1 research outputs found

    ๋†’์€ ์ „๋ฅ˜ ๊ตฌ๋™๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๋Š” SiGe ๋‚˜๋…ธ์‹œํŠธ ๊ตฌ์กฐ์˜ ํ„ฐ๋„๋ง ์ „๊ณ„ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ๋ฐ•๋ณ‘๊ตญ.The development of very-large-scale integration (VLSI) technology has continuously demanded smaller devices to achieve high integration density for faster computing speed or higher capacity. However, in the recent complementary-metal-oxide-semiconductor (CMOS) technology, simple downsizing the dimension of metal-oxide-semiconductor field-effect transistor (MOSFET) no longer guarantees the boosting performance of IC chips. In particular, static power consumption is not reduced while device size is decreasing because voltage scaling is slowed down at some point. The increased off-current due to short-channel effect (SCE) of MOSFET is a representative cause of the difficulty in voltage scaling. To overcome these fundamental limits of MOSFET, many researchers have been looking for the next generation of FET device over the last ten years. Tunnel field-effect transistor (TFET) has been intensively studied for its steep switching characteristics. Nevertheless, the poor current drivability of TFET is the most serious obstacle to become competitive device for MOSFET. In this thesis, TFET with high current drivability in which above-mentioned problem is significantly solved is proposed. Vertically-stacked SiGe nanosheet channels are used to boost carrier injection and gate control. The fabrication technique to form highly-condensed SiGe nanosheets is introduced. TFET is fabricated with MOSFET with the same structure in the CMOS-compatible process. Both technology-computer-aided-design (TCAD) simulation and experimental results are utilized to support and examine the advantages of proposed TFET. From the perspective of the single device, the improvement in switching characteristics and current drivability are quantitatively and qualitatively analyzed. In addition, the device performance is compared to the benchmark of previously reported TFET and co-fabricated MOSFET. Through those processes, the feasibility of SiGe nanosheet TFET is verified. It is revealed that the proposed SiGe nanosheet TFET has notable steeper switching and low leakage in the low drive voltage as an alternative to conventional MOSFET.์ดˆ๊ณ ๋ฐ€๋„ ์ง‘์ ํšŒ๋กœ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ๊ณ ์ง‘์ ๋„ ๋‹ฌ์„ฑ์„ ํ†ตํ•ด ๋‹จ์œ„ ์นฉ์˜ ์—ฐ์‚ฐ ์†๋„ ๋ฐ ์šฉ๋Ÿ‰ ํ–ฅ์ƒ์— ๊ธฐ์—ฌํ•  ์†Œํ˜•์˜ ์†Œ์ž๋ฅผ ๋Š์ž„์—†์ด ์š”๊ตฌํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ตœ์‹ ์˜ ์ƒ๋ณดํ˜• ๊ธˆ์†-์‚ฐํ™”๋ง‰-๋ฐ˜๋„์ฒด (CMOS) ๊ธฐ์ˆ ์—์„œ ๊ธˆ์†-์‚ฐํ™”๋ง‰-๋ฐ˜๋„์ฒด ์ „๊ณ„ ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ (MOSFET) ์˜ ๋‹จ์ˆœํ•œ ์†Œํ˜•ํ™”๋Š” ๋” ์ด์ƒ ์ง‘์ ํšŒ๋กœ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋ณด์žฅํ•ด ์ฃผ์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์†Œ์ž์˜ ํฌ๊ธฐ๊ฐ€ ์ค„์–ด๋“œ๋Š” ๋ฐ˜๋ฉด ์ •์  ์ „๋ ฅ ์†Œ๋ชจ๋Ÿ‰์€ ์ „์•• ์Šค์ผ€์ผ๋ง์˜ ๋‘”ํ™”๋กœ ์ธํ•ด ๊ฐ์†Œ๋˜์ง€ ์•Š๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์ด๋‹ค. MOSFET์˜ ์งง์€ ์ฑ„๋„ ํšจ๊ณผ๋กœ ์ธํ•ด ์ฆ๊ฐ€๋œ ๋ˆ„์„ค ์ „๋ฅ˜๊ฐ€ ์ „์•• ์Šค์ผ€์ผ๋ง์˜ ์–ด๋ ค์›€์„ ์ฃผ๋Š” ๋Œ€ํ‘œ์  ์›์ธ์œผ๋กœ ๊ผฝํžŒ๋‹ค. ์ด๋Ÿฌํ•œ ๊ทผ๋ณธ์ ์ธ MOSFET์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ง€๋‚œ 10์—ฌ๋…„๊ฐ„ ์ƒˆ๋กœ์šด ๋‹จ๊ณ„์˜ ์ „๊ณ„ ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ ์†Œ์ž๋“ค์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘ ํ„ฐ๋„ ์ „๊ณ„ ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ(TFET)์€ ๊ทธ ํŠน์œ ์˜ ์šฐ์ˆ˜ํ•œ ์ „์› ํŠน์„ฑ์œผ๋กœ ๊ฐ๊ด‘๋ฐ›์•„ ์ง‘์ค‘์ ์œผ๋กœ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋งŽ์€ ์—ฐ๊ตฌ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , TFET์˜ ๋ถ€์กฑํ•œ ์ „๋ฅ˜ ๊ตฌ๋™ ๋Šฅ๋ ฅ์€ MOSFET์˜ ๋Œ€์ฒด์žฌ๋กœ ์ž๋ฆฌ๋งค๊น€ํ•˜๋Š” ๋ฐ ๊ฐ€์žฅ ํฐ ๋ฌธ์ œ์ ์ด ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ƒ๊ธฐ๋œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์šฐ์ˆ˜ํ•œ ์ „๋ฅ˜ ๊ตฌ๋™ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง„ TFET์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋ฐ˜์†ก์ž ์œ ์ž…๊ณผ ๊ฒŒ์ดํŠธ ์ปจํŠธ๋กค์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ง ์ ์ธต๋œ ์‹ค๋ฆฌ์ฝ˜์ €๋งˆ๋Š„(SiGe) ๋‚˜๋…ธ์‹œํŠธ ์ฑ„๋„์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ TFET์€ CMOS ๊ธฐ๋ฐ˜ ๊ณต์ •์„ ํ™œ์šฉํ•˜์—ฌ MOSFET๊ณผ ํ•จ๊ป˜ ์ œ์ž‘๋˜์—ˆ๋‹ค. ํ…Œํฌ๋†€๋กœ์ง€ ์ปดํ“จํ„ฐ ์ง€์› ์„ค๊ณ„(TCAD) ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ์ธก์ • ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ œ์•ˆ๋œ ์†Œ์ž์˜ ์šฐ์ˆ˜์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋‹จ์œ„ CMOS ์†Œ์ž์˜ ๊ด€์ ์—์„œ, ์ „์› ํŠน์„ฑ๊ณผ ์ „๋ฅ˜ ๊ตฌ๋™ ๋Šฅ๋ ฅ์˜ ํ–ฅ์ƒ์„ ์ •๋Ÿ‰์ , ์ •์„ฑ์  ๋ฐฉ๋ฒ•์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ , ์ œ์ž‘๋œ ์†Œ์ž์˜ ์„ฑ๋Šฅ์„ ๊ธฐ์กด ์ œ์ž‘ ๋ฐ ๋ณด๊ณ ๋œ TFET ๋ฐ ํ•จ๊ป˜ ์ œ์ž‘๋œ MOSSFET๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์„ ํ†ตํ•ด, ์‹ค๋ฆฌ์ฝ˜์ €๋งˆ๋Š„ ๋‚˜๋…ธ์‹œํŠธ TFET์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ์ž…์ฆ๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ์‹ค๋ฆฌ์ฝ˜์ €๋งˆ๋Š„ ๋‚˜๋…ธ์‹œํŠธ ์†Œ์ž๋Š” ์ฃผ๋ชฉํ•  ๋งŒํ•œ ์ „์› ํŠน์„ฑ์„ ๊ฐ€์กŒ๊ณ  ์ €์ „์•• ๊ตฌ๋™ ํ™˜๊ฒฝ์—์„œ ํ•œ์ธต ๋” ๋‚ฎ์€ ๋ˆ„์„ค ์ „๋ฅ˜๋ฅผ ๊ฐ€์ง์œผ๋กœ์จ ํ–ฅํ›„ MOSFET์„ ๋Œ€์ฒดํ• ๋งŒํ•œ ์ถฉ๋ถ„ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.Chapter 1 Introduction 1 1.1. Power Crisis of Conventional CMOS Technology 1 1.2. Tunnel Field-Effect Transistor (TFET) 6 1.3. Feasibility and Challenges of TFET 9 1.4. Scope of Thesis 11 Chapter 2 Device Characterization 13 2.1. SiGe Nanosheet TFET 13 2.2. Device Concept 15 2.3. Calibration Procedure for TCAD simulation 17 2.4. Device Verification with TCAD simulation 21 Chapter 3 Device Fabrication 31 3.1. Fabrication Process Flow 31 3.2. Key Processes for SiGe Nanosheet TFET 33 3.2.1. Key Process 1 : SiGe Nanosheet Formation 34 3.2.2. Key Process 2 : Source/Drain Implantation 41 3.2.3. Key Process 3 : High-ฮบ/Metal gate Formation 43 Chapter 4 Results and Discussion 53 4.1. Measurement Results 53 4.2. Analysis of Device Characteristics 56 4.2.1. Improved Factors to Performance in SiGe Nanosheet TFET 56 4.2.2. Performance Comparison with SiGe Nanosheet MOSFET 62 4.3. Performance Evaluation through Benchmarks 64 4.4. Optimization Plan for SiGe nanosheet TFET 66 4.4.1. Improvement of Quality of Gate Dielectric 66 4.4.2. Optimization of Doping Junction at Source 67 Chapter 5 Conclusion 71 Bibliography 73 Abstract in Korean 81 List of Publications 83Docto
    corecore