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ABSTRACT

Visual-semantic learning is an attractive and challenging research direction aiming to under-

stand complex semantics of heterogeneous data from two domains, i.e., visual signals (i.e., images

and videos) and natural language (i.e., captions and questions). It requires memorizing the rich

information in a single modality and a joint comprehension of multiple modalities. Artificial in-

telligence (AI) systems with human-level intelligence are claimed to learn like humans, such as

efficiently leveraging brain memory for better comprehension, rationally incorporating common-

sense knowledge into reasoning, quickly gaining in-depth understanding given a few samples, and

analyzing relationships among abundant and informative events. However, these intelligence ca-

pacities are effortless for humans but challenging for machines. To bridge the discrepancy between

human-level intelligence and present-day visual-semantic learning, we start from its basic under-

standing ability by studying the visual question answering (e.g., Image-QA and Video-QA) tasks

from the perspectives of memory augmentation and common-sense knowledge incorporation. Fur-

thermore, we stretch it to a more challenging situation with limited and partially unlabeled train-

ing data (i.e., Few-shot Visual-Semantic Learning) to imitate the fast learning ability of humans.

Finally, to further enhance visual-semantic performance in natural videos with numerous spatio-

temporal dynamics, we investigate exploiting event-correlated information for a comprehensive

understanding of cross-modal semantics.

To study the essential visual-semantic understanding ability of the human brain with memory,

we first propose a novel Memory Augmented Deep Recurrent Neural Network (i.e., MA-DRNN)

model for Video-QA, which features a new method for encoding videos and questions, and memory

augmentation using the emerging Differentiable Neural Computer (i.e., DNC). Specifically, we

encode semantic (i.e., questions) information before visual (i.e., videos) information, which leads

to better visual-semantic representations. Moreover, we leverage Differentiable Neural Computer

(with external memory) to store and retrieve valuable information in questions and videos and



model the long-term visual-semantic dependency.

In addition to basic understanding, to tackle visual-semantic reasoning that requires external

knowledge beyond visible contents (e.g., KB-Image-QA), we propose a novel framework that

endows the model with capabilities of answering more general questions and achieves better ex-

ploitation of external knowledge through generating Multiple Clues for Reasoning with Memory

Neural Networks (i.e., MCR-MemNN). Specifically, a well-defined detector is adopted to pre-

dict image-question-related relation phrases, each delivering two complementary clues to retrieve

the supporting facts from an external knowledge base (i.e., KB). These facts are encoded into a

continuous embedding space using a content-addressable memory. Afterward, mutual interactions

between visual-semantic representation and the supporting facts stored in memory are captured to

distill the most relevant information in three modalities (i.e., image, question, and KB). Finally,

the optimal answer is predicted by choosing the supporting fact with the highest score.

Furthermore, to enable a fast, in-depth understanding given a small number of samples, es-

pecially with heterogeneity in the multi-modal scenarios such as image question answering (i.e.,

Image-QA) and image captioning (i.e., IC), we study the few-shot visual-semantic learning and

present the Hierarchical Graph ATtention Network (i.e., HGAT). This two-stage network models

the intra- and inter-modal relationships with limited image-text samples. The main contributions of

HGAT can be summarized as follows: 1) it sheds light on tackling few-shot multi-modal learning

problems, which focuses primarily, but not exclusively, on visual and semantic modalities, through

better exploitation of the intra-relationship of each modality and an attention-based co-learning

framework between modalities using a hierarchical graph-based architecture; 2) it achieves supe-

rior performance on both visual question answering and image captioning in the few-shot setting;

3) it can be easily extended to the semi-supervised setting where image-text samples are partially

unlabeled.

Although various attention mechanisms have been utilized to manage contextualized represen-

tations by modeling intra- and inter-modal relationships of the two modalities, one limitation of the

predominant visual-semantic methods is the lack of reasoning with event correlation, sensing, and



analyzing relationships among abundant and informative events contained in the video. To this end,

we introduce the dense caption modality as a new auxiliary and distill event-correlated informa-

tion to infer the correct answer. We propose a novel end-to-end trainable model, Event-Correlated

Graph Neural Networks (EC-GNNs), to perform cross-modal reasoning over information from

the three modalities (i.e., caption, video, and question). Besides exploiting a new modality, we

employ cross-modal reasoning modules to explicitly model inter-modal relationships and aggre-

gate relevant information across different modalities. We propose a question-guided self-adaptive

multi-modal fusion module to collect the question-oriented and event-correlated evidence through

multi-step reasoning.

To evaluate our proposed models, we conduct extensive experiments on VTW, MSVD-QA, and

TGIF-QA datasets for Video-QA task, Toronto COCO-QA, Visual Genome-QA datasets for few-

shot Image-QA task, COCO-FITB dataset for few-shot IC task, and FVQA, Visual7W + Concept-

Net datasets for KB-Image-QA task. The experimental results justify these models’ effectiveness

and superiority over baseline methods.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Recently, significant progress has been made in various applications of a single modality, such

as object detection and machine translation, thanks to the application of deep learning technolo-

gies [1], such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),

to a large amount of data. However, to enable an artificial intelligence (AI) system to perform

human-level intelligence, such as leveraging brain memory for better comprehension, rationally

incorporating common-sense knowledge into reasoning, quickly gaining in-depth understanding

with a few samples, and analyzing relationships among numerous events, it requires not only the

ability to memorize the rich information contained in a single modality, such as visual signals (i.e.,

images and videos) and natural language (i.e., captions and questions), but also a joint compre-

hension in multiple modalities. This is generally called multi-modal learning [2], and a typical

example is visual-semantic learning. For instance, an intelligent cooking robot in the kitchen is

expected to make delicious dishes by understanding the recipe instructions and detecting and se-

lecting the right ingredients on the table. The robot can hardly perform this task without the ability

to either read the texts or recognize the objects. These intelligence capacities are effortless for

humans but challenging for machines.
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To bridge the discrepancy between human-level intelligence and present-day visual-semantic

learning, we start from its essential visual-semantic understanding ability by studying the video

question answering (i.e., Video-QA) task, which requires a deeper understanding of heterogeneous

data from two domains, i.e., spatio-temporal video content and question word sequence. Further-

more, combining visual and semantic observations with common-sense knowledge is crucial to

answering questions that require external information. Therefore, we investigate how to incorpo-

rate external knowledge into visual-semantic learning by tackling knowledge-based image ques-

tion answering (i.e., KB-Image-QA). Moreover, considering the characteristics of human learning,

we extend visual-semantic learning to situations with limited and even partially unlabeled train-

ing data (i.e., Few-shot Visual-Semantic Learning) to imitate the fast learning ability of humans.

Besides, most natural videos contain numerous events that provide valuable clues for a comprehen-

sive understanding of cross-modal semantics. To further enhance visual-semantic performance, we

illustrate how to incorporate event-correlated information into the reasoning process of Video-QA

by introducing dense video captions as a new modality for cross-modal reasoning.

1.1.1 Basic Understanding

The ultimate goal of visual-semantic learning tasks is to enable a computer program to fully under-

stand the content of an image/video as a human. However, we are currently still far from achieving

this goal. For example, deep learning has made tremendous successes in visual captioning [3] (e.g.,

Image Captioning [4, 5, 6, 7, 8] and Video Captioning [3, 9, 10, 11]), which generates a natural

language sentence to describe the content of an image or video. However, a sentence (or even

multiple sentences) cannot fully and accurately describe an image or video (especially a video),

which usually contains rich information. We believe it is better to have a machine-learning model

that can answer any question related to an image or video, which is undoubtedly challenging. To

answer questions as a human, the model needs to fully understand visual observations at a much

finer level and generate an accurate answer for each question from a huge answer space. In order

to study the basic visual-semantic understanding ability, we start by dealing with the Video-QA
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task.

It is well-known that a gated Recurrent Neural Networks (i.e., RNNs), Long Short-Term Mem-

ory (i.e., LSTM) [12], is capable of modeling the long-term dependency. Hence, it has been widely

used in video processing tasks, including video captioning [9, 3, 13, 14] and Video-QA [15, 16, 17,

18, 19]. However, a seminal work [20] has pointed out that LSTM does not work well when the

sequence is long enough. A Video-QA task, however, may involve very long-term visual-textual

dependency. A differentiable architecture called Neural Turing Machine (i.e., NTM) was proposed

in [20] by Graves et al., which has a neural network controller coupled with external memory. It has

been shown that NTM outperforms the standard LSTM in several typical tasks. A more general

and advanced memory-augmented neural network model called Differentiable Neural Computer

(DNC) was proposed recently in [21], which is capable of solving complex and structured tasks

that are inaccessible to neural networks without external memory, such as data storage over long

timescales and synthetic question answering. We believe these emerging models (e.g., NTM and

DNC) are particularly suitable for the Video-QA task we aim to tackle here.

As far as we know, many works [15, 22, 16] on Video-QA models the visual-textual depen-

dency by encoding visual information before textual information, which leads to little improvement

or even degradation training with visual observations. We suspect that the question-related video

features are forgotten due to long-term sequence encoding, and a large amount of irrelevant vi-

sual information fills up the internal memory of LSTM without proper guidance to select useful

information that is closely related to the corresponding question. Therefore, our model encodes

a question and then a video to strengthen the influence of video features and select and preserve

useful and question-related visual information to effectively utilize internal and external memory.

1.1.2 External Knowledge

Although basic understanding ability has been well-studied by leveraging memory augmentation

on Video-QA to select and preserve key information on visual and textual modalities, general cases

with more than two modalities are not fully exploited, especially when common-sense knowledge
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is available for answer reasoning. Most of the existing VQA models [23, 24, 25, 26, 27] and

datasets [28, 29, 30, 31] have focused on simple questions, which are answerable by solely analyz-

ing the question and image, i.e., no external knowledge is required. However, a truly ‘AI-complete’

VQA agent must combine visual and semantic observations with external knowledge for reason-

ing, which is effortless for humans but challenging for machines. Therefore, to bridge the gap

between human-level intelligence and machines algorithm, we address knowledge-based image

question answering (i.e., KB-Image-QA) [32] in this thesis to perform visual-semantic reasoning

incorporating a third modality of external knowledge.

Some efforts have been made in this direction. Wang et al. [32] presented a Fact-based VQA

(FVQA) dataset to support much deeper reasoning. FVQA consists of questions that require exter-

nal knowledge to answer. Several classical solutions [32, 33] have been proposed to solve FVQA

by mapping each question to a query and retrieving supporting facts in the knowledge base (i.e.,

KB) through a keyword-matching manner. These supporting facts are processed to form the final

answer. However, these query-mapping-based approaches with solely question parsing suffer from

serious performance degradation when the information hint is not captured in the external KB, or

the visual concept is not exactly mentioned in the question. Moreover, special information (i.e.,

visual concept type and answer source) should be determined in advance during the querying and

answering phases, which makes it hard to generalize to other datasets. To address these issues,

we introduce Multiple Clues for Reasoning, a new KB retrieval method, where a relation phrase

detector is proposed to predict multiple complementary clues for supporting facts retrieval.

More recently, Out of the Box (i.e., OB) [34], and Straight to Facts (i.e., STTF) [35] adopt

cosine similarity technique to get the highest scoring fact for answer prediction, where the whole

visual information (i.e., object, scene, and action) and the whole semantic information (i.e., all

question words) are indiscriminately applied to infer the final answer by implicit reasoning. How-

ever, for an image-question pair, only part of the visual content in the image and several specific

words in the question are relevant to a given supporting fact. Analogously, only part of the sup-

porting fact is needed for visual-semantic reasoning. Additionally, the direct concatenation of
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image-question-entity embedding makes capturing information adaptively among different modal-

ities much more difficult. To exploit the inter-relationships among three modalities (i.e., image,

question, and KB), we propose a two-way attention mechanism with memory augmentation to

model the interactions between visual-semantic representation and the supporting facts. Thus, the

most relevant information from the three modalities can be distilled.

1.1.3 Fast Learning

Many visual-semantic learning methods, including our previous efforts on basic understanding

and integration of external knowledge, are only capable of multi-modal modeling and reasoning

when large amounts of human-annotated data and extensive training time are available. How-

ever, a true AI system should be able to quickly deliver an in-depth understanding with a small

number of learning samples. Therefore, to provide human-level intelligent agents capable of per-

forming visual-semantic reasoning with limited heterogeneous samples, we investigate few-shot

visual-semantic learning in multi-modal scenarios, including visual question answering and image

captioning.

Nowadays, for general few-shot learning problems, meta-learning [36, 37, 38] has become

a standard methodology. Based on it, a few extensions have been recently made for few-shot

visual-semantic learning. Fast Parameter Adaptation for Image-Text Modeling (FPAIT) [39] di-

rectly applied Model-Agnostic Meta-Learning (MAML) [40], a well-known meta-learning algo-

rithm to the few-shot visual question answering and image captioning. Analogously, another

work [41] adopted a question answering model with two meta-learning techniques, prototypical

networks [42] and meta networks [43]. Nonetheless, these attempts left much to be desired in

terms of their scope and performance. Firstly and fundamentally, all these methods merely applied

existing meta-learning algorithms without explicitly considering the multi-modal nature, to which

we paid careful attention in this work. For example, Teney et al. [41] obtained their model input

through a simple element-wise production between visual and semantic representations. Addition-

ally, neither of them deals with cases where labels are partially unlabeled, which is categorized
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Caption: Two female tennis players in 
white outfits shake hands

Caption: A female in a white shir t is 
playing tennis

Question: What color is the desk?
Answer: ?

Question: What color is the truck?
Answer: White

Question: What is beside the cat?
Answer: Computer

Image Captioning Visual Question Answer ing

Fig. 1.1: Image-text samples for image captioning (left) and image question answering (right).

as a semi-supervised learning setting. As labeling data can be expensive or even infeasible, semi-

supervised learning is very common and of great value in practice, and it becomes more severe

when together with the few-shot setting.

For visual-semantic learning involving multiple modalities, especially the cases with limited

and partially unlabeled image-text samples, it is vital to fully exploit the potential visual-semantic

relationships, such as the intra-relationship of each modality (i.e., intra-modal relationships) and

the inter-relationship between different modalities (i.e., inter-modal relationships). While intra-

modal learning has been examined meticulously, such as Multi-modal DBMs [44], inter-modal

learning leaves more space to explore and endows the model capacities to attentively capture com-

plementary information.

We take two examples in Figure 1.1 for illustration. For the left-hand side image captioning

example, both images contain female tennis players in white outfits. Correspondingly, the two

ground-truth captions share the words “female”, “white”, and “tennis”. In this example, even if

some words in the query caption are missing, the potential inter-modal relationship and the infor-

mation captured from the visual modality can be used to supplement and strengthen the semantic

modality and complete the caption. For the right-hand side visual question answering example,

the two left images contain a computer on the desk, which is quite different from the third im-

age. Therefore, the predicted answer of the middle image is likely to be fooled (e.g., computer)

by the visual similarity solely. Only if inter-relationship is captured through exploiting modal mu-

tual interactions the right visual clue can be distinguished from the distractors with the help of the

semantic information and lead to the correct answer (i.e., white).
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1.1.4 Event Correlation

All our previous studies on human-level visual-semantic learning (i.e., basic understanding, in-

tegration of external knowledge, and fast learning ability) have focused on images with simple

appearance features or short video clips involving only a single event. Nonetheless, most natural

videos in real-world scenarios contain a large number of ubiquitous events that are temporally lo-

calized and occur concurrently or successively. For example, in Figure 1.2, a man in the red shirt is

playing the violin and then the man jumps off the ladder, and begins to walk on the side of the roof

are three consecutive events depicting the same person. A mature Video-QA agent with human

intelligence should be able to provide an accurate and explainable answer to a given question by

perceiving such events in the video and analyzing their relationships to video content and questions

by associating them with the actual queried subjects. Although various attention mechanisms have

been utilized to manage contextualized representations by modeling intra- and inter-modal rela-

tionships of visual and semantic modalities in spatial-temporal dimension, one limitation of the

predominant Video-QA methods [45, 46, 16, 17, 47] is the lack of reasoning with event correla-

tion, that is, sensing and analyzing relationships among abundant and informative events contained

in the video Therefore, we model Video-QA on long-term videos with more complicated spatial-

temporal dynamics by incorporating event-correlated information into answer reasoning.

Events can be properly understood by modeling the complex video dynamics into a natural

language description, namely video captioning. Massive works [9, 13, 10, 48] explain video with

a single sentence. For example, they would most likely focus on a man in the red shirt is playing

the violin in Figure 1.2, which provides some details about the man and his outfits but fails to

articulate other events in the video. Instead, incorporating dense video captions [49, 50, 51] as

a new auxiliary modality helps to identify and understand more events involved, which provides

valuable clues to infer correct answers.

With multiple modalities available in Video-QA, integrating intra- and inter-modal relation-

ships may further benefit the answer inference. Taking Figure 1.2 as an instance, the model needs

to establish subject-predicate relationships between the word man and the words playing and walk-
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The man is shown playing violin, and 
the man is wear ing a suit.

A man is standing on a roof of a house.
The man in the red shir t is playing the violin.

The man in the red jacket is walking on the roof.

The man then jumps off the ladder and 
begins to walk on the side of the roof.

Video 
Attention

Question: What is the man playing while walking on the roof?

Caption 
Attention

Question 
Attention

Fig. 1.2: An illustration of how EC-GNNs handle Video-QA tasks. EC-GNNs aim to associate
semantic contents in the generated dense captions and relevant visual contents in frame sequence
with the actual subject queried in question. For a complex question such as “What is the man
playing while walking on the roof?”, EC-GNNs first localize when the man is walking on the roof
and then focus on what the man is playing (i.e., the violin).

ing in the question. RNNs are commonly adopted [52, 15, 53] but often fail to model the true com-

plexity of language structure, especially for semantic-complex questions. Alternatively, Graph

Convolutional Networks (GCNs) [54] provide a more flexible way to utilize context-aware neural

mechanisms to learn the complex intra-modal relationships, and the requirement of intra-modal

modeling and the efficacy of GCNs also hold for videos and dense captions. On the other hand,

the model needs to establish a solid semantic relationship between the man playing in the ques-

tion, the caption the man in the red shirt is playing the violin, and the few frames highlighted in

the middle of the video, to correctly answer the question in Figure 1.2. Modeling only one-way

interactions [8, 55, 16, 17] is not enough, and methods aggregating relevant information across dif-

ferent modalities and learning long-term semantic dependencies is preferred. Self-attention [56]

with different cross-modal key-query pairs provides a promising way of modeling inter-modal

relationships.

At the final stage of Video-QA, to aggregate multi-modal features for answer prediction, the

predominant approaches [52, 15, 53] generate a monolithic representation using simple vector

operations, including concatenation, element-wise addition and/or element-wise multiplication.
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However, the monolithic representation cannot fully understand cross-modal semantics, often lead-

ing to incorrect answers. As [57] found, the sub-optimal performance may come from distraction

from the question. It is promising that multi-step reasoning with question guidance can progres-

sively gather question-oriented and event-correlated evidence and provide better answers.

1.2 Literature Survey and Gap Analysis

1.2.1 Memory Augmented Deep Recurrent Neural Network

Image Question Answering

Due to the emergence of deep-learning architectures (e.g., CNNs [58, 59, 60, 61, 62, 63], RNNs [64,

12, 65]), Image Question Answering (Image-QA) has received increasing attention from both com-

puter vision and natural language processing communities and becomes a typical and popular mul-

timedia application. A vanilla Image-QA model [66] was proposed and considered as the Image-

QA benchmark. It leveraged VGGNet [60] to encode images and a two-layer LSTM to encode

questions. The question and images features were transformed into a common space and fused

via element-wise multiplication for answer prediction. Following the idea of [66], lots of earlier

approaches [26, 30, 67, 68, 25, 69, 70, 71, 72, 73] were proposed to learn a joint representation

that allows modeling interactions and performing inference over question and image content.

To address the common issue of joint embedding, attention mechanisms were customized and

widely adopted to enable the Image-QA models to identify where to look in an image and learn soft

weights for features from different image regions. Some early works [22, 31, 22, 31, 74] described

how to incorporate spatial attention mechanisms to standard LSTM models. They assumed that the

answers to image-related questions usually correspond with specific image regions. Furthermore,

some contemporaneous works [23, 75] developed schemes by dealing with CNN models. More-

over, to bring where to look and what words to listen to together, some customized co-attention

mechanisms [24, 56] were presented. Concurrently, to obtain more representative and fine-grained
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spatially-attended visual features, some works [76, 77, 8, 55, 78] directly leveraged some off-the-

shelf object detectors (e.g., Faster R-CNN [79]) to identify regions with higher quality.

To explicitly capture inter-modal and intra-modal interactions, some more recent methods [80,

81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91] represented images and questions using graph-based

structures to seamlessly transfer information between graph items (i.e., objects in the image and

words in the question) through some graph processing techniques, such as the emerging paradigms

proposed for GCNs [54, 92, 93]. In addition to joint embedding, attention-based, and graph-based

methods, other works introduced multiple new approaches [94, 95, 96, 97, 98, 99, 100, 101] to

address the Image-QA problem from different perspectives.

Although Image-QA has been well studied by many works from different aspects, the problem

becomes much more difficult when going from image to video (i.e., a sequence of correlated im-

ages). The methods proposed for Image-QA cannot be directly applied to Video-QA because they

lack careful consideration of complex spatial-temporal dependencies hidden in videos. In this the-

sis, we consider a general Video-QA task, which differs from the Image-QA task that only focuses

on a single image with simple appearance features being modeled in visual-semantic reasoning.

Video Question Answering

Recently, significant progress has been made to Video-QA, which extends Image-QA to a video

domain. The first work [102] on Video-QA was proposed by Tu et al.. They introduced a joint

parsing system to process video and text jointly for events understanding and query-answering.

The Video-QA task was formally introduced by Zhu et al. [52]. They presented a RNNs-based

encoder-decoder approach for finer understanding of video content in temporal domain (i.e., infer

the past, describe present and predict the future) using a question form of “fill-in-the-blank” with

multiple choices. Furthermore, Zeng et al. [15] collected a large-scale Video-QA dataset (i.e.,

18K videos and 175K QA pairs with free-form questions and open-ended answers) by generating

Video-QA pairs from video descriptions. In addition, they presented four baseline models, E-

MN, E-VQA, E-SA and E-SS, which are extensions from four previous works [103, 66, 10, 13]
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respectively.

Compared with Image-QA that focuses primarily on spatial understanding of region-level in-

formation from image, Video-QA requires a joint reasoning of spatial and temporal structures of

a video to predict an accurate answer. The spatial structure provides in-frame appearance fea-

tures, while the temporal structure analyzes the actions that occur across the frames. Predominant

works [104, 16, 17, 18, 19] addressed Video-QA from the spatial-temporal view point.

Furthermore, to excavate question-specific evidence for Video-QA reasoning, many model-

specific attention mechanisms [46, 45, 104, 105, 47, 106, 107, 108, 109, 110] were employed

to explicitly model long-term temporal dynamics and incorporate frame-level details, where soft

weights are learned under the guidance of question. Spatial-temporal approaches largely over-

lap with the attention-based approaches because both focus on temporal structure modeling given

certain relevant words from questions.

Moreover, it’s super difficult for a Video-QA agent to infer the correct answer by tracking a

huge amount of information from a extremely long sequence of video frames and question words.

Even if the RNN-based networks are able to model temporal correlations among the video frames

and question words, they are not capable of representing and storing all these visual-textual con-

tents, especially for the untrimmed long-term video and question. Thus, to address this issue, some

Video-QA works [111, 112, 57, 113] leveraged an external memory combined with a neural net-

works to process, represent and store both visual and textual information more effectively, while

trying to locate the salient video and question contents to remove the noise. In addition to spatial-

temporal, attention-based, memory-based Video-QA approaches, other works [114, 115, 116, 117,

118, 119, 120, 121] studied the Video-QA problem from different perspectives.

As far as we know, similar to the pioneering learning-based approaches [52, 15] on Video-QA,

many spatial-temporal methods [16, 17, 18] and memory-based methods [111, 112, 57] model

the visual-textual dependency by encoding visual information before textual information, where

a large amount of irrelevant and useless information contained in the video may fill up the lim-

ited memory. Therefore, for the purpose of selecting and preserving useful and question-related
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visual information to utilize the memory more effectively, our model encodes a question and then

encode a video. In addition, unlike the memory-based Video-QA approaches [111, 112, 57, 113]

that design and customize learnable memory networks or blocks (e.g., visual memory, question

memory) specifically for visual-semantic models, we introduce memory augmentation into Video-

QA reasoning with a unified manner for different modalities, by leveraging Differentiable Neural

Computer for both question and video encoding, which appends an external memory to LSTM to

provide additional storage space for modeling the long-term visual-textual dependency.

1.2.2 Multi-Clue Reasoning with Memory Augmentation

Knowledge-based Image-QA

In real situations, accurately answering a question given an image requires a combination of visual

observation and general knowledge. This is an extremely challenging task for current AI agents,

but effortless for humans. To bridge the gap between machine learning algorithms and human

behaviors, Knowledge-based Image Question Answering is introduced. A pioneering work [122]

from Wu et al., named Ask Me Anything, first defined the Knowledge-based VQA as a free-form

visual question answering task based on knowledge from external sources, and proposed a flexible

approach to develop a deeper understanding of the scene by combining textual representation of

image contents with information extracted from a general knowledge base. Similarly, Wang et

al. [33] introduced a model called Ahab, that not only answers complicated questions that require

external information, but also provides explanations for reasoning.

To advocate research in knowledge-based Image-QA, Wang et al. [32] introduced a widely-

used benchmark called Fact-baesed VQA (FVQA), a VQA dataset that primarily contains complex

questions which require much deeper reasoning on common sense or basic factual knowledge to

answer. Analogously, Outside Knowledge VQA (OK-VQA) [123] and World Knowledge-Aware

VQA (KVQA) [124] were introduced. For both datasets, image contents are insufficient to answer

the questions that require reasoning over external knowledge resources.

The aforementioned methods [122, 33, 32] retrieved supporting facts from KBs according to
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extracted question keywords or pre-defined query templates; however, synonyms and homographs

in questions make it difficult to focus on the most obvious visual concept, which severely hinder

obtaining truly relevant facts and lead to incorrect answer predictions. To address this issue, some

learning-based approaches were developed. Narasimhan et al. [35] proposed a novel framework

that goes Straight To The Facts (STTF) via a learned embedding space. Instead of retrieving

supporting facts based on question keywords or pre-defined query templates, STTF first employs

an LSTM to predict the fact relation that is used to filter the candidate facts from KBs. However,

only the top-ranked fact is used to answer to question, which leads to a sub-optimal local decision,

since the top-ranked fact is not always the ground truth for question answering. Therefore, they

developed a new method called Out of the Box (OB) [34], which creates an entity graph and

employs a graph convolutional network (GCN) to jointly consider multiple facts before arriving at

an answer. More recently, Zhu et al. [125, 126] introduced Multi-Layer Cross-Modal Knowledge

Reasoning (Mucko) and comprehensively depict an image by a multi-modal heterogeneous graph,

which contains multiple layers of information from visual, semantic and factual modalities, and

demonstrates a good interpretability and is able to automatically tells which modality and entity

have more contributions to question answering.

Unlike the query-mapping based approaches [122, 33, 32] retrieving supporting facts through

a keyword-matching manner, which suffer from serious performance degradation when the infor-

mation hint is not captured or visual concept is not mentioned, we introduce a learning-based KB

retrieval method, where a relation phrase detector is proposed to predict multiple complementary

clues for supporting facts retrieval. Even if the learning-based approaches [35, 34] achieve a no-

ticeable improvement over the query-mapping based approaches, they indiscriminately employ the

whole visual information (i.e., object, scene, and action) and semantic information (i.e., question

words) for answer reasoning through a direct concatenation that makes it hard to adaptively capture

information among different modalities. We, however, propose a two-way attention mechanism to

model the interactions between visual-semantic representation and supporting facts to distill the

most relevant information from each modality. Besides, [35, 34] only utilize the semantic evi-
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dence from question space for KB retrieval, while we jointly leverage the visual and semantic

information to obtain the supporting facts from KB.

1.2.3 Hierarchical Graph Attention Network

Few-shot Learning

Meta-learning, a standard methodology to tackle few-shot learning problems, has recently attracted

extensive attention due to its important roles in achieving human-level intelligence. Several spe-

cialized models [127, 128, 42, 129, 130] have been proposed for meta-learning, particularly for

few-shot classification, by comparing similarity among data samples using representation learn-

ing. Specifically, [128] presented a neural network model, Matching Networks, which learn an

embedding function and use the cosine distance in an attention kernel to measure similarity. Sim-

ilarly, [42] leveraged a similar approach to few-shot classification but used the Euclidean distance

with their embedding function.

Another predominant approach to meta-learning is to develop a meta-learner to optimize key

hyper-parameters (e.g., initialization) of the learning model. A seminal work [40] presented a

model-agnostic meta-learner, MAML, to optimize the initialization of a learning model with the

objective of maximizing its performance on a new task after updating its parameters with a small

number of samples. Several other methods [131, 132, 133, 134, 135, 136] utilized an additional

neural network, such as LSTM, to serve as the meta-learner. In particular, [133] proposed another

LSTM-based meta-learner to learn a proper parameter update and a general initialization for the

learning model allowing for quick convergence of training for a new task.

Even if the few-shot learning has made tremendous successes, it focuses only on the few-shot

classification tasks without a careful consideration for more complicated visual-semantic learning

tasks (e.g., Image-QA and Image Captioning), which involve multiple modalities. However, we

presented a Hierarchical Graph Attention Network to study the few-shot visual-semantic learning

with better exploitation of both intra- and inter-modal relationships.
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Visual-semantic Learning

Visual-semantic learning aims to build models that can process and relate the information for

both visual and semantic modalities. Generally speaking, visual-semantic learning focuses on

multimedia description tasks, such as Image-QA and image captioning. Various methods [66,

26, 67, 23, 75, 74, 24, 71, 80, 8, 55, 137, 87, 89] have been proposed for Image-QA, which are

discussed before. Image captioning [138, 139, 140, 141, 142] aims to describe the visual contents

of an image in meaningful and syntactically correct language. The most common approach for

image captioning is to feed global features extracted from the last layer of a CNN into a language

model. This simple recipe is first adopted in [4], where the output features of GoogleNet [61] are

used as the initial hidden state of the language model. Other works dealing with image captioning

through employing global CNN features includes [143, 5, 3, 144, 145, 146, 147, 148, 6, 149, 150,

151].

In addition, many subsequent works exploit attention mechanisms to achieve greater flexibil-

ity and finer granularity in image captioning. Xu [7] leverages additive attention to compute a

weight for each grid element of the spatial feature extracted from the last convolutional layer of

VGG network [60], so that the model is able to selectively focus on different set of elements to

generate different words of an image description. Subsequent works following this line with minor

improvements includes [152, 153, 154, 155, 156, 157, 158]. Notably, to imitate how the humans

pay attention for image captioning task, some works [159, 160, 161, 162, 163] employed saliency

map to achieve stimulus-based attention computation and critically attend to image regions based

on whether they are fixated or not. Anderson et al. [8] proposed a bottom-up path and employed

Faster R-CNN [79] to obtain feature maps of image regions. A top-down attention mechanism is

further adopted to weigh the feature map of each region when generating the next word. Many

subsequent solutions [164, 165, 166, 167] follow this strategy for image captioning.

To fully exploit and model the semantic and spatial relationships between detected objects or

image regions, graph-based encoding is employed for image captioning. Yao et al. [168] first

proposed to use a GCN-LSTM architecture to integrate semantic and spatial object relationships
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into an image encoder. Similarly, Guo et al. [169] constructed two structured graphs of visual

semantic units, one semantic and one geometry, to exploit the alignment properties between caption

words and visual semantic units for image captioning. Other attempts to use graph-based encoding

variants for image captioning include [170, 142, 171].

Self-attention mechanism [56] is proposed to enable a complete graph representation for a

more flexible image encoding, where each unit is connected with all the others and the relation-

ships between each pair of units can be successfully exploited. The first attempt to leverage

self-attention for image captioning is due to Yang et al. [172]. They employed a self-attentive

module to fuse the detected visual clues (i.e., objects, attributes, and relations) as well as the lan-

guage context knowledge. At the same time, Li et al. [173] introduced an Entangled Attention

(ETA) Transformer to encode the detected visual and semantic features respectively with self-

attention and feed-forward layers. Self-attention has been widely adopted by several following

works [140, 174, 175, 176, 177, 178] with minor modifications tailored for image captioning.

However, unlike most of the existing Image-QA and image captioning methods that rely on a

vast amount of human-annotated training data, we propose a model that is able to deal with the

cases with limited or even partially unlabeled data samples.

Few-shot Visual-semantic Learning

As aforementioned, meta-learning has become a standard methodology for few-shot learning.

Based on it, a few extensions have been recently made for few-shot visual-semantic learning. In

particular, Dong et al. [39] proposed Fast Parameter Adaptation for Image-Text Modeling (FPAIT)

that directly applied Model-Agnostic Meta-Learning (MAML) [40], a well-known meta-learning

algorithm, to the few-shot visual question answering and image captioning. Analogously, Teney et

al. [41] adopted a question answering model with two meta-learning techniques, prototypical net-

works [42] and meta networks [43]. Nonetheless, these attempts left much to be desired in terms of

their scope and performance. In particular, they merely applied existing meta-learning algorithms

without explicitly considering the multi-modal nature of visual-semantic learning. For example,
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Teney et al. [41] obtained the model input through a simple element-wise production between vi-

sual and semantic representations. Besides, none of them deals with the cases where labels are

partially unlabeled, which is categorized as the semi-supervised learning setting

Unlike [39, 41], we present a model for few-shot visual-semantic learning that considers the

multi-modal nature through a fully exploitation of potential visual-semantic relationships (i.e.,

intra- and inter-modal relationships), and it is easily to be extended to semi-supervised cases with

the limited data samples partially unlabeled.

1.2.4 Cross-Modal Reasoning with Event Correlation

Dense Image Captioning

Dense image captioning task is firstly introduced by Johnson et al. [179], which concurrently

localizes and describes salient image regions with short natural language sentences by spatially

extending image captioning. This task can be conceived as a generalization of object detection,

where syntactically correct captions replace single-word labels, or image captioning, where mul-

tiple salient regions replace a full image. Furthermore, to address this task, they proposed a Fully

Convolutional Localization Network (FCLN), consisting of a VGG-16 [60] for apperance feature

extraction, a fully differentiable dense localization layer for regions of interest (ROI) prediction,

and an LSTM for generating word sequences.

Several subsequent works improve dense image captioning by jointly reasoning with more con-

textual information involved. Yang et al. [180] presented a dense captioning model with two key

components, joint inference and context fusion. In particular, for joint inference, the localization

bounding boxes are jointly predicted from pooled features of ROI combined with the predicted

descriptions; for context fusion, the pooled features are combined with context features to predict

more accurate region descriptions. Likewise, Li et al. [181] argued that the caption of each region

depicts both object properties and its interactions with objects in the image. Therefore, they pro-

posed a novel scheme to learn complementary object context and transfer knowledge from related

objects to caption regions.
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Furthermore, on the basis of contextual knowledge augmentation, some works proposed to

predict dense captions based on linguistic attributes. Notably, Yin et al. [182] designed a con-

text and attribute grounded dense captioning model with an attribute-grounded caption generator

that not only exploits multi-scale contextual information sharing and message passing, but also

incorporates hierarchical linguistic attribute supervision in a coarse-to-fine manner to enhance the

distinctiveness of generated captions. To provide more coherent dense descriptions of visual con-

tents, a series of works [183, 184, 185, 186, 187, 188, 189, 190] following these two concepts (i.e.,

contextual feature mining and attribute augmentation) are proposed for dense image captioning.

Dense Video Captioning

Dense video captioning task is firstly introduced by Krishna et al. [49] by extending video cap-

tion in event dimension, which simultaneously detects multiple events that occur in the video and

describes each event using natural language. The seminal work on dense video captioning [49] em-

ployed an existing proposal module [191] to capture both short and long events and caption each

event with a newly-designed captioning module that is able to utilize the context from surrounding

events, even for streaming videos. Nonetheless, the proposal module and captioning module are

trained in an alternative manner, where the caption supervision has no direct benefit for the event

proposal prediction.

To overcome this limitation, several subsequent works presented simple yet effective frame-

works for end-to-end dense video captioning. Zhou et al. [50] proposed an encoder-decoder based

end-to-end trainable model consisting of a video encoder, a proposal decoder and a captioning

decoder. The captioning decoder employs a masking scheme to convert the predicted event pro-

posals into differentiable masks, which ensures the consistency between proposal and captioning

decoders during training, so that the linguistic information from captions is able to guide the pro-

posal module to generate more plausible proposals. Similarly, Wang et al. [192] presented another

pure end-to-end dense Video Captioning framework with Parallel Decoding (PDVC), which di-

rectly feeds the video features into a captioning head parallel to the localization head. Therefore,
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the inter-task associations at the feature level are captured and the mutual benefits between two

tasks (i.e., proposal localization and caption prediction) can be exploited to improve their perfor-

mance together.

Additionally, Deep Reinforcement Learning (DRL) is also employed for dense video caption-

ing [193, 194], to alleviate the redundancy and inconsistency caused by duplicate proposal local-

ization and independent caption prediction. Other works on dense video captioning includes [195,

196, 197, 198, 51, 199, 200, 201].

Unlike [125, 126] that leverage dense image captions as a new semantic modality for Knowledge-

based Image-QA with cross-modal reasoning on a heterogeneous graph, we introduce dense video

captions to deal with Video-QA by incorporating event-correlated information into visual-semantic

reasoning. We assume that the event correlation could be successfully exploited to benefit Video-

QA inference through modeling intra-modal relationships among dense video captions and inter-

modal relationships among video, question and dense captions.

Graph-based Video-QA

As aforementioned, the state-of-the-art Video-QA methods are based on fine-grained represen-

tation and model-specific attention, which usually process video and question separately and fuse

the contextualized representations of visual and textual modalities for answer prediction. Although

they process important information of one modality based on relevant cues from another modality

with attention mechanisms, they fail to integrate both inter-modal and intra-modal relationships

into a unified module.

Therefore, to explicitly model inter-modal and intra-modal relationships, some works attend to

represent Video-QA as a spatial-temporal graph and perform reasoning over the graph represen-

tation via GCNs. Wang et al. [202] first proposed to perform long-range temporal modeling of

human-object and object-object relationships via a graph-based reasoning framework, which clar-

ifies how graph structures can be used for Video reasoning tasks, such as Video-QA. Each input

video is represented as a space-time region graph where each node represents a region of inter-



20

est and each edge denotes appearance similarity or spatial-temporal proximity. Inspired by [202],

Huang et al. [203] introduced Location-aware Graph Convolution Networks (L-GCN) to model the

interactions between objects regarding to a question. In particular, they first leverage an off-the-

shelf object detector to detect objects of interest to explicitly exclude irrelevant background con-

tents, and construct a fully-connected graph where each node represents an object and each edge

between two nodes represents their relationship. Similarly, to explicitly exploit both inter-modal

and intra-modal relationships in a more flexible way for Video-QA inference, Jiang et al. [204]

built an uniform Heterogeneous Graph Alignment (HGA) network over video shots and question

words. Furthermore, to obtain an enhanced vision-language representation for Video-QA, Jin et

al. [120] introduced an adaptive spatial-temporal graph module, which refines the spatial-temporal

connections for dynamic object representation learning according to their spatial-temporal rela-

tions.

Even though [202, 203, 204, 120] provide a better exploitation of inter- and intra-modal rela-

tionships by representing Video-QA as a spatial-temporal graph, they only consider the two basic

modalities (i.e., visual and semantic) for Video-QA reasoning without any event correlation con-

sidered. However, we propose a novel Event-Correlated Graph Neural Networks (EC-GNNs) that

introduce dense video captions as a new modality for Video-QA and clarify how to exploit event-

correlated information through cross-modal reasoning. To the best of our knowledge, we are the

first to integrate dense video captions as a new modality for Video-QA task.

1.3 Contributions

This thesis aims to leverage emerging Deep Learning technologies to investigate human intelligent

visual-semantic learning from four important aspects of human-level cognition, including basic

understanding, external knowledge integration, faster learning, and event correlation. More specif-

ically, we make the following contributions.

• To study the basic visual-semantic understanding ability of the human brain with memory,
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we propose a novel MA-DRNN model for the Video-QA task. We argue that the widely-used

visual-textual encoding method doesn’t conform to human cognitive habits and often leads

to inaccurate answers due to memorizing irrelevant and redundant information. Furthermore,

we discuss and show that the commonly-used RNNs (i.e., LSTM, GRU) do not model long-

term visual-textual dependencies well. Based on the analysis, we present a novel video and

question encoding approach to learn better visual-semantic representations, and we utilize a

DNC-based memory augmentation mechanism to store and retrieve valuable and question-

related visual information with the incorporated external memory.

• To investigate visual-semantic reasoning capacities with external knowledge integration, we

propose a novel MCR-MemNN framework for the KB-Image-QA task. We argue that visual-

semantic reasoning using commonsense knowledge is effortless for humans but challenging

for current algorithms. In addition, we discuss and show that the predominant methods fail

to extract evidence related to image-question and supporting facts across different modali-

ties and degrade severely in extreme cases due to missing key supporting facts. Based on

the analysis, we present a bidirectional attention mechanism with memory augmentation to

adaptively capture the most relevant cross-modal information by modeling the interactions

among different modalities, and we introduce a multi-clue KB retrieval method to obtain

ground-truth supporting facts with multiple predicted complementary cues.

• To enable fast and in-depth visual-semantic understanding using a few or even partially un-

labeled samples, we investigate few-shot visual-semantic learning and propose a new HGAT

framework for Image-QA and Image-Captioning in few-shot and semi-supervised few-shot

settings. We claim that the ability to solve visual-semantic tasks with limited samples is

critical for a human intelligent system, while current AI agents either fail to consider the

multi-modal nature in few-shot scenarios or are incapable of handling limited and partially

unlabeled image-text samples. In addition, we discuss and show through two examples

that fully exploiting intra- and inter-modal relations is crucial for few-shot visual-semantic
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learning. Based on the analysis, we design visual-specific and semantic-specific GNNs to

capture the intra-relationships of visual and semantic modalities, respectively, and introduce

an attention-based co-learning framework to model the inter-relationships between the two

modalities. Furthermore, we employ relation-aware GNNs to jointly learn visual-semantic

representations and relations.

• To exploit event correlation for visual-semantic reasoning with complex spatial-temporal

dynamics, we propose a novel EC-GNNs framework for Video-QA of long-term videos

containing a large number of ubiquitous events. We argue that a mature Video-QA agent

with human intelligence is able to provide accurate and explainable answers by perceiving

events and analyzing their relations to video content and questions. We show that traditional

video captioning with only one sentence cannot articulate all contained events. Furthermore,

we illustrate the importance of intra- and inter-modal relationships for learning long-term

visual-semantic dependencies through a representative Video-QA example. Based on the

analysis, we introduce dense video captions as a new auxiliary modality to identify each

involved event and incorporate event-correlated information into the reasoning process, and

we propose a cross-modal attention mechanism to explicitly model inter-modal relationships

and aggregate relevant information across different modalities.

1.4 Outline

The rest of this thesis is organized as follows. To study the basic visual-semantic understand-

ing ability, we first propose Memory Augmented Deep Recurrent Neural Network (MA-DRNN)

for Video-QA in Chapter 2. In addition, in Chapter 3, to investigate visual-semantic reasoning

capacities with commonsense knowledge, we present a novel MCR-MemNN framework to deal

with KB-Image-QA. Furthermore, we argue that a fast and in-depth visual-semantic understand-

ing using a few or even partially unlabeled samples is crucial to achieve human intelligent visual-

semantic learning, and introduce the Hierarchical Graph Attention Network (HGAT) for few-shot
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visual semantic learning in Chapter 4. Moreover, in Chapter 5, we clarify how to employ dense

video captions as a new auxiliary modality to incorporate event-correlated information into Video-

QA reasoning by presenting Event-Correlated Graph Neural Networks (EC-GNNs). Finally, we

conclude this thesis and show our future research plan in Chapter 6.
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CHAPTER 2

MEMORY AUGMENTED DEEP RECURRENT

NEURAL NETWORK FOR VIDEO

QUESTION ANSWERING

2.1 Overview

Image Question Answering (i.e., Image-QA) represents a typical and popular multimedia applica-

tion, which has been studied by quite a few works [66, 26, 30, 70, 75, 74, 8, 80, 89, 90]. However,

the problem becomes much more complicated when going from image to video (i.e., a sequence

of correlated photos). The methods proposed for Image-QA obviously cannot be directly applied

to Video Question Answering since they lack careful consideration for complicated temporal cor-

relations hidden in videos. Even though video captioning shares some similarities with Video-QA,

these two tasks are still mathematically and fundamentally different. Hence, existing video cap-

tioning models and methods [205, 10, 13, 14, 206] cannot be directly applied or easily extended to

solve the Video-QA problem. Among works on Video-QA, some of them [207, 52, 95] focused on

multiple choice questions, and another work [16] targeted only three specific kinds of questions.

We, however, consider Video-QA in a general case, i.e., general free-form questions that can have
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open-ended answers.

In this chapter, we propose a novel Memory Augmented Deep RNN (MA-DRNN) based on

DNC for Video-QA, which features a new visual-textual encoding method (which is different from

many other related works), and DNC-based memory augmentation. We validate and evaluate our

model using the VTW dataset [15] and MSVD-QA dataset [46], which are two widely-used large-

scale video benchmarks for language-level understanding. It has been shown by experimental

results that the proposed model can generate meaningful answers for questions, and more im-

portantly, it outperforms the state-of-the-art methods presented in a recent work [15] in terms of

various accuracy-related metrics. Moreover, a comprehensive ablation study has been performed

to show the effectiveness and superiority of the new method for video and question encoding as

well as memory augmentation based on DNC. To the best of our knowledge, we are the first to

propose a memory-augmented deep neural network for Video-QA and show promising results.

2.2 Memory Augmented Deep Recurrent Neural Network

2.2.1 Differential Neural Computer

In this section, we give a necessary background introduction to Differentiable Neural Computer

(DNC) [21]. As illustrated in Figure 2.1, a DNC is consisting of two basic components: a neural

network controller and an external memory. The controller can interact with the external memory

via read and write operations, which is analogous to random-access memory in a conventional

computer. However, unlike the conventional computer with discrete read and write operations,

each component in DNC is differentiable, allowing end-to-end training with the gradient decent as

a regular neural network. This is achieved by defining blurry read and write operations which can

access each memory location in a greater or less degree at a time. The degree of blurriness, also

called weighting, is determined by the memory addressing mechanism.

Controller. At each time-step t, the recurrent controller receives an input vector xt and emits

an output vector yt. Additionally, the controller receives a set of read vectors r1t−1, r
2
t−1, ..., r

R
t−1
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Fig. 2.1: Differentiable Neural Computer (DNC) [21]

from the N ×W memory matrix Mt−1 of previous time-step. So the input vector to controller can

be expressed as Xt = [xt; r
1
t−1; r

2
t−1; ...; r

R
t−1]. Even though any neural network can be used as the

controller, it is quite common to use LSTM for the purpose. The output vector from controller can

be determined by:

yt = Wh[h
1
t ;h

2
t ; ...;h

L
t ] +Wr[r

1
t ; r

2
t ; ...; r

R
t ]; (2.1)

where h1
t , ...,h

L
t are the hidden states of L-layer controller. And for each layer, the hidden state is

used to parameterize one write head (blue) and multiple read heads (yellow and purple) (Equation

(2.5) and (2.6)).

Write and Read Operations. The write operation of a single write head is mediated by the

write weighting vector ww
t , which is used with an erase vector et and a write vector vt to modify

the memory as follows:

Mt = Mt−1 ◦ (E−ww
t e

⊤
t ) +ww

t v
⊤
t ; (2.2)

where et controls the erase operation, vt controls the add operation, and both of them are deter-

mined by the hidden state of the controller (Equation (2.5)). The write weighting vector ww
t is

calculated based on the write key kwt , which is also determined by the hidden state of the controller
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(Equation (2.5)). Mt denotes the memory of the current time-step t, E is an N × W matrix of

ones and ◦ denotes the element-wise multiplication. Then the memory is updated through an erase

operation followed by an add operation on Mt−1

For the read operation, R read weighting vectors wr,1
t ,w

r,2
t , ...,w

r,R
t are used to compute

weighted averages of the contents of the locations to get R read vectors r1t , r
2
t , ..., r

R
t :

rkt = M⊤
t w

r,k
t . (2.3)

where each read weighting vector wr,k
t is calculated based on the read key kr,kt , which is determined

by the hidden state of the controller (Equation (2.6)).

2.2.2 Memory Augmented LSTMs

In this section, we present the proposed Memory Augmented Deep Recurrent Neural Network

(MA-DRNN) model. MA-DRNN introduces two new techniques to improve performance, includ-

ing 1) a new method for encoding videos and questions (which is different from those in many

other related works), and 2) DNC-based memory augmentation.

As illustrated in Figure 2.2, the proposed model works as follows: 1) In the question encoding

phase, the embeddings of a sequences of words (in the question) are fed into the DNC (with an

LSTM unit as the controller) one by one (one at a time-step). 2) In the video encoding phase,

feature maps of a sequence of frames (sampled from the video) are fed into the DNC one by one

(one at a timestep). 3) At last, a softmax function is used to produce the probability of each possible

answer according to the final visual-textual representation. Basically our model is not restricted

to any particular method for generating word embeddings or image feature maps. We will discuss

these implementation details later. Moreover, similar to LSTM, multiple DNCs can be stacked

together to form a deep model, which usually leads to better performance for those applications

related to visual and textual information processing. In our implementation, we employed a deep

DNC with two layers, each of which has a distinct external memory.

Our encoding method is different from that in [15]. Even though the models presented in [15]
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Fig. 2.2: The architecture of Memory Augmented Deep Recurrent Neural Network (MA-DRNN).

represents the state-of-the-art for general Video-QA, there is obvious room for improvement. For

example, when testing their models for Yes/No questions, the accuracies are around 50%, which is

the correct rate of random guessing. An even more important observation from their experimental

results [15] is that no significant performance gain has been brought by integrating visual infor-

mation into the proposed models because there is just a little improvement for each model trained

with all data (“Train-all") compared to its counterpart trained without visual observations (“Non-

visual") on average classification accuracy; and even a little drop appears on the performance for

Yes/No questions when using E-SS, E-VQA or E-MN [15]. This leads us to believe that the video

features have not play their role well in answering questions, especially those Yes/No questions.

We suspect that it is the long-term sequence encoding that causes the oblivion of video features,

which are encoded before question words; and moreover the final representation lacks useful and

question-related visual information, which leads to non-ideal results for Video-QA. In addition,

encoding a video before a question [15] may also result in a bad consequence that a large amount

of irrelevant and useless information contained in the video may fill up the internal memory of the
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Fig. 2.3: The internal data flow of DNC at each layer of MA-DRNN.

LSTM because of lack of proper guidance for selection and preservation of useful visual informa-

tion that is closely related to the corresponding question. As far as we know, similar to [15], many

other works [22, 16] on modeling the visual-textual dependency encode visual information before

textual information. For the purpose of strengthening the influence of visual features on the final

representation as well as selecting and preserving useful and question-related visual information

through the encoding phase to utilize the memory effectively, our model encodes a question and

then encodes a video. The advantage of doing so can be easily understood by thinking about how

a human does Video-QA. A video usually includes very rich information, far beyond the normal

amount of information received by a person. If he/she first watches a video (probably a long one)

and then gets a question (E-SS model [15]), then he/she may not be able to answer it well because

he/she may remember a lot of video information that is irrelevant to the question heard later. On

the contrary, if he/she gets the question first and then watches the video (our model), then he/she

should answer it well since he/she can pay special attention to those relevant and useful information
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in the video. The effectiveness of such an encoding method has been justified by our experimental

results presented later.

In addition, to enhance the capacity of LSTM on modeling long-term dependency, we intro-

duce memory augmentation into our model by leveraging DNC for question and video encoding,

which adds an external memory to LSTM to provide additional storage space for modeling the

long-term visual-textual dependency and guiding the generation of final representation for answer

prediction. Moreover, the external memory allows more useful textual information to be retained

after the question encoding for the better selection of relevant visual information in the video en-

coding phase. Memory augmentation has also been shown to be effective for Video-QA by our

experimental results presented later.

Next, we explain how the LSTM controller interacts with the external memory during the

encoding phase in details, which is illustrated in Figure 2.3. Since this process in every layer of

the deep DNC is almost the same, we only show it in the first layer. Simply speaking, at each

time-step, the content read from the memory of the previous time-step serves as input to LSTM

to determine the content written into the memory by the write head at the current time-step. The

output at each time-step is determined by both LSTM’s hidden state and the content read from the

external memory. After the encoding phase, the important textual and visual information as well as

the long-term visual-textual dependency will be retained in the external memory and the internal

memory of LSTM, which are used to generate the final representation.

Specifically, at each time-step t, the LSTM controller receives two vectors, one is the input

xt at current time-step, another one is the content/read vector rt−1 read from the memory of the

previous time-step, and the two vectors are concatenated to form the input vector Xt = [xt; rt−1]

for the LSTM controller. The computation process of the first layer LSTM controller is shown as
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follow:
it = σ(Wi[Xt;ht−1] + bi);

ft = σ(Wf [Xt;ht−1] + bf );

ot = σ(Wo[Xt;ht−1] + bo);

c̃t = tanh(Wc[Xt;ht−1] + bc);

ct = ft ◦ ct−1 + it ◦ c̃t;

ht = ot ◦ tanh(ct);

(2.4)

where σ is the sigmoid function, it, ft, ot, ct are input gate, forget gate, output gate and cell state

of LSTM controller of current time-step respectively, ct is passed to the LSTM controller of next

time-step, ht denotes the hidden state, and W terms and b terms are learnable weight matrices and

biases.

ht is used to control the write and read operations on external memory.

kwt = Ww
keyht;

et = Weht;

vt = Wvht.

(2.5)

Specifically, it determines the erase vector et, write vector vt and write key kwt (introduced

in Preliminaries) for the write head to edit the external memory. The write key kwt , erase vector

et ∈ [0, 1]W and write vector vt are computed according to Equation (2.5), where Ww
key, We and

Wv are all learnable weight matrices. Then the write wighting vector ww
t can be calculated based

on kwt , to further update the external memory as shown in Equation (2.2).

kr,kt = Wr,k
keyht. (2.6)

ht is also used to calculate the read key kr,kt for each read head according to Equation (2.6),

where Wr,k
key is a learnable weight matrix. Then the read weighting vector wr,k

t can be calculated

based on kr,kt , to further obtain read vector rkt as shown in Equation (2.3), where k denotes the

index of each read head.
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Description: As a line of bikers attempted the same jump, almost the entire row successfully
landed and continued riding. But when the last rider tried to follow their lead, he crashed hard on
the grass.
Question: Did the last biker crash on the grass?
Answer: Our Model: Yes; Ground Truth: Yes

Description: This BMX rider tried to perform a wild flip off a dirt incline and fell down hard.
Question: Does the BMX rider successfully complete the front flip off the dirt incline?
Answer: Our Model: No; Ground Truth: No

Description: Some great POV footage of a fellow skier going off a jump. If only he made it!
Question: Who is in the footage tumbling off a jump?
Answer: Our Model: Skier; Ground Truth: Skier

Description: When a snorkeler dove down to get a closer look at a cool shell, he was surprised
when a perfectly camouflaged octopus emerged from the reef.
Question: Who emerges from the reef camouflage?
Answer: Our Model: Octopus; Ground Truth: Octopus

Fig. 2.4: The examples from the testing results given by the proposed MA-DRNN model

Then the read vectors r1t , r
2
t , ..., r

R
t read from the memory can be concatenated together to

obtain the final read vector rt = [r1t ; r
2
t ; ...; r

R
t ] ∈ RR×W at current time-step. The final output yt at

each time-step t is given according to Equation (2.7), where Wh and Wr are both learnable weight

matrices.

yt = Whht +Wrrt. (2.7)
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2.3 Performance Evaluation

In this section, we first introduce the dataset, some implementation details and evaluation metrics;

and then present and analyze the experimental results.

2.3.1 Dataset Preparation

Two large-scale datasets for VideoQA were used in our experiments.

VTW: The dataset was first introduced in [15] based on a state-of-the-art question generation

method [208]. It contains 151,263 QA pairs from 14,100 videos for training, 21,352 QA pairs from

2,000 videos for validation and 2,000 videos for testing. The QA pairs for training and validation

were automatically generated from user-curated descriptions, while the QA pairs for testing were

human-generated. In our experiments, 146,700 QA pairs from 14,091 videos were chosen for

training and 3,600 QA pairs from 1,999 videos were chosen for testing.

MSVD-QA: The dataset was generated based on Microsoft Research Video Description Cor-

pus [209], a widely used dataset for video captioning, using the generation method introduced

in [210]. It contains 1,970 video clips and 50,505 QA pairs. For fair comparison, we used the

same dataset split method as [46]: 30,933 QA pairs from 1,200 videos for training, 6,415 QA pairs

from 250 videos for validation and 13157 QAs from 520 videos for testing.

Note that the VTW dataset contains two types of QA pairs, Others and Yes/No, while the

MSVD-QA dataset only has Others QA pairs.

2.3.2 Experimental Setup

We used TensorFlow to implement the proposed model. In our implementation, we sampled 50

frames and 20 frames for each video in VTW and MSVD-QA datasets respectively in an evenly-

paced manner, then resized and normalized each frame to zero mean and unit norm with a size of

224 × 224 × 3. We extracted the appearance features of each frame using a widely-used CNN,

VGG network [60] pre-trained on ImageNet 2012 classification dataset [211]. Moreover, 20 evenly
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distributed clips (each with 16 frames) were sampled for each video, then the motion features of

each clip were also extracted using C3D network [212], pre-trained on Sports-1M dataset [213].

Both appearance features and motion features have a dimension of 4, 096.

There are two types of text inputs: question and answer. The questions in VTW dataset with

length larger than 15 were trimmed to a maximum of 15 words, while the questions with length

smaller than 15 were padded with zeros to the length of 15 (10 for the MSVD-QA dataset), and

each word in the questions was represented as a 300D vectors using the GloVe word embedding

[214] pre-trained on the Common Crawl dataset. For answers, following the same rule as [15, 46],

we used a simple but widely-used method to generate word embeddings. Specifically, we first

calculated the occurrence frequency of each answer in training and validation set, then retained

the top-1000 most frequent answers to create the answer space, then we represented each answer

using a one-hot vector with length of 1000 based on the answer space. This set covers 81% and

96% of the training and validation answers in the VTW and MSVD-QA datasets respectively. In

the training process, we set the batch size to 100 and used the RMSProp algorithm [215] with a

learning rate of 0.0001.

We used the same metrics for performance evaluation as [15, 46]. For QA pairs whose answers

are Yes/No, in order to penalize false-positive answers, we used

Acc† =
TP

TP + FP + FN
(2.8)

to evaluate both Yes Acc† and No Acc†, where TP is true-positive, FP is false-positive and FN is

false-negative. Acc† becomes higher when the number of true Yes or true No answers gets larger;

while it becomes lower when the number of false Yes or false No answer gets larger. Meanwhile,

we also used the standard classification accuracy: Acc = Nc/Ns to evaluate the performance for

answering the Yes/No questions, where Nc is the number of testing examples which have been

classified correctly and Ns gives the total number of testing examples.

For Others QA pairs whose questions are general “what/how" kind of questions, we used both

the standard classification accuracy Acc and the widely-used metric WUPS [26] to evaluate their
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performance. This is because the classification accuracy Acc is too strict, while WUPS can be

considered as a relaxed version that deals with the word-level ambiguities. Similar as in [15], we

show WUPS scores with thresholds of 0.0 and 0.9 respectively. In addition, we also calculated

the average classification accuracy Avg.Acc of Yes/No and Others to show the overall performance

for each method for VTW dataset. For the MSVD-QA dataset, since five types of questions were

included, besides the overall standard classification accuracy Acc and WUPS scores, we also

reported the accuracy of each question type.

Table 2.1: Performance comparisons with the VTW dataset in terms of various accuracy-related
metrics

Models Others WUPS 0.0 (%) Others WUPS 0.9 (%) Others Acc (%) Yes Acc† (%) No Acc† (%) Yes/No Acc (%) Avg.Acc (%)

ST 32.9 5.51 2.1 11.9 26.7 49.3 25.7
E-MN 47.9 10.1 2.9 40.0 13.0 49.5 26.2

E-VQA 49.3 13.2 5.0 38.8 22.3 46.7 25.9
E-SA 51.4 15.5 8.4 36.4 28.8 52.4 30.4
E-SS 48.7 14.2 7.3 34.5 25.8 49.5 28.4

MA-DRNN 56.3 20.7 11.4 54.9 38.6 67.4 39.4

2.3.3 Analysis of Results

First, we show some examples from the VTW dataset given by MA-DRNN during our testing

in Figure 2.4, which include four sets of frames from some testing videos and the corresponding

questions and answers. For instance, the first example shows that the last rider failed to jump and

land on the ground in the last part of the video, and when the question “Did the last biker crash

in the grass?" is asked, the correct answer “Yes" was given by our model. In the fourth example,

the question is “Who emerges from reef camouflage?". As shown in the video, it is a camouflaged

octopus gradually emerged from the reef. The correct answer “Octopus" was given by our model.

In our experiments with the VTW dataset, we compared the proposed MA-DRNN model with

the four models presented in [15], including E-MN, E-VQA, E-SA and E-SS, which represent

the state-of-the-art on Video-QA. In addition, we included the results related to another method,

Skip-Thought (ST) [216], which was used as the baseline for comparisons in [15]. Note that a

self-paced method was used in [15] to identify and get rid of those bad QA pairs during training,
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Table 2.2: Performance comparisons and ablation study with the MSVD-QA dataset

Models what (%) who (%) how (%) when (%) where (%) Acc (%) WUPS 0.0 (%) WUPS 0.9 (%)

E-MN 18.7 46.8 56.8 64.7 73.7 30.4 72.9 38.4
E-VQA 11.8 40.7 84.2 84.3 47.4 24.8 70.7 33.3
E-SA 16.5 45.2 83.1 82.4 73.7 29.3 73.7 38.1
GRA 22.8 45.0 73.4 82.4 78.9 32.7 73.9 41.0

DRNN-v1/E-SS 21.9 47.5 79.2 66.7 15.8 33.1 72.1 41.0
DRNN-v2 22.4 50.0 69.0 76.5 31.6 34.1 73.2 41.8

MA-DRNN-v1 23.3 49.6 83.1 74.5 10.5 34.9 73.2 42.6
MA-DRNN-v2 24.3 51.6 82.0 86.3 26.3 36.2 74.1 43.7

which has been shown to lead to minor performance improvement. Since this method is just a data

pre-processing method and we are not sure which QA pairs were eliminated by them, we used

all the data for training and included their “Train-all" results from [15] for fair comparisons. We

presented all the results with the VTW dataset in TABLE 2.1.

In our experiments with the MSVD-QA dataset, we compared the proposed MA-DRNN model

with the five models presented in [15, 46] including E-MN, E-VQA, E-SA, E-SS and GRA, whose

results were obtained by running the implementation described in [217]. We conducted a compre-

hensive ablation study with the MSVD-QA dataset to evaluate the effectiveness and superiority of

the proposed encoding method as well as memory augmentation. We implemented the DRNN-

v1/E-SS, DRNN-v2 and MA-DRNN-v1 to serve as the baseline for comparisons. Here, compared

to MA-DRNN, DRNN does not use memory augmentation; and v1 denotes encoding videos before

questions, v2 denotes encoding question before videos (the proposed encoding method). Note that

DRNN-v1 is the same as E-SS so we put them together; and MA-DRNN-v2 here is the same as

MA-DRNN in TABLE 2.1. We presented all the results on the MSVD-QA dataset in TABLE 2.2.

We can make the following observations from these experimental results:

1) For the Yes/No questions of VTW dataset, MA-DRNN significantly outperforms all the other

methods in terms of classification accuracies. E-SA turns out to perform best among all the four

models in [15]. MA-DRNN achieves classification accuracies of 67.4%, 54.9% and 38.6% in terms

of the three metrics respectively, which represent 15.0%, 18.5% and 9.8% improvements over those

of E-SA. It is worth mentioning that compared to the baseline ST, all the four models in [15] only

lead to minor improvement (or even worse performance) in terms of Yes/NoAcc; and moreover, the
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corresponding results are all around 50%, which is the correct rate of random guessing. However,

MA-DRNN offers a much better accuracy of 67.4%.

2) For the Others questions, MA-DRNN outperforms all the other methods in terms of both

standard classification accuracy andWUPS. On the VTW datast, MA-DRNN achieves a standard

classification accuracy of 11.4%, representing 3.0% improvement over that of E-SA, which per-

forms best among all the four models in [15]. MA-DRNN achieves WUPS scores of 56.3% and

20.7% with thresholds of 0.0 and 0.9, which represent 4.9% and 5.2% improvements over those of

E-SA. On the MSVD-QA dataset, MA-DRNN-v2 (i.e., the proposed model) achieves a standard

classification accuracy of 36.2% and WUPS scores of 74.1% and 43.7%, which represents the

best performance among all the models mentioned above. In addition, MA-DRNN achieves the

highest accuracies in most question types.

3) In term of average accuracy (i.e., Avg.ACC), MA-DRNN still achieves better performance

than all the other baselines. Particularly, on the VTW datast (TABLE 2.1), compared to ST, E-MN,

E-VQA, E-SA and E-SS, MA-DRNN improves the average accuracy by 13.7%, 13.2%, 13.5%, 9.0%

and 11.0% respectively.

4) For the ablation study with the MSVD-QA dataset, first of all, we can see that MA-DRNN-v1

and MA-DRNN-v2 perform consistently better than DRNN-v1 and DRNN-v2 respectively, which

do not use memory augmentation. For example, compared to DRNN-v2, MA-DRNN-v2 improves

the standard classification accuracy from 34.1% to 36.2%. These results well justify the effec-

tiveness of DNC-based memory augmentation. Furthermore, DRNN-v2 and MA-DRNN-v2 per-

form consistently better than DRNN-v1 and MA-DRNN-v1 respectively, which uses a commonly-

used method to encode videos before questions. For example, compared to MA-DRNN-v1, MA-

DRNN-v2 improves the standard classification accuracy from 34.9% to 36.2%. These results

provide a convincing evidence that the textual information (i.e. questions) can provide a proper

guidance for selection and preservation of useful visual information. Thus, the proposed encod-

ing method leads to better visual-textual representations, which offer superior performance on the

Video-QA task.
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2.4 Summary

In this chapter, we presented a novel MA-DRNN model for Video-QA, which features a new

question and video encoding method and memory augmentation using the emerging DNC. Ex-

tensive experiments and ablation studies were conducted with the widely-used VTW dataset and

MSVD-QA dataset for performance evaluation. The ablation study justified the effectiveness and

superiority of the proposed encoding method and the use of memory augmentation. Moreover, the

experimental results have shown that MA-DRNN delivers state-of-the-art performance in terms of

various accuracy-related metrics. The proposed encoding method, which has been proven effective

for Video-QA, can be extended to other tasks which need both visual and textual encoding. In the

future, we will investigate how to improve the memory addressing mechanism of augmented mem-

ory and make it more suitable to the temporal structure for encoding visual and textual information

over long timescales.
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CHAPTER 3

MULTI-CLUE REASONING WITH MEMORY

AUGMENTATION FOR

KNOWLEDGE-BASED IMAGE QUESTION

ANSWERING

3.1 Overview

In this chapter, to deal with the knowledge-based image question answering (KB-Image-QA) task

and address the aforementioned issues, we present a novel framework that focuses on achieving a

better exploitation of external knowledge through generating Multiple Clues for Reasoning with

Memory Neural Networks. We name it as MCR-MemNN for short. Specifically, as illustrated

by Figure 3.1, the image-question pair is encoded into a visual-semantic representation, which

serves as the input to a well-defined detector to obtain a three-term relation phrase (i.e., ⟨ Sub-

ject, Relation, Object ⟩). In this case, either the subject (i.e., cat) or the object (i.e., tiger) acts

a clue to retrieve supporting facts in the external KB, and both deliver a fact set including the

ground-truth fact (i.e., cat RelatedTo tiger). In this manner, the ground-truth fact can be success-
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Fig. 3.1: An illustration of Multi-Clue Reasoning.

fully fetched as long as one of the two complementary clues is predicted. Note that the predicted

relation (i.e., RelatedTo) is adopted to filter out some facts with different relations. The retained

supporting facts, including the ground-truth, are further encoded into a continuous embedding

space and stored in a content-addressable memory, where each memory slot corresponds to a sup-

porting fact. Afterwards, for reasoning procedure, we assume that the visual and semantic content

in the image-question pair can contribute to a better exploitation of the external knowledge (i.e.,

supporting facts). Analogously, the external knowledge is helpful for a better understanding of

the image-question pair. Therefore, we employ a two-way attention mechanism, which is not only

intended to focus on the important aspects of the memory in light of the image-question pair, but

also the important parts of image and question in light of the memory.

The main contributions of this chapter are summarized as follows: 1) We demonstrate a new

KB retrieval method with two complementary clues (i.e., subject and object), which makes it a lot

easier to fetch the ground-truth supporting fact. 2) A two-way attention mechanism with memory
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augmentation is employed to model the inter-relationships among image, question and KB to distill

the most relevant information in the three modalities. 3) We perform extensive experiments on two

widely-used benchmarks, which shows that the proposed MCR-MemNN is an effective framework

customized for KB-Image-QA.

3.2 Problem Statement

Given an image I and a related question Q, the KB-Image-QA task aims to predict an answer

A from the external knowledge base (KB), which consists of facts in the form of triplet (i.e.,

⟨ Subject, Relation, Object ⟩), where subject represents a visual concept, object represents an at-

tribute or a visual concept and relation denotes the relationship between the subject and the object.

Note that the answer A can be either the subject or object in the triplet. The key of KB-Image-

QA is to select the correct supporting fact and then determine the answer. For convenience, in

our notations, the fact ⟨ Subject, Relation, Object ⟩ corresponds to the answer subject; while its

reversed form ⟨ Object, Relation, Subject ⟩ corresponds to the answer object. For instance, as for

the ground-truth supporting fact (i.e., cat RelatedTo tiger) in Figure 3.3, the corresponding answer

is cat, and the answer of its reversed form (i.e., tiger RelatedTo cat) is tiger. In this manner, during

inference stage, the optimal answer is the first term of the predicted fact.

3.3 Multi-Clue Reasoning with Memory Augmentation

3.3.1 Relation Phrase Detector

Same as the fact in KB, the relation phrase is depicted in a form of triplet (i.e., ⟨ Subject, Relation, Object ⟩),

which contains two complementary clues (i.e., subject and object) for KB retrieval. As mentioned,

the two complementary clues make it a lot easier to fetch the ground-truth supporting fact, and

the relation predicted can be leveraged to filter out the facts with wrong relations. Therefore, we

develop a detector to obtain a relation phrase based on the visual and semantic content of the
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Fig. 3.2: Relation Phrase Detector.

image-question pair.

As shown in Figure 3.2, given an image-question pair {I,Q}, the relation phrase prediction

is formulated as a multi-task classification problem following [218]. For image embedding, we

use a Faster R-CNN [79] in conjunction with the ResNet-101 [62] pretrained on Visual Genome

dataset [28] to generate an output set of image features v as the visual representation of the input

image.

v = Faster R-CNN(I) (3.1)

where v ∈ R2048×K is based on the bottom-up attention [8], which represents the ResNet features

centered on the top-K objects in the image. K is set to 36 in our experiments.

For question embedding, we first transfer each word in Q into a feature vector using the pre-

trained 300D GloVe [214] vectors, and use randomly initialized vectors for the words which are

out of GloVe’s vocabulary. Here we denote the resulting sequence of word embeddings as Hq.

Then the Gated Recurrent Unit (GRU) [219] with hidden state dimension 512 is adopted to encode

the Hq as semantic representation q ∈ R512.

q = GRU(Hq) (3.2)

To encode the image and question in a shared embedding space, top-down attention [8] is

employed to fuse the visual representation v and semantic representation q. Specifically, for each
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object from i = 1...K, its feature vi is concatenated with the semantic representation q, and then

passed through a non-linear layer fa and a linear layer to obtain its corresponding attention weight

ai.

ai = Wafa([vi,q]) (3.3)

â = softmax(a) (3.4)

v̂ =
∑K

i=1
âivi (3.5)

where Wa is a learnable weight vector and the attention weights a are normalized with a softmax

function to â. The image features are weighted by the normalized attention values to get the

weighed visual representation v̂ ∈ R2048. Following [55], the non-linear layer fa : x ∈ Rm → y ∈

Rn with parameters a is defined as follows:

ỹ = tanh(Wx + b) (3.6)

g = σ(W
′
x + b

′
) (3.7)

y = ỹ ◦ g (3.8)

where σ is the sigmoid activation function, W,W
′ ∈ Rn×m and b,b

′ ∈ Rn are learnable parame-

ters, and ◦ denotes the element-wise multiplication.

A joint embedding h of the question and the image is obtained by the fusion of the weighed

visual representation v̂ and the semantic representation q.

h = fv(v̂) ◦ fq(q) (3.9)

where h ∈ R512. Both fv and fq are the non-linear layers with the same form as fa. The joint

embedding h is then fed into a group of linear classifiers for the prediction of subject, relation and
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Fig. 3.3: Architecture of MCR-MemNN.

object in a relation phrase.

ŝ = softmax(Wsh + bs) (3.10)

r̂ = softmax(Wrh + br) (3.11)

ô = softmax(Woh + bo) (3.12)

where Ws,Wr,Wo and bs,br,bo are learnable parameters, and ŝ, r̂, ô denote the predicted proba-

bility for subject, relation and object over each candidate, respectively. The loss function for the

relation phrase detector is defined as

Ld = λsLc(s, ŝ) + λrLc(r, r̂) + λoLc(o, ô) (3.13)

where s, r, o are the ground-truth labels for subject, object and relation, respectively. Lc represents

the cross-entropy loss, and the weights of the loss terms (i.e., λs, λr, λo) are set to 1.0 in our

experiments.

3.3.2 MCR-MemNN

As shown in Figure 3.3, besides the Relation Phrase Detector, our proposed MCR-MemNN frame-

work consists of six components, which are Memory Module, Visual-Semantic Embedding Mod-

ule, Visual-Semantic Aware Attention Module, Memory Aware Attention Module, Generalization
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Module and Answer Module.

Memory Module For an image-question pair {I,Q}, after the three-term phrase (i.e., Subject,

Relation, Object) is predicted by the relation phrase detector, all the facts in the external KB with

entities pointed by the subject or pointed to the object within h hops are collected as candidate

supporting facts. h is set to 1 in our experiments. The relation predicted is leveraged to further filter

out the facts with wrong relations. Then a set of candidate supporting facts {Fi}Ni=1 is collected,

where N denotes the number of facts in the fact set, and each fact Fi consists of a sequence of

words.

Afterwards, similar to question embedding, each fact Fi is transformed to a sequence of word

embeddings Hf
i based on GloVe’s vocabulary, and encoded using a BiLSTM to get its representa-

tion fi ∈ R128.

fi = BiLSTM(Hf
i ) (3.14)

To store the candidate supporting facts, a key-value structured memory network [220] is lever-

aged. The key memory is used in the addressing stage, while the value memory is used in the

reading stage. The representation fi of each fact is passed through two separate linear layers to

obtain its key embedding Mk
i ∈ R128 and value embedding Mv

i ∈ R128 respectively.

Mk
i = Wkfi (3.15)

Mv
i = Wvfi (3.16)

where Wk ∈ R128×128 and Wv ∈ R128×128 are learnable parameters. For the set of candidate

supporting facts {Fi}Ni=1, we have a set of key embeddings Mk = {Mk
i }Ni=1 and a set of value

embeddings Mv = {Mv
i }Ni=1. Note that one memory slot is defined as a pair of key embedding and

value embedding (i.e., {Mk
i ,M

v
i }) of one candidate supporting fact.

Visual-Semantic Embedding Module The visual-semantic embedding module has basically

the same architecture as the relation phrase detector and the only difference is about the question
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embedding before top-down attention, where self-attention are applied over the sequence of word

embeddings Hq to get the semantic representation q ∈ R128.

âqq = softmax((Hq)⊺Hq) (3.17)

q = BiLSTM([Hq(âqq)⊺,Hq]) (3.18)

where the Hq are weighted by the normalized values, concatenated with itself and fed into a BiL-

STM. Afterwards, same procedures are conducted to obtain the visual-semantic representation

h ∈ R128.

Visual-Semantic Aware Attention Module Given visual-semantic representation h, we ap-

ply an attention over all the memory slots {Mk
i ,M

v
i }Ni=1 to obtain the memory summary m ∈ R128

in light of the visual and semantic content of the image-question pair.

ami = W3tanh(W1h + W2Mk
i ) (3.19)

âm = softmax(am) (3.20)

m =
∑N

i=1
âmi Mv

i (3.21)

where W1 ∈ R128×128,W2 ∈ R128×128,W3 ∈ R1×128 are learnable parameters. The attention for

each memory slot is calculated and normalized based on h and the corresponding key embedding

Mk
i . Then the set of value embeddings Mv = {Mv

i }Ni=1 are weighted to get the memory summary

m.

Memory Aware Attention Module As we have obtained the memory summary m, we pro-

ceed to compute the attentions over all the question words and all the image features in light of the

memory.

Given memory summary m, the sequence of word embeddings Hq and the set of image features

v, the memory-aware question embedding qm ∈ R128 and the memory-aware image embedding
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vm ∈ R2048 are derived as follows:

âq = softmax((Hq)⊺m) (3.22)

qm = Hqâq (3.23)

âv = softmax((Wvv)⊺m) (3.24)

vm = vâv (3.25)

where âq represents the normalized memory aware attention over all the question words, âv repre-

sents the normalized memory aware attention over all the image features and Wv ∈ R128×2048 are

learnable parameters.

The visual-semantic representation hm in light of the memory is obtained by the fusion of the

memory-aware question embedding qm and the memory-aware image embedding vm.

hm = fmv (vm) ◦ fmq (qm) (3.26)

where hm ∈ R128. Both fmv and fmq are the non-linear layers with the same form as fa. Note that

the aforementioned two-way mechanism corresponds to Sections 3.3.2 and 3.3.2.

Generalization Module Inspired by [221], another hop of the attention process is conducted

over the memory before answer prediction. Attention mechanism of Section 3.3.2 is leveraged

here, given memory aware visual-semantic representation hm, to fetch the most relevant informa-

tion mh ∈ R128 from the memory to obtain the final visual-semantic representation ĥ ∈ R128.

To be more specific, the fetched information mh is concatenated with hm and fed into a GRU to
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update the visual-semantic representation. To the end, a batch normalization (BN) layer is used.

ahi = W6tanh(W4hm + W5Mk
i ) (3.27)

âh = softmax(ah) (3.28)

mh =
∑N

i=1
âhi Mv

i (3.29)

ĥ = BN(hm + GRU([hm,mh])) (3.30)

where W4 ∈ R128×128,W5 ∈ R128×128,W6 ∈ R1×128 are learnable parameters.

Answer Module Given the final visual-semantic representation ĥ, and the set of key embed-

dings Mk ∈ R128×N , the key embedding Mk
i of each candidate supporting fact is concatenated

with the ĥ to compute the probability of whether the fact is correct. The predicted supporting fact

is

argmaxisoftmax(W7[ĥ,Mk] + b7) (3.31)

where i = 1, ..., N , W7 ∈ R1×256 and b7 ∈ RN are learnable parameters. As we have stated in

Section 3.2, the optimal answer is the first term of the predicted fact.

Loss Function Once we have the candidate supporting facts retrieved from the external KB, all

the learnable parameters of the proposed MCR-MemNN (besides the Relation Phrase Detector)

are trained in an end-to-end manner by minimizing the following loss function over the training

set.

L =
1

D

D∑
k=1

Lc(Yk, Ŷk) (3.32)

where Lc is defined as the cross-entopy loss, D is the number of training samples, Yk and Ŷk

represent the ground-truth label and the predicted probability over each candidate supporting fact.
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3.4 Performance Evaluation

We employed two compelling benchmarks, FVQA [32] and Visual7W+ConceptNet [222] to eval-

uate the proposed MCR-MemNN on Knowledge-based Image Question Answering (KB-Image-

QA) task.

3.4.1 Benchmark Datasets

FVQA. The Factual Visual Question Answering (FVQA) dataset consists of 2, 190 images, 5, 286

questions and 4, 126 unique facts corresponding to the questions. The external KB of FVQA, con-

sisting of 193, 449 facts, are constructed based on three structured KBs, including DBpedia [223],

ConceptNet [224] and WebChild [225]. Following [32], the top-1 and top-3 accuracies are aver-

aged over five test splits.

Visual7W+ConceptNet. The Visual7W+ConceptNet dataset, built by [222], is a collection

of knowledge-based questions with images sampled from the test split of Visual7W [31] dataset.

It consists of 16, 850 open domain question-answer pairs based on 8, 425 images. Note that the

supporting facts of each question-answer pair are retrieved directly from the ConceptNet, which

serves as the external KB. Following [32], the top-1 and top-3 accuracies are calculated over the

test set.

3.4.2 Experimental Setup

Implementation Details For the training of the relation phrase detector, the model was trained

with Adam optimizer [226] with an initial learning rate of 1× 10−4 and weight decay of 1× 10−6,

and the batch size is set to 32. For the training of the proposed MCR-MemNN (besides the relation

phrase detector), the model was trained with Adam optimizer with an initial learning rate of 1 ×

10−3 and weight decay of 1 × 10−6, and the batch size is set to 64. Top 40 predicted subjects

and objects were adopted as clues to retrieve candidate supporting facts from the external KB.

The memory size Nmem was set to 96. Note that no matter the number of candidate supporting
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Table 3.1: Results for the relation phrase detector on FVQA.

Case Classification Acc. Recall QA Acc.
Sub Obj Union w/ Rel w/o Rel w/ Rel w/o Rel

Top-20 64.31 39.43 69.80 78.56 82.08 60.36 62.76
Top-30 69.46 43.30 74.24 83.61 86.90 66.34 65.28
Top-40 72.65 45.71 76.22 85.76 88.85 70.92 68.85
Top-60 73.59 46.23 77.10 86.58 89.81 68.52 67.30

Top-100 75.60 47.61 79.37 88.21 90.33 68.02 65.57

facts N is larger than, equal to or smaller than Nmem, the ground-truth fact is preserved and the

negative facts are randomly selected to fill up the remaining memory. Our code was implemented

in PyTorch [227] and run with NVIDIA Tesla P100 GPUs.

Baselines For the FVQA dataset, CNN-RNN based approaches including LSTM-Quest-ion+Image+Pre-

VQA [32] and Hie-Question+Image+Pre-VQA [32], semantic parsing bas-ed approaches including

FVQA (top-3-QQmaping) [32] and FVQA (Ensemble) [32], learni-ng-based approaches including

Straight to the Facts (STTF) [35], Out of the Box (OB) [34], Reading Comprehension [228], and

Multi-Layer Cross-Modal Knowledge Reasoning (Muc-ko) [125] are compared with the proposed

MCR-MemNN.

For the Visual7W+ConceptNet dataset, learning based approaches including KDMN [222],

Out of the Box (OB) are compared with the proposed MCR-MemNN. Note that both KDMN

and MCR-MemNN adopted memory augmentation technique for storing the retrieved external

knowledge.

3.4.3 Experimental Results

Relation Phrase Detector As shown in Table 3.1, to evaluate the performance of the relation

phrase detector, five different cases are considered, including Top-20, Top-30, Top-40, Top-60 and

Top-100. For each case, the classification accuracies of subject (i.e., ‘Sub’), object (i.e, ‘Obj’)

and both union (i.e., ‘Union’) are calculated. In addition, the answer recall is reported with the
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Table 3.2: Accuracy comparison on FVQA.

Method Overall Accuracy
top-1 top-3

LSTM-Question+Image+Pre-VQA [32] 24.98 40.40
Hie-Question+Image+Pre-VQA [32] 43.14 59.44

FVQA (top-3-QQmaping) [32] 56.91 64.65
FVQA (Ensemble) [32] 58.76 -

Straight to the Facts (STTF) [35] 62.20 75.60
Reading Comprehension [228] 62.94 70.08

Out of the Box (OB) [34] 69.35 80.25
Mucko (w/o Semantic Graph) [125] 71.28 82.76

MCR-MemNN (Ours) 70.92 81.83

top-3 relation limitation (i.e., ‘w/ Relation’) or not (i.e., ‘w/o Relation’). Finally, the downstream

question answering accuracy (‘QA Acc.’) is also calculated.

For more clarity, the ‘Sub’ in the case of Top-40 represents the fraction of test samples that

the ground-truth subject is included in the top 40 predicted subjects, and these subjects are further

adopted as the clues for KB retrieval. The Recall w/ Relation in the case of Top-40 represents the

fraction of test samples that the correct answer is included in the candidate answer set correspond-

ing to the supporting facts retrieved by the top-40 subject or object clues and filtered by the top

3 predicted relations. Note that the top-3 classification accuracy for relation prediction using the

relation phrase detector is 93.20%.

Results in Table 3.1 show that both union accuracy and answer recall of the Top-40 case are

higher than those of the Top-20 case, and improvements of 10.56% and 6.09% on downstream

QA accuracies (with and without relation filtering) are caused. Even though much more relevant

supporting facts are retrieved from the external KB in the Top-100 case, which delivers higher both

union accuracy and answer recall, the downstream QA accuracies are lower than those of the Top-

40 case. This observation clearly shows that excessive retrieved facts can lead to more redundant

information, which is harmful to the reasoning process. We choose the top 40 subjects and objects

as clues for KB retrieval as this gives the best downstream QA accuracies.
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MCR-MemNN Tables 3.2 and 3.3 show the comparison of the proposed MCR-MemNN with

the above-mentioned baselines on FVQA and Visual7W+ConceptNet, respectively, and the fol-

lowing observations can be made:

1) On FVQA dataset, MCR-MemNN outperforms almost all the baselines in terms of top-

1 and top-3 accuracies. To be specific, MCR-MemNN outperforms the semantic parsing based

approaches including FVQA (top-3-QQmaping) and FVQA (Ensemble), and achieves more than

12% boost on top-1 accuracy and more than 15% boost on top-3 accuracy. In addition, com-

pared with the typical learning based approaches including STTF and OB, which wholly introduce

the visual and semantic information without selection, MCR-MemNN gains an improvement by

leveraging a two-way attention mechanism (i.e., Sections 3.3.2 and 3.3.2) to exploit the inter-

relationships among image, question and KB and distill the most relevant information in each of

the three modalities.

2) Even though a heterogeneous graph neural network with high complexity is employed in

Mucko, the proposed MCR-MemNN can still deliver a comparable performance. Note that the full

model of Mucko leveraged dense captions [179] as input for performance improvement. For fair

comparison, the semantic graph for dense caption parsing is removed.

3) On Visual7W+ConceptNet dataset, MCR-MemNN consistently outperforms a series of

models based on KDMN, which leverages a dynamic memory network to preserve the retrieved ex-

ternal knowledge. Since both MCR-MemNN and KDMN adopted the memory augmentation tech-

nique, this observation further evidences the effectiveness of modeling inter-relationships among

image, question and KB for KB-Image-QA task. Note that Mucko does not provide the result

without Semantic Graph.

Ablation Studies To validate the superiority of the proposed MCR-MemNN on KB-Image-

QA, several ablation experiments were conducted based on FVQA dataset, and we can make the

following observations based on Table 3.4:

1) MCR-MemNN adopts both subject and object as clues for KB retrieval, which leads to better
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Table 3.3: Accuracy comparison on Visual7W+ConceptNet.

Method Overall Accuracy
top-1 top-3

KDMN-NoKnowledge [222] 45.1 -
KDMN-NoMemory [222] 51.9 -

KDMN [222] 57.9 -
KDMN-Ensemble [222] 60.9 -
Out of the Box (OB) [34] 57.32 71.61

MCR-MemNN (Ours) 64.23 79.18

performance. Specifically, compared with Case-1, where only subject is adopted as clues for KB

retrieval, there exists a jump on top-1 (i.e., 3.44%) and top-3 (i.e., 5.40%) accuracies when both

of the subject and object are leveraged as clues in Case-3. A similar gain can be observed when

Case-3 is compared with Case-2.

2) To validate the effectiveness of the relation filtering, the experiment is conducted in Case-

4, which achieves 2.48% improvement over Case-3 on top-1 accuracy. This observation clearly

implies that the predicted relation can successfully remove the redundant supporting facts retrieved

from the external KB. Similarly, compared with Case-5 without relation filtering, Case-6 brings up

an improvement of 2.07%.

3) The two-way attention mechanism (i.e., Sections 3.3.2 and 3.3.2) can deliver an additional

performance gain on KB-Image-QA task. For instance, compared with Case-4, where the inter-

relationships are not exploited among image, question and KB, Case-6 brings up improvements

of 3.40% on top-1 accuracy. This indicates that the redundant information of the three modalities

(i.e., image, question and KB) is removed during the reasoning process, and the most relevant

information is collected by modeling inter-relationships among the three modalities.

Qualitative Results Figure 3.4 shows several success and failure cases using MCR-MemNN.

Two steps are indispensable to predict the correct answer: (1) Either the correct subject or object

is included in the top-40 predicted subject set or object set. (2) The correct relation is predicted
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Table 3.4: Ablation studies on FVQA. (Sub: Subject as Clue; Obj: Obj as Clue; Rel: Relation
Filtering; Att: Two-way Attention)

Case Sub Obj Rel Att Overall Accuracy
top-1 top-3

1 ✓ 61.60 68.18
2 ✓ 44.07 52.72
3 ✓ ✓ 65.04 73.58
4 ✓ ✓ ✓ 67.52 76.48
5 ✓ ✓ ✓ 68.85 78.37

6 ✓ ✓ ✓ ✓ 70.92 81.83

as the top-3 relations. The ground-truth fact will be retrieved as one of the candidate supporting

facts, if both the two steps are successfully accomplished. For instance, all five samples in the first

row have their corresponding ground-truth facts successfully predicted and the correct answers

are delivered. Specifically, the first two samples have both of their subjects and objects correctly

predicted. The 3rd sample have its subject correctly predicted while the last two have their objects

correctly predicted. This clearly verifies the advantage of multiple clues reasoning, retrieval using

two complementary clues (i.e., subject and object) makes it a lot easier to fetch the ground-truth

fact and deliver the correct answer. Some other cases are presented in the second row. Generally, if

a wrong fact is predicted (e.g., the 2nd, 3rd and 5th samples), the correct answer cannot be given.

However, in some special cases, even if the ground-truth fact is not successfully predicted (e.g., the

1st sample), the correct answer can still be delivered. If the correct relation is not included in the

top-3 (e.g., the 3rd sample), the correct answer cannot be given even if the subject or object is cor-

rectly predicted. The MCR-MemNN always fails if the question is intend to know the relationship

between subject and object (e.g., 4th sample).

3.5 Summary

This chapter, by introducing Multiple Clues for Reasoning with Memory Neural Network (MCR-

MemNN), presents a novel framework for knowledge-based image question answering (KB-Image-
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Question: Whether this thing is faster or 
slower than a car?
Pred Fact: bus Comparator car
GT Fact: bus Comparator car
Pred Answer: bus
GT Answer: slower

Question: Which object in this image is a 
par t of network?
Pred Fact: computer  Par tOf network
GT Fact: computer Par tOf network
Pred Answer: computer
GT Answer: computer

Question: Which object in this image is a 
spor t?
Pred Fact: basketball IsA spor t
GT Fact: basketball IsA spor t
Pred Answer: basketball
GT Answer: basketball

Question: What object in this image is 
used for shear ing?
Pred Fact: sheep UsedFor  shear
GT Fact: sheep UsedFor shear
Pred Answer: sheep
GT Answer: sheep

Question: Normally where can you find 
the object in the middle?
Pred Fact: bus AtLocation street
GT Fact: fire hydrant Category street
Pred Answer: bus
GT Answer: street

Question: Which object in this image 
belongs to the Winter Olympic Games?
Pred Fact: ski Category racing
GT Fact: snowboard Category olympic 
spor t
Pred Answer: ski
GT Answer: snowboard

Question: What thing in the image can 
run fast?
Pred Fact: car  CapableOf travel on road
GT Fact: car CapableOf go fast
Pred Answer: car
GT Answer: car

Question: Which things in this image 
have roots?
Pred Fact: tree HasA root
GT Fact: tree HasA root
Pred Answer: tree
GT Answer: tree

Question: Which object in this image can 
be related to candy apples?
Pred Fact: apple RelatedTo candy apple
GT Fact: candy apple RelatedTo apple
Pred Answer: apple
GT Answer: apple

Question: Which object in this image can 
stop cars?
Pred Fact: tree CapableOf shade car
GT Fact: traffic light CapableOf stop car
Pred Answer: tree
GT Answer: traffic light

Fig. 3.4: Success and failure cases. (Terms in yellow/blue indicates the correctly predicted
subjects/objects (in top-40), terms in green denotes the correctly predicted relations (in top-3) and
terms underlined represents the predicted answer.)

QA). Comprehensive experiments have been conducted on two widely-used benchmarks and the

extensive experimental results have shown that 1) Retrieval using two complementary clues (i.e.,

subject and object) makes it a lot easier to fetch the ground-truth fact and deliver the correct an-

swer; 2) Two-way attention mechanism with memory augmentation can successfully model the

inter-relationships among the three modalities including image, question and KB, and brings up a

remarkable performance gain on KB-Image-QA; 3) MCR-MemNN outperforms most of the KB-

Image-QA methods and achieves a comparable performance with the state-of-the-art.
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CHAPTER 4

HIERARCHICAL GRAPH ATTENTION

NETWORK FOR FEW-SHOT

VISUAL-SEMANTIC LEARNING

4.1 Overview

In this chapter, to deal with the few-shot visual-semantic learning tasks, we propose the Hierarchical

Graph ATtention network (H-GAT). This two-stage network is able to model the intra-modal re-

lationships and the inter-modal relationships with a few image-text samples and can be extended

to a semi-supervised setting. In the first stage, visual-specific and semantic-specific GNNs are

leveraged to model the intra-relationship of images and texts (i.e., visual-specific relationships and

semantic-specific relationships), respectively. To model the inter-relationship between the visual

and semantic modalities, an attention-based co-learning framework is presented to guide the node

feature update of these GNNs. In the second stage, relation-aware GNNs are used to predict the

result of the query sample by jointly learning visual representations, semantic representations,

visual-specific relationships and semantic-specific relationships. We perform extensive experi-

ments on three widely-used benchmarks, Toronto COCO-QA [229], Visual Genome-QA [28] and



57

COCO-FITB [39], which showed that HGAT is a strong and effective model customized for few-

shot visual-semantic learning.

The superiority of our proposed method can be summarized as follows: 1) It sheds light on

tackling few-shot multi-modal learning problems, especially for few-shot visual-semantic learn-

ing, a fairly new but critical setting for human-level intelligence, through taking advantage of

the intra- and inter-modal relationships. 2) Compared with FPAIT and several few-shot learning

methods, it delivers state-of-the-art performance in terms of accuracy on both visual question an-

swering and image captioning in the few-shot setting. 3) Several ablation experiments show the

benefits of modeling of the visual-specific and semantic-specific relationships, the attention-based

co-learning framework and the hierarchical graph-based architecture. 4) It can be easily extended

to the semi-supervised setting and delivers better performance compared with the other two graph-

based methods.

4.2 Problem Statement

The general visual-semantic learning aims to build models that process and relate information

from multiple modalities [2]. We focus primarily, but not exclusively, on the visual and semantic

modalities, and study the visual-semantic learning problem by tackling the image question answer-

ing (Image-QA) and image captioning (IC) tasks. For Image-QA, given an image I and a related

question Q, we need to generate a corresponding answer A. For IC, we follow the fill-in-the-blank

setting [39], attempting to fill in the blank A of a given description Q for an image I. Note that both

the question/description Q and the answer/blank A are represented in a natural language format.

Regularly, A is picked from a pre-defined set of different answers/labels. The traditional Image-

QA and IC tasks seek a model F, which can be a neural network, to map the observations I,Q to

the output A.

In few-shot learning, given only a few training samples, the model is expected to be able to

adapt to a new task quickly. N -way K-shot problem settings are usually used to measure few-
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shot learning methods. Take an N -way K-shot VQA/IC task T with M queries as an example:

T consists of a support set S and a query set Q, on which the model is learnt and evaluated

respectively. S is a set of N × K samples, containing K labeled image-text pairs for each of N

unique answers. Q contains another M samples with the same answers as those in S. Formally

speaking, T = S ∪ Q, where S = {(Ii,Qi,Ai)}N×K
i=1 and Q = {(Ii,Qi,Ai)}N×K+M

i=N×K+1; The

label space of task T is defined as CT = {Ai}N×K
i=1 . We have A(n−1)×K+i = A(n−1)×K+j for

n = 1, · · · , N and 1 ≤ i, j ≤ K (i.e., |CT | = N ), with {Ai}N×K+M
i=N×K+1 ⊂ CT .

In this work, we use meta-learning [40] to define few-shot visual-semantic learning problems,

and it generally consists of two phases, meta-training and meta-testing. During the meta-training,

a set of T tasks {Tt}Tt=1 are generated from a meta-training dataset Dmtr, and we develop a method

that takes as input the support sets {St}Tt=1 and returns a model which minimizes the loss over the

corresponding query sets {Qt}Tt=1. During the meta-testing, another set of T ′ tasks {TT+t}T
′

t=1 are

generated from a meta-testing dataset Dmte, and for t = 1, · · · , T ′, we expect the trained model

can learn quickly from the N ×K labeled image-text samples in the support set ST+t and deliver

highly-accurate labels for samples from the query set QT+t. Note that the labels used in meta-

training and meta-testing are mutually exclusive, i.e., Cmtr ∩Cmte = ∅ where Cmtr =
⋃

1≤t≤T CTt and

Cmte =
⋃

1≤t≤T ′ CTT+t
.

Additionally, the problem can be extended to semi-supervised learning if a portion of labels

in all support sets {St}T+T
′

t=1 are unknown. In Section 4.4.3, the effectiveness of our model on

semi-supervised setting will be presented.

4.3 Hierarchical Graph Attention Neural Network

4.3.1 Image and Text Embedding

To capture and preserve useful visual and semantic representations, we resort to modality-specific

deep networks on image and text inputs. For image embedding of an image Ii, we build a

neural network ϕ to output visual representation ϕ(Ii;θϕ) by following the architecture used by
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FPAIT [39], which contains four 3× 3 convolutional blocks with batch normalizations and ReLU

activations. The numbers of feature channels in these four blocks are 64, 96, 128 and 256, respec-

tively. There is a 2× 2 max-pooling layer after each of the first three blocks, and a global-pooling

layer after the last block. The output image embedding has a dimension of 256. For text embedding

of a question/description Qi, we build a neural network ψ to output the semantic representation

ψ(Qi;θψ) as follows. We first transfer each word in Qi into a feature vector using the pre-trained

100D GloVe [214] vectors, and use randomly initialized weights for all words which are out of

GloVe’s vocabulary, and then use the temporal convolutional network (TCN) [230] to obtain the

embedding of the word sequence. Same as FPAIT [39], the output text embedding has a dimen-

sion of 512. The neural networks for both image embedding and text embedding, i.e., ϕ(·;θϕ) and

ψ(·;θψ), are jointly trained with other modules of HGAT.

Visual-specific GNNs

Image 
Embedding

Semantic-specific GNNs

Relation-aware GNNs

Text 
Embedding

Computer

Stage-1

Stage-2

Attention-based Co-learning

Support Set

Query Set

What is on the
desk?
Computer

What are on the 
bookshelves?
Books

Who is wear ing a 
backpack?
Man Where is the bear

sitting?
Couch

What is the lady 
looking at?
???

Fig. 4.1: The architecture of Hierarchical Graph Attention Network. A 4-way 1-shot problem
with one query sample (N = 4, K = 1, M = 1) is presented for simplicity. GNN nodes with
solid line (Nodes 2-5) correspond to the samples from the support set S, and nodes with dashed
line (Node 1) correspond to the samples from the query setQ. Dotted arrows between GNN layers
represent node inheritances.

4.3.2 Graph Construction

For each task T , given the visual and semantic representations (extracted from the image and text

embedding neural networks respectively) of all the image-text samples, we construct two graphs,
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the visual-specific GNNs (with blue nodes in Figures 4.1 and 4.2) and the semantic-specific GNNs

(with red nodes), respectively. As shown in Figure 4.1, in Stage-1 of HGAT, both of the visual-

specific and semantic-specific GNNs are two-layer GNNs. Each GNN layer contains N ×K +M

fully-connected nodes, and each node corresponds to an image-text sample from either the support

set or the query set.

For each sample (Ii,Qi,Ai), the feature vector of its corresponding node in the first layer of

GNNs (V1
i and S1

i ) is initialized as the concatenation of its visual or semantic representation and

the one-hot encoding of its label.

V1
i = [ϕ(Ii;θϕ)||h(Ai)] (4.1)

S1
i = [ψ(Qi;θψ)||h(Ai)] (4.2)

where || denotes vector concatenation operation, and h(Ai) ∈ [0, 1]N represents the one-hot encod-

ing of the label Ai. For any image-text sample (Ii,Qi,Ai) from the query set Q or with unknown

labels in the semi-supervised setting, we set h(Ai) to be a zero vector 0N instead.

For each node in the lth layer (l > 1), its feature vector is a concatenation of features inherited

from its corresponding node in previous layer (Vl−1
i or Sl−1

i ) and an updated feature vector (Vl
i or

Sli) computed via the attention-based co-learning described in the following section.

4.3.3 Attention-based Co-learning Framework

Each layer of the two modal-specific GNNs conducts associated node feature update in the pro-

posed attention-based co-learning framework. For the node feature update in the lth layer (l =

1, 2), the inputs are two sets of nodes {Vl
i}N×K+M
i=1 , Vl

i ∈ RF l
V and {Sli}N×K+M

i=1 , Sli ∈ RF l
S ,

and the outputs are two updated sets of nodes {Vl+1
i }N×K+M

i=1 , Vl+1
i ∈ R2F l′

V and {Sl+1
i }N×K+M

i=1 ,

Sl+1
i ∈ R2F l′

S , where F l
V , 2F l′

V , F l
S , and 2F l′

S represent the number of input and output feature

channels of each node in the two modal-specific GNNs, respectively.

As an initial step, two shared learnable linear transformations, parametrized by Wl
V ∈ RF l′

V ×F l
V
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Metr ic

Graph Construction Attentions Computation Node Feature Update

Visual
Modality

Semantic 
Modality

Metr ic

Fig. 4.2: An illustration of the attention-based co-learning framework for one GNN layer. For
simplicity, a 4-way 1-shot problem with one query sample (N = 4, K = 1, M = 1) is presented as
an example. Nodes with solid line (Nodes 2-5) represent the samples from the support set S , and
nodes with dashed line (Node 1) represent the samples from the query set Q. A two-dimensional
attention is computed for each pair of nodes, to capture their relationship of the visual and semantic
modalities, respectively. For simplicity, only half of the attentions (within the dotted triangles) are
depicted in the node feature update.

and Wl
S ∈ RF l′

S ×F l
S , are applied to the two sets of nodes. Then, for each modal-specific GNN layer,

a shared attentional mechanism a is performed for each pair of nodes to compute the attention

coefficients elVij ∈ R and elSij
∈ R.

elVij = a(Wl
V Vl

i,W
l
V Vl

j) = LReLU
(

alV
⊤ [Wl

V Vl
i||Wl

V Vl
j

])
(4.3)

elSij
= a(Wl

SSli,W
l
SSlj) = LReLU

(
alS

⊤ [Wl
SSli||Wl

SSlj
])

(4.4)

where elVij and elSij
indicate the importance of node Vl

j to node Vl
i in the visual-specific GNN and

that of node Slj to node Sli in the semantic-specific GNN, respectively. LReLU denotes the Leaky

Rectified Linear Unit [231] function. Both alV ∈ R2F l′
V and alS ∈ R2F l′

S serve as learnable weight

vectors, and a⊤ represents the transpose of a. The attentions αlVij ∈ R and αlSij
∈ R are obtained
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by normalizing the attention coefficients using the softmax function.

αlVij = softmax(elVij) =
exp(elVij)∑N×K+M

k=1 exp(elVik)
(4.5)

αlSij
= softmax(elSij

) =
exp(elSij

)∑N×K+M
k=1 exp(elSik

)
(4.6)

where αlVij and αlSij
represent the attentions of the visual modality (blue-hue square matrix in

Figure 4.2) and those of the semantic modality (red-hue square matrix), respectively. The values

of αlVij and αlSij
are expected to be positively correlated.

Once obtained, both attentions are shared by the associated node feature update of the two

modal-specific GNNs. For example, the attentions of visual modality not only serve for the node

feature update of the visual-specific GNNs but also utilize the relationship on visual modality

to refine the semantic-specific GNNs. Analogously, the attentions of semantic modality are also

helpful to both semantic-specific and visual-specific GNNs.

Vl+1
i = ELU

(
N×K+M∑

j=1

αlVijW
l
V Vl

j||
N×K+M∑

j=1

αlSij
Wl

V Vl
j

)
(4.7)

Sl+1
i = ELU

(
N×K+M∑

j=1

αlVijW
l
SSlj||

N×K+M∑
j=1

αlSij
Wl

SSlj

)
(4.8)

where αlVij and αlSij
form the two-dimensional attention between each pair of nodes in both modal-

specific GNNs and ELU denotes the Exponential Linear Unit [232] function.

Based on the attentions shared by the visual and semantic modalities, the associated node

feature update is conducted, and the inter-modal relationships are modeled under the attention-

based co-learning framework. Note that while the basic attention mechanism used here follows the

Graph Attention Network [92], our proposed attention-based co-learning framework is agnostic to

the particular choice of attention mechanism.
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4.3.4 Relation-aware GNNs

The layerwise outputs of the modal-specific GNNs, i.e., {Vl+1
i }N×K+M

i=1 and {Sl+1
i }N×K+M

i=1 for

l = 1, 2, extracting the hierarchical features with intra-relationship and inter-relationship from both

the visual and semantic modalities, are further exploited by the relation-aware GNNs in Stage-2 of

HGAT.

We construct the relation-aware GNNs with N × K + M nodes in each layer, which share

similar structure with the modal-specific GNNs but also take the relationships obtained in Stage-1

for the feature initialization of each node. To be more specific, for the node feature update in the

lth layer (l = 1, 2, 3), the inputs is a set of nodes {Rl
i}N×K+M
i=1 , Rl

i ∈ RF l
R and the outputs are an

updated set of nodes {Rl+1
i }N×K+M

i=1 , Rl+1
i ∈ RF l′

R where F l
R, F l′

R represent the number of input

and output feature channels of each node in the relation-aware GNNs, respectively. The input to

the first layer R1
i is the concatenation of the visual and semantic embeddings, the one-hot encoding

of the label, and the multi-modal features obtained in Stage-1.

R1
i =

[
ϕ(Ii;θϕ)||ψ(Qi;θψ)||h(Ai)||V2

i ||V3
i ||S2

i ||S3
i

]
(4.9)

The input to the lth layer (l > 1) is a concatenation of features inherited from its corresponding

node in previous layer Rl−1
i and an updated feature vector Rl

i, which is computed in a similar way

to the modal-specific GNNs. First, the attention coefficient elRij
∈ R indicating the importance of

node Rl
j to node Rl

i is calculated.

eRl
ij
= a(Wl

RRl
i,W

l
RRl

j) = LReLU
(

alR
⊤ [Wl

RRl
i||Wl

RRl
j

])
(4.10)

where Wl
R ∈ RF l′

R×F l
R and alR ∈ R2F l′

R are learnable parameters. Then the attentions are computed

by normalizing the attention coefficients using softmax function.

αlRij
= softmax(elRij

) =
exp(elRij

)∑N×K+M
k=1 exp(elRik

)
(4.11)
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Afterwards, the attentions are used to compute the updated node features through a linear

combination of the corresponding features, followed by a non-linearity activation.

Rl+1
i = ELU

(
N×K+M∑

j=1

αlRij
Wl

RRl
j

)
(4.12)

Finally, to get the final prediction of the ith sample from HGAT, we set the last output dimen-

sion F 3′
R to N , and use softmax(R4

i ) ∈ [0, 1]N as the confidence score vector over the N answers.

The predicted label is Âi = argmaxnR4
i,n, where R4

i,n is the nth element of R4
i and 1 ≤ n ≤ N .

4.3.5 Meta-Training & Meta-Testing

Given a set of T tasks in the meta-training phase, the learnable parameters of the proposed HGAT,

θϕ∪θψ∪{Wl
V ,W

l
S, alV , alS}2l=1∪{W

l
R, alR}3l=1, are trained in an end-to-end manner by minimizing

the following loss function over the task set.

L =
1

TM

∑
T ∈{Tt}Tt=1

N×K+M∑
i=N×K+1

Lc(Ai, Âi) (4.13)

where Lc is defined as the cross-entropy loss, Ai and Âi represent the ground truth answer and the

predicted answer of the image-text samples from the query set Q.

The overall meta-training and meta-testing algorithms for HGAT are summarized in Algo-

rithms 1 and 2.
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Algorithm 1: The process of meta-training for HGAT
1: Input: A set of T tasks {Tt}Tt=1 generated from a meta-training dataset Dmtr, where
{Tt}Tt=1 = {St}Tt=1 ∪ {Qt}Tt=1

2: Initialize θϕ ∪ θψ ∪ {Wl
V ,W

l
S, alV , alS}2l=1 ∪ {W

l
R, alR}3l=1

3: while not done do
4: Sample batch of tasks < Tt > from task set {Tt}Tt=1

5: for all Tt do
6: {V1

i }, {S1
i } ← GraphConstruct({(Ii,Qi,Ai)}; {θϕ,θψ}), ∀i

7: for all l = 1, 2 do
8: {Vl+1

i }, {Sl+1
i } ← NodeFeatureUpdate({Vl

i}, {Sli}; {Wl
V ,W

l
S, alV , alS}), ∀i

9: end for
10: Initialize R1

i ← GraphConstruct({(Ii,Qi,Ai)}, {V2
i }, {S2

i }, {V3
i }, {S3

i }; {θϕ,θψ}), ∀i
11: for all l = 1, 2, 3 do
12: {Rl+1

i } ← NodeFeatureUpdate({Rl
i}; {Wl

R, alR}), ∀i
13: end for
14: Compute the loss and update θϕ ∪ θψ ∪ {Wl

V ,W
l
S, alV , alS}2l=1 ∪ {W

l
R, alR}3l=1

15: end for
16: end while
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Algorithm 2: The process of meta-testing for HGAT
1: Input: A task T sampled from {TT+t}T

′
t=1, where T = S ∪ Q, S = {(Ii,Qi,Ai)}N×K

i=1 ,
Q = {(Ii,Qi)}N×K+M

i=N×K+1

2: Parameters: θϕ ∪ θψ ∪ {Wl
V ,W

l
S, alV , alS}2l=1 ∪ {W

l
R, alR}3l=1

3: Output: {Âi}N×K+M
i=N×K+1

4: {V1
i }, {S1

i } ← GraphConstruct({(Ii,Qi,Ai)}; {θϕ,θψ}), ∀i
5: for all l = 1, 2 do
6: {Vl+1

i }, {Sl+1
i } ← NodeFeatureUpdate({Vl

i}, {Sli}; {Wl
V ,W

l
S, alV , alS}), ∀i

7: end for
8: Initialize R1

i ← GraphConstruct({(Ii,Qi,Ai)}, {V2
i }, {S2

i }, {V3
i }, {S3

i }; {θϕ,θψ}), ∀i
9: for all l = 1, 2, 3 do

10: {Rl+1
i } ← NodeFeatureUpdate({Rl

i}; {Wl
R, alR}), ∀i

11: end for
12: {Âi}N×K+M

i=N×K+1← QueryLabelPredict({R4
i }N×K+M
i=N×K+1)

4.4 Performance Evaluation

We employed three compelling benchmarks, Toronto COCO-QA [229], Visual Genome-QA [28]

and COCO-FITB [39] to evaluate the proposed HGAT on two typical visual-semantic learning

tasks, image question answering (Image-QA) and image captioning (IC).

Benchmark Toronto COCO-QA Visual Genome-QA COCO-FITB

Task Image-QA Image-QA IC

#Pair
Meta-training 57,834 554,795 181,844
Meta-testing 13,965 136,473 34,919

#Class
Meta-training 256 244 159
Meta-testing 65 82 43

Table 4.1: Statistics on the three benchmark datasets.

4.4.1 Benchmark Datasets

Table 4.1 shows the statistics on the three benchmark datasets for few-shot Image-QA and few-shot

IC tasks.
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Toronto COCO-QA consists of 78, 736 question-answer (QA) pairs for training and 38, 948

QA pairs for testing. Each QA pair associates with one image from MSCOCO [233] and is labeled

with one of the four QA types (i.e., object, number, color and location). Following the same pre-

processing steps of FPAIT [39], the Toronto COCO-QA is transformed into the format which can

be used for the few-shot Image-QA. Consequently, 57, 834 QA pairs with a set of 256 unique

answers are used in the meta-training phase, and 13, 965 QA pairs with a set of 65 unique answers

are used in the meta-testing phase. The two answer sets are mutually exclusive.

Visual Genome-QA, the largest dataset for Image-QA, contains over 1.7 million QA pairs with

more than 100, 000 images sampled from MSCOCO [233]. Compared with Toronto COCO-QA,

more categories of questions, which may start with the “who”, “what”, “where”, “when”, “why”,

“how” and “which”, are provided. The Visual Genome-QA is transformed into the format for

few-shot Image-QA with similar pre-processing steps for Toronto COCO-QA. Finally, there are

554, 795 QA pairs with a set of 244 unique answers for meta-training, and 136, 473 QA pairs for

meta-testing with a set of 82 unique answers. The two answer sets are mutually exclusive.

COCO-FITB, proposed and used by FPAIT [39] for few-shot IC, is transformed from MSCOCO [233]

by processing MSCOCO Captions [234] to generate image-caption pairs in the fill-in-the-blank for-

mat. 181, 844 image-caption pairs with a set of 159 unique blank words are used in meta-training,

and 34, 919 image-caption pairs with a set of 43 unique blank words are used in meta-testing. The

two sets of blank words are mutually exclusive.

4.4.2 Experimental Setup

Few-shot setup Following the common setup in few-shot learning [40, 42], for each task T

of N -way K-shot learning, we set N ∈ {5, 10}, K ∈ {1, 5} and M = 1. Take a 10-way 5-shot

Image-QA task for example: given 10 different answers, each answer has 5 labeled image-question

pairs, and these 50 samples serve as the support set to predict the result out of the 10 answers for

the 1 unlabeled image-question pair from the query set. Therefore, we can evaluate both Image-QA

and IC tasks in terms of the standard classification accuracy.
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Implementation details In the meta-training phase, the proposed model was trained with

Adam optimizer [226] with an initial learning rate of 1 × 10−3 and weight decay of 1 × 10−6.

The task mini-batch sizes were set to 128, 32, 64, and 16 for 5-way 1-shot, 5-way 5-shot, 10-way

1-shot, and 10-way 5-shot, respectively. Our code was implemented in PyTorch [227] and run with

NVIDIA Tesla P100 GPUs.

Baselines FPAIT [39] directly leverages MAML [40] to deal with few-shot Image-QA and IC

tasks; Prototypical Net [42], Relation Net [129], R2D2 [136], and DN4 [130] focus on few-shot

classification. GNN [235] and EGNN [236] are two GNN-based few-shot classification models.

None of these algorithms, including MAML, has paid any attention to the few-shot visual-semantic

learning, but it is noting that all of them can be extended to tackle few-shot Image-QA and IC as

few-shot classification tasks.

Baselines Implementation We re-implemented the Prototypical Net, Relation Net, R2D2,

DN4, GNN, and EGNN and extended these algorithms from few-shot classification to few-shot

visual-semantic learning. For Prototypical Net, Relation Net, R2D2 and DN4, we adopted the

concatenation of the corresponding visual and semantic representations as input feature for each

sample in the support/training sets and query/test sets. For GNN, each sample from the support

or query sets is represented as a node in the first layer of GNNs, and each node is initialized as

the concatenation of its visual and semantic representations as well as the one-hot encoding of

its label. Note that for the unknown labels (e.g., query samples), unlike Garcia et al. [235], the

one-hot encoding is initialized to a zero vector instead of a uniform vector. For EGNN, both of

the node features and the edge features need to be initialized. The node features are initialized as

the concatenation of its visual and semantic representations. Following the definition in Kim et

al. [236], each edge feature is a 2-dimensional vector with a value representing the relationship

between its two connected nodes. If the two connected nodes belong to one class, the edge feature

is set to [1 0]; otherwise, it is set to [0 1]. In addition, all the edges connected to the samples with

unknown labels are set to [0.5 0.5]. It is worth noting that for both of the GNN and EGNN, only
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Method

Toronto COCO-QA Visual Genome-QA COCO-FITB

5-way accuracy 10-way accuracy 5-way accuracy 10-way accuracy 5-way accuracy 10-way accuracy
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

FPAIT 59.38 71.92 45.11 60.20 75.49 79.12 61.66 67.62 60.13 70.88 47.10 59.31
FPAIT+CLT 60.61 72.17 46.37 60.92 75.05 79.28 60.82 67.48 61.01 71.13 47.79 60.91

Prototypical Net 60.12 71.72 45.31 59.67 75.43 80.33 62.32 67.23 60.56 71.16 47.52 59.38
Relation Net 61.75 71.89 45.60 60.13 77.21 80.72 63.14 68.10 61.35 71.68 47.92 59.55

R2D2 61.83 72.60 47.13 59.36 77.44 81.08 64.71 71.55 60.87 71.60 47.73 59.33
DN4 62.60 74.12 47.68 60.44 78.33 84.25 64.92 71.20 62.09 73.62 48.57 60.82
GNN 61.42 72.55 46.35 58.95 76.72 81.43 63.19 68.65 61.85 72.70 48.14 59.86

EGNN 62.21 73.41 46.99 60.01 77.67 83.26 64.07 70.87 62.67 72.98 48.22 60.13

HGAT 63.13 75.41 48.10 61.50 79.56 86.10 66.62 72.13 63.36 74.14 49.26 61.31

Table 4.2: Comparison of accuracy on Toronto COCO-QA, Visual Genome-QA, and COCO-FITB.

one query node exists in each layer of GNNs.

4.4.3 Experimental Results

Results on the three benchmarks are shown in Table 4.2, and we can make the following observa-

tions:

1) HGAT outperforms all baselines in terms of classification accuracy in all settings. Con-

cretely, in the case of 5-way 5-shot Image-QA on Toronto COCO-QA, HGAT gives an accuracy

of 75.41%, excelling the second best by 1.29 percentage points, which indicates that the modeling

of the intra- and inter-modal relationships using the hierarchical graph-based structure can lead to

consistent advantages on few-shot visual-semantic learning. Similar trends can be observed for

other test cases and benchmark datasets.

2) Generally, the graph-based methods (e.g., GNN, EGNN and HGAT) perform better than non-

graph-based few-shot learning algorithms, such as FPAIT, Prototypical Net, Relation Net, R2D2

and DN4. For instance, in the case of 5-way 1-shot IC on COCO-FITB, GNN, EGNN and HGAT

achieve higher classification accuracies of 61.85%, 62.67% and 63.36%, respectively, than those

of FPAIT (60.13%), Prototypical Net (60.56%), Relation Net (61.35%), R2D2 (60.87%) and DN4

(62.09%). This observation clearly evidences that relationship modeling using the graph-based

structure is crucial for cases with limited data on visual-semantic learning.

3) Among the graph-based methods, our HGAT brings noticeable improvements over GNN
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and EGNN. For example, when few-shot Image-QA is conducted on Visual Genome-QA, HGAT

obtains classification accuracies of 79.56%, 86.10%, 66.62% and 72.13% in the four test cases,

respectively, which are 1.89%, 2.84%, 2.55% and 1.26% higher than those of EGNN. Similar

improvements can be observed regarding GNN. Although GNN and EGNN utilize the pairwise

relationships of nodes, the intra-relationship of each modality, as well as the inter-relationship

between different modalities, have not been fully exploited.

To further justify the superiority of HGAT for the few-shot visual-semantic learning tasks, ex-

perimental comparisons have been expanded to standard Image-QA and IC methods that are not

specifically designed for few-shot learning, including HCA [24], SAAA [237], and CNN+TCN [39].

Since Dong et al. [39] compared on COCO-QA and COCO-FITB, we followed its setting and

strategies for a fair comparison. Results in Table 4.3 show that the HGAT is more suitable and

outperforms standard methods by a significant margin.

Method

COCO-QA COCO-FITB

5-way accuracy 5-way accuracy
1-shot 5-shot 1-shot 5-shot

HCA 55.40 66.78 54.33 62.91
SAAA 56.72 67.23 55.67 64.16

CNN+TCN 57.19 71.82 59.95 70.32

HGAT 63.13 75.41 63.36 74.14

Table 4.3: Comparison with standard Image-QA and IC methods.

4.4.4 Ablation Study

To validate the superiority of the proposed HGAT, several ablation experiments were conducted

based on Visual Genome-QA for few-shot Image-QA. The following observations are made based

on Table 4.4:

1) HGAT conducts separate exploitation of the intra-relationship of each modality, which can

lead to better performance. Compared with Case-1, where no intra-modal relationships are ex-

ploited, there exists a jump on accuracy when the visual-specific relationships are modeled in
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Case St1 St2 Vis Sem Att
5-way accuracy 10-way accuracy
1-shot 5-shot 1-shot 5-shot

1 ✓ 76.10 82.14 63.99 66.30
2 ✓ ✓ 75.33 81.67 62.08 66.42
3 ✓ ✓ 75.84 80.25 62.64 65.76
4 ✓ ✓ ✓ 76.78 82.32 64.16 68.22
5 ✓ ✓ ✓ ✓ 77.47 83.26 64.90 70.03
6 ✓ ✓ ✓ 77.55 84.01 63.77 69.26
7 ✓ ✓ ✓ 78.14 83.88 64.23 68.61
8 ✓ ✓ ✓ ✓ 78.86 84.55 65.21 70.06

9 ✓ ✓ ✓ ✓ ✓ 79.56 86.10 66.62 72.13

Table 4.4: Ablation study on Visual Genome-QA for few-shot Image-QA. (St1: Stage-1; St2:
Stage-2; Vis: Visual Relations; Sem: Semantic Relations; Att: Attention-based Co-learning) Based
on the model only with the three-layer relation-aware GNNs in Stage-2 (Case-1), we gradually add
visual-specific GNNs (Case-6), semantic-specific GNNs (Case-7), both visual-specific GNNs and
semantic-specific GNNs (Case-8) and attention-based co-learning framework (Case-9) in Stage-1
for ablation study. Corresponding cases (i.e., Case-2 to Case-5) without the 3-layer relation-aware
GNNs in Stage-2 are also exploited.

Case-6. A similar improvement can be observed in Case-7, where semantic-specific relationships

are modeled. Moreover, an additional gain can be noticed if both visual- and semantic-specific

relationships are exploited in Case-8.

2) To validate the effectiveness of the attention-based co-learning framework, the experiment is

conducted in Case-9, which achieves 0.70%, 1.55%, 1.41% and 2.07% improvements over Case-8.

Note that the attention-based co-learning can only be achieved when both visual- and semantic-

specific GNNs are leveraged in Stage-1.

3) The relation-aware GNNs in Stage-2 can deliver an additional performance gain on few-shot

visual-semantic learning. For instance, compared with Case-5, where the relation-aware GNNs are

replaced by fully-connected neural networks for label prediction, Case-9 brings up improvements

of 2.09%, 2.84%, 1.72% and 2.10% on accuracies.

4) It should be noted that the Case-1 with only Stage-2 represents a 3-layer GNNs, and the

initial feature of each node is the concatenation of the corresponding visual and semantic represen-
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tations as well as the one-hot encoding of label. Case-1 performs comparably with the graph-based

methods, GNN and EGNN as expected.

Besides the Vi and Si terms (which contains the intra- and inter-relationship from both visual

and semantic features) in Eq. 3.9, whose effects have been justified, we also studied the efficacy of

ϕ(Ii), ψ(Qi), and h(Ai) using 5-way 1-shot task on Visual-Genome-QA. As shown in Table 4.5,

the absence of any term leads to a performance degradation.

w/o h w/o ϕ w/o ψ Full HGAT

5-way 1-shot 77.88 78.01 78.53 79.56

Table 4.5: Study on the efficacy of ϕ(Ii), ψ(Qi), and h(Ai) in Equation 9.

Experiments have been conducted on Visual Genome-QA to study the number of GNNs layers

in Stage-1 (i.e., modal-specific GNNs) and Stage-2 (i.e., relation-aware GNNs). Results on 5-way

1-shot and 5-way 5-shot classifications in terms of the accuracy are shown in Table 4.6. Each

row represents the results of the same number of model-specific GNN layers (Stage-1), and each

column represents the results of the same number of relation-aware GNN layers (Stage-2). Specif-

ically, when the numbers of GNN layers in Stage-1 and Stage-2 are set to 2 and 3, respectively, the

optimal performance is achieved.

# of Layers 2 3 4

2 78.33/84.69 79.56/86.10 79.16/85.51

3 77.85/83.97 78.90/85.01 78.77/85.63

Table 4.6: Study on GNNs layers in Stage-1 (row-wise) and Stage-2 (column-wise).

4.4.5 Semi-supervised Few-shot Learning

Table 4.7 presents the comparisons of semi-supervised learning among HGAT, GNN, and EGNN.

Experiments are conducted on the 5-way 5-shot VQA on Toronto COCO-QA, and results are

presented when 40%, 60%, 80% of the image-text samples are labeled. Note that the labeled

samples are balanced among the 5 classes. Take the 40% case for example, for a task, each of
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Toronto COCO-QA
5-way 5-shot accuracy

40% 60% 80% 100%

GNN-LabeledOnly 64.62 67.30 70.31 72.55
GNN-Semi 66.04 68.44 71.48 72.55

EGNN-LabeledOnly 65.86 69.08 71.57 73.41
EGNN-Semi 67.18 69.92 72.61 73.41

HGAT-LabeledOnly 66.09 69.83 73.12 75.41
HGAT-Distractor 64.25 68.94 73.01 75.41

HGAT-Semi 67.16 70.78 73.95 75.41
Table 4.7: Comparison of semi-supervised learning results on Toronto COCO-QA for few-shot
visual question answering.

the class contains 2 labeled samples and 3 unlabeled samples from the support set. ‘LabeledOnly’

is equivalent to the supervised few-shot setting, where only the labeled support samples are used.

For instance, the 5-way 5-shot 40% VQA with ‘LabeledOnly’ is equivalent to the 5-way 2-shot

VQA. ‘Semi’ denotes the semi-supervised few-shot setting, where all the support samples are

used, regardless of whether they are labeled. In addition, ‘Distractor’ means the unlabeled support

samples are randomly sampled from other classes instead of the 5 classes of the labeled support

samples.

Besides, each of the three methods can acquire noticeable improvements when semi-supervised

learning is performed compared with ‘LabeledOnly’ which demonstrates the unlabeled support

samples can contribute to the learning in a few-shot setting. Moreover, for the proposed HGAT, the

‘Distractor’ leads to a minor performance degradation for each case compared with ‘LabeledOnly’.

This observation clearly shows that only the unlabeled samples from the classes of interest can

contribute to the few-shot visual-semantic learning. Notably, for semi-supervised few-shot visual-

semantic learning, the HGAT consistently outperforms the GNN and EGNN, except the 40% case,

where HGAT achieves a comparable accuracy given by EGNN.



74

Q: What is the woman 
holding?
A: Phone

Q: What color coat is 
the guy wear ing?
A: Red

Q: What is next to the 
curb?
A: Luggage

Q: What is besides the 
woman?
A: Bus

Q: What is in the 
background?
A: Tree

Support-1

Q: What is the woman 
holding?
A: ???

Phone: 0.4326
Red: 0.0752
Luggage: 0.0833
Bus: 0.2548
Tree: 0.1541

Query

Suppor t-2 Suppor t-3 Suppor t-4 Suppor t-5

Q: Who has a tail?

A: Cat

Q: What are the large, 
red fruit?
A: Apple

Q: What is on it's side?

A: Bike

Q: What is the coffee 
table made of?
A: Wood

Q: What is on the r ight 
of the desk?
A: Phone

Support-1

Q: What is the kid on?

A: ???

Cat: 0.2107
Apple: 0.0636
Bike: 0.2865 
Wood: 0.3019
Phone: 0.1373

Support-2 Suppor t-3 Suppor t-4 Suppor t-5

Query

Q: What is the gir l 
using?
A: Laptop

Q: What is behind the 
sheep?
A: Tree

Q: What kind of vehicle 
is this?
A: Motorcycle

Q: What gender is this 
person?
A: Male

Q: What animals are 
there?
A: Zebras

Support-1

Q: what is the gender of the person 
with the soccer ball?
A: ???

Laptop: 0.0798
Tree: 0.1333
Motorcycle: 0.2364
Male: 0.3651
Zebras: 0.1854

Support-2 Suppor t-3 Suppor t-4 Suppor t-5

Query

Q: Who are crossing 
the street?
A: People

Q: How many people 
are in the photo?
A: Four

Q: What is the brand of 
the white computer?
A: Apple

Q: What orange 
vegetable is shown?
A: Carrots

Q: Who is looking to 
his r ight?
A: Man

Support-1 Suppor t-2 Suppor t-3 Suppor t-4 Suppor t-5

Q: What company logo 
is on the laptop?
A: ???

People: 0.0842
Four: 0.1513
Apple: 0.3869
Carrots: 0.1614
Man: 0.2162

Query

Fig. 4.3: Attention visualizations of the 3rd layer in the relation-aware GNNs for 5-way 1-shot
VQA on Visual Genome-QA. Dark/light color denotes higher/lower values. Red/blue color denotes
correct/wrong predictions on query samples.

4.4.6 Visualization

Figure 4.3 shows the computed attentions for several 5-way 1-shot VQA tasks sampled from the

meta-testing set. The left and right square matrices represent the attentions before and after the

meta-training, respectively. Take the top-left task for instance, we can notice that the attention

between the query sample and the third support sample is larger than other off-diagonal attentions,

which implies a stronger correlation between these two samples. Though the “apple” trademark,

which is the decisive clue, occupies only a small portion of both images, HGAT can still associate

the query to the support sample within the same class and give the correct answer.

4.5 Summary

This chapter, through introducing Hierarchical Graph Attention network (HGAT), presents a novel

method for few-shot visual-semantic learning. Comprehensive experiments have been conducted

on the widely-used Toronto COCO-QA, Visual Genome-QA and COCO-FITB benchmarks. The
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extensive experimental results have shown that 1) HGAT delivers the state-of-the-art performance

in terms of accuracy on both few-shot Image-QA and IC tasks compared with few-shot learning and

standard (non-few-shot) methods; 2) It sheds light on tackling the few-shot multi-modal learning

problems, especially for the few-shot visual-semantic learning tasks, through hierarchical exploita-

tion and co-learning of the multiple modalities; 3) It can be easily extended to the semi-supervised

setting, outperforming other few-shot visual-semantic learning baselines in the semi-supervised

setting.
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CHAPTER 5

CROSS-MODAL REASONING WITH EVENT

CORRELATION FOR VIDEO QUESTION

ANSWERING

5.1 Overview

In this paper, to deal with Video-QA, we propose Event-Correlated Graph Neural Networks (EC-

GNNs), a novel end-to-end trainable model, which performs reasoning with event correlation, by

exploiting the relationships among dense events, video contents and question words. To the best of

our knowledge, this is the first work that explicitly incorporates dense video captions to perform the

reasoning of Video-QA. Specifically, we develop a dense caption modality and handle the Video-

QA task via three modality-aware graphs, where the dense caption features, visual features, and

question embedding features are kept in the corresponding graphs. Three procedures are performed

afterwards to infer the final answer. First, graph reasoning modules capture the intra-relations

of each modality. Then, cross-modal reasoning modules aggregate relevant information across

different modalities by leveraging a cross-modal attention mechanism to model the inter-modal

relationships. Finally, after repeating the above two procedures several times, a question-guided
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self-adaptive multi-modal fusion module conducts multiple inference loops to collect the question-

oriented and event-related evidences and refines the final answer prediction.

The contributions are summarized as follows: 1) We propose a novel scheme to perform cross-

modal reasoning with event correlation over information from three modalities (i.e., caption, video,

and question). 2) We are the first to introduce dense video captions for Video-QA and clarify how

to incorporate the event-correlated information into reasoning process. 3) We explicitly model the

inter-modal relationships through a cross-modal attention mechanism in cross-modal reasoning.

4) We design a question-guided self-adaptive multi-modal fusion module that adaptively collects

question-oriented and event-correlated evidence. 5) The proposed model outperforms most Video-

QA methods and performs on par with the state-of-the-art on two Video-QA benchmarks.

5.2 Event-Correlated Graph Neural Networks

This section describes the architecture of the Event-Correlated Graph Neural Networks (EC-GNNs)

as shown in Figure 5.1. We first introduce the representation (Sec. 5.2.1) and graph construc-

tion (Sec. 5.2.2) of the three modalities (i.e., the caption, the video, and the question). Then we

demonstrate how the graph reasoning modules (Sec. 5.2.3) and the cross-modal reasoning mod-

ules (Sec. 5.2.4) can model the intra- and inter-relationships. Finally, we elaborate on the design

of the question-guided self-adaptive multi-modal fusion module (Sec. 5.2.5) and the answer pre-

diction (Sec. 5.2.6).

5.2.1 Contextual Representation with Generated Modality

Generating caption modality Dense video captions are a set of captions in descriptive natu-

ral language, which describe multiple events temporally localized in a video. To generate dense

captions of a video, we first extract its appearance features and optical flow features using ResNet-

200 [62] and BN-Inception [238] respectively. Given extracted features, we employ the dense

video captioning model [50] trained on both ActivityNet Captions [49] and YouCookII [239]
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Graph 
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Fusion

Question Graph
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Caption Graph

Feature 
Extractor

Video

Question
What are women in bikini doing?

Feature 
Extractor

Feature 
Extractor

A group of people are gathered in a room.
A group of gir ls are dancing together.
...
The women in the bikini are dancing.

Appearance

Motion

Cross-Modal
Reasoning

Graph 
Reasoning

Dense Video 
Captioning

Fig. 5.1: The architecture of Event-Correlated Graph Neural Networks (EC-GNNs), which
consists of three components: graph reasoning modules, cross-modal reasoning modules, and a
question-guided self-adaptive multi-modal fusion module. Caption features, visual features, and
word features are forwarded to caption graph, video graph, and word graph respectively. Each
of the graphs contains three graph reasoning procedures where two cross-modal reasoning proce-
dures are interleaved. Finally, multi-modal fusion is performed to infer the answer. Green, blue,
and red arrows between modules corresponds to the information flow of caption, video, and ques-
tion modalities respectively.

datasets to obtain the corresponding dense captions. Each caption is first represented as a sequence

of word embeddings based on GloVe 300-D [214], and then encoded with a trainable GRU [219]

to obtain its final hidden state as a monolithic representation. Therefore, the dense captions are

denoted as a sequence of monolithic representations Fc = {fci : i ≤ Nc, fci ∈ Rdc}, where Nc rep-

resents the number of captions and dc is the dimensionality of the caption features. In Figure 5.1,

we highlight the caption features in green. In order to match the words in captions with the words

in questions, same dictionary are used when dealing with dense captions and questions.

Representing video modality In addition to the generated caption modality described in the

paper, the video modality and question modality are also properly represented and utilized in the

proposed model. In order to take into account the appearance and motion information involved

in video contents, we represent a video at both frame-level and shot-level. Specifically, to obtain

appearance features, we use the 2D ConvNets (i.e., ResNet-152 [62] and VGG [60]) pre-trained
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on the ImageNet 2012 classification dataset [211]. For shot-level motion features, we leverage

3D ConvNets (i.e., C3D [240]) pre-trained on the Sport1M dataset [213]. Then, the video is rep-

resented as two feature views, appearance features Fa = {fai : i ≤ Nv, fai ∈ Rda}, and motion

features Fm = {fmi : i ≤ Nv, fmi ∈ Rdm}, where Nv is number of frames and da, dm are di-

mensionalities of the two feature views. We project the concatenation of the two features into a

common visual space by two fully-connected layers, to obtain a joint representation of the video

Fv = {fvi : i ≤ Nv, fvi ∈ Rdv}, where dv represents the dimensionality of visual features. In

Figure 5.1, we highlight the appearance/motion/visual features in light/normal/dark blue.

Representing question modality For a given question, we represent each word as a fixed-

length vector initialized with the GloVe 300D word embedding [214] pre-trained on the Common

Crawl dataset. The question is then denoted as a sequence of word embeddings Fq = {fqi : i ≤

Nq, fqi ∈ Rdq}, in which Nq represents the number of words and dq equals 300. In Figure 5.1, we

highlight the word features in red.

Obtaining contextualized representations All the features of the three modalities (i.e., cap-

tion features, visual features, and word features) are time series. To exploit the dynamic temporal

information and obtain contextual representations for each modality, we leverage three indepen-

dent GRUs to encode these features separately.

C1, cNc = GRU(Fc;θcGRU) (5.1)

V1, vNv = GRU(Fv;θvGRU) (5.2)

Q1,qNq
= GRU(Fq;θqGRU) (5.3)

The contextualized caption features are denoted as C1 = {C1
i : i ≤ Nc,C1

i ∈ RdC}, the contextu-

alized visual features are denoted as V1 = {V1
i : i ≤ Nv,V1

i ∈ RdV }, and the contextualized word

features are denoted as Q1 = {Q1
i : i ≤ Nq,Q1

i ∈ RdQ}, where dC , dV , and dQ are dimension-

alities of the contextualized features; cNc ∈ RdC , vNv ∈ RdV and qNq
∈ RdQ are the last hidden
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states, which represent the global features of the three modalities.

5.2.2 Graph Construction

Given the contextualized features of three modalities, we construct three modality-aware graphs:

caption graph, video graph, and question graph. As shown in Figure 5.1, each modality-aware

graph is a three-layer fully-connected GNNs (i.e., l = 1, 2, 3), where the caption features Cl, visual

features Vl, and word features Ql are kept in the caption, video, question graphs, with green, blue

and red nodes, respectively. The numbers of nodes in each layer of the three graphs areNc,Nv, and

Nq, respectively, which equals to the numbers of dense captions, frames, and words in questions.

5.2.3 Intra-Modal Graph Reasoning

As each layer of the modality-aware GCNs contains modality-specific knowledge, we first capture

the intra-modal relationships from each graph by performing graph reasoning independently. The

intra-modal graph reasoning procedures in these three graphs share the common operations but

differ in their node representations. Thus we take the video graph as an instance to illustrate the

operations of graph reasoning.

We first project the node features Vl into an interaction space by a non-linear transformation

operation ϕ(.). Then we calculate the dot-product similarity [202], which measures the semantic

correlations among nodes, and employ softmax function on each row of the matrix to obtain the

normalized adjacency matrix.

Gl
V = softmax(ϕ(Vl)ϕ(Vl)T ) (5.4)

where Gl
V ∈ RNv×Nv represents the adjacency matrix and GV

l
i,j indicates the weight between Vl

i

and Vl
j .

To perform intra-modal reasoning on the graph, we apply the Graph Convolutional Networks

(GCNs) proposed in [54], which allows us to update each node based on its neighbors and the
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Question Graph

Query Embeddings

Video Graph

Caption Graph

Key Embeddings

Key Embeddings

Value Embeddings

Value Embeddings

FF LN

Fig. 5.2: An illustration of the cross-modal reasoning module. For simplicity, the cross-modal
reasoning module in video graph between layer l and l + 1 is presented, and the query node Vl

i is
taken as an example for demonstration. Green, blue, and red arrows between modules corresponds
to the information flow of caption, video, and question modalities respectively. Dotted arrows
represent the transmission of node features. Different shades of color indicate representations of
different nodes. FF and LN denote feed-forward network and layer normalization.

corresponding weights. Given the node features Vl and weights specified by the adjacency matrix

Gl
V , the nodes are updated by a linear transformation of aggregated excitation of its neighbors and

itself. Formally, we represent the graph convolution on layer l of video graph as

V̂
l
= Relu(LayerNorm(Gl

V VlW)) (5.5)

where W ∈ RdV ×dV is a learnable weight matrix and V̂
l
= {V̂

l

i : i ≤ Nv, V̂
l

i ∈ RdV } represents

the updated node features. Two non-linear functions including Layer Normalization [241] and

ReLU are applied after the graph convolution.

We conduct the above intra-modal graph reasoning on caption graph, video graph, and question

graph independently and obtain the updated node features Ĉ
l
, V̂

l
and Q̂

l
accordingly, which are

forwarded to cross-modal reasoning (l = 1, 2) and multi-modal fusion (l = 3) respectively.
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5.2.4 Cross-Modal Reasoning with Cross-Modal Attention Mechanism

A video footage tends to focus on part of the question rather than the whole, and tends to pay more

attention on a few captions instead of assigning equal weight to all captions. Same rule applies for

a word in the question and a caption in the set of dense captions. Therefore, to infer the correct

answer, we need to fully understand the dense interactions between factors of different modalities.

As shown in Figure 5.1, between two intra-modal graph reasoning procedures, we propose a

cross-modal attention mechanism (CAM) in cross-module reasoning procedure to explicitly exploit

the inter-modal relationships with two other modalities. For instance, in the cross-modal reasoning

of video graph, CAM allows a factor from the video modality as a clue to determine the weights

of factors from question and caption modalities to aggregate the relevant information.

Given a query and a set of key-value pairs, CAM computes the weighted sum of values based

on the dot-product similarity of the query and keys. With query, key and value denoted as a set of

vectors (i.e.,MQ,MK , andMV ), we formulate the cross-modal attention mechanism as

CAM(MQ,MK ,MV ) = softmax(
MQMK

T

√
d

)MV (5.6)

in which MK andMV belong to the same modality which is different from that of MQ, and d

indicates the dimensionality of the vectors.

With CAM, which is designed to better embed and capture information across multiple modal-

ities, as the core module, we build the cross-modal reasoning procedure, which is illustrated in

Figure 5.2. The cross-modal attention mechanism (CAM) is used to explicitly exploit the inter-

modal relationships of one modality with two other modalities. As same operations shared across

the cross-modal reasoning procedures in three graphs, in Figure 5.2, we give a description of

cross-modal reasoning using video graph as an example, in which the node features of video graph

are employed as query vectors, and node features of question graph and caption graph serve as

key-value pairs.
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We first linearly project the updated node features V̂
l
, Q̂

l
and Ĉ

l
into a transformed space.

Mv
Q
l = Wv

QV̂
l

(5.7)

Mq
K
l,Mq

V
l = Wq

KQ̂
l
,Wq

V Q̂
l

(5.8)

Mc
K
l,Mc

V
l = Wc

KĈ
l
,Wc

V Ĉ
l

(5.9)

where Wv
Q, Wq

K , Wq
V , Wc

K and Wc
V are the learnable weight matrices. Mv

Q
l = {Mv

Qi

l : i ≤ Nv}

represents the transformed visual features in the query space. Mq
K
l = {Mq

Ki

l : i ≤ Nq} and

Mq
V
l = {Mq

Vi

l : i ≤ Nq} represent the transformed word features in the key and value spaces.

Mc
K
l = {Mc

Ki

l : i ≤ Nc} and Mc
V
l = {Mc

Vi
l : i ≤ Nc} represent the transformed caption

features in the key and value spaces. Then we apply the CAM to embed the visual information

into the feature spaces of question words and dense captions respectively to collect the relevant

information from question and caption modalities.

Vvql = CAM(Mv
Q
l,Mq

K
l,Mq

V
l) (5.10)

Vvcl = CAM(Mv
Q
l,Mc

K
l,Mc

V
l) (5.11)

where Vvql = {Vvq
i
l : i ≤ Nv} and Vvcl = {Vvc

i
l : i ≤ Nv} indicate the word features and

caption features attended by the visual features (i.e., CAM-based features), which are combined

with the node features V̂
l

to obtain the updated visual features Vl+1 = {Vl+1
i : i ≤ Nv,Vl+1

i } after

cross-modal reasoning.

Vl+1 = LayerNorm(FF([Vvql||Vvcl||V̂
l
]) + V̂

l
) (5.12)

where || denotes the concatenation operation and FF represents a feed-forward network. To achieve

a better performance, a residual connection [62] is adopted for multiple layers stacking.

The above cross-modal reasoning is performed on video graph, question graph and caption

graph and obtains the updated node features Vl+1, Ql+1 and Cl+1, which are forwarded to the next
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Temporal Attention Temporal Attention Temporal Attention

Modality Attention

Fig. 5.3: An illustration of the question-guided self-adaptive multi-modal fusion module at the
t-th step. An LSTM controller with previous state ht−1 attends to relevant caption features, visual
features, and word features with question guidance, and combines them to obtain current state ht.

GNN layer for the next round of intra-modal graph reasoning.

5.2.5 Question-Guided Self-Adaptive Multi-Modal Fusion

In multi-modal fusion procedure, to collect the question-oriented and event-correlated evidence

from the three modalities, we design a question-guided self-adaptive multi-modal fusion module,

which performs multiple cycles of reasoning to selectively attend to multi-modal features through

gradually refining the soft attention weights with the guidance of question.

The multi-modal fusion module takes the updated node features from the last GNN layer (i.e.,

caption features Ĉ
3
, visual features V̂

3
, and word features Q̂

3
) and the last hidden state of question

(i.e., qNq
) as the inputs. Inspired by the multi-modal fusion module proposed by HME [57], we

adopts multi-step reasoning with an LSTM controller.

At t-th step of reasoning, as shown in Figure 5.3, by interacting with the last hidden state

of question as well as the previous state of LSTM controller, the module first employs temporal

attention mechanism to attend to different parts of the caption features, visual features, and word



85

features, independently, and collects the question-oriented information from each modality.

attc = softmax(Wctanh(Wc
qqNq

+ Wc
hht−1 + Wc

cĈ
3
+ bc)) (5.13)

attv = softmax(Wvtanh(Wv
qqNq

+ Wv
hht−1 + Wv

vV̂
3
+ bv)) (5.14)

attq = softmax(Wqtanh(Wq
qqNq

+ Wq
hht−1 + Wq

qQ̂
3
+ bq)) (5.15)

C̃ =
Nc∑
i=1

attciĈ
3

i Ṽ =
Nv∑
i=1

attvi V̂
3

i Q̃ =

Nq∑
i=1

attqi Q̂
3

i (5.16)

where attc ∈ RNc , attv ∈ RNv , and attq ∈ RNq indicate the normalized attention weights over the

caption features Ĉ
3
, visual features V̂

3
, and word features Q̂

3
respectively. Wc, Wv, Wq, Wc

q, Wv
q ,

Wq
q, Wc

h, Wv
h, Wq

h, Wc
c, Wv

v, Wq
q, bc, bv and bq are the learnable weights. C̃, Ṽ, and Q̃ represent the

attended caption features, attended visual features, and attended word features respectively, which

are then incorporated together with the learned modality weights α = {αc, αv, αq} to gather the

event-correlated information across the three modalities.

α = softmax(Wαtanh([Wα
c C̃||Wα

v Ṽ||Wα
q Q̃] + Wα

hht−1 + bα)) (5.17)

xt = tanh(αcWx
c C̃ + αvWx

vṼ + αqWx
q Q̃ + Wx

hht−1 + bx) (5.18)

where Wα, Wα
c , Wα

v , Wα
q , Wα

h , Wx
c , Wx

v , Wx
q , Wx

h, bα and bx are the learnable weights. The

output feature xt is forwarded to obtain the current state ht of the LSTM controller by ht =

LSTM(xt,ht−1).

We iteratively perform the above reasoning step to obtain the final representation of the multi-

modal fusion. After Nr steps, the state LSTM controller hNr captures the question-oriented and

event-correlated information across the three modalities. We set the value of Nr to 3, referring

to that in HME [57]. Following [16], we apply the standard temporal attention on the contex-

tualized visual features V1 and caption features C1, and concatenate with hNr to obtain the final

representation sa for answer prediction.
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5.2.6 Answer Prediction

Based on the final representation sa from the fusion module, we predict the final answer of the

Video-QA tasks. We aim at solving three different types of Video-QA, same as [16]: open-ended

words, open-ended numbers and multiple-choice. Given the input video v and the corresponding

question q, the open-ended tasks is to infer an answer â from a pre-defined answer set A of size C

that matches the ground-truth a⋆ ∈ A, while the multiple-choice task is to select the correct answer

â out of the candidate set {ai}Ki=1. With the representation sa, for each of the three tasks, we train

and evaluate a separate model with different predicting functions and training losses.

Open-ended word task The open-ended words is treated as a classification problem. We apply

a linear layer and a softmax function upon the representation sa to generate the probabilities p for

all answers in the pre-defined answer set A.

p = softmax(Ww
a sa + bw) (5.19)

in which Ww
a and bw are the learnable weights. The cross-entropy loss is adopted to train the

model, and the predicted answer is represented as â = argmaxA(p) in testing phase.

Open-ended number task We consider the open-ended numbers as a linear regression prob-

lem, which takes the representation sa and outputs a rounded integer value as the predicted answer.

â = round(Wn
asa + bn) (5.20)

where Wn
a and bn are the learnable weights. The l2 loss is leveraged to minimize the gap between

the predicted integer and the ground-truth. Note that A is an integer-valued answer set (i.e., 0-10)

for the open-ended numbers.
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Multiple choice task For multiple-choice, we concatenate the question q with each answer in

the candidate set {ai}Ki=1 to obtain K word sequences, which are forward to the model individually

to get K final representations {sa}Ki=1. Then we use a linear function to transfer the K representa-

tions to K scores s = {sp, sn1 , sn2 , ..., snK−1}. The answer with the highest score is selected as the

predicted one. We optimize the model by minimizing the hinge loss Lhinge between the score for

the correct answer sp and the scores for the incorrect answers {sni }K−1
i=1 .

Lhinge =
K−1∑
i=1

max(0, 1 + sni − sp) (5.21)

5.3 Performance Evaluation

In this section, we evaluate our proposed model on two widely used large-scale Video-QA bench-

marks and discuss the experimental results quantitatively and qualitatively.

5.3.1 Benchmark Datasets

TGIF-QA TGIF-QA [16] is the most commonly used benchmark for Video-QA with 165K QA

pairs from 72 animated GIFs. It includes four different Video-QA tasks: (1) FrameQA: An open-

ended words task, in which the question can be answered based on a single video frame. (2) Count:

An open-ended numbers task, asking the number of repetition of a given action. (3) Action: A 5-

option multiple-choice task, which aims to recognize a repeated action given its specific times. (4)

Trans: A 5-option multiple-choice task, asking the transition happened between two states.

MSVD-QA MSVD-QA [46] is generated automatically based on Microsoft Research Video

Description Corpus [209]. It contains 50K QA pairs associated with 1,970 video clips and consists

of five different types of questions, including What, Who, How, When and Where. All questions

are open-ended words tasks, where the answer is predicted from a pre-defined answer set of size

1,000.
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5.3.2 Experimental Setup

Implementation details We employed the pre-trained ResNet-152 and VGG to obtain the

appearance features for TGIF-QA and MSVD-QA respectively and the pre-trained C3D to extract

the motion features. dc, da, dm, dv, and dq are set to 512, 2,048, 4,096, 4,096, and 300, respectively.

dV , dQ, and dC are all set to 512. The dimensions of ht and sa are set to 512 and 1,536 respectively.

The proposed model was trained with Adam optimizer [226] with an initial learning rate 10−4 and

a batch size 64. Our code was implemented in PyTorch [227] and run with NVIDIA Tesla P100

GPUs.

Evaluation metrics For both open-ended words and multiple-choice tasks, we adopted the clas-

sification accuracy (i.e., Accuracy) as the evaluation metric. For open-ended number task, as all

the answers belong to 11 possible integer values ranging from 0 to 10, we evaluated the model

in terms of the mean square error (i.e., MSE) between the predicted integer and the ground-truth.

Note that the model delivers better performance with higher classification accuracy while lower

mean square error.

Baselines Our model was compared with some typical and state-of-the-art methods. For TGIF-

QA dataset, we compared EC-GNNs with ST-VQAs [16], ST-VQA⋆ [17], Co-Mem [112], HME [57],

PSAC [47], and HGA [204]. For MSVD-QA dataset, in addition to ST-VQA, Co-Mem, HME and

HGA, we also compared against E-VQA [15], E-MN [15] and AMU [46].

5.3.3 Experimental Results

We compare our proposed model with the aforementioned baselines. The results on TGIF-QA and

MSVD-QA datasets are shown in Tables 5.1 and 5.2, and we can make the following observations.

State-of-the art performance especially on event-related tasks EC-GNNs outperforms

most baselines and performs comparably with state-of-the-art method (i.e., HGA [204]) for both
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Table 5.1: Comparison on TGIF-QA in terms of MSE (↓) for Count and Accuracy (%, ↑) for
others.

Methods FrameQA (↑) Count (↓) Action (↑) Trans (↑)

ST-VQA-Sp [16] 45.5 4.28 57.3 63.7
ST-VQA-Tp [16] 49.3 4.40 60.8 67.1

ST-VQA-SpTp [16] 47.8 4.56 57.0 59.6
ST-VQA⋆ [17] 52.0 4.22 73.5 79.7
Co-Mem [112] 51.5 4.10 68.2 74.3

PSAC [47] 55.7 4.27 70.4 76.9
HME [57] 53.8 4.10 73.9 77.8
HGA [204] 55.1 4.09 75.4 81.0

Ours 55.3 4.18 75.8 81.2

Table 5.2: Comparison on MSVD-QA in terms of Accuracy (%, ↑).

Methods What (↑) Who (↑) How (↑) When (↑) Where (↑) All (↑)

E-VQA [15] 9.7 42.2 83.8 72.4 53.6 23.3
E-MN [15] 12.9 46.5 80.3 70.7 50.0 26.7
AMU [46] 20.6 47.5 83.5 72.4 53.6 32.0

ST-VQA [16] 18.1 50.0 83.8 72.4 28.6 31.3
Co-Mem [112] 19.6 48.7 81.6 74.1 31.7 31.7

HME [57] 22.4 50.1 73.0 70.7 42.9 33.7
HGA [204] 23.5 50.4 83.0 72.4 46.4 34.7

Ours 24.0 49.9 79.7 70.7 50.0 34.8

datasets. Notably, EC-GNNs delivers an accuracy of 75.8% on the Action task of TGIF-QA, ex-

celling the second best by 0.4 percentage points; On MSVD-QA, it performs the best on What

task and the union of all tasks (denoted as All in Table 5.2). The results suggest that leverag-

ing event-related information (i.e., dense video captions) is beneficial for the cases where obvious

event information (e.g., actions) is involved and multiple events occur concurrently or successively

(e.g., state transitions), and clearly demonstrate the effectiveness and feasibility of the proposed

EC-GNNs.

Advantages of modality-aware graph networks Comparing to HGA [204], which also uses

GCNs for the modeling of intra-modal relationships, EC-GNNs performs better on most tasks and

question types. The reason may be that HGA uses one graph, ignoring the pattern differences

between visual and linguistic modalities and leading to semantic bias, while EC-GNNs employ
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modality-aware graphs that model heterogeneous intra-modal relationships and revealing multi-

modal features.

Gains of question guidance EC-GNNs consistently outperforms HME [57], which employs

similar multi-modal fusion but lacks question guidance. This suggests that gathering question-

oriented information is crucial for a comprehensive understanding of cross-modal semantics. An

ablation study is conducted to further justify the superiority of question guidance in multi-modal

fusion.

Superiority of GCNs to RNNs EC-GNNs perform consistently better than E-VQA [15], a

typical RNNs-based Video-QA method. It implies that for Video-QA tasks, GCNs learn better

long-term dependencies than RNNs, especially when complex semantics are involved.

5.3.4 Visualization

To demonstrate the efficacy of the proposed model, we use Figure 5.4 to visualize the learned atten-

tion weights attc, attv, and attq (in Equations (5.13)–(5.15)) over caption, visual, and word features

(finalized by three modality-aware GCNs) in the question-guided self-adaptive multi-modal fusion.

The first sample shows that the proposed model can effectively focus on the most relevant

frames, words and captions for a given question. This example is from the MSVD-QA dataset.

From the point view of the video as a whole, it is difficult to know who is in the middle of the

stage, especially when close-up shots take up most of the video. Furthermore, the model needs

to find out the most important ones from a large number of dense video captions, which helps

to infer the correct answer. Our model subtly pays more attention to a few overall shots in the

middle of the video, where a woman leads the dance in the center of the stage while others dance

around. Correspondingly, in the caption modality, the model assigns a higher weight to the caption

the women in the dress continue dancing and one of the women in the middle of the stage while

reducing other weights.
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In the latter two samples, the model is able to directly infer the correct answer by referring

to some correlated captions. In addition to providing some visually intuitive information, such as

the presence of two women in the video of the second sample, the captions can also incorporate

some commonsense knowledge that may not be represented by an end-to-end model for Video-

QA datasets with limited sample diversity [90]. For instance, in the third sample, the caption a

man is riding a horse in a field can naturally associate the horse riding with field, which provides

exactly where the horse and rider trot across. Nonetheless, without assistance from dense video

captions, most other models have to recognize the environment based on visual features, which is

quite challenging due to the ambiguities contained in video frames.

5.3.5 Ablation Study

To validate the contribution of each component in the proposed EC-GNNs, several ablation exper-

iments were conducted on TGIF-QA. The following observations are made based on Table 5.3.

Benifits of generating an event-correlated modality EC-GNNs incorporates dense video

captions as a new modality to perform reasoning of Video-QA, which leads to better performance.

Compared with Case-ALL, which learns the full model, the accuracy of the Action task decreases

by 2.4% in Case-1, where the caption modality is not modeled. This suggests that dense video cap-

tions can provide valuable evidence for answer reasoning, especially when the videos and questions

contain complex semantics. Similar trends can be observed in FrameQA, Count and Trans tasks.

Effectiveness of cross-modal reasoning The model in Case-2, without the cross-modal rea-

soning module, gets 1.8% accuracy degradation of the Action task compared with Case-ALL. De-

graded performance of this ablated model is also observed on the other three tasks. This demon-

strates the benefits of cross-modal reasoning in the modeling inter-modal relationships, which can

aggregate relevant information across different modalities.
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Table 5.3: Ablation study on TGIF-QA. MSE (↓) for Count and Accuracy (%, ↑) for others. (Vid:
Video Modality; Cap: Caption Modality; CMR: Cross-Modal Reasoning Module; MMF: Multi-
Modal Fusion module from [57]; Q-MMF: Question-guided self-adaptive Mutli-Modal Fusion
module.)

Case # Vid Cap CMR MMF Q-MMF FrameQA (↑) Count (↓) Action (↑) Trans (↑)

1 ✓ ✓ ✓ 52.1 4.33 73.4 77.5
2 ✓ ✓ ✓ 53.3 4.28 74.0 76.8
3 ✓ ✓ ✓ 52.6 4.32 74.7 78.5
4 ✓ ✓ ✓ ✓ 54.1 4.15 75.3 80.8

ALL ✓ ✓ ✓ ✓ 55.3 4.18 75.8 81.2

Gains of question guidance in multi-modal fusion The leveraging of multi-modal fusion

delivers a performance gain over Case-3, where only the self-attention pooling and bi-linear fusion

are applied for feature fusion [204]. For instance, for the Action task, Case-4 brings up improve-

ments of 0.6% on accuracy, and further adopting question-guided self-adaptive multi-modal fusion

in Case-ALL achieves an additional gain of 0.5%. Similar trends can be observed in FrameQA

and Trans tasks. In brief, collecting the question-oriented and event-correlated evidence facilitates

a comprehensive understanding of cross-modal semantics and outperforms simple multi-modal

fusion.

5.4 Summary

By introducing Event-Correlated Graph Neural Networks (EC-GNNs), we propose a unified end-

to-end trainable model for Video Question Answering (Video-QA). Notably, this paper clarifies

how event-correlated information can be extracted as a new modality and integrated into Video-

QA inference. Furthermore, we solve the Video-QA task through a multi-modal graph consisting

of three modality-aware graph convolution networks that perform cross-modal reasoning over three

modalities (i.e., the caption, the video, and the question). Comprehensive experiments have been

conducted on two widely-used Video-QA benchmarks, and extensive experimental results show the

superiority of introducing the event-based caption modality and the effectiveness of the proposed

model equipped with the cross-modal attention mechanism and the question guidance.
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Question: What did the horse and r ider trot across?

Video 
Attention

Caption 
Attention

Question: Who is in the middle of the stage?

Question 
Attention

A group of people are gathered in a room. A group of gir ls are dancing together.
The women in the bikini are dancing.

The women in the dress continue dancing and one of the women in the middle of the stage.

Video 
Attention

Caption 
Attention

Question: How many gir ls are dancing in the room?

Question 
Attention

Two women are seen dancing around a room. They are doing a dance routine.

Two women are seen standing in a room with one another and begin dancing around the room. They are doing flips and tr icks.

Answer: woman

Answer: two

Video 
Attention

Caption 
Attention

Question 
Attention

Answer: field

A man is seen r iding a horse around.

A man is r iding a horse in a field.

Fig. 5.4: Visualization of learned attention weights over the caption (in green), visual (in blue),
and word (in red) features. Dark/light color denotes higher/lower values.
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CHAPTER 6

CONCLUSIONS AND FUTURE PLAN

The major goal of this thesis is to bridge the discrepancy between human-level intelligence and

visual-semantic learning from several different aspects: basic understanding, external knowledge

integration, fast learning, and event correlation. During our investigation, some high-level con-

clusions and insights into human intelligent visual-semantic learning can be made based on the

experimental results and analysis. Specifically, we find a good practice for designing models,

summarize and discuss several common ideas for visual-semantic learning. In addition, despite

emerging Deep Learning (DL) delivers promising techniques to mitigate this gap, there are still

many barriers and challenges to achieve a powerful AI agent with visual-semantic understanding

abilities of human-level. While we have discussed and solved some of them in the thesis, many

crucial and interesting research directions still lie ahead.

6.1 Conclusions

In this section, we first summarize a practical approach to design and tailor visual-semantic learn-

ing models by imitating human cognition. We then conclude several decent ideas adopted in our

model design and validated in experiments.
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6.1.1 Human Cognition Imitation

Through our efforts in approaching human-level intelligence, we have learned a good practice

in the design of visual-semantic learning models, that is, customizing learning modules in deep

models by mimicking human cognition and thinking process when dealing with visual-semantic

tasks. For example, considering how a human approaches a Video-QA task, if he/she watches a

long video and reads a question, it is difficult or even clueless for him/her to provide the correct

answer, because he/she may remember a lot of video information irrelevant to the question. How-

ever, he/she is able to pay special attention to the part of the video that is relevant to the question

and give an accurate answer by reading the question before watching the video. Therefore, in

MA-DRNN, by thinking about a better way for humans to watch videos and read questions, we

propose to encode question before video for Video-QA reasoning, and demonstrate its effectiveness

through ablation studies. Similarly, by mimicking the way the human brain facilitates cognition,

we employ external memory augmentation in MA-DRNN and MCR-MemNN to improve the un-

derstanding and reasoning capacities of visual-semantic learning models. Furthermore, by consid-

ering how humans recognize and process heterogeneous information from multiple modalities (i.e.,

video/image, question, knowledge, and dense video captioning) , we introduce variant approaches

in MCR-MemNN, HGAT, and EC-GNNs to take full advantage of intra- and inter-modal relation-

ships. At the same time, we shed light on how to incorporate new modalities (e.g., knowledge,

dense video captioning) into the model reasoning process to mimic human-level visual-semantic

learning.

6.1.2 Differentiable Memory

According to our experimental results and analysis of MA-DRNN and MCR-MemNN to study

the basic understanding ability for Video-QA and KB-Image-QA, the external memory augmenta-

tion improves visual-semantic reasoning performance for the both cases with and without com-

monsense knowledge. In particular, MA-DRNN utilizes a differentiable memory block and a

customized memory addressing system to provide additional storage space for long-term visual-
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textual dependency modeling, while MCR-MemNN stores candidate supporting facts in a key-

value format using a learnable structured memory module. Even with different memory formats,

both the integrated external memories are differentiable, allowing end-to-end training with the

model. This is inline with the human cognitive system, where certain specific areas of human

brain help memorize relevant and key information, thereby enabling human-level understanding

and reasoning process.

6.1.3 Inter-Modal Relationships

Based on the experimental results and analysis of MCR-MemNN, HGAT, and EC-GNNs to in-

vestigate some advanced visual-semantic learning abilities (i.e., external knowledge integration,

fast learning, and event correlation), exploiting and modeling inter-modal relationships among

different modalities leads to superior cross-modal reasoning ability with a new modality of sup-

porting facts or dense video captions, and enables the model to perform visual-semantic reasoning

with limited or even partially unlabeled samples. Specifically, MCR-MemNN employs a self-

attention-based mechanism on memory slots to learn the summary of supporting facts in light

of visual-semantic representation, and uses dot-product to compute the memory-aware attention

over question words and image features to deliver the question and image embeddings in light of

memory. Similarly, with a new modality of dense video caption involved, EC-GNNs proposes a

cross-modal attention mechanism based on self-attention to exploit the inter-modal relationships

among the three modalities (i.e., caption, video, and question). However, HGAT presents a novel

attention-based co-learning mechanism to capture the visual-semantic interactions by sharing at-

tentions between associated nodes in two modal-specific GNNs. Even with different mechanisms

to model inter-modal relations, they are all trying to imitate the human cognition and thinking pro-

cess when performing visual-semantic learning, that is to adaptively collect the question-oriented

and information-complementary evidence for multi-modal understanding and reasoning by taking

advantage of inherent associations across different modalities.
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6.1.4 Attention Mechanisms

Variant attention mechanisms are widely-adopted in MCR-MemNN, HGAT, and EC-GNNs for

intra-modal and cross-modal reasoning, multi-modal feature embedding and fusion. Specifically,

MCR-MemNN employs top-down attention combined with self-attention to obtain the visual-

semantic representation, and leverages basic attention mechanisms to model the interactions among

question words, image regions, and supporting facts and deliver a memory-aware visual-semantic

representation and a visual-semantic aware memory summary. HGAT proposes a shared atten-

tional mechanism to share the attentions of visual modality with semantic modality and vice-versa

for the node feature update of visual-specific GNNs and semantic-specific GNNs respectively, so

that both intra- and inter-modal relationships are exploited among the samples from support set

and query set. EC-GNNs introduces a cross-modal attention mechanism to explicitly exploit the

inter-modal relationships among three modalities (i.e., caption, video, and question). Moreover, a

novel question-guided self-adaptive multi-modal fusion is presented by employing temporal atten-

tion mechanism to attend to caption features, visual features, and word features through multi-step

reasoning, and iteratively collects the question-oriented and event-correlated evidence from each

modality for the final representation of multi-modal fusion.

When doing visual-semantic learning, with a large amount of heterogeneous information in-

volved, humans always filter out what they need according to their experience (e.g., common-

sense knowledge integration) and some correlations among information from different modalities

(i.e., intra- and inter-modal relationships modeling), then quickly understand and reason over the

digested information to give accurate response. For example, when performing Video-QA rea-

soning on a long-term video with complicated spatial-temporal dynamics, humans only focus on

the informative frames based on the given question, meanwhile optimize the awareness on each

question word according to visual observations, and finally deliver the correct answer. To imitate

this learning process, variant attention mechanism has been proposed and widely adopted during

investigation, and its superiority is well-justified through our efforts to mitigate the gap between

visual-semantic learning and human-level intelligence from several different perspectives.
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6.2 Future Plan

6.2.1 Explainable Knowledge-based Video-QA

As aforementioned, most of the existing Video-QA models [52, 15, 104, 16, 17, 53] focus on ques-

tions that are answerable by solely referring to the visible video content without any commonsense.

However, such models are incapable of answering questions that require external knowledge be-

yond what is contained in the video. In real scenarios, most questions given a video requires a joint

analysis of visual content and general knowledge, which is extremely challenging for current AI

agents but effortless of humans. That’s why knowledge-based Video-QA is introduced as a brand

new topic under visual-semantic learning.

Even if significant progress has been made to knowledge-based Image-QA, research on knowledge-

based Video-QA is still in its infancy. As far as we know, there are only two work dealing with

KB-Video-QA, that created a benchmark KB-Video-QA dataset (i.e., KnowIT VQA) and proposed

two baseline models (i.e., ROCK and ROLL). However, these existing efforts have not touched the

root of KB-Video-QA. For instance, the proposed dataset and model can only handle multi-choice

questions rather than free-form questions with open-ended answers, which are more general and

closer to the real situation. In addition, only question and candidate answers are leveraged to

retrieve relevant knowledge facts from KB, while the visual content with much more valuable

spatial-temporal clues are not incorporated. Furthermore, during video reasoning, the cross-modal

relationships among video, text (i.e., subtitles, question, candidate answers), and the retrieved

knowledge facts are not exploited. More importantly, neither of the existing models can interpret

why a particular answer is given, which is an ability necessary for a mature model, as advanced

AI agents should be able to provide reasonable explanations for the decisions they made and the

knowledge facts they referred. To address those limitations, we aim to propose a general KB-

Video-QA framework that exploits cross-modal relationships during KB retrieval and reasoning,

to deliver explainable open-ended answers for free-form questions. More specifically, our plan is

summarized as follows:
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• Reformat current KB-Video-QA datasets to create a dataset with free-form questions and

each corresponds to an open-ended answer.

• Spatial-temporal features should be properly extracted from the given video and employed

as clues for both external knowledge retrieval and answer inference.

• Implement a modality-aware GNN-based reasoning framework to capture question-oriented

and information-complementary facts from different modalities (i.e., video, text and KB).

• The learned model is able to highlight related visual concepts (e.g., video frames and ob-

jects), semantic facts (e.g., question words and subtitles), and knowledge facts, to provide

reliable interpretations for the delivered answers.

6.2.2 Video-QA with Spatial-Temporal Dense Captions

Analogous to external knowledge, dense visual captions provide much more detailed information

which is hard to perceive during conventional Visual-QA reasoning. Thus, how to employ dense

visual captions as another modality to facilitate Visual-QA reasoning becomes a popular research

direction. Take Mucko [125] as an example, it handles KB-Image-QA with a multi-modal hetero-

geneous graph, where the dense image captions [179] are extracted, parsed and kept in the semantic

layer to bridge the gap between visual and factual information. Likewise, in this thesis, we pro-

posed Event-Correlated Graph Neural Networks (EC-GNNs) to perform reasoning of Video-QA

with event correlation. Notably, dense video captions [49] are incorporated, and the relationships

among dense events, video contents and question words are fully exploited. Proceeding with those

efforts, it is verified that incorporating dense visual captions as a new auxiliary modality helps

to identify and understand visual concepts in spatial dimension and events involved in temporal

dimension. Besides, the intra- and inter-modal relationships among video, question and dense

captions are better exploited, which provides valuable clues to infer more accurate answers during

Visual-QA reasoning.
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Nonetheless, dense image captions gives only visual concepts of a single frame as well as

their spatial relationships without any considerations of temporal correlations of objects; similarly,

dense video captions provides only descriptions of multiple events along video time span without

understanding of fine-grained visual elements over each frame. An ideal Video-QA agent requires

a comprehensive spatial-temporal understanding during inference, thus, it requires not only em-

ploying captions of dense events across temporal axis, but also incorporating captions of dense

proposals which are spatially distributed in each video frame. Therefore, instead of exploiting

them separately for Video-QA, it’s worth investigating how to jointly incorporate dense video cap-

tions and dense image captions in reasoning process to deliver a comprehensive spatial-temporal

representation, as the information provided on both side is able to complement each other, espe-

cially for the Videos with complicated spatial-temporal dynamics.

6.2.3 Visual-QA with Concise Visual Captions

It is verified that dense visual captions are able be incorporated to enhance the reasoning process

of both Image-QA and Video-QA; however, a critical issue exists. Rich information is contained

in image and video of high complexity. An image may contain more than ten objects with com-

plicated relationships among them, and a long-term video is consisting of more than 1000 frames.

During Visual-QA reasoning, there are many object proposals of image with inconsistent clues

attended and many frames of video with duplicated and redundant visual appearance information

selected. Thus, the incorporated dense visual captions are prone to be redundant and inconsistent.

For example, dense video captions of two event proposals that are highly overlapped temporally

have exact the same meaning and a lot of repeated words. A more unfavorable case is that the

two captions express two meanings which are completely different. Same issue exists for dense

image captions of any pairs of object proposals that are overlapping in spatial dimension. In ad-

dition, given a question, only a few captions are correlated to answer prediction. At this time,

all Visual-QA models with the guidance of dense visual captions are struggling to select the most

informative one to infer accurate answer. Even if some works on video captioning [242] and dense
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video captioning [193, 194] have devoted to tackle the inconsistent and redundant caption gener-

ation from the perspective of informative frame selection or temporal consistency modeling, none

of them considers how to deal with the redundancy and inconsistency in the context of Visual-QA

reasoning with dense captions incorporated. Therefore, it’s worthwhile to develop a Visual-QA

agent to process the most informative and question-correlated dense visual captions, and skip cap-

tions when redundancy and inconsistency happens. With this effort, Visual-QA model can not only

precisely localize the most valuable and concise captions from a large set of dense captions to sup-

plement Visual-QA reasoning, but also save a lot of computation efforts to analyze uninformative

and uncorrelated captions.
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