1,663 research outputs found

    Insights into dynamic tuning of magnetic-resonant wireless power transfer receivers based on switch-mode gyrators

    Get PDF
    Magnetic-resonant wireless power transfer (WPT) has become a reliable contactless source of power for a wide range of applications. WPT spans different power levels ranging from low-power implantable devices up to high-power electric vehicles (EV) battery charging. The transmission range and efficiency of WPT have been reasonably enhanced by resonating the transmitter and receiver coils at a common frequency. Nevertheless, matching between resonance in the transmitter and receiver is quite cumbersome, particularly in single-transmitter multi-receiver systems. The resonance frequency in transmitter and receiver tank circuits has to be perfectly matched, otherwise power transfer capability is greatly degraded. This paper discusses the mistuning effect of parallel-compensated receivers, and thereof a novel dynamic frequency tuning method and related circuit topology and control is proposed and characterized in the system application. The proposed method is based on the concept of switch-mode gyrator emulating variable lossless inductors oriented to enable self-tunability in WPT receiversPeer ReviewedPostprint (published version

    Design, Modeling, And Control Of Three-port Converters For Solar Power Applications

    Get PDF
    This paper describes the results of research into multi-port converter design and control, specifically a pair of three-port topologies based on the half-bridge and full-bridge topologies. These converters are capable of simultaneous and independent regulation of two out of their three ports, while the third port provides the power balance in the system. A dynamic model was developed for each topology to aid in testing and for designing the control loops. The models were then used to design the control structures, and the results were tested in Simulink. In addition, a basic outline of a system level architecture to control multiple converters working in parallel is presented. To improve the reliability of this system, output current sharing controls were also developed. Finally, one of the topologies is analyzed in detail in order to obtain a set of design equations that can be used to improve the efficiency, weight, and cost of the converter for a specific application

    Nonlinear Cascaded Control for a DC-DC Boost Converter

    Get PDF
    The Boost Converter is a type of DC-DC converter that operates using switching techniques and is designed to elevate the voltage level. This paper presents a cascaded control for a boost converter to ensure that the inductor current and output capacitor voltage remain in a safe operating zone. Ensuring safe operating conditions and stable closed-loop poles is crucial because it guarantees that both current and voltage remain within the designated operating range. This preventive measure prevents any damage to components like capacitors (C), inductors (L), and switches. Unstable operation, on the other hand, could lead to oscillations and an undesirable increase in the amplitude of current and voltage, posing a risk to all components involved. The research contribution involves an investigation of cascaded control, utilizing power and energy concepts due to their advantageous effects on system performance and design. By implementing nonlinear controllers based on a large-signal averaged model, the closed-loop poles remain independent of operating points, eliminating the need for small-signal linearization. Small-signal linearization makes the controlled system dependent on the operating point. Two controllers are introduced based on power and energy concept, which is easy to understand. The potential practical application of the proposed cascaded control approach is in high-power applications. Tracking the energy stored in the output capacitor is first investigated to validate the proposed control scheme by varying the output voltage reference from 32 V to 50 V. Then, the regulation of the energy voltage is explored by varying the load resistance for the output voltage at 50 V. Both are done using a switched model using MATLAB/Simulink software. Simulation results are given to demonstrate the effectiveness of the proposed method. The key metrics used to assess the effectiveness of the proposed control scheme are the undershoot voltage and robustness. The results show that the studied system's tracking, regulating operations and robustness properties are as expected. The proposed method faces a challenge with the number of sensors required. To address this, observers can be utilized to reduce sensor usage while maintaining measurement accuracy. The proposed method can be applied to other power electronic systems

    High Performance Power Management Integrated Circuits for Portable Devices

    Get PDF
    abstract: Portable devices often require multiple power management IC (PMIC) to power different sub-modules, Li-ion batteries are well suited for portable devices because of its small size, high energy density and long life cycle. Since Li-ion battery is the major power source for portable device, fast and high-efficiency battery charging solution has become a major requirement in portable device application. In the first part of dissertation, a high performance Li-ion switching battery charger is proposed. Cascaded two loop (CTL) control architecture is used for seamless CC-CV transition, time based technique is utilized to minimize controller area and power consumption. Time domain controller is implemented by using voltage controlled oscillator (VCO) and voltage controlled delay line (VCDL). Several efficiency improvement techniques such as segmented power-FET, quasi-zero voltage switching (QZVS) and switching frequency reduction are proposed. The proposed switching battery charger is able to provide maximum 2 A charging current and has an peak efficiency of 93.3%. By configure the charger as boost converter, the charger is able to provide maximum 1.5 A charging current while achieving 96.3% peak efficiency. The second part of dissertation presents a digital low dropout regulator (DLDO) for system on a chip (SoC) in portable devices application. The proposed DLDO achieve fast transient settling time, lower undershoot/overshoot and higher PSR performance compared to state of the art. By having a good PSR performance, the proposed DLDO is able to power mixed signal load. To achieve a fast load transient response, a load transient detector (LTD) enables boost mode operation of the digital PI controller. The boost mode operation achieves sub microsecond settling time, and reduces the settling time by 50% to 250 ns, undershoot/overshoot by 35% to 250 mV and 17% to 125 mV without compromising the system stability.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    A review of grid-tied converter topologies used in photovoltaic systems

    Get PDF
    This study provides review of grid-tied architectures used in photovoltaic power systems, classified by the granularity level at which maximum power point tracking (MPPT) is applied. Grid-tied PV power systems can be divided into two main groups, namely centralized MPPT (CMPPT) and distributed MPPT (DMPPT). The DMPPT systems are further classified according to the levels at which MPPT can be applied, i.e. string, module, submodule, and cell level. Typical topologies for each category are also introduced, explained and analyzed. The classification is intended to help readers understand the latest developments of grid-tied PV power systems and inform research directions
    corecore