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Abstract 

 
The development of very-large-scale integration (VLSI) technology has 

continuously demanded smaller devices to achieve high integration density 

for faster computing speed or higher capacity. However, in the recent 

complementary-metal-oxide-semiconductor (CMOS) technology, simple 

downsizing the dimension of metal-oxide-semiconductor field-effect 

transistor (MOSFET) no longer guarantees the boosting performance of IC 

chips. In particular, static power consumption is not reduced while device size 

is decreasing because voltage scaling is slowed down at some point. The 

increased off-current due to short-channel effect (SCE) of MOSFET is a 

representative cause of the difficulty in voltage scaling. To overcome these 

fundamental limits of MOSFET, many researchers have been looking for the 

next generation of FET device over the last ten years. Tunnel field-effect 

transistor (TFET) has been intensively studied for its steep switching 

characteristics. Nevertheless, the poor current drivability of TFET is the most 

serious obstacle to become competitive device for MOSFET. 

In this thesis, TFET with high current drivability in which above-

mentioned problem is significantly solved is proposed. Vertically-stacked 

SiGe nanosheet channels are used to boost carrier injection and gate control. 

The fabrication technique to form highly-condensed SiGe nanosheets is 

introduced. TFET is fabricated with MOSFET with the same structure in the 

CMOS-compatible process. Both technology-computer-aided-design (TCAD) 
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simulation and experimental results are utilized to support and examine the 

advantages of proposed TFET. From the perspective of the single device, the 

improvement in switching characteristics and current drivability are 

quantitatively and qualitatively analyzed. In addition, the device performance 

is compared to the benchmark of previously reported TFET and co-fabricated 

MOSFET. Through those processes, the feasibility of SiGe nanosheet TFET 

is verified. It is revealed that the proposed SiGe nanosheet TFET has notable 

steeper switching and low leakage in the low drive voltage as an alternative 

to conventional MOSFET.    

 

Keyword : SiGe channel, Tunnel field-effect Transistor, Multi- nanosheet 

FET, Low-power device, Steep-switching CMOS device, Subthreshold 

swing, Ge condensation, Band-to-band tunneling 
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Chapter 1 
 

 

Introduction 
 

 

1.1. Power Crisis of Conventional CMOS Technology 

 

Since the invention of MOSFET in late 1950s, semiconductor 

electronics have been dramatically developed. The density of devices in the 

integrated circuit (IC) chip sharply increases every year and the increase in 

integration has been directly reflected in the computing speed. Over the four 

decades, Moore’s law [1] and Dennard’s scaling theory [2] had effectively 

predicted the growth of very-large scale integration (VLSI) technology. 

However, these classical scaling methods for integration trend faced the 

limitation, such as increasing leakage current caused by thin gate oxide 

thickness [3]. A simple downsizing did not guarantee further performance 

improvement of IC chip. In these circumstances, one has begun to find 

structural and material innovations to enhance gate controllability and 

achieve high on/off ratio. As a result, strained Si, high-κ/metal gate, and 

FinFET technology [4] is developed to overcome the limitation of 

complementary-metal-oxide-semiconductor (CMOS) device scaling. 

Eventually, device scaling has been continuously maintained by the 2010’s, 

as shown in Figure 1.1. 
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However, CMOS technology is facing more fundamental limitations in 

the 2010’s, which is not solved by the previous technologies. One of the 

serious problems with device size scaling is that power consumption is 

exponentially increased in the highly-integrated IC chips [5] (Figure 1.2). To 

explain in detail, one should understand the concept of dynamic and static 

power. The amount of power dissipation in the CMOS devices can be 

expressed as below. 

  

𝑃 = 𝐴𝐶𝑉𝐷𝐷
2𝑓 + 𝑉𝐷𝐷𝐼𝑂𝐹𝐹 
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Figure 1.1. CMOS device scaling trends are lasted by using various 

technologies [4]. 
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where A denotes fraction of switching and C is the total load capacitance. 

The first term of this expression means dynamic power and second term 

implies static power. In general, the density and speed of the devices 

inevitably increase the dynamic power density. Thus, lower VDD is essential 

to minimize total power dissipation. According to the formula, VDD scaling 

can be a great help to reduce both dynamic and static power. In fact, the 

increase in dynamic power shows some slowdown in the advanced 

technology node with low VDD. Nonetheless, it is noteworthy that the portion 

of static power becomes gradually higher [5]. 

 

Figure 1.2 also shows the ratio between static and dynamic power 

dissipation in the IC chip according to the times. The main reason for the 

abrupt increase of static power is the IOFF increase as opposed to the voltage 
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Figure 1.2. Power consumption trends according to the times [5]. 
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scaling of MOSFET. As devices have been scaled down, supply voltage (VDD) 

of CMOS devices has also been continuously decreased to reduce power 

dissipation. However, the fundamental problem is that voltage scaling 

encounters an obstacle in the nanoscale MOSFET because short channel 

effect (SCE) worsens the leakage current, which mainly contributes the static 

power [6]. In fact, VDD is rarely reduced under 1.0 V, due to threshold voltage 

(Vt) scaling is limited at 0.2 V [7], as shown in Figure 1.3. In conventional 

MOSFET, Vt scaling above the allowable range (0.2 V) only increases the 

leakage component. To prevent leakage current, steep subthreshold swing (SS) 

is required to achieve higher on/off ratio (ION/IOFF) (See Figure 1.4). 

Nevertheless, the Boltzmann limit (kT/q) originating from thermal carrier 

injection limits SS of MOSFET to 60 mV/dec or less. Therefore, devices with 

a superior switching capability beyond MOSFETs are necessary for stable 

driving voltage scaling in the future technology nodes.   
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Figure 1.3. (a) Scaling trends of supply voltage (VDD) and threshold voltage 

(Vt) of CMOS devices. (b) Relation between VDD and gate delay [7]. 
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1.2. Tunnel Field-Effect Transistor (TFET) 
 

For ultralow voltage operation, a new type of steep-switching device has 

been researched, such as tunnel FET [8, 9], ferroelectric FET [10], and 

feedback FET [11]. Among these alternate switching devices, TFET is 

intensively studied as a promising candidate due to its CMOS-compatible 

fabrication process and superior SS below 60 mV/dec. TFET utilizes band-

to-band tunneling (BTBT) to inject carrier into channel, which enables to 

overcome Boltzmann limit caused by thermal carrier injection and reduces 

off-current (IOFF) caused by SCE. Figure 1.5. indicates the basic structure of 

TFET. The doping junction is quite similar to conventional MOSFET. In n-

type devices, p-i-n doping junction is formed as source-channel-drain, 

ION

IOFF increase

Vt scaling

Gate voltage (lin.)

D
ra

in
 c

u
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e
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o
g

) VDD scaling

Figure 1.4. Increased IOFF caused by voltage scaling of MOSFET. 
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respectively. On the contrary, source and drain are doped with n- and p-type 

in pTFETs. Figure 1.6 explains the current flowing mechanism of TFET. At 

the off state (VGS = VDS = 0), carrier injection from source is blocked by thick 

energy barrier. When the gate bias is applied, the energy band at the channel 

region moves down. As a result, the energy barrier becomes thinner, which 

enables carriers (electrons or holes) to tunnel source to channel. The 

representative advantages of TFET are remarkable low IOFF and steep SS, 

because carrier injection is effectively controlled at the OFF state and BTBT 

occurs abruptly in the applied electric field. Figure 1.7. summarizes the 

remarkable switching capability of TFET. The transfer curve of TFET is more 

similar to ideal switch and drive voltage is more easily scaled. 

 

 

Source 
(P+)

BOX

Drain
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Channel (i)
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Gate

Figure 1.5. Basic structure of n-type TFET. 
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Figure 1.6. Schematic diagram of operation mechanism of TFET. 
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1.3. Feasibility and Challenges of TFET 
 

After notable reports dealing with TFETs [12-14] in mid-2000’s, TFET 

have been intensively studied for its feasibility and performance optimization. 

In consequence, the common major issues for TFET are summarized as follow. 

1) low ION 2) unintended ambipolar current 3) poor AC performance. On 

problem 2) and 3), there have been several attempts and they had some degree 

of effectiveness: symmetricity between source and drain [15] or drain doping 

modulation [16]. Nevertheless, the most serious problem is low ION (problem 

1). Basically, BTBT mechanism of TFET leads to low ION due to large tunnel 

resistance in source/channel junction. As Si has relatively large bandgap (1.12 

eV at 300K), previously reported Si-based TFET have had poor current 
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Ideal switch

Figure 1.7. Switching characteristic of TFET compared to MOSFET. 
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drivability. To reduce large tunnel resistance, narrow bandgap and direct 

BTBT materials including III-V [17-19] and Ge [20, 21] have been researched 

for the future channel material of TFET. However, their difficulty for 

fabrication and CMOS incompatibility are a large obstacle to apply to 

conventional CMOS technology. Furthermore, abrupt doping junction 

between source and channel in which electric field can be enhanced have been 

actively researched to boost BTBT [22]. If the chronic low ION of TFET is 

overcome, it is eventually expected that the performance of TFET is going to 

be surpass that of MOSFET under 0.5V VDD [23] (see Figure 1.9.). 
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1.4. Scope of Thesis 

 

This thesis focuses on the design and fabrication of TFET with high 

current drivability, steep SS, and excellent CMOS compatibility. Among the 

approaches dealt in the previous section, channel material with narrow 

bandgap, enhanced gate controllability, and doping junction optimization are 

utilized. First, in Chapter 2, the strategies of improve TFET performance are 

proposed. After that, the structural and narrow bandgap effects of SiGe 

channel are investigated. The performance improvement with enhanced gate 

controllability is also confirmed. To give the TCAD simulations results 

credibility, the measurement data is compared with TCAD simulation data 
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and the model parameters are extracted. After that, the fabrication process 

flow is presented. In specific, the three key processes to achieve the concept 

of the proposed TFET are introduced and its optimization process is explained 

in Chapter 3. The measurement results are presented in Chapter 4. The basic 

characteristics for CMOS devices are estimated. The superiority of device 

performance is also demonstrated with various experiments. Comparison 

with ITRS benchmark, previously fabricated TFET, and co-fabricated 

MOSFET is going to be helpful to verify the feasibility of proposed TFET. 

Furthermore, simple inverter characteristics are investigated for AC 

performance. Lastly, the additional optimization options to complement the 

problems of current devices are discussed.     
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Chapter 2 
 

 

Device Characterization 
 

In Chapter 2, the designing process of SiGe nanosheet TFET is mainly 

addressed. The basic structure and features of SiGe nanosheet TFET are 

initially discussed. Second, the strategy and propose of the device for the 

performance improvement of TFETs are explained by each device concept. 

Through calibrated TCAD simulation, the advantages of proposed device are 

confirmed by the physical analysis.  

 

2.1. SiGe Nanosheet TFET 

 

The device structure of the proposed SiGe nanosheet TFET is shown in 

Figure. 2.1. On the silicon-on-insulator (SOI) substrate, active region consists 

of source/drain with Si/SiGe layers and two SiGe nanosheets (NSs) are 

vertically stacked. The pattern is generally considered as nanosheet when the 

width is far larger than the thickness. The number of stacks can be further 

increased. The Ge ratio of SiGe nanosheets is designed to be higher than that 

of SiGe source/drain. The maximum Ge fraction in the SiGe channel is up to 

0.8, while Ge ratio is 0.3 at the SiGe source and drain, respectively. Figure 

2.2(a) shows the cross-section along the gate direction. Each nanosheet is 

surrounded by high-κ/metal gate, which allows gate-all-around (GAA) 

structure. is The cross-section along the channel direction is presented in 
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Figure 2.2(b). In order to form TFET doping junction, source and drain are 

inversely doped.   
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Figure 2.1. Schematic diagram of proposed SiGe nanosheet TFET. 
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2.2. Device Concept 

 

The objective of proposed SiGe nanosheet TFET summarizes as four 

parts. 1) high ION 2) steep SS, 3) low IOFF, and 4) CMOS compatibility. For 

objective 1) and 2), BTBT should be maximized. There are three 

representative things to amplify BTBT: narrow bandgap for thinning 

Gate

SiGe

SiGe

A A’

BOX

Si substrate

Source DrainGate

SiO2

B B’

(a)

(b)

Figure 2.2. Cross-sectional view of (a) along the gate and (b) the channel 

direction of SiGe nanosheet TFET. 
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tunneling barrier, high electric field between source and channel, and 

maximizing tunneling area. In this dissertation, SiGe channel is used for 

thinning tunneling barrier. In addition to SiGe layer deposition, the additional 

technique to raise Ge ratio, Ge condensation is utilized. High Ge ratio in SiGe 

channel enables to narrow bandgap and increase the amount of direct BTBT 

[24]. For the stronger electric field between source and channel, doping 

junction optimization and superior gate control should be fulfilled. Nanosheet 

channel presents GAA structure, in which electric field is concentrated on the 

thin channel. Moreover, the effective channel width can be increased in 

nanosheet channel within the same feature size. Consequently, tunnel 

injection and current flow can be maximized in the nanosheet channel. 

Additionally, high-κ/metal gate with low equivalent oxide thickness (EOT) is 

applied to strengthen gate control.   

To reduce IOFF, it is important to minimize other current flowing 

mechanism which is irrelevant to BTBT, such as Shockley-Read-Hall (SRH) 

recombination and trap-assisted-tunneling (TAT) [25]. Good interface quality 

is required between source and channel (bulk trap) or channel and gate oxide 

(interface trap), respectively. In proposed TFET, the interface trap density (Dit) 

of gate oxide is closely estimated and the most optimal gate formation 

condition is selected. Moreover, ambipolar current from drain to channel 

needs to be suppressed. The drain region is underlapped with gate in order to 

attenuate electric field between drain and channel. Besides, surface-rich Ge 

profile [26] in SiGe channel also helps to prevent junction leakage caused by 



 

 １７ 

narrow bandgap in the channel. 

Lastly, CMOS compatibility is considered as much as possible in the 

design of the fabrication process. As SiGe channel is widely accounted to suit 

both MOSFET and TFET due to high hole mobility, narrow bandgap, and 

CMOS-compatibility [27], MOSFET and TFET are co-fabricated in the same 

process. The intrinsic advantage of TFET, which has similar fabrication 

procedure to that of MOSFET, is constructively utilized. 

 

2.3. Calibration Procedure for TCAD Simulation  

 

Before the investigation of device concept using TCAD simulation, 

Simulation setup should be preceded to get reliable simulation data. First of 

all, the core model parameters are extracted from the experimental data of 

fabricated planar SiGe TFET. Figure 2.3. displays the fabricated planar 

Si0.2Ge0.8 TFET using SOI substrate. The planar TFET is fabricated with the 

main SiGe nanosheet TFET in the almost same dimension and implant 

condition (The detailed fabrication process is going to be described in Chapter 

3). The gate length and channel width is 1 μm, respectively. The SiGe channel 

is thinned to 25 nm. EOT is estimated about 2.1 nm and the thickness of TiN 

gate is 180 nm. As it is a pTFET device, source is doped with arsenic, whereas 

drain is doped with boron, respectively. Implant dose of each source and drain 

is 3×1015 cm-2.  
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To fit the measurement data of planar TFET and TCAD simulation data 

of the same device structure, one should know accurate tunneling coefficients 

in Kane’s model [28, 29]. The nonlocal Kane’s model is the most popular 

model to describe BTBT generation because it automatically reflects the 

contribution of the direct and indirect tunneling well [30]. The formula of 

BTBT generation rate in a given electric field is represented as below: 

𝐺 = 𝐴(
𝐹

𝐹0
)𝑃exp⁡(−

𝐵

𝐹
) 

Where F0 = 1 V/cm, P = 2 for the direct tunneling process, and P = 2.5 

for the indirect tunneling process. A and B are the fitting coefficients of 

nonlocal BTBT model. In general, Si and Ge has each intrinsic value for A 

Si 

BOX

Si0.2Ge0.8

Channel (i)
Source (n+) Drain (p+)

TiN Gate

Gate oxide 

Figure 2.3. Schematic diagram of fabricated p-type Si0.2Ge0.8 TFET used in 

the calibration process. 
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and B for direct and indirect tunneling, respectively. As Ge has narrower 

bandgap and higher direct and indirect tunneling rate, the values of Ge is 

bigger than those of Si. The A and B of Si1-xGex channel is determined 

between the values of Si and those of Ge, in proportion to mole fraction ratio 

x. Since BTBT dominates the current flowing mechanism of TFET, it is most 

important to obtain the accurate values A and B for the exact simulation of 

drain current. In Si1-xGex channel, indirect BTBT mainly contributes to carrier 

injection when Ge ratio (x) is under 0.8. Thus, the values of Aind and Bind are 

important. On the other hand, when Ge ratio is over 0.8, the amount of direct 

BTBT becomes almost similar to that of indirect BTBT [24]. Thus, Adir and 

Bdir should be included in the BTBT simulation.  

Figure 2.4. indicates the simulated structure for Si0.2Ge0.8 planar TFET. 

All the dimension parameters used in the simulation are same as the fabricated 

Si0.2Ge0.8 TFET. Simulation is performed by the SentaurusTM simulator (Ver. 

2015. 06) of Synopsys Inc [31]. Non-local BTBT, drift-diffusion carrier 

transport, band-gap narrowing and Shockley-Read-Hall (SRH) 

recombination models are used. Gate leakage or interface trap density are 

ignored in this simulation. Tunnel parameters are modulated referring the 

previous reports [24, 32] for the values of Si and Ge. Figure 2.5. shows the 

fitting result between the fabricated and simulated TFETs. It is easily 

confirmed that the ION and SS are fitted well in both the linear and log scale. 

The final extracted tunneling coefficients for Si and Ge are in Table. 2.1.  



 

 ２０ 

 

 

Si0.2Ge0.8 Channel (i)Source (n+) Drain (p+)

TiN Gate

BOX

Figure 2.4. Simulated structure of Si0.2Ge0.8 planar TFET used in the TCAD 

simulation. 
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2.4. Device Verification with TCAD Simulation 

 

The three-dimensional simulated structure for SiGe nanosheet TFET is 

exhibited as shown in Figure. 2.6. The overall shape is quite similar to Figure. 

2.1. The height of source and drain is 110 nm. In the nanosheet part, the space 

between SiGe layers is 30 nm, which is filled with high-κ/metal gate. The 

width of each nanosheets is defined from 40 nm to 300 nm. P-i-n or n-i-p 

doping junction is formed for n or p TFETs. The detailed simulation condition 

is organized in Table. 2.2. Ge concentration is varied from 0.3 to 0.8 to reflect 

Ge condensation effect. The cross-sectional views along the gate and channel 

Parameters

F0 1 V/m

P 2 for direct BTBT,

2.5 for indirect BTBT

Si Aind 1.00×1015 cm-1·S-1

Bind 21.0 MV/cm

Ge Aind 1.70×1015 cm-1·S-1

Bind 6.20 MV/cm

Adir 1.46×1020 cm-1·S-1

Bdir 6.04 MV/cm

Table 2.1. Calibrated BTBT parameters of Si and Ge. 
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are also presented. 
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Figure 2.6. Simulated structure of the proposed SiGe nanosheet TFET. 
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In this simulation, the effects of channel structure are analyzed first. 

Figure 2.7. shows transfer curves of the simulated SiGe TFETs. Drain voltage 

(VD) is -0.7 V. The performances of FinFET and single-nanosheet GAA TFET 

with the same mask layout and same Ge fraction ratio are compared with the 

proposed TFET nanosheet structure. As a result, both ION and SS are improved 

in nanosheet structure. This result can be explained by the fact that the 

effective channel width and gate controllability becomes larger in the stacked-

nanosheet channel. The enhanced gate controllability enables energy bands at 

the entire area of the channel are bent more sharply and tunneling barrier is 

thinner in the GAA structure. Thus, the amount of BTBT generation is higher 

and the activated area with the holes is wider in nanosheet channel, as shown 

Simulation Parameters

Channel length 100 ~ 500 nm 

NS  width/height 40 ~ 200 nm

Source/drain height 120 nm

Space between NSs 40 nm

Gate underlap 100 nm

Equivalent oxide 

thickness

2.1 nm

BOX thickness 300 nm

Source doping Arsenic 3×20 cm-3

Drain doping Boron 2×20 cm-3

Channel doping Boron 1×15 cm-3

Table 2.2. Parameters used in the TCAD simulation of SiGe nanosheet 

TFET. 
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in Figure. 2.8. 
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Furthermore, Ge condensation process [33, 34] on SiGe channel can 

mainly boost the performance of SiGe nanosheet TFET. Ge condensation 

process is a technique originated from thermal oxidation, which enables to 

raise Ge content in the SiGe nanosheet (see Figure 2.9.). The detailed 

procedure of Ge condensation will be discussed in Chapter 3. As a 

consequence of Ge condensation, three changes take place to SiGe nanosheet. 

1) Ge ratio on the surface of nanosheet increases, 2) the size of nanosheet 

becomes smaller as Si in the SiGe nanosheet is consumed, and 3) diffused Ge 

atoms are gradually distributed from the surface. Figure 2.10. displays the 

impact of Ge ratio (x) in the Si1-xGex channel. As Ge component becomes 

higher, the bandgap of SiGe is narrower as Ge has a smaller bandgap than Si. 

Due to narrower bandgap of SiGe with higher Ge content, BTBT increases in 

Si0.2Ge0.8 channel compared to Si0.7Ge0.3, Si0.6Ge0.4, and Si0.4Ge0.6 channel. 

However, IOFF also increases in the SiGe channel with higher Ge content due 

to increased leakage component by narrow bandgap. Channel size shrink 

during condensation also helps to reduce SS and IOFF. Reduced channel size, 

especially thin body helps to improve gate controllability in the GAA 

structure [35]. Therefore, increase in IOFF can be prevented because tunneling 

is well controlled by enhanced electric field in the smaller nanosheet.  
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Meanwhile, one can wonder that how far Ge condensation process 

should be done. Even though the size shrink has the advantage of gate control, 

oxidation under too high temperature and too long time reduces the size of 

nanosheet excessively and the advantages of condensed SiGe (large BTBT 

current due to narrow bandgap) will disappear. Thus, size shrink should be 

minimized to prevent reducing the effective channel width. When the minimal 

oxidation proceeds for the Ge condensation, gradual Ge profile is formed, as 

shown in Figure 2.11. Due to optimized Ge condensation, the Ge fraction at 

the surface is 0.8 and Ge ratio at the center is 0.3, respectively. The detailed 

setup procedure of oxidation condition is discussed in Chapter 3. To find out 

the influence of Ge profile, the simulated gradual Ge profile is fitted with 

experimental result. The transfer characteristics of SiGe TFET with the 

constantly distributed Ge profile and the gradual Ge profile are compared. As 

a consequence, Figure 2.12. indicates the current drivability of each device 

does not have a big difference. Accordingly, it is proven that the Ge content 

at the channel surface is most important. Figure 2.13. summarizes the impact 

of Ge condensation. It is shown that ION increases remaining ION/IOFF ratio in 

the condensed SiGe channel under the optimized process condition [36].  
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Chapter 3 
 

 

Device Fabrication 
 

In this chapter, the device fabrication procedure of SiGe nanosheet TFET 

is covered in detail. The whole fabrication process is briefly presented earlier. 

The detailed explanation and the setup processes are described based on the 

key processes.     

 

3.1. Fabrication Process Flow 

  

The entire fabrication process flow for SiGe nanosheet TFET is 

proposed in Figure 3.1. Nanosheet MOSFET is also co-fabricated with TFET. 

The fabrication starts with the preparation of 100-nm SOI wafer. First, top 

silicon layer is thinned to 30 nm by wet oxidation [37]. During the thermal 

oxidation, Si layer is consumed to 45% of the entire SiO2 layer. Then. SiGe, 

Si, and SiGe layer are alternatively deposited by epitaxial growth. The layer 

thickness of each layer is 30 nm. After that, active region is defined by 

electron beam lithography (e-beam) mix-and-match process with 

conventional photolithography. At this moment, channel implant is performed 

on the MOSFET channel with boron and phosphorus. To form fin pattern, 

Si/SiGe layer is etched by anisotropic Si inductively coupled plasma (ICP) 

dry etch. Next step is SiGe nanosheet formation. Following 100:1 HF dip in 

60 seconds, Si sacrificial layers are selectively removed in 



 

 ３２ 

tetramethylammonium hydroxide (TMAH) solution. After nanosheet 

formation, Ge condensation process is conducted by dry oxidation for 20 

minutes in 850℃ oxygen atmosphere. Next, dummy gate stack consisted of 

poly Si and silicon nitride is formed by low-pressure chemical vapor 

deposition (LPCVD). The thickness of poly-Si and Si3N4 is 350 nm and 50 

nm, respectively. Then, arsenic (3×1015 dose, 80 keV energy) and BF2 (3×1015 

dose, 60 keV energy) are implanted to source/drain region and rapid thermal 

annealing is carried out in 950℃, N2 ambient for 30 seconds. Interlayer 

dielectric (ILD) is deposited through high-density plasma CVD (HDPCVD) 

and chemical-mechanical polishing (CMP) is implemented until nitride 

dummy gate is exposed. Gate last process [38] is adopted for the gate 

formation. Dummy gate is removed by wet etch using H3PO4, ICP Si dry etch, 

and CH3COOH-based poly Si wet etch. To deposit high-κ gate stack, 9-cycles 

Al2O3 and 28-cycles HfO2 layer are grown and 160-nm TiN gate is deposited 

by atomic layer deposition (ALD) and sputter process. Finally, conventional 

back-end-of-line (BEOL) process is done to form metal pad. 
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3.2. Key processes for SiGe nanosheet TFET 

  

For the maximization of the concept of proposed TFET, there are three 

key processes to implement designed structure. First, the formation of SiGe 

nanosheets. Nanosheet formation implies nanosheet release through Si 

selective wet etch and Ge condensation. Second, the implantation of source 

and drain for the BTBT junction formation. Last, high-κ/metal gate formation 

for the optimization of gate controllability, such as low EOT and Dit. As the 

proposed TFET uses gate-last process, gate formation process in this device 

includes from dummy gate removal to high-κ/metal gate ALD.   

 

1. SiGe/Si/SiGe epitaxy 2. Active formation 3. Si selective wet etch
(TMAH solution)

4. Ge condensation

5. Dummy gate formation 
S/D implant

6. ILD deposition
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Figure 3.1. Entire fabrication process flow of SiGe nanosheet TFET. 
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3.2.1. Key Process 1 : SiGe Nanosheet Formation  

 

The most important process in this fabrication is SiGe nanosheet 

formation. Figure 3.2. displays the fabrication steps of SiGe nanosheet 

formation from the cross-sectional view of nanosheet. The first step is fin 

patterning consisted of Si and SiGe layers. Figure 3.3. shows the successfully 

formed 80-nm width fin by using e-beam lithography and ICP Si dry etch.  
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Figure 3.2. Process flow of the SiGe nanosheet release. 
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Figure 3.3. 80 nm-width formed by ICP dry etch process.  
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Next, the core technique is Si wet etch by dipping in TMAH solution. It 

is a well-known fact that TMAH solution is good etchant for Si [39]. In 

addition, TMAH solution has high selectivity between Si and SiGe [40]. 

However, anisotropic etching characteristics [41, 42] of TMAH can be a 

weakness in nanosheet release process, because residual Si between SiGe 

nanosheets could not be perfectly removed. In general, the plane direction of 

conventional channel is <110>. The most problematic part is the lowest etch 

rate at the <111> plane. At the beginning of the wet etching, <110> Si plane 

is etched. However, the plane direction in contact with the TMAH solution is 

continuously changed due to anisotropic etch. Thus, one should consider the 

bottleneck effect at the <111> direction. Since the anisotropy of Si etch varies 

with temperature and solution concentration of TMAH, it is essential to find 

the optimal etch condition for preventing imperfect Si etching. Referring 

previous report about TMAH solution [39], 10% TMAH solution is used for 

etch test. In 70 ℃ TMAH solution, the Si/SiGe/Si/SiGe fin pattern is dipped 

for 3 minutes. In Figure 3.4., it is clearly revealed that Si is etched about 65 

nm from each side. In fact, the etch rate for residue Si cannot be linearly 

calculated because its crystal orientation is continuously changed during wet 

etch [43]. In the main process, the Si/SiGe fin is dipped for 5 minutes in 70 ℃, 

10 % TMAH solution. Results can be confirmed in Figure 3.5. that two 

vertically stacked SiGe nanosheets are successfully formed. The top, side, and 

cross sectional views are presented. It is shown that nanosheets are bended, 

since stress is induced to during the nanosheet release. That problem can be 
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overcome at the shorter nanosheets, as presented Figure 3.6. 
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Figure 3.4. Result of <110> Si wet etch in TMAH solution. 
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Figure 3.5. Released SiGe nanosheets using TMAH wet etch. (a) Side, 

Top, and (b) cross-sectional view of SiGe nanosheets 
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The second process is Ge condensation. During dry oxidation on SiGe 

substrate, Si atoms are oxidized and thus consumed. Whereas, Ge atoms are 

not oxidized as Si atoms due to activation energy difference of oxidation [44]. 

Ge atoms receives thermal energy from oxidation process and diffuses into 

bulk of the SiGe layer. As a result, the relative Ge ratio in Si1-xGex channel 

increases from the surface. The adjustable variables for dry oxidation is two: 

oxidation temperature and time. In them, temperature has dominance due to 

it directly affects the thermal energy of Ge to diffuse [45]. In Chapter 2, it is 

verified that the desirable Ge content in SiGe channel is surface-rich gradual 

profile. We have to find out the optimal temperature for Ge condensation to 

acquire appropriate Ge profile. Accordingly, oxidation condition is examined. 

Temperature is splitted from 750 ℃ to 950 ℃ and oxidation is performed for 

60 minutes. Figure 3.7. shows the result of temperature dependence 

Shorter

nanosheet

(500 nm)

Figure 3.6. Successfully formed SiGe nanosheets with shorter length. 
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experiment. As temperature rises, the diffusivity increases and Ge atoms 

move deeper into bulk. At 750 ℃, surface-rich Ge content is achieved but the 

Ge ratio at the surface is not high due to low Ge diffusivity. It is necessary to 

raise temperature. However, at 950 ℃, Ge atoms diffuses too much into bulk 

and overall Ge profile has even distribution. In fact, the Ge profile closest to 

the desirable distribution can be found at 850 ℃. Surface-rich Ge content is 

attained and Ge ratio is higher at the surface compared to ratio in other 

temperature. Moreover, the thickness of surface-rich layer is thick enough to 

activate BTBT. Meanwhile, the oxidation time is decided considering the 

thickness of consumed Si and grown SiO2 layer. As the thickness of grown 

SiGe nanosheet is about 35 nm, the total reduced thickness during 

condensation is set to 10 nm. In the main process, Ge condensation carried 

out in 850 ℃, O2 ambient for 20 minutes and obtained gradual Ge profile, as 

shown in Figure 3.8., Surface-rich (over 80 %) Ge profile is obtained. 
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3.2.2. Key Process 2 : Source/Drain Implantation 

 

The second key process is the ion implantation of source and drain. As 

mentioned in previous chapters, the doping junction formation is one of the 

most important parts in the fabrication of TFET. In this SiGe nanosheet TFET, 

the implantation process is more difficult than conventional TFETs due to 

large height. As the depth of source and drain is deeper during nanosheet stack, 

the implant energy and dose should be larger enough. Especially, the underlap 

region between source and channel (Figure 3.10.) also should be doped well 

because there is the actual starting point for BTBT. However, beneath 

underlap region, SiO2 and SiGe layers are alternatively formed as shown in 

Figure. 3.10. One need to consider whether the implanted ions can penetrate 

through SiO2 layer between SiGe nanosheets. For the accurate verification of 

ion implantation, secondary-ion-mass-spectrometry (SIMS) analysis is 

performed. On alternatively grown SiGe and SiO2 layers, ion implant is 

performed. For the p+ source (drain), BF2+ ions are implanted. Implant 
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Figure 3.9. Final process steps of SiGe nanosheets formation. 
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energy is 60 keV and dose is 3×1015 cm-2. In n+ source (drain), implant energy 

is 80 keV and dose is also 3×1015 cm-2. Lastly, RTA is carried out for 10 

seconds in 950 ℃ N2 ambient. Figure 3.11. shows the SIMS profile after RTA. 

In the case of BF2+, boron is penetrated deeply and reached almost the end of 

SiGe channel. whereas, arsenic ions are heavier than BF2 ions. Accordingly, 

it is revealed that arsenic ions are not diffused deeply but the doping junction 

is successfully formed even in the lower nanosheet.   
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Figure 3.10. Top view and cross-sectional view at the underlapped region 

between source and gate. 
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3.2.3. Key Process 3 : High-κ/Metal gate Formation 

 

The last key process is gate formation. As mentioned in the previous 

section, gate-last formation process includes dummy gate removal and high-

κ/metal gate ALD. Figure 3.12. indicates the schematic diagram of dummy 

gate removal process. At the dummy gate formation step, poly-Si and Si3N4 

is deposited. Poly-Si is material that it is easy for ICP dry etch because of high 

selectivity to SiO2. Si3N4 plays a role of etch stop layer at CMP process. 

Without Si3N4 layer, the uniformity of wafer surface is seriously deteriorated 

[46]. After ILD process, SiO2 CMP is executed for planarization of wafer 

surface. The planarization is done until slurry faces the Si3N4 surface. Figure 

3.13. shows the result of the successful planarization after 100 seconds CMP. 
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Figure 3.11. SIMS profile extracted from the underlapped region between 

source and gate. 
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When the Si3N4 surface is exposed, Nitride is etched in 98% H3PO4 solution. 

As the etch rate of 98% H3PO4 is about 3 nm/min [47], wet etch is executed 

for 20 min to remove 50 nm Si3N4 layer perfectly. The residual layer of 

dummy gate is 250 nm poly-Si. To etch the poly-Si layer roughly, ICP dry 

etch is proceeded earlier. Even though Si dry etch is finished, poly-Si can still 

remain, especially at the sidewall of active region. In Figure 3.14., it is shown 

that the residual poly-Si sidewall is formed next to fin. To remove residual 

poly-Si sidewall, isotropic wet etch is necessary. Among the variety of wet 

etchants, the mixed solution consisted of CH3COOH, HNO3, and HF is used 

[48]. The composition ratio of the three solutions is 80 (CH3COOH):80 

(HNO3): 1 (HF), respectively. As there are only two materials SiO2 and poly-

Si exposed to the surface at this step, the selectivity between SiO2 and poly-

Si should be examined. Figure 3.15., indicates the thickness of remaining 

SiO2/poly-Si layer according to wet etch time. The revealed etch rate for poly-

Si is 9 A/sec. As a result, it is disclosed that the selectivity between SiO2 and 

poly-Si in this solution is over 15:1. Consequently, the main wet etch is 

performed for 80 sec. For the last step of dummy gate removal, the wafer is 

dipped in 100:1 HF solution for 390 seconds. The objective of this step is to 

removed SiO2 grown during condensation process. Figure presents the etch 

rate of 100:1 HF solution for SiO2 etch. Finally, the SiGe channels are 

exposed, as shown in Figure 3.16. 
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From this time, gate-last process is started in earnest. After get rid of 

native oxide on the SiGe channel, high-κ materials are deposited by ALD. 

Al2O3 and HfO2 layer is grown for the gate oxide. There have been a variety 

of reports dealing with the roles of Al2O3 and HfO2 layers [49, 50]. It is known 

that Al2O3 has excellent leakage protection [51] to be appropriate interfacial 

layer for SiGe channel. On the other hand, HfO2 is the most actively used for 

high-κ material due to its superior dielectric constant and CMOS 

compatibility. So then, we should investigate the detailed deposition 

condition for each high-κ material. In other words, the thickness of each layer 

should be precisely determined for optimal gate controllability of TFET. At 

this time, the three combinations for the gate stack is suggested with reference: 

Ref [26]) Al2O3 9 cycles, HfO2 32 cycles, 1) Al2O3 6 cycles, HfO2 32 cycles, 

2) Al2O3 9 cycles, HfO2 28 cycles. Electrical analysis is essential to estimate 

each combination of gate dielectric. Therefore, three metal-insulator-

semiconductor (MIS) capacitors are fabricated. The schematic diagram of 

each dielectric is shown in Figure 3.17. On the SiGe layer, ALD is performed 

and sample is annealed in 450 ℃ H2 ambient for 20 minutes. First, 

capacitance-voltage (C-V) characteristics are measured by using HP 4284A 

precision LCR meter. Dual-frequency C-V extraction method [52, 53] is used 

in this experiment. Figure 3.18. summarizes the C-V measurement results. In 

ideal case, the dielectric constant of Al2O3 (9) is much lower than HfO2 (25). 

For this reason, case 1) seems to have largest capacitance-equivalent-

thickness (CET). However, there is not big difference in the actual 
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capacitance between case 1 and 2. The extracted CET is 2.08 and 2.16 nm, 

respectively. Besides, the leakage current is also investigated. Figure 3.19. 

shows the leakage current according to gate voltage. It is revealed that leakage 

current is prevented more when physical thickness of gate oxide is thicker 

(case 1). Nevertheless, that difference is not that meaningful because leakage 

current become noticeable over -2.5 V gate voltage. The last factor to consider 

is interface trap density. Dit is extracted by conductance method [54, 55]. As 

a consequence, in Figure 3.20., it is indicated that Dit is largest in the case 1. 

The reason for poor interface trap in case 1 can be explained by the fact that 

the quality of Al2O3 layer is proportional to the number of ALD cycles [56]. 

In the earlier ALD cycles, the oxygen atoms tend to be attached to interfacial 

Si atoms. Thus, the composition ratio of oxygen in Al2O3 becomes low and 

the interface quality becomes worse. When additional oxygen is supplied by 

later cycles, the oxygen ratio is stabilized and the overall quality of Al2O3 is 

improved. To examine the effect of each gate dielectric, TCAD simulation 

which applies the EOT and Dit condition is conducted, eventually. As a result, 

the best performance is implemented for SS and ION in case 2 (See Figure 

3.21.). Based on the verified results, the thicknesses of Al2O3 and HfO2 are 

determined as 1 nm (9 cycles) and 3.5 nm (32 cycles), respectively. After 

high-κ ALD, TiN ALD is also performed with 160 nm thickness. Figure 3.22. 

displays the final gate stacking situation. 
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Chapter 4 
 

 

Results and Discussion 
 

The measurement results from the fabricated SiGe nanosheet TFET are 

presented in this chapter. The basic transfer and output characteristics are 

reported. Then, the performance comparison with previously fabricated 

surface-rich SiGe TFET is done. In addition, the performance of SiGe 

nanosheet TFET and the co-fabricated SiGe nanosheet MOSFET is also 

compared. Inverter performance is examined by calibrated TCAD simulation. 

In discussion section, the superiority of proposed SiGe nanosheet TFET is 

examined closely through the performance benchmarks of the reported TFETs. 

Lastly, the improvement points of proposed TFET are investigated.  

 

4.1. Measurement Results 

 

First of all, the diode characteristic should be checked to confirm the 

formation of p-i-n or n-i-p doping junction. Without gate bias, the anode 

current is measured according to anode voltage. Through Figure 4.1., one can 

assert that the anode current is successfully rectified by both p-i-n and n-i-p 

junctions. As the focus of TFET is low power operation. In Figure 4.2., 

transfer curves of the fabricated SiGe nanosheet TFETs are presented. Both 

nTFETs and pTFETs are measured. |VDS| is applied for 0.1 V and 0.7 V, 
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respectively. The ION is defined as IDS when gate overdrive voltage (VGS-Vt) 

equals the VDS. ION of pTFET is measured as 0.35 μA/μm at the -0.7 V of VDS. 

Whereas, ION of nTFET is 0.22 μA/μm. Figure 4.3. shows the point SS 

according to drain current (IDS). For the pTFET, the minimum SS is 50 

mV/dec and the average SS, which is calculated as the slope from 10-12 A to 

10-9A of drain current is 70 mV/dec. For the nTFET, the minimum SS is 55 

mV/dec and the average SS is 82 mV/dec, respectively. Output curves are 

exhibited in Figure. 4.4. It is found out that the current drivability of pTFET 

is better than nTFET.  
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4.2. Analysis of Device Characteristics 

 

4.2.1. Improved Factors to Performance in SiGe nanosheet 

TFET  

 

Later, the fabricated SiGe nanosheet TFET is compared to previous 

fabricated surface Ge-rich Si0.6Ge0.4 TFET [26]. Surface Ge-rich SiGe TFET 

features higher Ge ratio at the surface through Ge condensation, as similar as 

proposed SiGe nanosheet TFET. For the precise comparison, the cross-section 

views of SiGe nanosheet TFET and surface Ge-rich SiGe TFET are compared 

in Figure 4.5. The maximum Ge ratio at the surface is about 0.4, remarkably 

smaller Ge ratio than that of SiGe nanosheet TFET. The Si0.6Ge0.4 TFET has 
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Figure 4.4. Output characteristics of the fabricated SiGe nanosheet TFET.  
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fin structure, while SiGe nanosheet TFET has GAA structure. As the overall 

performance of pTFETs is better than nTFETs, transfer curves are compared 

among pTFETs. Figure 4.6. shows the results of transfer curves. VDS is -0.7 V 

and -0.1 V, respectively. When VDS = -0.7 V, both ION and SS are higher in 

SiGe nanosheet TFET. As mentioned in Chapter 2, current increase and 

steeper SS are the representative effects in TFETs resulted from narrow 

bandgap. Moreover, the effect of Ge content can be clearly confirmed in the 

difference in Vt. The Vt is significantly reduced in the SiGe nanosheet TFET. 

This result is quite similar to the trend shown in Figure 2.10. The enhanced 

BTBT efficiency of Si0.2Ge0.8 channel can be verified through temperature 

dependence of each TFET. The measurement is performed at 298K, 323K, 

and 348K temperature. Figure 4.7(a). shows the transfer curves of Si0.2Ge0.8 

nanosheet TFET according to temperature. It is revealed that the subthreshold 

current under Vt is mainly changed, while ION is almost remained. This trend 

is quite the typical temperature dependence of conventional TFETs [57]. The 

activation energy (Ea) extracted from the transfer curves of each TFET device 

is presented in Figure 4.7(b). the data of Si0.6Ge0.4 TFET is also compared in 

this graph. In the conventional TFETs, the region where Ea is under 0.1 eV is 

considered as BTBT-dominating region, because BTBT does not depend on 

the temperature. From 0.1 eV to the half of bandgap, TAT dominates the 

current flow of TFET. Over the half of bandgap of Ea, it is considered that 

SRH recombination is the main mechanism of drain current [57]. In Si0.2Ge0.8 

nanosheet TFET, the overall Ea is low due to narrower bandgap of Si0.2Ge0.8. 
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It is observed that BTBT-dominating region is far larger than in Si0.6Ge0.4 

TFET. Also, transition from TAT to BTBT is done in the relatively small gate 

voltage window in SiGe nanosheet TFET. These results imply that the 

contribution of BTBT to current flow is high. Meanwhile, the CET is thinner 

in SiGe nanosheet TFET. The gate stack condition of surface-rich SiGe TFET 

is Al2O3 9 cycles and HfO2 32 cycles, which is the same condition of the 

reference sample in Chapter 3.2.3. Therefore, the gate controllability of SiGe 

nanosheet is better than SiGe fin TFET and the result is revealed with 

difference between SS.  

To examine the AC performance of SiGe nanosheet TFET, the inverter 

characteristics are investigated through TCAD mixed-mode simulation. The 

basic electric properties of each device are reflected from the experimental 

results in the TCAD simulation [26]. Figure 4.8(a). shows the basic transient 

characteristic of SiGe nanosheet and Si0.6Ge0.4 TFET, respectively. VDD is set 

to 0.6 V, which is regarded as low supply voltage for CMOS devices. The 

rising/falling time is 1 ns and the holding time is 1 μs. Load capacitance (CL) 

is 1 fF. In fact, one can find out that only the Si0.2Ge0.8 nanosheet TFET plays 

a role as a CMOS device for the inverter. The propagation delay of each 

inverter is extracted in Figure 4.8(b). In the inverter with Si0.2Ge0.8 nanosheet 

TFET, delay is quite small as 14 ns. This can be explained by the fact that the 

high ION of SiGe nanosheet TFET remarkably reduces the resistance of each 

device. 
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4.2.2. Performance Comparison with SiGe nanosheet 

MOSFET  

 

The device performance of SiGe nanosheet pTFET is also compared to 

SiGe nanosheet pMOSFET which is fabricated at the same time, same process. 

Only simply changing the mask layout for ion implant can fabricate 

MOSFETs with the same design. Figure 4.9(a) shows the transfer curves and 

Figure 4.9(b) shows the output curves of each TFET and MOSFET. As is well 

known, the ION of MOSFET is higher than TFET. However, the gap of ION is 

relatively small. The poor hole mobility [58] caused by defects at the 

Si0.2Ge0.8 surface is cited as the cause of this phenomenon. Nonetheless, the 

SS and ION/IOFF ratio is higher in TFET. Vt is relatively small. Moreover, it is 

shown that the ION/IOFF ratio is maximized at the low VDS, -0.1 V. Based on 

these results, SiGe nanosheet TFET is the better option for low power 

application, as explained in Chapter 1.  
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Figure 4.9. (a) Transfer curves and (b) output curves of p-type SiGe 

nanosheet TFET and MOSFET which are co-fabricated. 
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4.3. Performance Evaluation through Benchmarks  

 

The DC performance of the fabricated SiGe nanosheet TFET is 

compared to the variety of reported TFETs [21, 26, 60-72] with superior 

records. Figure 4.10(a) shows the SS-ION benchmark of the reported TFETs. 

The device performance of each device is examined at the 0.3~0.9 V of VDD. 

The red dots indicate the benchmarks of III-V TFETs, while green dots show 

the benchmarks of Si or Ge-based TFETs. Blue dots represent the device 

performance of SiGe nanosheet TFET. It is shown that the overall SS is steep 

in SiGe nanosheet TFET. ION is above average in the compared group. 

Furthemore, ION/IOFF ratio – ION benchmarks are also presented in Figure 

4.10(b). Especially in the low VDD (0.1 V), the ION/IOFF ratio of the SiGe 

nanosheet TFET stands out more. With the comparison to the reported TFETs, 

it is concluded that the additional ION improvement is necessary.  
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Figure 4.10. Summarized device performance of SiGe nanosheet TFET 
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4.4. Optimization Plan for SiGe nanosheet TFET 

 

In the previous sections, we look into the measurement results of SiGe 

nanosheet TFET. Although the performance is remarkable, the problems still 

exist due to the limitation of the fabrication process and the device design. To 

summarize, there are two kinds of improvement points. 1) the quality of the 

gate oxide on SiGe nanosheet and 2) doping junction formed by source/drain 

implantation, and. In this section, these issues are addressed and the solutions 

are presented. After that, the optimized performance through each solution is 

examined. 

 

4.4.1. Improvement of Quality of Gate Dielectric 

There is room for improvement on the quality of gate dielectric. On the 

SiGe channel, GeOx layer is formed during the Ge condensation and high-κ 

ALD process [73]. As GeOx is very unstable material formed by the dangling 

bond at the SiGe surface, it can have the adverse effects on the gate oxide. 

Both Dit and EOT can be deteriorated by GeOx layer on the SiGe. The 

formation of GeOx can be prevented by sulfur passivation by forming –S 

bonds to the surface Si or Ge atoms [74]. In this section, the improvement 

point through reducing Dit and scaling EOT is investigated by TCAD 

simulation. Figure 4.11(a). shows the effect of scaled EOT. In the current 

condition of gate oxide formation, EOT is 2.1nm, as discussed in Chapter 3. 

When EOT is scaled to 1.5 nm, ION of SiGe nanosheet pTFET can increase to 
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3 times and SS becomes steeper to 62 mV/dec.  

The influence of interface trap density can be confirmed in Figure 

4.11(b). It is observed that the IOFF is dramatically changed by Dit. As TAT 

and SRH recombination has a great influence on subthreshold current, 

interface traps mainly worsen IOFF. In the same way, SS can be also increased 

by the interface trap. If the interface trap density can be adjusted, ION/IOFF 

ratio can be improved up to 10 times, as shown in the Figure 4.11(b). 

 

4.4.2. Optimization of Doping Junction at Source 

The doping profiles used in this device can be improved further. First of 

all, the abrupt junction from the steeper lateral doping profile can enhance the 

electric field between source and channel. In n+ source, arsenic concentration 

decreases with the slope of 150 nm/dec [75]. Meanwhile, boron concentration 

is reduced with the slope of 50 nm/dec in p+ source [76]. With the help of the 

advanced RTA process [77] or in-situ source epitaxy process [78], The 

steepness of the doping junction can be improved. According to [78], the 

junction can be abrupt with the few nanometers per decade of steepness. 

Figure. 4.12. summarizes the improved device performance of the optimized 

SiGe nanosheet TFET. Adopting modified process condition, SS and current 

drivability, especially ION can be additionally supplemented. Moreover, SiGe 

nanosheet TFET shows a desirable performance improvement compared to 

the performance benchmark. It is expected that over-micron ION and near 60 
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mV/dec SS can be achieved with the improved SiGe nanosheet TFET. 
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Figure 4.11. Simulated transfer curves of SiGe nanosheet TFETs according 

to the various conditions of (a) EOT and (b) Dit.  
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Chapter 5 
 

 

Conclusion 
 

In this dissertation, vertically-stacked SiGe nanosheet TFET which is 

compatible with the state-of-the-art CMOS devices is proposed. The objective 

of proposed TFET is to solve the limitations of conventional TFETs : high ION, 

reducing ambipolar current, and CMOS compatibility. To achieve these goals, 

Ge-condensed multi SiGe nanosheets structure is suggested.  

Through TCAD simulation, each concept of SiGe nanosheet TFET is 

verified. It features high current drivability, high ION/IOFF ratio, and smaller 

SS than conventional Fin and single-GAA TFET. SiGe channel with high Ge 

content enables to obtain narrow bandgap and boost BTBT. Nanosheet 

structure has an advantage of maximizing effect channel width and gate 

controllability. Drain underlapping reduces ambipolar current.  

In the fabrication process, the excellent formation process of SiGe 

nanosheets with high Ge content is proposed. Two Si0.2Ge0.8 nanosheets are 

successfully formed by optimized Ge condensation. To produce the devices 

as close as possible to the designed conditions, gate stack and ion 

implantation test are performed. As a result, the combination of Al2O3 and 

HfO2 high-κ layers is determined and the EOT and Dit are optimized. In ion 

implantation test, the penetration of boron and arsenic is confirmed by SIMS 

analysis, respectively. Finishing the fabrication, the performance of the SiGe 
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nanosheet TFET is investigated. Under 60 mV/dec SS is successfully 

achieved. Through the comparison with the previously reported SiGe and Si 

TFETs, it is clearly affirmed that SiGe nanosheet TFET has higher ION, 

ION/IOFF and steeper average SS. the factors of the improvement, such as 

higher Ge content and enhance gate control are also precisely analyzed.  

Even though it is confirmed that the proposed concepts are generally 

well realized in the fabricated SiGe nanosheet TFET, there are still a few 

problems that have not been resolved. If the junction profile at the source 

becomes abruptly, using the in-situ-doped source epitaxy, the overall 

electrical performance can be certainly boosted. Moreover, alleviating Dit 

helps the reducing IOFF and other leakage components. Well-scaled EOT also 

contributes steeper SS and higher ION. Lastly, the defects generated in the SiGe 

channel with high Ge ratio can deteriorate the electrical characteristic of 

proposed TFET. The accurate analysis which can quantify the adverse effects 

of defect is necessary. In addition, CGD issue should be resolved to improve 

AC performance. With this SiGe nanosheet structure, both MOSFET and 

TFET devices can make good progress in the future logic applications. 
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초  록 

 

 

초고밀도 집적회로 기술의 발전은 고집적도 달성을 통해 단위 칩의 

연산 속도 및 용량 향상에 기여할 소형의 소자를 끊임없이 요구하고 

있다. 하지만 최신의 상보형 금속-산화막-반도체 (CMOS) 기술에서 금속-

산화막-반도체 전계 효과 트랜지스터 (MOSFET) 의 단순한 소형화는 더 

이상 집적회로의 성능 향상을 보장해 주지 못하고 있다. 특히 소자의 

크기가 줄어드는 반면 정적 전력 소모량은 전압 스케일링의 둔화로 인해 

감소되지 않고 있는 상황이다. MOSFET의 짧은 채널 효과로 인해 증가된 

누설 전류가 전압 스케일링의 어려움을 주는 대표적 원인으로 꼽힌다. 

이러한 근본적인 MOSFET의 한계를 극복하기 위하여 지난 10여년간 

새로운 단계의 전계 효과 트랜지스터 소자들이 연구되고 있다. 그 중 

터널 전계 효과 트랜지스터(TFET)은 그 특유의 우수한 전원 특성으로 

각광받아 집중적으로 연구되고 있다. 많은 연구에도 불구하고, TFET의 

부족한 전류 구동 능력은 MOSFET의 대체재로 자리매김하는 데 가장 큰 

문제점이 되고 있다. 

본 학위논문에서는 상기된 문제점을 해결할 수 있는 우수한 전류 

구동 능력을 가진 TFET이 제안되었다. 반송자 유입과 게이트 컨트롤을 

향상시킬 수 있는 수직 적층된 실리콘저마늄(SiGe) 나노시트 채널이 

사용되었다. 또한, 제안된 TFET은 CMOS 기반 공정을 활용하여 MOSFET과 

함께 제작되었다. 테크놀로지 컴퓨터 지원 설계(TCAD) 시뮬레이션과 
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실제 측정 결과를 활용하여 제안된 소자의 우수성을 검증하였다. 단위 

CMOS 소자의 관점에서, 전원 특성과 전류 구동 능력의 향상을 정량적, 

정성적 방법으로 분석하였다. 그리고, 제작된 소자의 성능을 기존 제작 

및 보고된 TFET 및 함께 제작된 MOSSFET과 비교하였다. 이러한 과정을 

통해, 실리콘저마늄 나노시트 TFET의 활용 가능성이 입증되었다. 제안된 

실리콘저마늄 나노시트 소자는 주목할 만한 전원 특성을 가졌고 저전압 

구동 환경에서 한층 더 낮은 누설 전류를 가짐으로써 향후 MOSFET을 

대체할만한 충분한 가능성을 보여주었다.  

 

주요어 : 실리콘저마늄(SiGe) 채널, 터널 전계 효과 트랜지스터,다층 

나노시트 전계 효과 트랜지스터, 저전압 소자, 우수한 전원 특성을 가진 

CMOS 소자, 문턱 전압 이하 기울기, Ge 응축 기술, 밴드 간 터널링 
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