37 research outputs found

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    Multi-modal post-editing of machine translation

    Get PDF
    As MT quality continues to improve, more and more translators switch from traditional translation from scratch to PE of MT output, which has been shown to save time and reduce errors. Instead of mainly generating text, translators are now asked to correct errors within otherwise helpful translation proposals, where repetitive MT errors make the process tiresome, while hard-to-spot errors make PE a cognitively demanding activity. Our contribution is three-fold: first, we explore whether interaction modalities other than mouse and keyboard could well support PE by creating and testing the MMPE translation environment. MMPE allows translators to cross out or hand-write text, drag and drop words for reordering, use spoken commands or hand gestures to manipulate text, or to combine any of these input modalities. Second, our interviews revealed that translators see value in automatically receiving additional translation support when a high CL is detected during PE. We therefore developed a sensor framework using a wide range of physiological and behavioral data to estimate perceived CL and tested it in three studies, showing that multi-modal, eye, heart, and skin measures can be used to make translation environments cognition-aware. Third, we present two multi-encoder Transformer architectures for APE and discuss how these can adapt MT output to a domain and thereby avoid correcting repetitive MT errors.Angesichts der stetig steigenden Qualität maschineller Übersetzungssysteme (MÜ) post-editieren (PE) immer mehr Übersetzer die MÜ-Ausgabe, was im Vergleich zur herkömmlichen Übersetzung Zeit spart und Fehler reduziert. Anstatt primär Text zu generieren, müssen Übersetzer nun Fehler in ansonsten hilfreichen Übersetzungsvorschlägen korrigieren. Dennoch bleibt die Arbeit durch wiederkehrende MÜ-Fehler mühsam und schwer zu erkennende Fehler fordern die Übersetzer kognitiv. Wir tragen auf drei Ebenen zur Verbesserung des PE bei: Erstens untersuchen wir, ob andere Interaktionsmodalitäten als Maus und Tastatur das PE unterstützen können, indem wir die Übersetzungsumgebung MMPE entwickeln und testen. MMPE ermöglicht es, Text handschriftlich, per Sprache oder über Handgesten zu verändern, Wörter per Drag & Drop neu anzuordnen oder all diese Eingabemodalitäten zu kombinieren. Zweitens stellen wir ein Sensor-Framework vor, das eine Vielzahl physiologischer und verhaltensbezogener Messwerte verwendet, um die kognitive Last (KL) abzuschätzen. In drei Studien konnten wir zeigen, dass multimodale Messung von Augen-, Herz- und Hautmerkmalen verwendet werden kann, um Übersetzungsumgebungen an die KL der Übersetzer anzupassen. Drittens stellen wir zwei Multi-Encoder-Transformer-Architekturen für das automatische Post-Editieren (APE) vor und erörtern, wie diese die MÜ-Ausgabe an eine Domäne anpassen und dadurch die Korrektur von sich wiederholenden MÜ-Fehlern vermeiden können.Deutsche Forschungsgemeinschaft (DFG), Projekt MMP

    On Patching Learning Discrepancies in Neural Network Training

    Get PDF
    Neural network\u27s ability to model data patterns proved to be immensely useful in a plethora of practical applications. However, using the physical world\u27s data can be problematic since it is often cluttered, crowded with scattered insignificant patterns, contain unusual compositions, and widely infiltrated with biases and imbalances. Consequently, training a neural network to find meaningful patterns in seas of chaotic data points becomes virtually as hard as finding a needle in a haystack. Specifically, attempting to simulate real-world multi-modal noisy distributions with high precision leads the network to learn an ill-informed inference distribution. In this work, we discuss four techniques to mitigate common discrepancies between real-world representations and the training distribution learned by the network. Namely, we address the techniques of Diverse sampling, objective generalization, domain, and task adaptation being introduced as priors in learning the primary objective. For each of these techniques, we contrast the basic training where no prior is applied to the learning with our proposed method and show the advantage of guiding the training distribution to the critical patterns in real-world data using our suggested approaches. We examine those discrepancy-mitigation techniques on a variety of vision tasks ranging from image generation and retrieval to video summarization and actionness ranking

    Coping with Data Scarcity in Deep Learning and Applications for Social Good

    Get PDF
    The recent years are experiencing an extremely fast evolution of the Computer Vision and Machine Learning fields: several application domains benefit from the newly developed technologies and industries are investing a growing amount of money in Artificial Intelligence. Convolutional Neural Networks and Deep Learning substantially contributed to the rise and the diffusion of AI-based solutions, creating the potential for many disruptive new businesses. The effectiveness of Deep Learning models is grounded by the availability of a huge amount of training data. Unfortunately, data collection and labeling is an extremely expensive task in terms of both time and costs; moreover, it frequently requires the collaboration of domain experts. In the first part of the thesis, I will investigate some methods for reducing the cost of data acquisition for Deep Learning applications in the relatively constrained industrial scenarios related to visual inspection. I will primarily assess the effectiveness of Deep Neural Networks in comparison with several classical Machine Learning algorithms requiring a smaller amount of data to be trained. Hereafter, I will introduce a hardware-based data augmentation approach, which leads to a considerable performance boost taking advantage of a novel illumination setup designed for this purpose. Finally, I will investigate the situation in which acquiring a sufficient number of training samples is not possible, in particular the most extreme situation: zero-shot learning (ZSL), which is the problem of multi-class classification when no training data is available for some of the classes. Visual features designed for image classification and trained offline have been shown to be useful for ZSL to generalize towards classes not seen during training. Nevertheless, I will show that recognition performances on unseen classes can be sharply improved by learning ad hoc semantic embedding (the pre-defined list of present and absent attributes that represent a class) and visual features, to increase the correlation between the two geometrical spaces and ease the metric learning process for ZSL. In the second part of the thesis, I will present some successful applications of state-of-the- art Computer Vision, Data Analysis and Artificial Intelligence methods. I will illustrate some solutions developed during the 2020 Coronavirus Pandemic for controlling the disease vii evolution and for reducing virus spreading. I will describe the first publicly available dataset for the analysis of face-touching behavior that we annotated and distributed, and I will illustrate an extensive evaluation of several computer vision methods applied to the produced dataset. Moreover, I will describe the privacy-preserving solution we developed for estimating the \u201cSocial Distance\u201d and its violations, given a single uncalibrated image in unconstrained scenarios. I will conclude the thesis with a Computer Vision solution developed in collaboration with the Egyptian Museum of Turin for digitally unwrapping mummies analyzing their CT scan, to support the archaeologists during mummy analysis and avoiding the devastating and irreversible process of physically unwrapping the bandages for removing amulets and jewels from the body

    Intelligent Agent Architectures: Reactive Planning Testbed

    Get PDF
    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected

    Computer audition for emotional wellbeing

    Get PDF
    This thesis is focused on the application of computer audition (i. e., machine listening) methodologies for monitoring states of emotional wellbeing. Computer audition is a growing field and has been successfully applied to an array of use cases in recent years. There are several advantages to audio-based computational analysis; for example, audio can be recorded non-invasively, stored economically, and can capture rich information on happenings in a given environment, e. g., human behaviour. With this in mind, maintaining emotional wellbeing is a challenge for humans and emotion-altering conditions, including stress and anxiety, have become increasingly common in recent years. Such conditions manifest in the body, inherently changing how we express ourselves. Research shows these alterations are perceivable within vocalisation, suggesting that speech-based audio monitoring may be valuable for developing artificially intelligent systems that target improved wellbeing. Furthermore, computer audition applies machine learning and other computational techniques to audio understanding, and so by combining computer audition with applications in the domain of computational paralinguistics and emotional wellbeing, this research concerns the broader field of empathy for Artificial Intelligence (AI). To this end, speech-based audio modelling that incorporates and understands paralinguistic wellbeing-related states may be a vital cornerstone for improving the degree of empathy that an artificial intelligence has. To summarise, this thesis investigates the extent to which speech-based computer audition methodologies can be utilised to understand human emotional wellbeing. A fundamental background on the fields in question as they pertain to emotional wellbeing is first presented, followed by an outline of the applied audio-based methodologies. Next, detail is provided for several machine learning experiments focused on emotional wellbeing applications, including analysis and recognition of under-researched phenomena in speech, e. g., anxiety, and markers of stress. Core contributions from this thesis include the collection of several related datasets, hybrid fusion strategies for an emotional gold standard, novel machine learning strategies for data interpretation, and an in-depth acoustic-based computational evaluation of several human states. All of these contributions focus on ascertaining the advantage of audio in the context of modelling emotional wellbeing. Given the sensitive nature of human wellbeing, the ethical implications involved with developing and applying such systems are discussed throughout

    Accessing spoken interaction through dialogue processing [online]

    Get PDF
    Zusammenfassung Unser Leben, unsere Leistungen und unsere Umgebung, alles wird derzeit durch Schriftsprache dokumentiert. Die rasante Fortentwicklung der technischen Möglichkeiten Audio, Bilder und Video aufzunehmen, abzuspeichern und wiederzugeben kann genutzt werden um die schriftliche Dokumentation von menschlicher Kommunikation, zum Beispiel Meetings, zu unterstützen, zu ergänzen oder gar zu ersetzen. Diese neuen Technologien können uns in die Lage versetzen Information aufzunehmen, die anderweitig verloren gehen, die Kosten der Dokumentation zu senken und hochwertige Dokumente mit audiovisuellem Material anzureichern. Die Indizierung solcher Aufnahmen stellt die Kerntechnologie dar um dieses Potential auszuschöpfen. Diese Arbeit stellt effektive Alternativen zu schlüsselwortbasierten Indizes vor, die Suchraumeinschränkungen bewirken und teilweise mit einfachen Mitteln zu berechnen sind. Die Indizierung von Sprachdokumenten kann auf verschiedenen Ebenen erfolgen: Ein Dokument gehört stilistisch einer bestimmten Datenbasis an, welche durch sehr einfache Merkmale bei hoher Genauigkeit automatisch bestimmt werden kann. Durch diese Art von Klassifikation kann eine Reduktion des Suchraumes um einen Faktor der Größenordnung 4­10 erfolgen. Die Anwendung von thematischen Merkmalen zur Textklassifikation bei einer Nachrichtendatenbank resultiert in einer Reduktion um einen Faktor 18. Da Sprachdokumente sehr lang sein können müssen sie in thematische Segmente unterteilt werden. Ein neuer probabilistischer Ansatz sowie neue Merkmale (Sprecherinitia­ tive und Stil) liefern vergleichbare oder bessere Resultate als traditionelle schlüsselwortbasierte Ansätze. Diese thematische Segmente können durch die vorherrschende Aktivität charakterisiert werden (erzählen, diskutieren, planen, ...), die durch ein neuronales Netz detektiert werden kann. Die Detektionsraten sind allerdings begrenzt da auch Menschen diese Aktivitäten nur ungenau bestimmen. Eine maximale Reduktion des Suchraumes um den Faktor 6 ist bei den verwendeten Daten theoretisch möglich. Eine thematische Klassifikation dieser Segmente wurde ebenfalls auf einer Datenbasis durchgeführt, die Detektionsraten für diesen Index sind jedoch gering. Auf der Ebene der einzelnen Äußerungen können Dialogakte wie Aussagen, Fragen, Rückmeldungen (aha, ach ja, echt?, ...) usw. mit einem diskriminativ trainierten Hidden Markov Model erkannt werden. Dieses Verfahren kann um die Erkennung von kurzen Folgen wie Frage/Antwort­Spielen erweitert werden (Dialogspiele). Dialogakte und ­spiele können eingesetzt werden um Klassifikatoren für globale Sprechstile zu bauen. Ebenso könnte ein Benutzer sich an eine bestimmte Dialogaktsequenz erinnern und versuchen, diese in einer grafischen Repräsentation wiederzufinden. In einer Studie mit sehr pessimistischen Annahmen konnten Benutzer eines aus vier ähnlichen und gleichwahrscheinlichen Gesprächen mit einer Genauigkeit von ~ 43% durch eine graphische Repräsentation von Aktivität bestimmt. Dialogakte könnte in diesem Szenario ebenso nützlich sein, die Benutzerstudie konnte aufgrund der geringen Datenmenge darüber keinen endgültigen Aufschluß geben. Die Studie konnte allerdings für detailierte Basismerkmale wie Formalität und Sprecheridentität keinen Effekt zeigen. Abstract Written language is one of our primary means for documenting our lives, achievements, and environment. Our capabilities to record, store and retrieve audio, still pictures, and video are undergoing a revolution and may support, supplement or even replace written documentation. This technology enables us to record information that would otherwise be lost, lower the cost of documentation and enhance high­quality documents with original audiovisual material. The indexing of the audio material is the key technology to realize those benefits. This work presents effective alternatives to keyword based indices which restrict the search space and may in part be calculated with very limited resources. Indexing speech documents can be done at a various levels: Stylistically a document belongs to a certain database which can be determined automatically with high accuracy using very simple features. The resulting factor in search space reduction is in the order of 4­10 while topic classification yielded a factor of 18 in a news domain. Since documents can be very long they need to be segmented into topical regions. A new probabilistic segmentation framework as well as new features (speaker initiative and style) prove to be very effective compared to traditional keyword based methods. At the topical segment level activities (storytelling, discussing, planning, ...) can be detected using a machine learning approach with limited accuracy; however even human annotators do not annotate them very reliably. A maximum search space reduction factor of 6 is theoretically possible on the databases used. A topical classification of these regions has been attempted on one database, the detection accuracy for that index, however, was very low. At the utterance level dialogue acts such as statements, questions, backchannels (aha, yeah, ...), etc. are being recognized using a novel discriminatively trained HMM procedure. The procedure can be extended to recognize short sequences such as question/answer pairs, so called dialogue games. Dialog acts and games are useful for building classifiers for speaking style. Similarily a user may remember a certain dialog act sequence and may search for it in a graphical representation. In a study with very pessimistic assumptions users are able to pick one out of four similar and equiprobable meetings correctly with an accuracy ~ 43% using graphical activity information. Dialogue acts may be useful in this situation as well but the sample size did not allow to draw final conclusions. However the user study fails to show any effect for detailed basic features such as formality or speaker identity

    Visual-Semantic Learning

    Get PDF
    Visual-semantic learning is an attractive and challenging research direction aiming to understand complex semantics of heterogeneous data from two domains, i.e., visual signals (i.e., images and videos) and natural language (i.e., captions and questions). It requires memorizing the rich information in a single modality and a joint comprehension of multiple modalities. Artificial intelligence (AI) systems with human-level intelligence are claimed to learn like humans, such as efficiently leveraging brain memory for better comprehension, rationally incorporating common-sense knowledge into reasoning, quickly gaining in-depth understanding given a few samples, and analyzing relationships among abundant and informative events. However, these intelligence capacities are effortless for humans but challenging for machines. To bridge the discrepancy between human-level intelligence and present-day visual-semantic learning, we start from its basic understanding ability by studying the visual question answering (e.g., Image-QA and Video-QA) tasks from the perspectives of memory augmentation and common-sense knowledge incorporation. Furthermore, we stretch it to a more challenging situation with limited and partially unlabeled training data (i.e., Few-shot Visual-Semantic Learning) to imitate the fast learning ability of humans. Finally, to further enhance visual-semantic performance in natural videos with numerous spatio-temporal dynamics, we investigate exploiting event-correlated information for a comprehensive understanding of cross-modal semantics. To study the essential visual-semantic understanding ability of the human brain with memory, we first propose a novel Memory Augmented Deep Recurrent Neural Network (i.e., MA-DRNN) model for Video-QA, which features a new method for encoding videos and questions, and memory augmentation using the emerging Differentiable Neural Computer (i.e., DNC). Specifically, we encode semantic (i.e., questions) information before visual (i.e., videos) information, which leads to better visual-semantic representations. Moreover, we leverage Differentiable Neural Computer (with external memory) to store and retrieve valuable information in questions and videos and model the long-term visual-semantic dependency. In addition to basic understanding, to tackle visual-semantic reasoning that requires external knowledge beyond visible contents (e.g., KB-Image-QA), we propose a novel framework that endows the model with capabilities of answering more general questions and achieves better exploitation of external knowledge through generating Multiple Clues for Reasoning with Memory Neural Networks (i.e., MCR-MemNN). Specifically, a well-defined detector is adopted to predict image-question-related relation phrases, each delivering two complementary clues to retrieve the supporting facts from an external knowledge base (i.e., KB). These facts are encoded into a continuous embedding space using a content-addressable memory. Afterward, mutual interactions between visual-semantic representation and the supporting facts stored in memory are captured to distill the most relevant information in three modalities (i.e., image, question, and KB). Finally, the optimal answer is predicted by choosing the supporting fact with the highest score. Furthermore, to enable a fast, in-depth understanding given a small number of samples, especially with heterogeneity in the multi-modal scenarios such as image question answering (i.e., Image-QA) and image captioning (i.e., IC), we study the few-shot visual-semantic learning and present the Hierarchical Graph ATtention Network (i.e., HGAT). This two-stage network models the intra- and inter-modal relationships with limited image-text samples. The main contributions of HGAT can be summarized as follows: 1) it sheds light on tackling few-shot multi-modal learning problems, which focuses primarily, but not exclusively, on visual and semantic modalities, through better exploitation of the intra-relationship of each modality and an attention-based co-learning framework between modalities using a hierarchical graph-based architecture; 2) it achieves superior performance on both visual question answering and image captioning in the few-shot setting; 3) it can be easily extended to the semi-supervised setting where image-text samples are partially unlabeled. Although various attention mechanisms have been utilized to manage contextualized representations by modeling intra- and inter-modal relationships of the two modalities, one limitation of the predominant visual-semantic methods is the lack of reasoning with event correlation, sensing, and analyzing relationships among abundant and informative events contained in the video. To this end, we introduce the dense caption modality as a new auxiliary and distill event-correlated information to infer the correct answer. We propose a novel end-to-end trainable model, Event-Correlated Graph Neural Networks (EC-GNNs), to perform cross-modal reasoning over information from the three modalities (i.e., caption, video, and question). Besides exploiting a new modality, we employ cross-modal reasoning modules to explicitly model inter-modal relationships and aggregate relevant information across different modalities. We propose a question-guided self-adaptive multi-modal fusion module to collect the question-oriented and event-correlated evidence through multi-step reasoning. To evaluate our proposed models, we conduct extensive experiments on VTW, MSVD-QA, and TGIF-QA datasets for Video-QA task, Toronto COCO-QA, Visual Genome-QA datasets for few-shot Image-QA task, COCO-FITB dataset for few-shot IC task, and FVQA, Visual7W + ConceptNet datasets for KB-Image-QA task. The experimental results justify these models’ effectiveness and superiority over baseline methods
    corecore