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Abstract. In this paper, the Stock Exchange Algorithm (SEA), the Product 

Demand-Availability (PDA) algorithm, and the Affluent and Penurious (AP) 

algorithm are proposed to solve the power loss reduction problem. In the SEA 

approach, selling and buying shares in the stock exchange was imitated to design 

the algorithm. Stockholders are classified as Privileged, Average or Weak based 

on their fitness value. The PDA optimization algorithm is based on the consumer 

demand and availability of a product in the market. The Affluent and Penurious 

algorithm mimics the social behavior of people. The gap parameter (G) is defined 

to indicate the growing gap between affluent and penurious people when affluent 

people increase their wealth. The proposed Stock Exchange Algorithm, Product 

Demand-Availability optimization algorithm and the Affluent and Penurious 

optimization algorithm were tested in the IEEE 30 bus system. Real power loss 

minimization, voltage deviation minimization, and voltage stability index 

enhancement were successfully attained.  

Keywords: affluent and penurious; availability-requirement; gap parameter; optimal 

reactive power; product; shares; stock exchange; transmission loss. 

1 Introduction 

Real power loss minimization, voltage stability enhancement and voltage 

deviation minimization were the main objectives of this work. Many 

conventional [1,2] numerical methods, called deterministic methods, such as 

gradient search (GS) [3], Newton method (NM) [4], interior point method (IPM) 

[5-7], linear program (LP) [8-10], dynamic programming method (DPM)[11], 

quadratic programming method (QPM) [12,13], and Lagrangian method (LM) 

[14], can find optimal solutions with adequate quality, but these methods have 

several disadvantages, such as high time consumption, high number of iterations, 

large number of computations, incapability of handling non-differentiable 

constraints and easily falling into a local optimum solution zone. In recent times, 

metaheuristic methods inspired by natural phenomena such as animal behavior 

have been more widely and successfully applied for solving problems such as the 
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optimal reactive power dispatch (ORPD) problem. Many methods have been 

developed, creating large families of methods, such as variants of genetic 

algorithms (GA) [15-19], variants of differential evolution (DE) algorithms [20-

24], variants of particle swarm optimization (PSO) algorithms [25-31], variants 

of gravitational search algorithms (GSA) [32-35], and many other new standard 

methods [36-48].  

In this work, three algorithm were designed to solve the ORPD problem. Firstly, 

the Stock Exchange Algorithm, where the ORPD is equated with a person acting 

in the stock exchange. People buy shares of any company with reference to the 

market and their financial conditions. The variables of the reactive power 

problem are represented by shares; a person buying shares initiates the variables. 

Secondly, the Product Demand-Availability optimization algorithm was 

designed, which is based on the consumer demand and availability of a product 

in the market. When the product is introduced in the market it initially faces 

oscillation between demand and availability, but after some time it reaches a 

stable point. Finally, the Affluent and Penurious (AP) optimization algorithm was 

designed, which emulates the social behavior of people. Two groups of people 

are created: Affluent and Penurious. The gap parameter (G) in the proposed 

algorithm indicates the status of each person. The proposed Stock Exchange 

Algorithm, the Product Demand-Availability (PDA) optimization algorithm, the 

Affluent and Penurious (AP) optimization algorithm were tested in the IEEE 30 

bus system and the IEEE 14, 30, 57, 118, 300 bus test systems without 

considering the voltage stability index. The proposed algorithms reduced the 

power loss effectively and the control variables were within the limits. 

2 Problem Formulation 

Power loss minimization is defined by: 

 𝑀𝑖𝑛 𝑂𝐵�̃�(𝑟, 𝑢) (1) 

Subject to: 

 𝐿(𝑟, 𝑢) = 0 (2) 

 𝑀(𝑟, 𝑢) = 0 (3) 

 𝑟 = [𝑉𝐿𝐺1, . . , 𝑉𝐿𝐺𝑁𝑔; 𝑄𝐶1, . . , 𝑄𝐶𝑁𝑐; 𝑇1, . . , 𝑇𝑁𝑇
] (4) 

 𝑢 = [𝑃𝐺𝑠𝑙𝑎𝑐𝑘; 𝑉𝐿1, . . , 𝑉𝐿𝑁𝐿𝑜𝑎𝑑
; 𝑄𝐺1, . . , 𝑄𝐺𝑁𝑔; 𝑆𝐿1, . . , 𝑆𝐿𝑁𝑇

] (5) 

 𝐹1 = 𝑃𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒[∑ 𝐺𝑚[𝑉𝑖
2 + 𝑉𝑗

2 − 2 ∗ 𝑉𝑖𝑉𝑗𝑐𝑜𝑠Ø𝑖𝑗]
𝑁𝑇𝐿
𝑚 ] (6) 
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 𝐹2 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [∑ |𝑉𝐿𝑘 − 𝑉𝐿𝑘
𝑑𝑒𝑠𝑖𝑟𝑒𝑑|

𝑁𝐿𝐵
𝑖=1 |𝑉𝐿𝑘 − 𝑉𝐿𝑘

𝑑𝑒𝑠𝑖𝑟𝑒𝑑|
2
+

∑ |𝑄𝐺𝐾 − 𝑄𝐾𝐺
𝐿𝑖𝑚|

2𝑁𝑔
𝑖=1 ] (7) 

 𝐹3 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝑀𝑎𝑥𝐼𝑚𝑢𝑚 (8) 

 𝐿𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[𝐿𝑗]; 𝑗 = 1; 𝑁𝐿𝐵 (9) 

and {𝐿𝑗 = 1 − ∑ 𝐹𝑗𝑖
𝑉𝑖

𝑉𝑗

𝑁𝑃𝑉
𝑖=1  𝐹𝑗𝑖 = −[𝑌1]

1[𝑌2]  (10) 

 𝐿𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 [1 − [𝑌1]
−1[𝑌2] ×

𝑉𝑖

𝑉𝑗
] (11) 

Equality constraints:  

0 = 𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗 [𝐺𝑖𝑗𝑐𝑜𝑠[Ø𝑖 − Ø𝑗] + 𝐵𝑖𝑗𝑠𝑖𝑛[Ø𝑖 − Ø𝑗]]
.
𝑗∈𝑁𝐵

 (12) 

0 = 𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗 [𝐺𝑖𝑗𝑠𝑖𝑛[Ø𝑖 − Ø𝑗] + 𝐵𝑖𝑗𝑐𝑜𝑠[Ø𝑖 − Ø𝑗]]
.
𝑗∈𝑁𝐵

 (13) 

Inequality constraints:  

 𝑃𝑔𝑠𝑙𝑎𝑐𝑘
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  (14) 

 𝑄𝑔𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 , 𝑖 ∈ 𝑁𝑔 (15) 

  𝑉𝐿𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 , 𝑖 ∈ 𝑁𝐿           (16) 

  𝑇𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 , 𝑖 ∈ 𝑁𝑇         (17) 

 𝑄𝑐
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑄𝑐 ≤ 𝑄𝐶

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 , 𝑖 ∈ 𝑁𝐶  (18) 

 |𝑆𝐿𝑖| ≤ 𝑆𝐿𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 , 𝑖 ∈ 𝑁𝑇𝐿 (19) 

 𝑉𝐺𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 , 𝑖 ∈ 𝑁𝑔        (20) 

The multi-objective fitness (MOF) function is defined by: 

 𝑀𝑂𝐹 = 𝐹1 + 𝑟𝑖𝐹2 + 𝑢𝐹3 = 𝐹1 + [∑ 𝑥𝑣[𝑉𝐿𝑖 − 𝑉𝐿𝑖
𝑚𝑖𝑛]

2𝑁𝐿
𝑖=1 +

∑ 𝑟𝑔[𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑖𝑛]

2𝑁𝐺
𝑖=1 ] + 𝑟𝑓𝐹3  (21) 

 𝑉𝐿𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = {𝑉𝐿𝑖

𝑚𝑎𝑥 , 𝑉𝐿𝑖 > 𝑉𝐿𝑖
𝑚𝑎𝑥 𝑉𝐿𝑖

𝑚𝑖𝑛, 𝑉𝐿𝑖 < 𝑉𝐿𝑖
𝑚𝑖𝑛  (22) 

 𝑄𝐺𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = {𝑄𝐺𝑖

𝑚𝑎𝑥 , 𝑄𝐺𝑖 > 𝑄𝐺𝑖
𝑚𝑎𝑥 𝑄𝐺𝑖

𝑚𝑖𝑛, 𝑄𝐺𝑖 < 𝑄𝐺𝑖
𝑚𝑖𝑛  (23) 
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3 Stock Exchange Algorithm 

The Stock Exchange Algorithm is based on the process of the stock market. 

Stockholders who fall in the highest class (Privileged) hold on to their shares to 

enjoy their gains; they form 10% to 30% of the total population. Stockholders 

that fall in the Average class form 20% to 50% of the total population. The 

difference between both classes can be evaluated with respect to their stock or 

share value:   

𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐵)

= 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟

× 𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐴,𝑖
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐴)

+ (1 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟)

× 𝑆𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐵,𝑖
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐴)

  ; 𝑖

= 1,2,3, . . . , 𝑛𝑖  ; 𝑗 = 1,2. . , 𝑛𝑗 

(24) 

 

Stockholders who possess the lowest fitness value fall in the Weak class. They 

form 30% to 50% of the population and they exchange stock or shares to attain 

gains depending on the conditions.  

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑠ℎ𝑎𝑟𝑒 (𝐴𝑆)
= 2 × 𝑟𝑎𝑛𝑑𝑜𝑚1

× (𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖,𝐴
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐴)

− 𝑆𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐶)

) + 2

× 𝑟𝑎𝑛𝑑𝑜𝑚2

× (𝑆𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖,𝐵
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐴)

− 𝑆𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐶)

) 

(25) 

   𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐶),𝑛𝑒𝑤

= 𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐶)

+ 0.799
× 𝐴𝑙𝑡𝑒𝑟𝑖𝑛𝑔 𝑖𝑛 𝑠ℎ𝑎𝑟𝑒 (𝐴𝑆) 

(26) 

 

During fluctuating conditions stockholders who fall in the Privileged class have 

an excellent solution to the problem; they form 10% to 30% of the total 

population.  

In the initial conditions the value of the stock or shares is increased.    
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𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑒𝑠 ( ∆𝑆𝑡 𝐴)
= 𝑆𝑡 𝐴 − ( 𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝛿)
+ (2 × 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟
× 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐𝑜 𝑒𝑓𝑓𝑖𝑒𝑐𝑖𝑒𝑛𝑡 (𝜇) × 𝑠𝑡𝑎𝑔𝑒 𝑜𝑓 𝑟𝑖𝑠𝑘 ( 𝜏𝐴)) 

(27) 

 𝜇 =
𝑡 −𝑡ℎ 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 

𝑙𝑎𝑠𝑡 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒
 (28) 

𝑆𝑡 𝐴 = ∑𝑛
𝑦=1 𝑠𝑡𝑜𝑐𝑘 𝑜𝑟 𝑠ℎ𝑎𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡 − 𝑡ℎ 𝑝𝑒𝑟𝑠𝑜𝑛𝑦  ; 𝑦 = 1,2,3, . . , 𝑛 (29) 

 𝜏𝐴 = 𝑆𝑡 𝐴 × 𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑖𝑠𝑘 (𝑠𝑒𝑟𝐴) (30) 

 𝑠𝑒𝑟𝐴
𝑘 = 𝑠𝑒𝑟𝐴,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −

𝑠𝑒𝑟𝐴,𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑠𝑒𝑟𝐴,𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥𝑖𝑚𝑢𝑚
× 𝑘 (31) 

When the stockholder possesses no information about the stock exchange 

conditions then 𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝛿) is equal to each person’s 

total stock value in stable conditions.  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑒𝑠 ( ∆𝑆𝑡 𝐵) = 𝑆𝑡 𝐵 − 𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝛿) (32) 

During fluctuating conditions in the stock exchange few people sell stock or 

shares. Some buy shares but the total market stock or share value stays the same. 

Stockholders who fall in the Weak class will exchange their stocks to obtain the 

best cost value. They will try to reach the best stock composition by buying and 

selling stocks. 

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑒𝑠 ( ∆𝑆𝑡 𝐶) = (4 ×  𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟([−0.5,0.5])  ×
 𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝛿)  ×  𝑠𝑡𝑎𝑔𝑒 𝑜𝑓 𝑟𝑖𝑠𝑘 ( 𝜏𝐵) ) (33) 

 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 = 0.5 − 𝑟𝑎𝑛𝑑𝑜𝑚 (34) 

 𝜏𝐵 = 𝑆𝑡 𝐵 × 𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑖𝑠𝑘 (𝑠𝑒𝑟𝐵) (35) 

1. Begin  

2. Choose the initial values  
3. Find the quality of the stock with reference to the initial stockholders  
4. Calculate the total cost of the stockholders  
5. Calculate the stockholder ranking  

6. Group the stockholders in the classes Privileged, Average and Weak  
--- Stable condition --- 

7. For the Average class of stock holders, a change in stock value and stock 

exchange balance conditions is analyzed by  

𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐵)

= 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 ×

𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐴,𝑖
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐴)

+ (1 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟) ×

𝑆𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐵,𝑖
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐴)

  ; 𝑖 = 1,2,3, . . . , 𝑛𝑖 ; 𝑗 = 1,2. . , 𝑛𝑗  
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8. For the Weak class of stockholders, the change in stock value and stock 

exchange balance conditions is analyzed by 
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑠ℎ𝑎𝑟𝑒 (𝐴𝑆) = 2 × 𝑟𝑎𝑛𝑑𝑜𝑚1 ×

(𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖,𝐴
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐴)

−

𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐶)

) + 2 × 𝑟𝑎𝑛𝑑𝑜𝑚2 ×

(𝑆𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖,𝐵
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐴)

−

𝑆𝑡𝑜𝑐𝑘 ℎ𝑜𝑙𝑑𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐶)

)  

9. Calculate the total cost of the stockholders  
10. Calculate the stockholder ranking  
11. Group the stockholders in the classes Privileged, Average and Weak  

 --- Fluctuating condition --- 

12. In the Average class of stockholders, the change in stock value and stock 

exchange balance conditions is analyzed by  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑒𝑠 ( ∆𝑆𝑡 𝐴) = 𝑆𝑡 𝐴 − (𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝛿) +

(2 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐𝑜 𝑒𝑓𝑓𝑖𝑒𝑐𝑖𝑒𝑛𝑡 (𝜇) ×
𝑠𝑡𝑎𝑔𝑒 𝑜𝑓 𝑟𝑖𝑠𝑘 ( 𝜏𝐴))  

13. In the Weak class of stockholders, the change in stock value and stock 

exchange balance conditions is analyzed by  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑒𝑠 ( ∆𝑆𝑡 𝐶) = (4 ×

𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟([−0.5,0.5]). 𝑠𝑡𝑜𝑐𝑘 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝛿) ×
𝑠𝑡𝑎𝑔𝑒 𝑜𝑓 𝑟𝑖𝑠𝑘 ( 𝜏𝐵) )  

14. If the end condition is reached then stop, else go to step ‘d’ 
15. End 

4 Product Demand-Availability Algorithm 

The Product Demand-Availability (ARP) optimization algorithm is based on 

consumer demand and availability of a product in the market. If the demand of 

that particular product increases, then the producer will increase its production so 

that it will be available to more consumers. The availability and demand 

mechanism was imitated in the design of the algorithm. Any product has a current 

price that reflects the market conditions, denoted by 𝑃𝑝𝑖, and the availability of 

the product in running time and is denoted by 𝐴𝑡+1. The availability in the market 

and consumer demand varies and can be written as the following linear function: 

 𝐴𝑡+1 = 𝑓(𝑃𝑝𝑖) (36) 

The price of product 𝑃𝑝𝑡+1 at a later stage is determined with respect to product 

availability 𝐴𝑡+1 and demand (D) of the product in the market. 

 𝑃𝑝𝑡+1 = 𝐷(𝐴𝑡+1) (37) 
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When there is a high rise in availability of the product in the market then the price 

may fall steeply, so that D is a decreasing function. The price stability (𝑆𝑇𝑜) and 

product stability (𝑆𝑈𝑜) intersect at point 𝑃(𝑆𝑇𝑜, 𝑆𝑈𝑜). 

Function 𝑓 is described as:  

 𝐴𝑡+1 − 𝐴𝑜 = 𝑐(𝑃𝑝𝑖 − 𝑃𝑝𝑜)     (38) 

Function D is defined by: 

 𝑃𝑝𝑡+1 − 𝑃𝑝𝑜 = −𝑑(𝐴𝑡+1 − 𝐴𝑜) (39) 

At a particular instant, when linear coefficients |𝑐, 𝑑| < 1 with respect to the 

demand (D), function 𝑓 will have a steep value. There will be fluctuations 

between demand and availability but after some iterations they both reach 

equilibrium P (𝑆𝑇𝑜, 𝑆𝑈𝑜). When |𝑐, 𝑑| > 1, the demand (D) has a steep value with 

reference to function 𝑓. Then the fluctuations between demand and availability 

will increase and stability point P (𝑆𝑇𝑜, 𝑆𝑈𝑜) is deviated.  

The price and demand of the product are defined by the following matrix: 

 𝑇 = [𝑇1 𝑇2 . . . 𝑇𝑛 ] = [𝑇1
1  ⋯ 𝑇1

𝑑  ⋮ ⋱ ⋮  𝑇𝑛
1  ⋯ 𝑇𝑛

𝑑  ] (40) 

 𝑈 = [𝑈1 𝑈2 . . . 𝑈𝑛 ] = [𝑈1
1  ⋯ 𝑈1

𝑑  ⋮ ⋱ ⋮  𝑈𝑛
1  ⋯ 𝑈𝑛

𝑑  ] (41) 

In n markets the fitness values of the price and requirement of the product are 

denoted by: 

 𝐹𝑡 = [𝐹𝑡1, 𝐹𝑡2, . . , 𝐹𝑡𝑛]𝑇 (42) 

 𝐹𝑢 = [𝐹𝑢1, 𝐹𝑢2, . . , 𝐹𝑢𝑛]
𝑇 (43) 

The fluctuation and stability of the PDA algorithm is utilized to do exploration 

and exploitation. First, the iteration’s values of price stability (𝑆𝑇𝑜) and product 

stability (𝑆𝑈𝑜) are determined. The product stability vector is defined by: 

 𝐺𝑖 = |𝐹𝑢𝑖 −
1

𝑛
∑ 𝐹𝑢𝑖

𝑛
𝑖=1 | (44) 

 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑊)  =
𝐺

∑ 𝑢𝑖
𝑛
𝑖=1

  (45) 

 𝑢𝑜 = 𝑢𝑤 (46) 

The price stability vector of the product is defined by: 

 𝐻𝑖 = |𝐹𝑡𝑖 −
1

𝑛
∑ 𝐹𝑡𝑖

𝑛
𝑖=1 | (47) 

 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑊)  =
𝐻

∑ 𝐻𝑖
𝑛
𝑖=1

 (48) 
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 {𝑟𝑎𝑛𝑑𝑜𝑚1.
∑ 𝑡𝑖

𝑛
1

1
 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 < 0.5 𝑡𝑤                        𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 ≥

 0.5  (49) 

With respect to price stability (𝑆𝑇𝑜) and product stability (𝑆𝑈𝑜), availability and 

demand are defined by: 

 𝑢𝑖(𝑡 + 1) = 𝑢𝑜 +  𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (𝛼) ∙ (𝑢𝑖(𝑡) − 𝑢𝑜) (50) 

 𝑡𝑖(𝑡 + 1) = 𝑡𝑜 −  𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (𝛽) ∙ (𝑡𝑖(𝑡 + 1) − 𝑡𝑜) (51) 

With respect to product availability, the demand equation can be written as 

follows: 

  𝑡𝑖(𝑡 + 1) = 𝑡𝑜 −  𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 (𝛼𝛽) ∙ (𝑡𝑖(𝑡) − 𝑡𝑜) (52) 

 𝛼 =
2∙(𝑚𝑎𝑥.𝑖𝑡𝑒𝑟−𝑖𝑡𝑒𝑟+1)

𝑚𝑎𝑥.𝑖𝑡𝑒𝑟
∙𝑠𝑖𝑛 𝑠𝑖𝑛 (2𝜋𝑟) ;  𝑟 = [0,1] (53) 

 𝛽 = 2. 𝑐𝑜𝑠(2𝜋𝑟);  𝑟 = [0,1] (54) 

 𝛼𝛽 =
4∙(𝑚𝑎𝑥.𝑖𝑡𝑒𝑟−𝑖𝑡𝑒𝑟+1)

𝑚𝑎𝑥.𝑖𝑡𝑒𝑟
∙𝑠𝑖𝑛 𝑠𝑖𝑛 (2𝜋𝑟) 𝑐𝑜𝑠(2𝜋𝑟);  𝑟 = [0,1] (55) 

 

1. Start  
2. Initialization of population and weights  

3. Price stability (𝑆𝑇𝑜) and product stability (𝑆𝑈𝑜) are arbitrarily initialized  

4. Calculate the fitness values  
5. Replace the values by the best found values  
6. As long as the stop criterion is not satisfied do: 
7. For each product market 𝑖 = (1,2. . , 𝑛) 
8. Define the stability of product price, availability and requirement with:  

𝐺𝑖 = |𝐹𝑢𝑖 −
1

𝑛
∑ 𝐹𝑢𝑖

𝑛
𝑖=1 |                                       

9. 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑊)  =
𝐺

∑ 𝑢𝑖
𝑛
𝑖=1

               

𝑢𝑜 = 𝑢𝑤                                                                  

𝐻𝑖 = |𝐹𝑡𝑖 −
1

𝑛
∑ 𝐹𝑡𝑖

𝑛
𝑖=1 |                                          

10. 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑤ℎ𝑒𝑒𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑊)  =
𝐻

∑ 𝐻𝑖
𝑛
𝑖=1

               

{𝑟𝑎𝑛𝑑𝑜𝑚1.
∑ 𝑡𝑖

𝑛
1

1
 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 < 0.5 𝑡𝑤                            𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 ≥

0.5                       
11. Upgrade the quantities by: 
𝑢𝑖(𝑡 + 1) = 𝑢𝑜 +  𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (𝛼) ∙ (𝑢𝑖(𝑡) − 𝑢𝑜)                      
𝑡𝑖(𝑡 + 1) = 𝑡𝑜 −  𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 (𝛽) ∙ (𝑡𝑖(𝑡 + 1) − 𝑡𝑜)                  
12. Calculate the fitness value of 𝐹𝑡 𝑎𝑛𝑑 𝐹𝑢 



Real Power Loss Reduction & Voltage Stability Enhancement 173 

13. When 𝐹𝑢 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝐹𝑡 then replace 𝐹𝑡 𝑏𝑦 𝐹𝑢 

14. End if  
15. End for  
16. Update the optimal solution  
17. End while  
18. Return the optimal solution  

5 Affluent and Penurious Algorithm 

The Affluent and Penurious (AP) optimization algorithm generates a population 

with a lower bound and an upper bound as the exploration space. Two 

subpopulations are distinguished, Affluent and Penurious: 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑁 ( 𝑚𝑎𝑖𝑛) = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑁(𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡) + 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑁(𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠) (56) 

The algorithm imitates social behavior, i.e. the affluent dominate and have a 

better position than the penurious. Referring to this, Eq. (25) below was designed: 

𝑣𝑎𝑙𝑢𝑒1 < 𝑣𝑎𝑙𝑢𝑒2 < 𝑣𝑎𝑙𝑢𝑒3 < ⋯ < 𝑣𝑎𝑙𝑢𝑒𝑚 < 𝑣𝑎𝑙𝑢𝑒𝑚+1 < 𝑣𝑎𝑙𝑢𝑒𝑚+2 … <
𝑣𝑎𝑙𝑢𝑒𝑛  (57) 

Position changes of members in the Affluent group are defined by: 

 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖

𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝑔𝑎𝑝 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝐺) [𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −

𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠 ,𝑏𝑒𝑠𝑡
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗] (58) 

 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  represents the i-th position of the new value of the affluent population, 

𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents the current value. The top most member in the penurious 

group is indicated by 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠 ,𝑏𝑒𝑠𝑡
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Gap parameter G represents the distance 

between the Affluent and the Penurious classes. G indicates the positions of the 

people in the population relative to each other. The value of G is a random number 

[0, 1]. Movement in the position of members in the Penurious class is defined by: 

 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖

𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + [𝐺(𝑈𝑃) − 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠 ,𝑖
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ] (59) 

𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents the i-th position of the new value of the Penurious 

population, 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents the current value, 𝐺(𝑈𝑃) is the upgraded 

affluent parameter ([0,1]).   
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 𝑈𝑃 =
𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑏𝑒𝑠𝑡

𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗+𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑚𝑒𝑎𝑛
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑙𝑜𝑤

𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

3
 (60) 

𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑏𝑒𝑠𝑡
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  represents the  position of the best member in the Affluent 

population, 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑚𝑒𝑎𝑛
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents the position of an average member in the 

Affluent population, 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑙𝑜𝑤
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   indicates the  position of the lowest member in 

the Affluent population. The value of 𝑈𝑃 is fixed in each iteration and then G 

determines the level of enhancement, which leads to an increase of 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

There will be an increase of the upgrading parameter when the value of G is 0. 

When 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ possesses a value that is greater than the value of G, then 

𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠 ,𝑖
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   will have a large increase and vice versa. Variation in the value of G 

creates strong competition in the Penurious population. This means that when the 

value of G is small then there will be a large increase of UP. In the AP algorithm, 

0 means a normal distribution and 1 means variance. These values are used as 

mutation for the Affluent and the Penurious populations respectively. The 

mutation of Affluent and Penurious is defined as follows: 

 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 < 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  𝑡ℎ𝑒𝑛; 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑟𝑎𝑛𝑑𝑜𝑚(𝑛𝑑)  (61) 

 𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 < 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  𝑡ℎ𝑒𝑛; 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑟𝑎𝑛𝑑𝑜𝑚(𝑛𝑑) (62) 

 

The random value is between 0 and 1; 𝑟𝑎𝑛𝑑𝑜𝑚(𝑛𝑑) is the normalized 

distribution value and is obtained from the normal distribution of mean (0) and 

variance (1).  

1. Start  
2. Initialization of the population 
3. Classification of the population {Affluent, Penurious} 
// Affluent population // 
4. Choose an Affluent individual  
5. Choose the best Penurious individual 
6. Update the population  

𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖

𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝑔𝑎𝑝 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝐺) [𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠 ,𝑏𝑒𝑠𝑡

𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]  

7. Apply mutation  
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𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 < 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒𝑛 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

= 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑟𝑎𝑛𝑑𝑜𝑚(𝑛𝑑) 

8. Calculate the value of the Affluent individual 

9. Are there any other Affluent individuals? If yes go to step d 
10. Else combine the population and classify on the basis of new, old Affluent 

and Penurious. 
// Penurious population // 

11. Choose a Penurious individual 
12. Calculate the upgraded parameter UP 

𝑈𝑃 =
𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑏𝑒𝑠𝑡

𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑚𝑒𝑎𝑛
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑌𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑡,𝑙𝑜𝑤

𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

3
 

13. Update the population  

𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖

𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + [𝐺(𝑈𝑃) − 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠 ,𝑖
𝑂𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ] 

14. Apply mutation  

𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 < 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒𝑛 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

= 𝑌𝑃𝑒𝑛𝑢𝑟𝑖𝑜𝑢𝑠,𝑖
𝑁𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑟𝑎𝑛𝑑𝑜𝑚(𝑛𝑑) 

15. Calculate the value of Penurious 
16. Are there any other Penurious individuals? If yes then go to step k 
17. Else combine the population and classify on the basis of new, old Affluent 

and Penurious. 
// Affluent, Penurious // 

18. Separate Affluent population  

19. Separate penurious population  
20. Is the end criterion satisfied?  
21. If yes then pick the best Affluent individual 
22. Else go to step d 
23. End  

6 Simulation Results  

The proposed Stock Exchange Algorithm, the Product Demand-Availability 

algorithm, the Affluent and Penurious algorithm were verified in the standard 

IEEE 30 bus system [49]. Table 1 and 2 show the variables and limits. Table 3 to 

6 give a comparison of the real power loss.  Then the validity of the proposed 

Stock Exchange Algorithm, the Product Demand-Availability algorithm, and the 

Affluent and Penurious algorithm was tested without considering the voltage 

stability index in the IEEE 14, 30, 57, 118, 300 bus test systems. Table 7-11 

shows a comparison of the power loss.  
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Table 1 Constraints of control variables. 

 Minimum (PU) Maximum (PU) 

Generator voltage 0.9500 1.100 

Transformer tap 0.9000 1.100 

VAR source 0.0000 5.00 ( MVAR) 

Table 2 System parameters. 

Power loss ( base case) MW  5.66000 

Base case for VD (PU)  0.58217 

Table 3 Comparison of real power loss with different metaheuristic algorithms. 

 

Differential 

Evolution (DE) 

[50] 

Gravitational 

Search Algorithm 

(GSA) [51] 

APO-

PSO [52] 
SEA ARP AP 

Power 

Loss in 

MW 

4.5550 4.51430 4.39800 4.241 4.235 4.229 

VD in 

PU 
1.95890 0.875220 1.04700 1.032 1.039 1.032 

L-index  

in PU 
0.55130 0.141090 0.12670 0.1211 0.1229 0.1219 

Table 4 Comparison of different algorithms with reference to voltage stability 

improvement. 

 

Differential 

Evolution 

(DE) [50] 

Gravitational 

Search Algorithm 

(GSA) [51] 

APO-PSO 

[52] 
SEA ARP AP 

Power Loss 

in MW 
6.475500 6.91170 5.6980 5.419 5.413 5.401 

VD in PU 0.091100 0.06760 0.0870 0.080 0.075 0.082 

L-index  in 

PU 
0.143520 0.13490 0.13770 0.1321 0.1329 0.1326 

Table 5 Comparison with reference to voltage deviation minimization. 

 

Differential 

Evolution 

(DE) [50] 

Gravitational 

Search 

Algorithm 

(GSA) [51] 

APO-

PSO [52] 
SEA ARP AP 

Power 

Loss in 

MW 

7.073300 4.975200 4.478000 4.236 4.232 4.227 

VD in 

PU 
1.419000 0.2157900 1.857900 1.8212 1.8210 1.8209 

L-index  

in PU 
0.124600 0.1368400 0.122700 0.1181 0.1184 0.1189 
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Table 6 Comparison of values with reference to multi-objective formulation. 

 APO-PSO [52] SEA ARP AP 

Power Loss 

in MW 
4.84200 4.741 4.735 4.739 

VD in PU 1.00900 1.006 1.001 1.001 

L-index  in 

PU 
0.11920 0.1193 0.1195 0.1196 

Table 7 Comparison of loss with respect to IEEE 14 bus system. 

 

Value 

of 

Base 

case 

[56] 

Modified 

PSO 

(MPSO) 

[56] 

Basic 

PSO 

(PSO) 

[55] 

Standard  

EP [54] 

SAR- 

GA 

[54] 

SEA ARP AP 

Percentage 

of  

reduction 

in power 

loss 

0.000 9.200 9.100 1.50 2.50 18.14 16.08 16.30 

Power loss 

(Mw) 
13.550 12.293 12.315 13.346 13.216 11.091 11.370 11.340 

Table 8 Comparison of power loss with respect to IEEE 30 bus system. 

 

Value 

of Base 

case 

[56] 

Modified 

PSO 

(MPSO) 

[56] 

Basic  

PSO 

(PSO) 

[55] 

Standard 

EP [54] 

SAR- 

GA 

[54] 

SEA ARP AP 

Percentage 

of reduction 

in power 

loss 

0.000 8.400 7.400 6.600 8.300 25.86 22.62 22.56 

Power loss 

(Mw) 
17.550 16.070 16.250 16.380 16.090 13.01 13.58 13.59 

Table 9 Comparison of power loss with respect to IEEE 57 bus system. 

 

Base 

case 

value 

[56] 

Modified 

PSO 

(MPSO) 

[56] 

Basic 

PSO 

(PSO) 

[55] 

Canoni

cal-GA 

[53] 

Adaptive 

GA [53] 
SEA ARP AP 

Percentage 

of  

reduction 

in power 

loss 

0.000 15.400 14.100 9.200 11.600 28.02 25.47 26.68 

Power loss 

(Mw) 
27.800 23.510 23.860 25.240 24.56 0 20.010 20.719 20.382 
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Table 10  Comparison of real power loss with respect to IEEE 118 bus system. 

 

Base 

case 

value 

[56] 

Modified 

PSO 

(MPSO) 

[56] 

Basic 

PSO 

[55] 

I-PSO 

[55] 

CL-

PSO 

[53] 

SEA ARP AP 

Percentage 

of  reduction 

in power 

loss 

0.000 11.700 10.100 10.600 11.300 14.61 14.28 14.90 

Power loss 

(Mw) 
132.80 117.19 119.34 131.99 130.96 113.39 113.83 113.01 

Table 11 Comparison of real power loss with respect to IEEE 300 bus system. 

 

Enhanced 

GA (EGA) 

[58] 

Enhanced 

FA (EFA) 

[58] 

Cuckoo 

search 

algorithm  

[57] 

SEA ARP AP 

Power 

loss 

(MW) 

646.29980 650.60270 635.89420 610.0099 610.8135 610.2129 

Real power loss reduction was attained and the percentage of power loss 

reduction was improved. A comparison was made with a number of standard 

algorithms: Modified Particle Swarm Optimization algorithm, Basic Particle 

Swarm Optimization algorithm, Adaptive Genetic algorithm, Canonical Genetic 

algorithm, and the Comprehensive Learning Particle Swarm Optimization 

algorithm. All three proposed algorithms performed well in terms of power loss 

reduction. 

7 Conclusion 

In this work, the Stock Exchange Algorithm (SEA), the Product Demand-

Availability (PDA) algorithm and the Affluent and Penurious (AP) algorithm 

were designed to solve the reactive power dispatch problem. In the SEA, the 

ORPD problem is equated to persons’ actions in the stock exchange, where the 

variables of the reactive power problem are represented by shares; a person 

buying shares initiates the variables of the ORDP problem. In the PDA algorithm, 

demand and price are treated as solutions, both being updated throughout the 

iterations. Finally, the AP algorithm generates a population with a lower bound 

and upper bound as the exploration space and two subpopulations are created, 

Affluent and Penurious.  

The three proposed algorithms were verified in the standard IEEE 30 bus system. 

They were then evaluated in the IEEE 14, 30, 57, 118, 300 bus test systems 

without L-index. The real power loss obtained by SEA, PDA and AP was 4.241 
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(MW), 4.235 (MW) and 4.229 (MW), respectively. The percentage of real power 

loss reduction obtained by SEA, PDA and AP for the IEEE 14, 30, 57, 118, 300 

bus test systems was: 18.14%, 16.08%, 16.30%; 25.86%, 22.62%, 22.56%; 

28.02%, 25.47%, 26.68%; 14.61%, 14.28%, 14.90%. Real power loss 

minimization, voltage deviation minimization, and voltage stability index 

enhancement were attained. The percentage of power loss reduction was 

improved. In the future, the SEA, the PDA algorithm, and the AP algorithm will 

be applied to larger systems. The proposed algorithms can also be applied to other 

power system problems in both online and offline mode.  
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