580 research outputs found

    Load Frequency Control (LFC) Strategies in Renewable Energy‐Based Hybrid Power Systems:A Review

    Get PDF
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a comprehensive review of several LFC structures in a diverse configuration of a power system. First of all, an overview of a renewable energy-based power system is provided with a need for the development of LFC. The basic operation was studied in single-area, multi-area and multi-stage power system configurations. Types of controllers developed on different techniques studied with an overview of different control techniques were utilized. The comparative analysis of various controllers and strategies was performed graphically. The future scope of work provided lists the potential areas for conducting further research. Finally, the paper concludes by emphasizing the need for better LFC design in complex power system environments

    Transient Analysis of Quasi Oppositional Based Lightning Search Algorithm Optimized PID Controller in Isolated Small Hydro Power Plant

    Get PDF
    In this paper, Small Hydro Plant (SHP) of 1.3 MW is simulated with two conventional PID controllers in excitation system and governor to enhance the capability to handle the transiency of the generator. Excitation voltage control and turbine speed control are the two basic control schemes, to regulate reactive power or terminal voltage and real power or frequency respectively. The selection parameters of the PID controllers are significant to enhance the performance of the system. Quasi Oppositional Base­­d Lightning Search Algorithm (QOLSA) is validated in this paper to optimize the PID controllers over LSA and PSO. Renewable energy source like SHP is environment friendly and very imperative to meet the vigorously growing load demand. The simulation of the SHP is established in MATLAB/SIMULINK environment. Finally, QOLSA optimized PID controller contributes better control in terminal voltage and power over LSA and PSO algorithms.  Citation: Kaushaley, S., and Shaw, B. (2018). Transient Analysis of Quasi Oppositional Based Lightning Search Algorithm Optimized PID Controller in Isolated Small Hydro Power Plant. Trends in Renewable Energy, 4, 34-43. DOI: 10.17737/tre.2018.4.3.004

    Small-signal stability analysis of hybrid power system with quasi-oppositional sine cosine algorithm optimized fractional order PID controller

    Get PDF
    This article deals with the frequency instability problem of a hybrid energy power system (HEPS) coordinated with reheat thermal power plant. A stochastic optimization method called a sine-cosine algorithm (SCA) is, initially, applied for optimum tuning of fractional-order proportional-integral-derivative (FOPI-D) controller gains to balance the power generation and load profile. To accelerate the convergence mobility and escape the solutions from the local optimal level, quasi-oppositional based learning (Q-OBL) is integrated with SCA, which results in QOSCA. In this work, the PID-controller's derivative term is placed in the feedback path to avoid the set-point kick problem. A comparative assessment of the energy-storing devices is shown for analyzing the performances of the same in HEPS. The qualitative and quantitative evaluation of the results shows the best performance with the proposed QOSCA: FOPI-D controller compared to SCA-, grey wolf optimizer (GWO), and hyper-spherical search (HSS) optimized FOPI-D controller. It is also seen from the results that the proposed QOSCA: FOPI-D controller has satisfactory disturbance rejection ability and shows robust performance against parametric uncertainties and random load perturbation. The efficacy of the designed controller is confirmed by considering generation rate constraint, governor dead-band, and boiler dynamics effects

    Tidal supplementary control schemes-based load frequency regulation of a fully sustainable marine microgrid

    Get PDF
    The world is targeting fully renewable power generation by the middle of the century. Distributed generation is the way to increase the penetration level of renewable energies. This paper presents load frequency control of a hybrid tidal, wind, and wave microgrid to feed an isolated island. This research is a step towards 100% renewable energy communities in remote seas/oceans islands. The wave and tidal generation systems model are presented. The study presents load frequency control through three supplementary control strategies: conventional integrators, fractional order integrator, and non-linear fractional order integrator. All the controllers of the microgrid are designed by using a novel black widow optimization technique. The applied technique is compared to other existing state-of-the-art algorithms. The results show that the black widow non-linear fractional integrator has a better performance over other strategies. Coordination between the unloaded tidal system and blade pitch control of both wind and tidal systems are adopted in the microgrid to utilize the available reserve power for the frequency support. Simulation and optimization studies are performed using the MATLAB/SIMULINK 2017a software application

    A Novel 2DOF Fractional Controller for Wind-Solar Integrated Power System

    Get PDF
    Power system is an integration of many power generating units with continuous load variation due to which the frequency of the power system changes. Using traditional proportional integral (PI) controllers, frequency transients are reduced, and with sufficient time delay zero steadystate error is obtained. In this proposed research article, a three-area thermal plant system with wind and solar photovoltaic power generating systems is considered. This integration of renewable system will lead to the frequency transients which has to be addressed seriously. To improve the frequency profile of this diverse-source interconnected power system, a novel two degree of freedom proportional fractional integral double derivative (2-DOF-PFIDD) controller is proposed. The integral square error (ISE) cost function is utilized to discover the best parameter gains of the proposed controller using the intelligent water drops algorithm (IWDs). The benefits of the proposed controller are evaluated using an IEEE-39 bus system with wind and solar photovoltaic (SPV) generation. Uncertainties in the wind and solar power system characteristics such as wind speed and irradiance are considered. Comparisons with typical proportional integral derivative (PID), two degree of freedom proportional integral derivative (2-DOF PID), and 2-DOF-PIDD controllers are presented to demonstrate the efficacy of proposed controller for improving the frequency and tie-line power profiles

    Frequency deviations stabilizations in restructured power systems using coordinative controllers

    Get PDF
    Modern restructured power system faces excessive frequency aberrations due to the intermittent renewable generations and persistently changing load demands. An efficient and robust control strategy is obligatory to minimise deviations in the system frequency and tie-line to avoid any possible blackout. Hence, in this research, to achieve this target, automatic generation control (AGC) is utilized as a secondary controller to alleviate the changes in interconnected restructured systems at uncertainties. The objective of AGC is to quickly stabilize the deviations in frequency and tie-line power following load fluctuations. This thesis addresses the performance of AGC in two-area restructured power systems with many sophisticated control strategies in the presence of renewable and traditional power plants. As per literature of research work, there are quite a few research studies on AGC of a restructured system using optimized coordinative controllers. Besides, investigations on advanced optimized-based coordinative controller approaches are also rare to find in the literature. So, various combinations of two degrees of freedom (2DOF) controllers are utilized as supplementary controllers to diminish the frequency deviations. Nevertheless, the interconnected tie-lines are typically congested in areas with huge penetration of renewable sources, which may reduce the tie -line capability. Therefore, distinct FACTS controllers and ultra-capacitor (UC) are integrated into two-area restructured systems for strengthening the tie-line power and frequency. Further, new optimization techniques such as cuckoo search (CS), bat algorithm (BA), moth-flame optimization (MFO) are utilized in this work for investigating the suggested 2DOF controllers and compared their performance in all contracts of restructured systems. As per the simulation outcomes, the amalgamation of DPFC and UC with MFObased 2DOF PID-FOPDN shows low fluctuation rate in frequency and tie-line power. Besides, the settling times (ST) of two areas are 9.5 S for ΔF1, 8.2 S for ΔF2, and 10.15 S for ΔPtie. The robustness of the suggested controller has been verified by ±25% variations in system parameters and loading conditions

    Symbiotic Organisms Search Algorithm: theory, recent advances and applications

    Get PDF
    The symbiotic organisms search algorithm is a very promising recent metaheuristic algorithm. It has received a plethora of attention from all areas of numerical optimization research, as well as engineering design practices. it has since undergone several modifications, either in the form of hybridization or as some other improved variants of the original algorithm. However, despite all the remarkable achievements and rapidly expanding body of literature regarding the symbiotic organisms search algorithm within its short appearance in the field of swarm intelligence optimization techniques, there has been no collective and comprehensive study on the success of the various implementations of this algorithm. As a way forward, this paper provides an overview of the research conducted on symbiotic organisms search algorithms from inception to the time of writing, in the form of details of various application scenarios with variants and hybrid implementations, and suggestions for future research directions

    Real Power Loss Reduction and Voltage Stability Enhancement by Stock Exchange, Product Demand-Availability, Affluent and Penurious Algorithms

    Get PDF
    In this paper, the Stock Exchange Algorithm (SEA), the Product Demand-Availability (PDA) algorithm, and the Affluent and Penurious (AP) algorithm are proposed to solve the power loss reduction problem. In the SEA approach, selling and buying shares in the stock exchange was imitated to design the algorithm. Stockholders are classified as Privileged, Average or Weak based on their fitness value. The PDA optimization algorithm is based on the consumer demand and availability of a product in the market. The Affluent and Penurious algorithm mimics the social behavior of people. The gap parameter (G) is defined to indicate the growing gap between affluent and penurious people when affluent people increase their wealth. The proposed Stock Exchange Algorithm, Product Demand-Availability optimization algorithm and the Affluent and Penurious optimization algorithm were tested in the IEEE 30 bus system. Real power loss minimization, voltage deviation minimization, and voltage stability index enhancement were successfully attained

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency
    corecore