group velocity vs

electron energy in the (100] crystal direction in GaAs. A

value near 10 8 cm/s is the upper limit. Electrons at

0.34 eV can scatter into the upper valleys in the (1111

direction.

Experiments were done at Cornell on N +N -N+ structures

t	 that were progressively made shorter. Figure 6 shows the

case for 1 x 10 16/cm 3 doping and 1.1 11 m N- layer thickness,

while Figures 7 and 8 are for 2 x 10 15/cn1 3 doping and 0.40

and 0.24 pm N - layer thicknesses, respectively. The longer

device reflects collision domination and the expected change

caused by mobility change. The shorter devices show near

ballistic conditions, with very little effect from cooling

the sample. Monte Carlo calculations made by Awano et al.

at the Japanese N.T.T. laboratory are shown for the case of
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the 0.24 Um sample. Their detailed calculations agree with

our analysis that yields an average electron velocity value

of just over 4 x 10 7 cm/s. The ballistic limit with no

collisions would be (9.5 x 10 7 cm/s)/2 or 4.75 x 3.0 7 cm/s.

Figure 9 shows the approximate velocity values oi7tainable as

a function of the high field drift length in GaAs. The high

velocity portion applies to lightly doped or pure GaAs. For

1 x 10 17/cm 3 , the size scale necessary to change to high

velocity is 0.5 or 0.6 times that shown.

Figure 10 shows a very short quantum well version of a

modulation doped PET. It will use self-aligi.ed ion

implanted ohmic contacts as shown. Since the undoped well,

housing the electrons, is pure GaAs, very fast, near-

ballistic electron transport will be possible for this

device, even at room temperature.

As long as parasitic resistance values are

substantially lowered, performance to be expected from low

temperature operation of GaAs modulation doped PET's will be

excellent, and are presented in Table 5. The gate matal

could have a skin depth of less than .1 Um at 15 0K and at 25

GHz, so this should be taken into account in the design.

Transfer resistance at contacts should be made to be less

than 0.1 Q-mm for this best performance. Thus the most

optimistic prediction is that 0.15 db NF at 77 0K could he

obtained at 12 GHz with short, near ballistic modulation

doped FET's.
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Table

COMPOUND SEMICONDUCTOR ELECTRONIC PROPERTIES

GAAs IN.53GA,b -AS INP

BAND GAP (EV) 1.43 .75 1.33

MOBILITY (300°K,
PURE)(cM 2 /V-s) 10,000 15,000 6,000

MOBILITY (3000K,

1017 /cm3 )(cm2 /V-s) 5,000 7,500 3,000

DIELECTRIC CONSTANT 13 13.5 12.4

EFFECTIVE MASS .07 .045 .08

GUNN THRESHOLD

(V/cM) 3,500 2,800 10,500

(E L-Er)(EV) .31 .55 .60

MEAN FREE PATH

(I M) .10 .125 .040

ELECTRON CONFINEMENT

MATERIAL ALXGA1_XAs IN ,52AL .48
As IN,52AL.48As

OR	 INP

IN
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Table 2

MOLECULAR BEAM EPITAXY RESEARCH

• SINGLE WAFER GROWN IN 2-4 HRS 2 " DIAMETER

• UNDOPED GAAS 77 0K ELECTRON MOBILITY 75-125.000 cm .2

• N TYPE DOPING TO 2-3X1018 /Cm 3 (SI IN GAAS)

• P TYPE DOPING TO 3X1021 /Cm 3 (BE IN GAAS)

• HETEROJUNCTIONS ABRUPT TO 3-6 A

• COMPUTER CONTROL FOR ELABORATE COMPOSITION

STRUCTURES - QUANTUM WELLS, SUPERLATTICES

• DOPING PROFILES FOR PLANAR DOPED BARRIERS

• EPITAXIAL METAL CRYSTALS ON SEMICONDUCTOR

• NON-ALLOYED OHMIC CONTACTS

• SELECTIVELY DOPED HETEROJUNCTIONS
AL,GAAS/GAAS - ELECTRON MOBILITY 8000 (cm 2/V-S) AT 3000K,

200,000 Al 770K, AND 2,000,000 AT 40K.

VELOCITY 1,6-1,8X10 7CM/S AT 3000K,

AND 2,4-3,OX10^CM/S AT 770K,

IN,ALAs/IN,GAAs - ELECTRON MOBILITY

11,000 CM2 /V-S AT 3000K

AND 55,000 cm2/V-S AT 770K

• COSTS $.25 - .75 x 106
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Table 3

ORGANOMETALLIC VAPOR PHASE EPITAXY - PRODUCTION

• SINGLE WAFER 2" DIAMETER TO 20 WAFERS 3" DIAMETER

GROWN IN 2-4 HRS.

t
• UNDOPED GAAS 770K ELECTRON MOBILITY 80-100,000 CM2/V-s

• N TYPE DOPING TO 2-3X10
18 /CM3 (SI IN GAAS)

R	 • P TYPE DOPING TO	 1019 /CM3	 (ZN IN GAAS)

• HETEROJUNCTIONS ABRUPT TO 10-20A,

• COMPUTER CONTROL FOR ELABORATE COMPOSITION

PROFILES - QUANTUM WELLS AND SUPERLATTICES

• SELECTIVELY DOPED HETEP.OSTPUCTURES - PRELIMINARY GAAS

AND IN AAAS RESULTS	 770 K ELECTRON MOBILITY

40,000 - 80,000 CM?/V-s

s COSTS $,1 - .3 x 106
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Table 4

FET FREQUENCY RESPONSE

F T
 
or- G M/C oC V 

ELECTRON VELOCITY FOR GRAS

1.2 x 10 7 CM/S - ND 1 X 1017/cm3 , LE =, .8 Am

2.4 x 10 7 cM/s - 770K, PURE, LE _> 1 a

> 4.0 x 107 cM/s - 300 0K, Pure, LE t'-- . 4 g m

(NEAR BALLISTIC, GRADUAL ACCELERATION)

> 8.0 x 107 cM/s - 3000K, Low Dop i ng , L. c . G p m

(NEAR BALLISTIC, IMPULSE ACCELERATION/DRIFT)

9. 5 x 107 CM/S, E1003  DIRECTION N .25-.3 EV

(CRYSTAL LIMITED GROUP VELOCITY)
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Table 5

EXPECTED LOW TEMPEPATURE PERFORMANCE OF

GAAs MODULATION DOPED FET's

PM GATE, SELF ALIGNED BY ETCHING

1,46DB NF	 12 GHz	 3000K
fi

.34 DB NF	 12 GHz	 770K

.S P M GATE, SELF ALIGNED BY ION IMPLANTING

1.0 DB NF 12 GHz	 3000K

.25 DB NF	 12 GHz	 IIoK

.3	 P M GATE, SELF ALIGNED BY ETCHING

1.0	 DB NF 12 GHz 3000K

.25 DB NF	 12 GHz	 770K

.3 PM GATE,	 SELF ALIGNED BY ION IMPLANTING

,6 DB NF 12 GHz 3000K

.15 DB NF 12 GHz IIoK

t

1
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The Effects of Cooling on Delay-Time Limits in IC's

I

I	 R. 0. Grondin and D. K. Ferry
Center for Solid State Electronics Research

Arizona State University

Tempe, AZ 85287^	 I

We consider the effect of cooling as a fundamental limit to delay-

times in IC's. Generally, it appears that the delay time should be de-

creased at cryogenic temperatures.

W^
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There is a fundamental limit to the delay time of an IC which arises

from the necessity for heat removal, the necessary requirements for signal

propagation, as well as the speed-power product of the gate. At the funda-

mental limit, the delay time is insensitive to modest variations in the

actual speed-power product. At the opposite extreme, in the wire-dominated

chip, the cell size is determined by wiring constraints rather than device

constraints and the delay time is also independent of the speed-power product.

Here we consider how cooling an IC technology may affect this delay-time

limit.

Power-Delay Products

Integrated circuit technologies are often compared to each other through

the speed-power product of a single gate, typically an inverter. Such

comparisons rely upon the fact that, when properly defined and measured,

the speed-power product car be equated with the minimum energy needed to

perform a logic operation [1]. Although measured power-delay products are

determined by technological considerations, Bate [2] has argued that there

are fundamental limits to how small the energy dissipation (and therefore

the speed-power product) can be made. He considered the switching of a

group of particles between two coliisionally broadened, quantum mechanical

energy -levels and found that the minimum energy cannot be reduced below 10-19

Joule for an error probability of 10 -30 . On the other hand, computer simu-

lations of Josephson junction logic elements have yielded power-delay

products of 10 -18 joule [3]. While the model of Bate is abstract, it is

hard to see how the additional complexities present in real inverter circuits

would either increase the speed or decrease the power dissipation. Indeed,

the limit is conservative in many respects.
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The power-delay product discussed above would actually be associated
C
r

with an inverter circuit composed of the bare devices themselves. However,

a practical integrated circuit also has lines or wires associated with each

t
gate. These lines have a power-delay product associated with them and

generally dominate the actual energy dissipation in the logic gate [4,5].

This e:ctreme arises when the necessity for wiring dominates the cell size

and the device is no longer critical for setting energy dissipation. This

latter case is referred to as the wire-dominated chip [5]. We return to

Ithis latter case below.

There are other constraints that must also be placed on the power
I

dissipation and the delay time in an integrated circuit. To illustrate

these, we consider a sq uare array of N logic cells of area A each. If we

can remove Q Watts of heat per unit area, we must require that the dissi-

pated power of P satisfies

P < QA	 (1)

Note that this condition only ensures that a steady-state temperature

exists, not that it is low. Thus, this is a "worst case" limit. A second

limit that must be invoked is that, in the worst case, a signal must be able

to propagate across the entire chip in the delay time t d . This signal prop-

agation requirement is expressed as

(NA ) 1 `= ct d	(2)

where c is the speed of propagation a ►.d is typically lower than the speed

of light due to the dielectric properties of the semiconductor chip.

I	

From the above discussion, we can now define a fundamental limit on

the delay time itself [6]. The argument is similar to one proposed earlier

by Keyes [7], but differs in that a firm limit on t d is set. Equations (1)
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and (2) imply a range of areas that must satisfy the joint inequalities

P/Q < A < c2td2/N
	

(3)

However, t4ere is another constraint set by the energy dissipation, or

Pt  = Em . Using this quantity in (3) leads to the final limit

NEm/Qc2 < t d 
3	 (4)

We illustrate the situation in figure 1. Tl, e combination of a power-

delay product, E 
m

, and the heat rc,ioval or cooling rate Q demands a minimum

area for a given delay time. The =iecessity of signal propagation sets a

maximum on the area for a given delay time. It is interesting to note teat

the degree of integration represented by N and the heat removal rate Q are

as important as the power-delay product of the individual cells in deter-

mining how fast the overall chip can be operated. In particular, we note

that it requires a three order-of-magnitude reduction in E m to reduce the

minimum t d by a single order-of-magnitude. Increasing the inte t,:ation level

actually tends to worsen the minimum delay time that can be achieved, al-

though this minimum is well below the levels discussed in today's technology.
	

r
The Wire-Dominated Chio

In some applications, such as gate array chips, the chip itself is

dominated by the interconnection wiring and is referred to as a wire-

dominated chip (5). In these chips, the cell s'ze is determined not by

the devices but by the number of wires that must run through the cell it-

self. When this limit occurs, further reductions in she active area of

the devices themselves will not significantly increasi the number of logic

cells per unit area of chip. In these situations, the actual power-delay

product of the device itself is not as important as constr.dints of charging
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the interconnection capacitances of the wiring. Keyes [51 has ar€ued that

the power-delay pr-.duct o` such a wire-dominated chip is

Pt  = CwfK2wVBVS /M	 ,	 (5)

where P is the power dissipation, t d is the delay time, M is the number of

metallization or wire layers in the chip, K is the number of wire channels

occupied by wires with capacitance C per unit length of wire. Here, Vw	 B

and VS are the supply and signal voltages, respectively. The form of (5)

is easily understood, as the right-hand side is just the energy stored in

the capacitance of the wires, if the average length of a wire is K/M and

the average number of wires per cell is w.f.k.

Since the cell area is dominated by the interconnection wiring, the

cell size itself is approximately given by

A = (Kw/M) 2	(6)

The ability to dissipate the heat generated by the input power P must also

be included in the discussion. This can be done through the incorporation

of (1) and (5). The other fundamental limit is th,-t a signal must be able

to propagate across the e.ztire chip in the delay time t d , as discussed above.

This leads to (2). Thus, for a chip containing N square cells, this signal

propagation limit is ex	 sed by combining (1), (2), (5), and (6) as

td > N!ZfKCWVBVS /Qc	 (7)

As above, this constraint is essentially independent of geometrical factors

such as w, although these latter factors do affect ':w slightly. Using (7),

a lower limit to the delay time can also be obtained by taking the appro-

priately most favorable limits on the individual parameters. Heller et al.

181 have shown that a value of K =20 is typical for a system of 1000 gates.

Master slices with this number of gates have been reported [9] and do
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approach the wire-dominated limit. Heat dissipation rates of Q = 20 W/cm2

1	 ^

are appropriate for a freon cooled computer. The question of 1_ne capaci-

tance is more arguable, but for future small chips, the fringing and inter-

line capacitance will probably limit the lower value of C to 0.1 fF/micron

F	 [10]. Using these values and setting c to the speed of light, a lower limit

e

of about 0.2 nanoseconds is obtained for the delay time.

The significance of this result is obvious. Even if the individual

logic gates in a wire-dominated chip are fast, the chip itself c annot have

a delay time shorter than 0.2 nanoseconds, corresponding to a clock fre-

M	 quency of about 1.0 GHz. While the constraints used here are appropriate

to a master slice chip, the conclusion is expected to be more general and

apply to a wide variety of array type logic designs in which each cell must

be able to communicate with each other cell or with cache memories at some

distance.

The Effects of Cooling

When existing high speed circuits are examined using this approach,

delay time limits at the order of 5 ps are obtained [u]. We now consider

how cooling would affect these limits. It is interesting to note that

`	 cooling may not necessarily improve the delay time. For the device domi-

nated chip, we obtain

1	 it  = 1	 1	 a	 Em `	 (8)

t  aT	 3 (E /Q) aT	 Q

and for the wire dominated chip

1 
at  = 1	 1	 a	

CwVBVS	
(9)

t
D 

DT	 1 (Cw ^ BV S 1 aT	 Q

	

+\	 Q	 /I

Here we have assumed that the sign-1 propagation velocity is insensitive
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to temperature. Cooling will decrease the delay time therefore if

1 aQ	 1 3E 	 (10)
Q aT	 Em 3T

for the device dominated chip, and if

1 3Q	 1	 a(CsVBVS)	 (11)
Q aT < (CwVBV S )	 aT

•	 for the wire dominated chip. Physically, we have assumed t:-Sat temperature

appears mainly in the adjusting the minimum area limit, a point which we

return to later. Equations (10) and (11) are conditions which ensure that

the minimum area limit moves to the left in figure 1 as T decrEases.

Bate [2] has considered the effectF of cryogenic operation on the

ultimate limiting power-delay product. He redefined this product in terms

of the overall system energy, E
syst, 

which is

Esyst = Em + Ecool	
(12)

where 
Ecool 

is the energy loss associated with the cooling system removing

Em . By applying the Carnot theorem

Ecool	
E'n	 (13)
w

where

w=T 
T_ 

T	 (14)
A

and TA is the ambient temperature, he obtained

T

Esys = E ` 1 +`. = Em T	 (15)

Bate noted that his quantum mechanical limits revealed no fundamental

advantages for cooling and that the above argument implies potential energy

penalties for cold electronics. Indeed the system power delay product is

always greater than E . However, there are practical reasons for operation
.n
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11at cryogenic temperature, which we consider here.

While there are many factors which affect Q, the one universal factor

is the thermal conductivity of the material used in the active devices.

The thermal conductivity of several common semiconductors is shown in Table

I. Generally, there is an order of magnitude or more increase in the thermal

conductivity as the samples are cooled to temperatures in the 20 to 100°K

range. For temperatures of 20K or less, the thermal conductivities decrease

with decreasir.; temperatures and have returned to their 300°K values at

tempers'_ures of several degrees. The thermal conductivity of GalnAs may

be misl-sdii.6 for some cooling configurations as this material is generally

grown on an InP substrate. Therefore, if the main heat flow path is through

the substrate, the thermal conductivity of InP may be a more meaningful

measure than that of GalnAs itself. Generally, this "semiconductor" Q

should peak at cryogenic temperatures. This increase may be wiped out

however by the changes in Q associated with the changes in coolant and

refrigeration techniques.

The E of an active device is quite commonly viewed as a parameter
m

which should improve with cooling	 [see e.g. 111. There are important

reasons for this. Carrier mobility generally increases as the material

is cooled, until one enters (at temperatures of the order 10 to 100K) the

impurity scattering dominated regime [12]. In GaAs, the saturated carrier

velocity is enhanced by 20 to 30% (the change in Si is less significant

because of differences between polar and nonpolar phonon scattering [101).

In most materials we also will see velocity saturation occur at lower fields.

This allows us to use lower bias voltages. The logic swi-ag may also be

reduced if it is limited by thermal voltage fluctuations and not by varia-

tions in devi-e parameters which result from nonuniformity of tha fabrication
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1
	 processes across the chip. Cooling fenerally is expected to allow us to

fuse lower bias voltages, smaller logic swings, should reduce parasitic

resistances and may enhance any performance advantages associated with

'	 GaAs.

For the wire dominated chip, the above discussion shows that both

V  and V S should be reduced or "reducible" by cooling. The capacitance

hould be relatively insensitive to cryogenic effects. ThE dielectric

constant of most semiconductors obeys- a law of the form

1 ER (T) = ER (0)^1 + aT1I 	(16)
J

where a	 10-4 . No significant change in E R is expected. A more signi-

ficant variation would be seen if the coolant actually flows ever the top

of the chip, where the active devi:e g aad metal lines themselves are located.

The dielectric constants for several potential coolants are [131: N 2 = 1.45;

He = 1.05; and H 2 = 1.23. Therefore, if the lines are running over SiO2

(ER = 3.9), some changes in C  may be obtained. In particular, we would

expect more fringing fields and line-to-line crosstalk to be present. The

above comments are also applicable to signal propagation velocity and are

the reasons why we have generally neglected any possible variation in c

with T.

In summary, we have considered the effects of cooling on a fundamental

limit on the delay time. Most of the effects should be beneficial, although

in principle cryogenic operation could increase delay times.

We thank Dr. W. Porod for useful conversations and Drs. M. Yoder and

L. Eastman for a helpful suggestion.
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Table 1

Thermal Conductivities at Room Temperature and 100°K

Units are W/(cm-K)

Material 100`K 300°K

Si 8.0 1.5

GaAs 2.0 0.46

InP
1

0.68

GalnAs 0.06

Si02 0.36 0.15
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Si MOS Devices at Low Temperatures

Avid Kamgar

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

;,4	 1

Improvements in various properties of Si MOS devices as a result of operation at low temperatures
are discussed. The particular de %? ice aspects considered here are subthreshold behavior, effective
channel length and delay times. The temperature range is 4.2K to 300K.

1. INTRODUCTION

Lc .v temperature operation of micron and s-ibmicron size Si MOSFETs (metal-oxide-semiconductor
field-effect-transistors) results in their improved device characteristics. Various low temperature
device properties such as increase in mobility, shift in the threshold voltage, increased reliability,
etc., have been considered.' Here we discuss few other device characteristics such as the
subthreshold behavior, delay times and miniaturization at low temperatures. Discussion im ludes
presenting experimental results along with physical models explaining the observed effects.

11. EXPERIMENTAL NOTES

Measurements were done on MOSFETs fabricated on p-type (100, Si substrates with various
dopings, ranging from N A — 10 14 cm-3 to 6x 10 16 cm-3. The fabrication was done using n-channel
Si gate technology, and X-ray lithography. The gate oxides were grown in dry atmosphere to
different thicknesses, ranging from 130A to 500A, and the junction depths varied from 0.25µm to
0.75µm.

The subthreshold behavior and the effective channel length measurements were done using series of
eight MOSFETs with the channel length being the only varying paramete- between them. The
channel width was 80µm, the chz^.nnel lengths varied from 0.5µm to 6µm in different MOSFETs.
These values were the coded channel lengths. The actual channel lengths were usually shorte, • , and
they were estimated from the maximum mobility plots vs. the coded channel lengths for each
individual chip.

The ring oscillators employed a chain of 19 inverters which used depletion and enhancement mode
MOSFETs as the load and the drive respectively. A total of 15 oscillators from 3 wafers with
different fabrication parameters and different geometries were measured. The important parameters
for these wafers, are given in Table 1.

The measurements at 77K and 4.21K were made by immersing the devices in liquid nitrogen and
liquid helium respectively. A RANSCO temperature %arying chamber was used to provide
temperatures between —80K to 400K.

Ill. RESULTS AND DISCUSSIONS

I
^ 	 111.1 Subthreshold Behavior

f	 The subthreshold region is of particular importance for low-voltage and low-power appli„ations. In
this region the current is dominated by the diffusion component, and its behavior is characterized by
a gate voltage swing (S) needed to reduce the current oy one decade. The subthreshold swing is

given in the following equation 
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'	 I + Cd + rli

S = In 10 
dVgS — 

kT In 10	 COX	 COX2 	 (I )
di d	q	 2	 Cd

I — ,
a`	 COX,

where V gS is the gate voltage, I d the drain current, k the Boltzmann constant, T the temperature, q
the electronic charge, a = f(C FB/COX), and C d , Co, C;, and C FB are the capacitances due to the
depletion layer, the oxide, the interface traps, and the capacitance at the flat-band voltage
respectively.

Figure I shows a typical set of enperimental traces of the drain current as a function of the gate
voltage at three different temperatures. Here we also show the calculated subthreshold currents
(dashed lines) using a one dimensional analytical expression for the gate voltage dependence of the
drain current. 3 The calculated curves were shifted by 0.2V to account for threshold shifts. These
shifts could be due to a combination of the effects of oxide charges, interface traps, as well as the
metallic work function, not taken into account in the calculations. To find the temperature
dependence of various parameters we first calculated the Fermi level as a function of temperature
using the neutrality condition and Boltzmann statistics and then other parameters such as the
surface potential and the depletion width. However, the main temperature dependence is through
the term T in Eq. 1.

At 300K, log I d is a linear function of Vg, at low currents. This is the subthreshold o ;ion which in
this sample extends to a current of about 5x10 -8A. The increase in I d becomes more gradual as Vg,
approaches the threshold voltage (V, h = 0.6V) at the onset of the strong inversion. Both
experiment and calculation yield a value of S about 95 mV/decade. At 77K the linear region stops
at a current more than one decad lower than at 300K. Here the agreement between the calculated
and the measured S is not as good as the room temperature results. The theoretical value of
S — 20 mV/decade is calculated by assuming the number of interface traps to be zero, while
experimentally S — 24 mV/decade. At 4.2K there is little similarity between the calculations and
the experiments, in that the measured log Id vs. VRS does not even show a linear region. We
extended the measurements down to I d — 10-13A, and found that the value of S becomes
increasingly smaller. Yet even in the 10-11-10-13A decade the subthreshold swing. S —
6.0 mV/decade, is nearly one order of magnitude larger than the calculated S — 0.33 mV/decade.
A number of effects could perhaps explain this discrepancy,° however, as far as circuit performance
is concerned there seem to be little gain in reducing S by lowering the temperature far below 77K.

Another dramatic change due to cooling is a reduction in the punch-through component of the drain
current in the subthreshold region of short channel devices. Devices with some punch-through
current (up to --10 -7A at Vd, — O.IV) at room temperature turned off to below 10 -11 A (the
measurement accuracy) at 77K. One example of this is shown in Fig. 2. The dash-dot trac°.s show
the I d vs. V g, characteristic of a short channel and a long channel device at room temperature, and
the solid curves are the traces at 77K. At 77K the threshold voltage of the long channel device
shifted by about 0.25V, and the gate voltage swing reduced as observed earlier. The short channel
device with L — V.-i µm, however, represented a more drastic change. The punch-through current
disappeared, and the gate voltage swing became equal to that of the long channel device. The shift
in the th reshold voltage appeared to be the same as the long channel device. This effect could be an
indicatici that the minimum channel i„ngth for the "long channel" behavior changes with
decreasing temperature as we will discuss in the next section.

111.2 Minimum Channel Length at 77K

In scaling device parameters the minimum channel length, L m,,,, has been proposed as an empirical
relation ass

I-mm — A(xi tOX (w,+wd) 2 1 1/3 .	
( 2)

where A is a proportionality constant, x, the junction depth, t OX oxide thickness, w d and w, the drain

1
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and source depletion widths for a one-dimensional abrupt junction defined as

wd — F
2,d

(3)
 Nn

w, — wd :t Vd,-0

where V b, is the built-in voltage of the junction, and ts i the dielectric constant of Si. T he constant A
was found to be 0.41 at room temperature.`

As the !,nuperature decreases w, and wd increase, implying a larger L,,,, n at 77K, however, the
experiments show the oppesite effect. Figure 3 shows the relative changes in the drain current for a

	

100% change in V d, (at V., = V th ) in eight MOSFETs at 290K and 77K. This figure clearly	 ^-
indicates that the subthreshold current is much less dependent on the changes in V d, at 77K
compared with 290K. The substrate dopinf, for this sample is 10 14cm -3, t", — 500A and
xi — 0.75 um. This effect is strongest in lowc, doped channels.

We have chosen the Aid — 10% as the criteria dividing the long channel from the short channel
I d

behavior, and have plotted the summary of the results for samples with different parameters in
Fig. 4. The solid line represents the room temperature results from Ref. 5, and the dashed line is
drawn through the experimental points at 77K.

We recently showed that the parameter which is of importance in comparison of high and low
temperature char. cteristics is the effective Oannel length L,n, anu not L m , n .' In a MOSFET when
the surface layer is inverted, the lateral depletion width (see Fig. 5) is given by 

d,- bi— S
Yd

	
y	 NA(T)

Yd — Y5. at V d , — 0	 (4)

where the surface potential, Yrs, is roughly equal to 2(E s/2 — E FP). Unlike w, and wd, y, and yd

decrease as the temperature is reduced' resulting in a larger L, ff which is defined as

Lv.f — L — Yd — Y,	 (5)

This is represented, schematica ly, in Fig. 5 where we show the channel in equilibrium (V d, — 0)
both at 300K and 77K. In this figure we have indicated the lateral and vertical dep!,:tion layers,
and demonstrated how L in changes by lowering the temperature. As a numerical example we
indicated the values for w, at,a y, at the two temperatures, for N A — I x 10 14cm -3 , in the following

w,(300K) — 3.2 um y,(300K) — 1.39 pm

w,(77K) — 3.75 µm y,(77K) — 0.68 µm .

111.3 Temperature Dependence of Oelay Times

High-speed VLSI (very large scale integration) places extreme demands on devices for short delay
times and low pow.r-d-ky products. Here we present an experimental study of the advantages
gained by reducing the operating temperature. We have measured the delay rimes (rd) and power-

1 delay (Prd) products as a function of temperature in the range 4.2K to 400K in difl'erera ring
oscillators, having room .emperature delay times between ?0 ps and 270 ps, and found a
considerable d,crease in the delay times with decreasing temperature.

We have found that in order to explain our results not only did we need to consider the increase in
transconductance (electron drift velocity), but also the decrease in the component of the capacitive
load which is due to the source-drain junction capacitance to the substrate, due to a decrease in the
number of ionized impurities.9
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111.3.1 Delay Times

The changes in r d are summarized in Fig. 6. In order to show the general characteristics of the

changes we have normalized the delay times, for :ach oscillator, at various temperatures to th.,.'r

room temperature delay time. In this figure we no t e that all three ring oscillators show the same

behavior between 77K and 400K. kt 4.2K, however, they demonstrate very different changes.

To discuss these characteristics we consider the following basic, equation for the propagation delay
time

Td — B 
C r
	 (6)

Idd/Vde

where C, is the load capacitance at the output nod:., Idd the current of the depletion mode device,
Vad the supply voltage, and B is a correctioa factor. Any changes in C t and/or Idd with temperature
would directly affect rd.

The short coannel lengths 63.25-1.5 µm), and the relatively high drain voltages (3-5V) used in
measuring r d , result in electron velocitie° equal or nearly equal to the saturation drift velocity, (•.ds).
Saturation drift velocity increases with lowering terr.oerature as a result of decrease in scattering.
In Fig. 6 we have also plotted the changes in the inverse vd, in the bulk Si as a function of
temperatures (Similar data for surface transport is not available. It is not expected, however, to be
drastically different from the bulk.) The changes in vds I show a notable agreement with the changes
in Td between 400K and 77K, .suggesting that the decrease in r d in this range is mainly due to the
increase in the electron saturation drift velocity.

Between 77K and 4.'K, v d, remains fairly constant. The propagation delay time, however, continues
tc drop in this region, more in some ring oscillators than ethers. «'e believe that this further drop is
due to changes in C, rather than I dd it Eq. 6, as the Following argument demonstrates.

The load capacitance is a function of the gate capacitance. Cp the wiring capacitance, C., and the

source/drair junction capacitance. C i. Cg and C. are.elativelytemperature independent, but since
junction d ,pletion width increases with reducing temperature' the capacitance associated with it
dccreasuF.. At 77{ the decrease in C i , compared with 295K, for a substrate doping of 10 j4cm-3 is
about 307,, but the change in this capacitance is particul, rly large beloN IOK where the freeze-out
occurs. In this limit the junction depletion width becomes practically equal to the thickness of the
wafer, aid the capacitance associated with it becomes negligible. In some of our ring oscillators the
magnitude of C, was as large as 40`7. of C 1 . Hence its reduction to zero decreases r d drastically.

This Explains qualitatively why r d continues to drop beyond the saturation of vds . The unequal
reduction in rd in different ring iscillators is likely to be due to the differences in the junction area,
therefore, unequal contribution of C ) to C, in these ring oscillators.

111.12 F- wer and Power - Way Products

We have, summarized the results, on P and PT d, for 3 different ring oscillators in Fig. 7. Figure 7(a)
shu% - the measured values of lower as a function of temperature, and Fig. 7(b) the power-delay
products. This figure indicates that both changes of power and power-delay product with
temperature are small, and while the power shows a smal! increase with temperature, th e power-
delay product decreases.

IV. CONCLUSIONS

We have made comparisons between room temperatu a and liquid nitrogen temperature operation of
Si MOS in 3 different areas. These were subthreshold currents, effective channel lengths and delay
times. Our experimental results showed that in all three areas there -.as a definite improvement in
the electrical characteristics of the devices. Namely that 1) the gate voltage swing fog the device
turn on reduced by nearly a factor of four, 2) the effective channel lergth became longer thus
relaxing miniaturtzati,,n conditions, as well as helping nearly short channel deviccs with some
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punch-through current at 300K to completely turn off at 77K, and 3) the delay time of the ring
oscillators decreased proportionally to the inverse of the increase in the electron saturation drift
velocity.

I wish to thank S. M. Sze for helpful discussions, and R. L. Johnston for technical rssistance.
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Fig. 2 Subthreshold current for a short and a long channel device at two different temperatures.
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Fig. 5 'ibe schematic representatim of the charnel, and the parameters y„ w, and I,di at 300K
and 77K

I	 I	 I	 I	 1	 I	 1

4
o xA10-2	 q

2	 a xA11 -2	 v
o XP/0-3

Y

N_ 
.0

^v 18- q 	-
H

r+^ ( 16	 0	 -

4-	 -

1	 42	 10	 77 100 200 400
TEMPERATURE (K)

Fig. 6 The relative change in the delay times with respect to the roam temperature delay as a
function of temperature for three-ring oscillators. The solid line represents the
corresponding change in the inverse saturation drift velocity in bulk Si.

90

r•.	 •
_	 .^► spy .. - 1 ..	 -	 -



n^

(a)	 o XA10-2
0 XA11 -2

_	 a XP+O-3

_q

3

E	 5
z0
Q 4a
N
O

	 3

Cr

2

g	 1

(b)	 _ _trb

300

250

a

w 200
0

P
1Y

¢ -----------0---

1	 10	 100	 1000
TEMPERATURE (K)

Fg. 7 (a) Power dissipation and (b) paver-delay product as a function of temperature. The lines
are drawn through the experimental prints for clarity.

or
3 150

0
CL

100

I

1

I	 `

I	 i

91

14	 11



1

P85-2226

CRYOGENICALLY-COOLED, LOW-NOISE MICROWAVE RECEIVERS -

PRESENT STATUS AND FUTURE NEEDS

Sander Weinreb

National Radio Astronomy Observatory*

2015 Ivy Road

Charlottesville, Virginia 22903

1

A complete writeup of the conference presentation is not available. 	 1
However, an outline, the key figures, recommendations, and some references	 1

are given below:

Outline

I.	 State-of-the-Art Summary

A. Noise temperature vs. frequency in the 0.1 to 3U0 GHz range, Figure 1.

B. Same in the 100 to 3,000 GHz range, Figure 2.

II.	 Cooled GaAs FET Devices

A. DC characteristics of commercial GaAs FET's at 300K and 15K.

B. Noise vs. temperature for several commercial GaAs FET's, Figure 3.

C. Sources of noise, see reference [8].

D. Description of HEMT device.

E. Comparison of experimental cold noise performance of GaAs FET's and

HEMT's, Figure 4.

*
The National Radio Astronomy Observatory is operated by Associated Universities, Inc

under contract with the National Science Foundation.
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III. Examples of Cooled Microwave Amplifiers

A. 1.5 GHz amplifier, reference [6] and Figure 5.

B. 10.7 GHz amplifier, reference [7] and Figure 6.

IV.	 Cooling Technology

A. Test dewar with CTI 1020 refrigerator.

B. Coaxial input lines

V.	 Recommendations, see Figure 7 and text below.

Recommended Research and Development

A summary of a recommended low-noise cold microwave electronics program

is given in Figure 7. Item 1^ is f.;r FET or HEMT devices giving a factor of

3 lower noise thar, present GaAs FET's with operation at 15K. The 1.5 GHz device

must have low 1/F type noise and perhaps the ballistic transport short FET

suggested by Eastman would be appropriate. The higher frequency devices could

be HEMT's or perhaps impro ,,ed conventional FET's.

A second R and D item is multiple-device integrated circuits having very

low noise over octave bandwidths. The multiple devices allow balanced hybrid

coupled amplifiers for power match and frequency-diplexed paths through separate

HtMT devices for each . 30% bandwidth where optimum noise match can be achieved.

Five octave-band IC's would allow the entire 1-40 GHz microwave range to be

covered.

Item 3 is for a microminiature refrigerator, either thermoelectric or gas

flow, to be integrated into the FET package. A cooling capacity of 20 mW and

temperatures of 150K with thermoelectric cooling or 50K with Ras flow would

be appropriate.

l .' 1
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The fourth recommended area for cold electronics research is for low-noise

^► 	 amplifiers or mixers in the submillimeter wavelength region of 300 to 3,000 CHz.

As shown in Figure 2, the noise temperatures presently achieved are very higt

A

	 and a breakthrough is needed for use in future space telescope or compact

short-range radar systems.

A fir,?! area of recommended research is in the field of cooled microwave

or millimeter wave focal plane arrays. A .large number (10 to 1,000) of receivers

E
E	 lould be deposited on a cooled substrate located in the focal plane of a

paraboloidal reflector. The outputs of the array of mixers or amplifiers could

then be combined to form many antenna beams, thus greatly increasing the speed

of a scanning or image forming system.
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RECOMMENDATIONS FOR COLD, LOW-NOISE

MICROWAVE ELECTRONICS PROGRAM

1) Devices with design goals a 15K

GHz	 Tn, °K

1.5	 3
8	 8
23	 23
40	 40

Type

Ballistic GASFET

HEMT

GASFET
HEMT

2) ".iltiple-device, octave-band MIC's

GHz	 I T  , °K

	

1-2	 5

	

2-4	 10

	

4-8	 15

	

8-18	 20

	

18-40	 40

3) Integrated device micro-refrigerator

4) 300-3,000 GHz (submillimeter) device research

5) Cooled focal plane arrays - integrated multibeam receivers

Fig. 7
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