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Summary 

 Classical boost and buck-boost converters and their derivatives are used in dc-

dc switch-mode power supplies and in single-phase ac-dc power factor correction 

(PFC) applications. In dc-dc applications, the small-signal dynamic performance of 

these converters operating in continuous-conduction mode is slow due to the presence 

of a right-half plane (RHP) zero in their control-to-output transfer function. Their 

large-signal dynamic performance is also sluggish, a prime reason being the linear 

nature of controllers commonly used with these converters. The focus of this thesis is 

to analyze and propose solutions for mitigating and overcoming these dynamic 

performance problems.  

 

The proposed solutions are obtained in the following two ways. 

1. By enhancing the converter design and by modifications in the employed 

controller 

2. By modifying the converter topology. 

 

Among the solutions related to the first approach, to begin with, it is shown that 

the small-signal dynamic performance problem of a boost converter is mitigated by 

appropriate selection of boost inductance. The pros and cons of the proposed design 

are discussed.  

 

Following the first approach, the performance of boost converter is investigated 

with linear-PI controller, gain-scheduled PI controller (GSPI), and fuzzy logic 

controller (FLC). Linear-PI controller offers a better small-signal performance at the 

designed operating point than those offered by GSPI and FLC. For large-signal 

transients, FLC offers a dynamic performance better than that offered by the linear-PI 

controller. For explaining this transient response offered by FLC, the structure of 
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several FLCs used in power-converter-control-applications (PCCA) in the past are 

analyzed. It is shown that most of these FLCs can be approximated by a single-input-

single-output nonlinearity. The resulting ‘Non-linear Function Controller’ (NLFC) 

explains the rationale behind the good large-signal performance offered by FLCs. 

Besides, the design of NLFC (and indeed FLCs) to obtain good small-signal 

performance becomes logical. The proposed NLFC can replace FLCs in PCCA. A 

Non-Linear PI Controller (type of NLFC) is designed and tested with a boost 

converter to verify the advantages offered by NLFCs. 

 

Another solution to dynamic response problem that falls under the second 

category relates to the novel ‘tri-state’ class of boost and buck-boost-derived 

converters proposed and analyzed in detail in this thesis. These converters have an 

extra-degree of control-freedom in the form of an ‘inductor-free-wheeling’ interval, 

using which the dynamic response problem due to RHP zero is avoided. Excellent 

improvement in dynamic performance over those of the classical counterparts is 

verified experimentally.  

 

The additional control-freedom of tri-state boost converter is exploited by three 

novel control methods, namely, 

1.  ‘Constant-Do’ control method 

2.  Direct dual-mode control (DDMC) method  

3.  Indirect dual-mode control (IDMC) method.  

 

While the ‘constant-Do’ control method focuses primarily on improving the 

dynamic performance, the multi-variable IDMC and DDMC schemes improve both 

the dynamic and steady-state (i.e. operating efficiency) performances of the converter. 
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A procedure for designing power and control components of a tri-state boost 

converter employing DMC scheme is also given. 

 

Tri-state converters, due to their additional control-freedom constitute potential 

candidates for application as PFC rectifiers that have to meet multiple objectives, 

namely, drawing a sinusoidal input current at unity power factor, delivering a well-

regulated dc voltage, and ensuring fast dynamic response. A study on the application 

of tri-state converters in PFC applications is presented. A simple ‘dual-mode’ control 

method for a PFC rectifier employing cascade buck-boost (CBB) converter (a tri-state 

converter) is proposed. This control method exploits the extra control-freedom in 

meeting the PFC goals. The anticipated good transient and steady-state performances 

are verified experimentally. A qualitative comparison of CBB-PFC with popular PFC 

converters is also given.  

 

The report concludes with an identification of future work related to the tri-state 

class of power converters. 

 

Keywords: boost, buck-boost, cascade buck-boost, controller, fuzzy logic controller 

non-linear function controller, non-linear PI-controller, power converter, Tri-state. 
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CHAPTER 1  

INTRODUCTION 
 

1.0 Background 

Power electronic converters are used to control and condition the flow of 

electrical energy between two systems. The insertion of a power electronic converter 

between the two systems becomes essential to achieve compatibility between them 

and to achieve important performance objectives. For example, the up-stream system 

could be the ac mains power supply that requires the load to draw a current of low 

harmonic content in phase with the ac voltage. On the other hand, the down-stream 

system or load may require a well-regulated supply voltage having fast-dynamic 

response characteristics to meet sudden fluctuations in power demand. The power 

electronic converter inserted in such a case aims at meeting both the load-side and the 

line-side requirements.  

 

  From microchips requiring a few milli-watts of power to Maglev (magnetic 

levitation) trains and high-voltage dc-transmission (HVDC) systems where several 

gigawatts of power is processed, power electronic converters find applications in 

almost all areas of utilization of electrical energy.  Historically, these converters have 

been classified depending on the nature of the systems interconnected by them. The 

broad classification is as below. 

 

1. Dc-dc converters. 

2. Ac-dc converters 

3. Dc-ac converters 

4. Ac-ac converters 
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In the past, dc-dc converters, popularly known as ‘choppers’ were broadly 

classified based on the quadrants of operation on load voltage-current plane. These 

choppers are used in high power applications e.g. electric traction. A class of dc-dc 

converters used in power levels below 1 kW is Switch-Mode Power Supplies (SMPS). 

Being the backbone of many consumer electronic products, SMPS constitute a 

multiple-billion-dollar industry. Considering the importance of SMPS, in this thesis, 

certain important problems associated with popular SMPS are investigated. 

 

The ac-dc converters popularly known as ‘rectifiers’ are primarily used as front-

end converters. They can be built using uncontrolled (diodes), fully-controlled 

(MOSFETs, IGBTs) or semi-controlled (thyristors) switches. In the later part of this 

thesis, a member belonging to this class of power converters is described in detail. 

 

The ‘dc-ac’ converters, popularly known as ‘inverters’ find applications in 

uninterrupted power supplies (UPS), high-performance ac drives, and in line-

commutated converters as in HVDC transmissions.  In this thesis, this class of power 

converters is not considered for investigation. 

 

Applications of ac-ac converters are limited to ac-voltage controllers used in 

lamp dimmers and cyclo-converters used in high power drives. In this thesis, this 

class of power converters is also not considered for investigation. 

  

  

1.1 Importance and Requirements of DC-DC Converters 

Many a time, dc-dc converters as SMPS have an unregulated input voltage. 

Depending on the requirements of the load, the SMPS may either step-up or step-

down the input voltage to produce a well-regulated load voltage.  Based on the 
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relative magnitudes of supply and load voltages, SMPS primarily fall under three 

broad categories listed below. 

• Step-up converter in which magnitude of load voltage is always more 

than that of the supply voltage 

• Step-down converter in which magnitude of load voltage is always less 

than that of the supply voltage 

• Step-up/down converter in which magnitude of load voltage may be 

either higher or lower than that of the supply voltage.  

Some popular dc-dc converters [2] and their classifications are given below. 

Buck and buck2 converters – step-down 

Boost converter – step-up 

Buck-boost and Cuk converters- step-up/down (with polarity reversal) 

Cascade buck-boost and Sepic converters – step-up/down  

 

In some applications, where galvanic isolation of line and load sides is essential, 

isolated versions of the above three categories of converters are used. Forward and 

flyback converters are popular examples.  

 

The design of SMPS is dictated by both steady-state and transient-state 

requirements of the load. This can be explained as follows.  

 

The most important steady-state requirement in any power electronic converter 

is that the converter should have a high operating efficiency. Primarily, the parasitic 

elements in the converter are responsible for loss of power. Converters having low 

operating efficiencies need large heat sinks. Thus, operating efficiency of the 

converter has implications on both the size and operating cost of the converter.  
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Another important steady-state requirement is the load voltage regulation. In 

most of the cases, the load requires a well-regulated voltage of desired magnitude. 

Besides, the switching ripple in the load voltage is desired to be kept low. In some 

applications such as in a SMPS feeding a mother board in the PC, extremely tight 

steady-state regulation of load voltage is essential. This requirement reflects in the 

selection of appropriate converter topology, size and rating of filter components, and 

control method employed.   

 

One more steady-state specification that is gaining ground is related to electro-

magnetic interference (EMI). Due to switching nature of the power converter, the 

current drawn from the supply has large ripple content. The high frequency content of 

the current interferes with the nearby communication channels. Several international 

standards restrict the level of high frequency current drawn by the SMPS from the 

mains.  Many times, to meet the standards, additional EMI filters and components are 

added making the converter bulkier and more expensive.  

 

Among the several transient-state load requirements, permissible overshoots and 

dips in the converter states (inductor current, output voltage), time taken by the load 

voltage to recover after a sudden disturbance, and hold-up time after a failure in the 

supply voltage (of SMPS) are of prime importance. Device voltage stress and current 

stress limits and saturation of magnetic components are important reasons behind 

specifications limiting the voltage and current overshoots. Another important 

transient-state consideration is the recovery time of the load voltage after a step 

disturbance. Most of the applications demand a fast recovery of load voltage. The 

dynamics of the converter and hence the recovery of output voltage once again 
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depends on the selected converter topology, size and count of filter components 

employed, and control methods employed.  

 

From the above discussion, the importance of SMPS and the associated design 

challenges may be obvious.  Thus, in this thesis, certain converters belonging to step-

up and step-up/down category of SMPS are considered for investigation.  

1.2 Boost and Buck-Boost-Derived DC-DC 

Converters 

Single-switch boost and buck-boost converters shown in Fig. 1.1 belong to step-

up and step-up/down category of non-isolated dc-dc converters [1], [2]. These 

converters find applications in on-board power supplies.  

 

 

(a) 

 
(b) 

Fig. 1.1  Circuit diagrams (a) Classical single-switch boost converter (b) Classical single-switch buck-

boost converter 
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The voltage gains of the boost and buck-boost converters are given below.  

For boost (step-up) converter: 
D-1

1gain ==
s

o

V
V

Voltage   (1.1) 

For buck-boost (Step-up/down) converter: 
D-1

Dgain −=Voltage   (1.2) 

In (1.1) and (1.2), Vo is the load voltage, Vs is the supply voltage and D 

represents the duty ratio of the switch S employed in the converter.  

 

Several books on power electronics [1], [2] discuss the basic operation and 

design of these converters and they may be referred to understanding the operation, if 

necessary. The prime objective of this thesis is to study the various transient-response 

problems associated with these converters and their derived versions (e.g. flyback, 

cascade buck-boost converter). This section introduces the dynamic response 

problems associated with these converters when used in dc-dc applications.  

 

1.2.1  Small-signal Dynamic Response Problem due to Right-Half-

Plane (RHP) Zero 

Boost, buck-boost, flyback, cascade-buck-boost converters, and their quasi-

resonant versions are non-minimal phase systems. Systems with small-signal transfer 

functions having a pole and/or zero on the right-half of the complex frequency plane 

are called non-minimal phase systems [91]. The small-signal control-to-output 

transfer function of these converters when operating in continuous-conduction mode 

(CCM) presents a characteristic right-half-plane (RHP) zero, which poses a great 

challenge to designers in obtaining a good small-signal bandwidth. For example, the 

control-to-output transfer-function of a classical single-switch boost converter shown 

in Fig. 1.1(a) (obtained by state-space averaging and linearization [3]) is given by  
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In (1.3) L is the boost inductance, C is the output capacitance, and R is the load 

resistance. From (1.3), it may be seen that the location of RHP zero is not fixed but 

changes with changes in operating point i.e. with input voltage and load resistance. 

This movement of RHP zero in the complex s-plane complicates the task of designing 

a good controller. Typically, the overall closed-loop bandwidth is reduced to values as 

low as 1/30th of the switching frequency [12]. As a result, the small-signal dynamic 

response of the converter is sluggish.  

 

It must be noted that the presence of RHP zero in the small-signal control-to-

output transfer function is not limited to boost and buck-boost family of converters 

alone. Even Cuk converter has a double complex-right-half-plane zero in its control 

transfer function. However, the problem in Cuk converter is not investigated in this 

thesis.  

 

1.2.2  Large-Signal Dynamic Response Problem 

Another problem that is often faced not only in boost and buck-boost-derived 

converters but also in many other converters is related to the large-signal dynamic 

response of the converter. During large-signal transients i.e. when the converter 

undergoes a major change in operating point on account of a change in the load or in 

the input voltage, the settling time to reach the desired state depends primarily on two 

factors, namely 

1. Size of energy storage elements and 

2. Control technique employed. 
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The size of energy storage elements is generally dictated by the rated operating 

conditions of the converter. The larger the size of the elements, the more sluggish is 

the response.  

 

 Often, the control method employed compounds the large-signal dynamic 

response problem of the converter. This can be explained as follows. Dc-dc power 

converters are non-linear in nature. Traditionally, the design of controller for such a 

system is based on small-signal frequency domain analysis. In order to design a 

controller for a non-linear plant like a power converter, to begin with, a mathematical 

model of the power converter is obtained. Many papers [3]-[11] found in literature 

explain several ways of getting the mathematical model of switching converters. 

Among them, state-space averaging and linearization technique [3] is widely used in 

obtaining a linear-time-invariant (LTI) model of the plant. The model obtained so is a 

small-signal model, whose applicability is limited to a small region around the 

converter’s operating point. This is due to linearization at the operating point during 

the modeling process. As a result, the model parameters vary significantly when the 

operating point shifts.  

 

In general, after obtaining the mathematical model, classical control tools like 

Bode plots and Nyquist plot are used to design a controller that optimizes the dynamic 

performance of the converter at the selected operating point. The controller designed 

accordingly will generally offer a reasonably good small-signal response (measured in 

terms of settling time and transient overshoot) at the designed operating point. 

However, for large disturbances, the response of the converter with the controller will 

be sluggish, often associated with large overshoots or undershoots due to the inability 

of controller in handling large-signal transient response efficiently. 
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1.3 Focus of the Thesis 

The focus of this thesis is to investigate into the dynamic response problems 

associated with boost and buck-boost converters and topologies derived from them. 

Solutions to overcome or mitigate these problems are proposed. The proposed 

solutions broadly fall under two categories, namely 

1. Mitigation of dynamic response problems by enhancements in converter 

design and control techniques 

2. Modification of the existing converter topology to overcome the problem. 

The issues considered for investigation and contributions of the thesis are 

explained in the following sub-sections. 

1.3.1 Issues Studied 

The following issues were investigated in this dissertation. 

1. Mitigation of dynamic performance problems by enhancements in  

converter design and control techniques:  
 

a.  Mitigation of small-signal dynamic response problem by enhanced design of 

converter 

Mitigation of small-signal dynamic response problem due to RHP zero 

occurring in the control transfer function of a classical boost converter operating 

in continuous-conduction mode (CCM) by appropriate selection of filter 

elements was investigated. The pros and cons of such a design were brought out. 

 

b.  Mitigation of small-signal dynamic response problem by enhanced design of 

controllers 

With an aim to achieve marginal improvement, the small-signal performance of 

the boost converter was investigated with several control techniques namely 
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linear-PI controller, gain-scheduled PI controller, and fuzzy logic controller 

(FLC).The advantages and disadvantages of each of these methods were brought 

out. 

 

c.  Mitigation of large-signal dynamic response problem by enhanced design of 

controllers 

An in-depth analysis of large-signal performance improvement in boost and 

buck-boost-based converters using fuzzy logic controller (FLC) was carried out. 

Based on the analysis, a simple and inexpensive Non-linear Function Controller 

(NLFC) that replaces two-input FLCs of the type used typically in power-

converter-control applications was proposed.  

 

2. Modification of the existing converter topology to overcome the dynamic 

response problem: 

A new class of dc-dc converters named as ‘tri-state family of converters,’ 

derived from the boost and buck-boost family of dc-dc converters was proposed. 

The tri-state converter avoids the RHP zero in its control transfer function 

resulting in improvement in dynamic performance. The ‘tri-state’ converters 

were studied in detail for improvement in steady-state and dynamic performance.   

 

Large-signal dynamic response of tri-state class of power converters for 

disturbances of varying magnitudes was also studied. 

 

Application of ‘tri-state concept’ in single-phase ac-dc power factor correction 

(PFC) rectifiers:  

One of the key applications of boost and buck-boost-derived converters is in 

single-phase ac-dc PFC rectifiers. A few members belonging to the ‘tri-state’ 
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family of converters introduced in this thesis were investigated for applications 

as PFC rectifiers.  

1.3.2 Thesis Contributions 

The major contributions of the thesis are as follows. 

1. Aimed at achieving a marginal improvement, the dynamic response problem in 

dc-dc boost power converter has been investigated with locally-optimized PI 

controllers, gain-scheduled PI controller (GSPI), and two-input fuzzy-logic 

controllers (FLCs). The pros and cons of each of these control techniques are 

clearly brought out. 

 

2. A simple and inexpensive non-linear function controller (NLFC) that 

approximates complex two-input fuzzy logic controllers (FLCs) of the type 

commonly used in power-converter-control applications is proposed. Besides 

explaining the good large-signal transient response that is typically obtained 

using FLCs in power converters, the NLFC helps in understanding and 

designing FLCs to offer good small-signal transients. A stability analysis of the 

proposed NLFC is also presented. This simplification of two-input FLC into 

NLFC is used to question the very need of FLCs in power converter control 

applications. 

 

3. A novel ‘tri-state’ class of boost and buck-boost-derived converters with an 

additional degree of control-freedom in the form of an ‘inductor-free-wheeling 

interval’ is proposed. The additional degree of control-freedom helps in 

avoiding the small-signal dynamic response problem due to the presence of RHP 

zero in the control transfer function of the converter.  
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4. Three different control methods that effectively exploit the control freedom 

offered by ‘tri-state’ boost converter to achieve good steady-state and transient 

performance are proposed. They are 

a. Constant-Do control method 

b. Direct dual-mode control method 

c. Indirect dual-mode control method. 

In (a), Do refers to the duty ratio of the interval during which the output 

capacitor of the converter is charged. 

 

5. A novel dual-mode control method that meets the contradictory multiple-steady-

state goals of achieving sinusoidal input current while providing a tightly 

regulated output voltage in a single-phase ac-dc PFC rectifier employing 

cascade-buck-boost converter is proposed. The dual-mode control method uses 

the ‘Tri-state’ concept proposed in this thesis in achieving the multiple goals. 

The control method also de-couples the output voltage control loop from the 

often-slow input-current-reference generator, resulting in excellent output 

voltage dynamic response. 

 

1.4  Thesis Organization 

The thesis consists of five major divisions, namely div. 1-5.  

 

Div. 1: Literature survey 

Chapter 2 falls under this division. This chapter explains in detail the dynamic 

response problem in boost and buck-boost-derived dc-dc and converters. A literature 
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survey on the techniques available to overcome or mitigate these problems is also 

given. 

 

 

Div. 2: Mitigation of dynamic response problem by enhanced converter design 

A part of Chapter 3 falls under this division. In this chapter, mitigation of 

small-signal dynamic response problem in boost dc-dc converter by choosing 

appropriate value of boost inductance is discussed. 

 

Div. 3: Mitigation of dynamic response problem by enhanced controller design 

Chapters 3 and 4 come under this division. Dynamic performance offered in a 

dc-dc boost power converter by several controllers such as PI-controller, fuzzy logic 

controller, non-linear function controller (NLFC), non-linear PI controller (NPIC), 

and gain-scheduled PI controller is investigated in these chapters. The strengths and 

drawbacks of the various control techniques are clearly brought out. 

 

Div. 4: Tri-state class of converters 

Chapters 5 to 7 come under this division. Chapter 5 introduces and discusses 

in detail the novel ‘tri-state’ class of boost and buck-boost-derived converters that has 

an extra degree of control-freedom. Simulation and experimental results 

demonstrating the steady-state and dynamic performances of tri-state boost and tri-

state flyback converters (both implementing a simple ‘constant-Do’ control method) 

are presented. Comparison with classical boost and classical flyback converter is also 

done. 

 

Chapter 6 introduces the need for implementing multi-variable control 

techniques with tri-state class of converters and proposes two variations of a multi-

variable ‘Dual-Mode Control (DMC)’ scheme. These schemes aim to improve the 
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steady-state (operating efficiency) and dynamic-state performance of tri-state class of 

converters by properly exploiting their extra degree of control-freedom. Simulation 

and experimental results demonstrating the excellent dynamic and steady-state 

characteristics of the tri-state boost converter under DMC schemes over those under 

‘constant-Do’ control scheme are presented and discussed. 

 

The dynamic and steady-state performances of the tri-state converters under 

DMC schemes are closely inter-related and in turn decide the size and rating of power 

components and also the design of feedback controllers. Chapter 7 investigates in 

greater detail the trade-offs involved in the design of DMC-based tri-state boost 

converter and presents a systematic design procedure for selecting the power and 

control components of the converter. An example design is presented and the design is 

validated through simulations and experiments.  

 

Div. 5: Application of tri-state class of converters in single-phase ac-dc power 

factor correction (PFC) 

Chapter 8 falls under this division. In this chapter, the application of tri-state 

converters in PFC is investigated. A simple and effective ‘dual-mode’ control method 

that achieves the control goals of unity-power-factor rectifiers based on cascade buck-

boost (CBB) converter is proposed. The theoretical analysis, choice of circuit 

elements, and the applicable range of operating conditions of the proposed control 

scheme are presented. Excellent steady-state and transient performance of the 

converter are demonstrated through simulation and experimental results. 

 

Chapter 9 presents the thesis conclusions. 
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CHAPTER 2  
 

LITERATURE SURVEY OF SOLUTIONS TO DYNAMIC 

RESPONSE PROBLEMS OF BOOST AND BUCK-BOOST-

DERIVED DC-DC POWER CONVERTERS 

 

2.0 Introduction 

In this chapter, the dynamic problems associated with boost and buck-boost-

derived power converters that were introduced in Chapter 1 are explained in detail. A 

detailed literature survey on the solutions available to these problems is also presented. 

The pros and cons of the various solutions are briefly discussed. A literature survey 

on single-phase power factor correction, one of the popular applications of boost and 

buck-boost converter has also been done. As the prime focus of this thesis is to 

propose solutions to dynamic response problems of boost and buck-boost converters 

in dc-dc applications, the literature survey on single-phase ac-dc converters is 

included in appendix D.  

2.1 Small-Signal Dynamic Response Problem due to RHP 

Zero 

As mentioned in Chapter 1, the small-signal control-to-output transfer function 

of boost, buck-boost, and flyback converters and their quasi-resonant versions 

(operating in CCM) present a RHP zero. The presence of RHP zero prevents 

achievement of good closed-loop bandwidth resulting in slow dynamic response. In 

this section, the dynamic response problem due to the presence of RHP zero is 
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explained in detail. Following this, a few solutions available in literature are discussed. 

For the sake of simplicity, the problem is explained taking the dc-dc boost converter 

as an example. Similar arguments can be made for buck-boost converter and its 

derived versions. 

2.1.1 Presence of RHP Zero and its Effect on Frequency and Time 

Domain Response of the Converter 

The small-signal control-to-output transfer functions of single-switch boost 

(repetition of (1.3)) and buck-boost converters (operating in continuous-conduction 

mode CCM) obtained by state-space averaging and linearization method [3] are given 

below.  

Boost converter: 
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Buck-boost converter: 
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Here Vs is the supply voltage, D is the operating duty ratio, Vo is the average 

output voltage, L is the filter inductance, C is the output capacitance, and R is the load 

resistance. As mentioned in Chapter 1, it may be noticed from (2.1) and (2.2) that the 

location of RHP zero on the complex s-plane varies with changes in operating point of 

the converter, thereby complicating the design of controllers. In this sub-section, the 

time-domain and frequency-domain effects of RHP zero in the boost converter 

operating in CCM are explained in detail. For the purpose of explanation, let us 

consider an ideal boost converter (Fig. 1.1) having the following specifications:  
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L = 278 µH, C = 540 µF, Vs = 12.5 V, Vo = 25 V, R = 12.5 Ω, Fs = 50 kHz, 

where Fs is the switching frequency.  

 

For the boost converter under consideration, at the above-specified operating 

conditions, the value of D can be verified to be 0.5 using (1.1). The control-to-output 

transfer function obtained by state-space averaging and linearization can be written 

using (2.1). The corresponding Bode plot is shown in Fig. 2.1.  

 

From Fig. 2.1, it may be seen that at a frequency of about 205 Hz, the boost 

converter has a set of complex poles which results in the phase rolling down from 0 

degrees to -180 degrees and the slope of the magnitude (gain) changing from 0 

dB/decade to -40 dB/decade. The presence of RHP zero at about 1789 Hz may be 

understood by the slope of gain increasing from -40 dB/decade to -20 dB/decade and 

the phase rolling down towards -270 degrees.  

 

 

Fig. 2.1. Bode plot of Control-to-output transfer function of a classical boost converter at Vs = 12.5 

V, Vo = 25 V, and R = 12.5 Ω. 
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The presence of RHP zero makes it difficult to realize a compensator that can 

ensure a positive phase margin while achieving a small-signal bandwidth above the 

RHP-zero frequency.  Although an LHP zero provided by the compensator at 

frequencies higher than the RHP zero’s frequency improves the phase response, it 

makes the gain slope flat (0 dB/decade), which is undesirable. Any LHP pole 

provided by the compensator worsens the phase margin besides reducing the slope of 

the gain to -40 dB/decade. Unlike an LHP zero, the RHP zero cannot be compensated 

by using a RHP pole as it may lead to an unstable system. Thus, in general, the 

closed-loop bandwidth is limited to frequencies less than the RHP-zero frequency. 

 

Fig. 2.2. Inductor current (upper) and output voltage (lower) waveforms of classical boost 

converter for a step increase in duty ratio from D = 0.5 to 0.51 at Vs = 12.5 V, Vo  = 25 V, 

Io  = 2 A. 

 

The effect due to the RHP zero can be explained in time domain as follows. An 

increase in control input (duty ratio of S in Fig. 1.1) initiated by a dip in the output 

voltage causes an increased output-capacitor-discharge-time. This results in the output 

voltage dipping even further until the inductor current builds up to recharge the 
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capacitor. This is demonstrated in Fig.2.2 which shows the response of the boost 

converter for a step change in duty ratio. The initial dip observed in the output voltage 

shows the presence of RHP zero. Although this voltage dip is not an important 

concern, the control complexity that this (RHP zero) introduces is the real problem. 

Any attempt to speed up the control by a significant increase in the closed-loop 

bandwidth will affect the system stability.  

 

 

2.1.2 Solutions Available in Literature for RHP Zero Problem 

Operating the boost (or buck-boost) converter in DCM is often suggested as a 

popular solution for ‘eliminating’ the RHP zero effect. In DCM, one of the two 

system poles is shifted to a high frequency. As a result, the system essentially behaves 

as a first order system exhibiting fast dynamic response. However, operations in DCM 

will increase the peak and ripple currents in the components. This in turn will increase 

the current ratings of the devices which has an impact on the cost of the converter. 

Besides this, the increased RMS current will also result in higher losses due to system 

parasitics and will result in a low overall efficiency. It is interesting to know that 

references [6] and [15] explain that in DCM operation, the RHP zero is not eliminated 

but shifted to a much higher frequency closer to the switching frequency of the 

converter. As the closed-loop bandwidth realized in most cases is below the Nyquist 

frequency (half the switching frequency), the presence of RHP zero at high 

frequencies has negligible effect on the system dynamics. 

  

The method proposed in [12] shows that leading-edge modulation of output 

voltage can eliminate this RHP zero, provided the ESR (Equivalent Series Resistance) 

of the output capacitor is above a minimum value. Such a large ESR value will lead to 
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high ripple voltage, which is an important consideration. Additional series resistance 

may even have to be added to satisfy the ESR condition. Furthermore, the 

compensation requires accurate knowledge of the ESR value, which is temperature 

sensitive and hence difficult to measure.  

 

Reference [13] suggests three techniques - reducing the inductor value, reducing 

the switching frequency, and operating in the discontinuous-conduction mode (DCM). 

Reducing the inductor value does not eliminate the RHP zero but pushes it farther into 

the right-half-plane, thus reducing its effect on the system response. With a decrease 

either in the inductor value or in the switching frequency, the ripple and peak currents 

in the components will increase considerably, thereby increasing the output filter 

requirement. The disadvantages of operating in DCM have been explained earlier. 

This does not address the RHP zero problem in the CCM operation. 

 

Reference [14] models the RHP zero as a time delay and utilizes a ‘predictor’, 

which is designed such that when operated with the boost converter the RHP zero is 

eliminated. However the work does not address the practical problems in 

implementing such a scheme. For example, the predictor model used is based on 

small-signal modeling and may not be able to compensate fully the actual boost 

operation. 

  

2.2 Large-Signal Dynamic Response Problem 

The large-signal dynamic response problem in boost and buck-boost power 

converters has been explained briefly in Chapter 1. Chapter 1 mentioned two reasons 

that are primarily responsible for sluggish large-signal dynamic operation. Among 

them, sluggish large-signal dynamic operation on account of size of filter elements 
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employed is not considered for investigation in this thesis. The reason is that the size 

of the filter elements is dictated by rated operating conditions of the converter and 

other design specifications such as hold-up time. Any reduction in the filter elements 

in an attempt to get faster dynamic will increase the device stresses and may also 

violate the design specifications. Thus, in this section, the compounding of dynamic 

response problem by controllers employed is alone studied. Following this, popular 

control techniques available in literature for improving the large-signal dynamic 

response are discussed.  

 

2.2.1 Problems with Classical Controllers in Handling Transient 

Disturbances 

It was mentioned in Chapter 1 that classical linear controllers are strongly 

dependent on the converter model. This dependency results in two limitations of the 

controllers listed below. 

1. The controller does not offer good small-signal transient at an operating 

point different from the design operating point. 

2. The controller does not offer a good large-signal transient. 

 

As the converter’s model (parameters) changes significantly with changes in 

operating point (2.1), a linear controller which is design-optimized for small-signal 

transients at one operating point many times does not offer the desired small-signal 

performance at a different operating point. Fig 2.3 shows the simulated responses of a 

boost converter (L = 275 µH, C = 540 µF, ESR of L = 0.15 Ω, ESR of C= 0.05 Ω, and 

R= 25 Ω) for a small step change in reference voltage from 25 V to 26 V at two 

different input voltages, namely Vs=15 V (Fig. 2.3 (a)) and Vs= 10 V (Fig. 2.3(b)). Fig. 

2.3(c) shows the response at a different operating point when reference voltage is 
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changed from 30 V to 31 V. A PI controller designed at Vs= 15 V and R= 25 Ω has 

been used in all the cases. The transient response corresponding to Vs = 15 V (Fig. 2.3 

(a)) is faster and has smaller overshoot when compared to the transient responses in 

the other two cases.  This clearly demonstrates the local scope of linear controllers. 

 

 

          

Fig. 2.3. Demonstration of model-dependent nature of linear controllers- Simulation results (a) 

Transient response at design operating point Vs=15 V  , R = 25 Ω, Vo transient from 25 V 

to 26 V(b) Transient response at a different operating point Vs=10 V  , R = 25 Ω, Vo 

transient from 25 V to 26 V (c) Transient response at a different operating point Vs=15 V  , 

R = 25 Ω, Vo transient from 30 V to 31 V. 

(a) 

(b) 

(c) 
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 The non-optimum small-signal transient offered by the linear controller at an 

operating point different from the design-operating point also suggests that the 

converter dynamics for large disturbances will not be optimum. This is due to the fact 

that during large-signal transients, the converter parameters undergo a significant 

change and the dynamic response is highly-non-linear in nature. In many cases, even 

the linear controllers hit their saturation limits and are no longer ‘linear’ in nature. Fig. 

2.4 shows the large-signal disturbance response of the converter with the same linear 

controller that has been used in obtaining the small-signal transients shown in Fig. 2.3. 

Here, the input voltage of the converter undergoes a large change i.e. from 15 V to 10 

V. The poor large-signal transient response is demonstrated by the oscillatory nature 

of the output voltage and the long settling time.  

 

 

Fig. 2.4. Large-signal transient response offered by linear controller for a step change in Vs (from 

15 V to 10 V) at Vo = 25 V and Io = 1 A. 

 

2.2.2 Solutions to Dynamic Response Problem on Account of Model-

Dependent Nature of Controllers 

During large-signal transients, as the dynamic response is highly non-linear in 

nature, several researchers [24], [25], [28] have suggested non-linear controllers as 
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better alternatives to linear controllers to handle these transients efficiently. A popular 

way of handling large disturbances or parameter variations efficiently is to employ 

controllers that posses one among the characteristics listed below. 

 

1. Controller adapts itself to the operating conditions (e.g. Adaptive 

controllers),  

2. Controller is totally independent of the converter model (e.g. Controllers 

based on Fuzzy logic, and Artificial Neural Networks (ANNs)), and 

3. Controller does not need an accurate model of the converter (e.g. Sliding-

mode controller (SMC)).  

 

It must be noted that some controllers e.g. controllers employing Artificial 

Neural Networks (ANNs) may fall under more than one of the above-listed categories. 

In addition, most of the controllers that possess any one of the above three 

characteristics are by-and-large non-linear in nature. This non-linear nature, as 

mentioned before, is believed to be the reason behind the good large-disturbance-

handling capability of these controllers.  

A.  Adaptive Controllers 

Some of the popular controllers that fall under this category are adaptive-PID 

(or linear) controller [16], adaptive-model-reference controller [80], and other types of 

adaptive controllers [79]. In general, controllers falling under this category will ensure 

a good small-signal transient response in the converter irrespective of the operating 

point.  

Reference [79] presents an average current-mode control (CMC) scheme for a 

flyback converter in which the slope of the compensating ramp is adaptively tuned as 

per the operating point. Slope tuning is achieved by adding a term dependent on the 
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output voltage and inductor current to the equation defining the constant slope 

compensation. As a result of tuning, a small-signal transient response better than that 

obtained with a classical CMC scheme (with slope compensation) has been reported. 

However, the proposed method of slope tuning does not improve the large-signal 

dynamics offered by the converter appreciably. 

 

Reference [88] presents a non-linear current-mode control scheme (NCMC) for 

boost converter that makes the dc gain of the control-to-output transfer function of the 

boost converter insensitive to changes in load of the converter. The control scheme 

also reduces the output impedance of the converter. A non-linear term containing 

information about the input voltage, load current, and output voltage is appended to 

the original current programming command of the current-mode control scheme in 

achieving the afore-mentioned advantages. On the downside, the method requires 

sensing of input voltage and load current.  
 

 Many adaptive controllers are implemented using microcontrollers or digital-

signal processors (DSPs). This increases the system cost and complexity as peripheral 

units such as analog-to-digital converters (ADC) are needed. Analog implementations 

often require several OPAMPs as in [80] and expensive ICs for implementing special 

functions (e.g. multiplication, division, logarithmic operation etc.). In some 

implementations involving model reference adaptive controllers, sensing of all the 

state variables of the converter is needed. This becomes a problem, especially in high-

order converters. 

B.  Controllers that are Independent of Converter Model 

Non-linear controllers employing computationally intelligent (CI) techniques 

such as fuzzy logic [19]-[25] and ANN are popular members of this category.  
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Fig. 2.5 shows a typical fuzzy logic controlled (FLC) power converter. As 

shown, most of the FLCs take as inputs the converter’s output voltage error and its 

rate-of-change and compute the incremental duty ratio. References [19]-[23] present 

such control schemes for buck, boost, and Cuk converters. The non-linear nature of 

FLCs is believed to improve the large-signal dynamic response of power converters. 

Such an improvement in dynamic response has been reported in [19], [22], [24], [25]. 
 

FLCs are independent of the converter model parameters. This is evident from 

[19]-[23] in which the converter model has not been used in the development of the 

control scheme. Variations in converter parameters on account of change in operating 

point or due to ageing need not be considered when employing fuzzy logic controllers.  

The ability of fuzzy logic to handle uncertain and imprecise inputs is the reason 

behind this independency of the controller upon the converter model.  

 

 

Fig. 2.5. Fuzzy logic controlled (FLC) power electronic converter 

 

In the later part of this thesis, structures of several FLCs used with power 

converters and reported in literature are analyzed in detail. Logical reason behind the 

excellent large-signal handling capabilities of these controllers is brought out. The 
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analysis will also raise questions about the strengths claimed often with FLCs and the 

very need of FLCs for controlling power electronic converters.  

 

ANNs constitute another group of controllers that are independent of converter 

model. Fig. 2.6 shows two popular ANN-based control schemes [17] [18] for power 

converters. In both the schemes, the ANN controller takes as inputs the past m-

samples of the controller and converter outputs and computes the operating duty ratio. 

 

In direct control scheme [17] (refer Fig. 2.6(a)), the converter’s output voltage 

error alone is known. For Back-propagation (BP) algorithm-based weight-adjustment 

[27], the error at the output of the controller (control-input error to the converter) 

needs also to be known. This error may be estimated using  

 

)(
)1()1()(

ku
kykek

∂
+∂

+=∈ , (2.3) 

 

where k represents the sample instant,  ∈(k) is the estimate of the error at the output 

of the ANN controller, e(k+1) is the error at the output of the plant and  ∂y(k+1)/∂u(k) 

is the Jacobian of the plant. Thus, this scheme requires knowledge of the Jacobian of 

the plant. The above equation assumes that the control input u(k) in the kth instant 

results in an output y(k+1) at the (k+1)th instant. Based on this assumption, the control 

error of kth instant is calculated from the output error at the (k+1)th instant using the 

linear relation in (2.3). However, this assumption may not be true for plants of higher 

orders and complex non-linearity.  

 

Fig. 2.6(b) shows the indirect control scheme employing ANNs. This method is 

popular and is applicable even if the plant is ill-defined, as computation of Jacobian of 

the plant is not needed. The scheme employs two ANNs, namely an ANN emulator 
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and an ANN controller. The ANN emulator adaptively learns and mimics the 

converter dynamics on account of its excellent non-linear function matching 

characteristics. The output voltage error of the plant is back-propagated through the 

ANN-based emulator to find the error at the output of the ANN controller (control-

input error to the converter) for BP-based weight-adjustment. References [17], [18], 

[26] present such controllers applied to boost dc-dc converter. Reference [26] 

expresses mathematically the converter output voltage at any instant as a non-linear 

function of its output voltage and duty ratio in the previous sample instants and 

constructs a non-parametric model that can be used for getting an ANN-based 

emulator for the boost converter considered.  

 

 
Fig. 2.6.  ANN controllers for power converters (a) Direct control (b) Indirect control using 

emulator. 

 

(a) 

(b) 
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It must be noted that in spite of model-independent nature and demonstration of 

good large-signal dynamic response in power converters by controllers employing CI 

techniques, due to increased cost and control complexity, these techniques have not 

been adopted widely by power supply industry. Besides, absence of systematic design 

and analysis procedure makes these controllers less attractive. In the later part of the 

thesis, a simple and inexpensive analog alternative of FLC namely, the non-linear 

function controller (NLFC) is proposed for a boost converter. Systematic analysis and 

design methods for NLFC are also proposed.  

 

C.  Controllers that do not Need an Accurate Model of the 

Converter 

Sliding mode controller (SMC) [28], [29] and H∞ controllers [69], [81] are some 

popular members of this category. Among them, SLMC does not need an accurate 

mathematical model of the controller but requires the knowledge of parameter 

variations for reachability and stabilizability as stated in [19]. Reference [19] 

demonstrates the superior dynamic performance of SLMC over PI controller in a buck 

converter for large variations in load resistance and supply voltage changes occurring. 

However the performance of SLMC is reported to be inferior to that of the Mamdani-

type FLC discussed in [19].  

 

Although SLMC is known for its robustness, the need for sensing all the state 

variables increases the control complexity. Besides, variable frequency of operation 

and associated chattering problems make this controller less attractive. Methods of 

avoiding chattering problem add to the control complexity and realization of the 

controller.    
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References [69] and [81] report H∞ controller-based schemes for classical boost 

converter. The design of these controllers is based on small-signal model of the 

converter at the operating point. Variations in the model are integrated in the design 

procedure as disturbances in line and load conditions. The designed controllers 

maximize the closed-loop bandwidth of the nominal small-signal model assumed for 

the plant. It must be noted that although robustness to parameter variations is possible 

using these controllers, sensing of input voltage may be needed as in [81]. Besides, 

the small-signal closed-loop bandwidth is limited by RHP zero of the converter’s 

control transfer function even in this case.   

 

Reference [78] presents a modified current-mode control configuration for a dc-

dc buck converter in which an additional controller that is designed based on the 

inverse model of the nominal power-stage transfer function (approximated) is used. It 

is claimed that this additional part helps in achieving robustness for variations in line 

and load conditions and converter parameters (L, C etc.). Besides, improvement in 

large-signal transient response when compared to a conventional average current-

mode control is also reported. However, such a control scheme cannot be used for 

boost and buck-boost converters as the RHP zero in the actual model becomes RHP 

pole in the inverse model resulting in instability.  

2.3 Chapter Conclusions 

In this chapter, a detailed literature survey on the dynamic response problems of 

boost and buck-boost-derived dc-dc power converters has been presented. A literature 

search on boost and buck-boost-derived converters in single-phase ac-dc PFC 

applications has also been done and is given in the appendix D.  
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Based on the literature survey, it may be concluded that there is a need to come 

up with simpler solutions for the dynamic response problems in boost and buck-boost-

derived converters. Accordingly, the rest of the thesis focuses on investigation and 

improvement of existing solutions and proposal of novel solutions to the dynamic 

response problem. The proposed solutions fall broadly under two categories namely,  

1. Mitigation of dynamic response problem by enhancement in design of converter 

and employed controllers. 

2. Improvement in dynamic performance by modifications of converter topology- 

Novel ‘Tri-state’ class of converters.  

 

Among the above two approaches, the first approach aims only at achieving a 

marginal improvement in the dynamic performance of the converters. The second of 

the above-listed approaches is aimed at achieving a significant improvement in 

dynamic response of the converter at the cost of addition circuit components 
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CHAPTER 3  
 

DYNAMIC PERFORMANCE IMPROVEMENT BY 

ENHANCEMENT IN DESIGN AND CONTROL TECHNIQUES 
 

3.0 Introduction 

Chapters 1 and 2 explained in detail the dynamic response problems occurring 

in boost and buck-boost converters. The presence of RHP zero in the control-transfer 

function of these converters results in sluggish small-signal transient responses. The 

small-signal dynamic response problem is further compounded by the changes in 

operating point and converter parameters. It was pointed out that an efficient way of 

getting good small-signal transient response irrespective of changes in operating point 

is to employ adaptive controllers.  

 

Chapters 1 and 2 also pointed out that the prime reason behind the sluggish 

large-signal transient responses offered by boost and buck-boost converters is 

attributed to the linear nature of the employed controllers. It was suggested that for an 

improvement in the large-signal dynamic performance of these converters, non-linear 

controllers be used. 

 

Following the above discussion, in this chapter, investigation of dynamic 

performance of a boost converter (specifications are given in Table 3.1) with the 

following controllers is carried out.  

1. Gain-scheduled PI-controller (GSPI) 

2. Two-input fuzzy logic controller (FLC) 
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TABLE 3.1. DC-DC BOOST CONVERTERS’ SPECIFICATIONS 

Input voltage 
Output 

voltage 

Rated output 

power 

Switching 

frequency 
L C 

10 to 20 V 25 V 50 W 50 kHz 267 µH 540 µF 
 

The reasons behind considering the above two controllers for investigation are 

as follows. Both FLC and GSPI controller are non-linear in nature. Thus, they form 

potential members for handling large-disturbances. Besides, the GSPI controller is 

also adaptive in nature. Due to this, it appears to have the capability of delivering 

good small-signal transient response irrespective of changes in the operating point.  

 

The dynamic performance offered in the boost converter by FLC and GSPI 

controllers are investigated and compared with benchmark PI controllers that are 

design-optimized at different test operating points. Prior to this investigation, an in-

depth analysis into the mitigation of small-signal dynamic response problem due to 

RHP zero through refinement in the converter’s design approach is described. The 

pros and cons of the design approach are brought out. 

 

It must be noted that this approach of improving the dynamic response of 

converter through enhanced design of converter/control techniques is aimed at 

achieving only a marginal improvement in dynamic performance. Significant 

improvement in small-signal transient response is difficult as the closed-loop 

bandwidth is limited by RHP zero. It must also be noted that the GSPI controller 

considered in this chapter is strongly dependent on the small-signal model of the 

boost converter.  

 

Section 3.1 discusses the mitigation of RHP zero problem in boost converter 

through refining the design approach. Section 3.2 investigates the performance of the 

boost converter with locally-optimized PI controller, fuzzy logic controller, and gain-
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scheduled PI controller. Simulations and experimental results and dynamic 

performance comparison with locally-optimized PI controller are presented.  

 

3.1  Mitigation of RHP Zero Problem by Refining the 

Design Approach 

The dynamic response problem due to RHP zero can be minimized by shifting 

the zero farther in the right-half plane. A popular way of avoiding this problem would 

be to operate the converter in Discontinuous Conduction Mode (DCM). 

  

 

As described in Chapter 2, the presence of RHP zero in time domain response is 

indicated by an initial under-shoot (overshoot) in output voltage for a small-step 

increase (decrease) in duty ratio due to decreased (increased) output current. The 

reason for this is demonstrated in Fig 3.1 that shows the output charge (indicated by 

areas A1 and A2) transferred before and after a small-step increase in duty ratio ( d̂ ). 

In general, the area A2 is less than A1 due to which an initial dip in output voltage is 

observed. This dip may be avoided under the conditions when A2 is more than A1. 

The conditions under which A2 will become greater than A1 can be derived as below. 

 

The average output currents Io1 and Io2 before and after the step change in duty 

ratio are given by (3.1) and (3.2) respectively. 
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Fig. 3.1. Mitigation of RHP zero problem 

 

The problem with RHP zero may be reduced under conditions when A2 becomes 

more than A1. i.e when 

12 oo II ≥  (3.3) 

Let us assume that the output voltage does not change appreciably immediately 

after the small-step change in duty ratio. Substituting (3.1) and (3.2) in (3.3) and 

rearranging (neglecting the non-linear terms involving 2d̂ ), the resulting expression 

can be simplified as below. 
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The above equation can be re-written as  
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In CCM, the current I1 can be written in terms of the average inductor (input) 

current IL as 
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At this value of L, the control-to-output transfer function (1.3) of the converter 

obtained by state-space averaging and linearization can be re-written as follows. 
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Equation (3.8) shows that the location of RHP zero is shifted to frequencies 

between ( )Tπ21  Hz (calculated at D=0) and ( )Tπ1  (calculated at D=1). As closed-

loop bandwidth realized with power converters are generally less than  ( )Tπ21  Hz, 

the effect of RHP zero in the dynamic performance of the converter is reduced 

significantly. This also simplifies the controller design.  

 

 Although the effect of RHP zero is made negligible, the boost inductance 

calculated using (3.7) will result in higher ripple current. For example, at an operating 

point Vs=10 V, Vo = 25 V, Io = 2 A, T = 20 µs, and D = 0.6, the boost inductance 

calculated using (3.8) is about 28 µH. The RHP zero is located at 71428 rad/s. The 

inductor average and peak-to-peak ripple currents are respectively 5 A and 4.2 A. 

Such a high ripple current is not desired.  

 

As mentioned in Chapter 2, operation in DCM is a popular solution of reducing 

the effect of RHP zero. This reduction in the effect of RHP zero is also evident from 

(3.5) wherein I1 becomes zero and the condition is always satisfied.  
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3.2 Investigation of Dynamic Performance Improvement 

by Enhanced Design of Controllers 

In this section, the dynamic performance improvement in boost converter using 

GSPI and FLC are studied. The observed dynamic performances offered by these 

controllers are compared with those offered by benchmark PI controllers that were 

design-optimized using MATLAB-SIMULINK [63] at different test operating points.  

 

3.2.1 Gain-Scheduled-PI (GSPI)-Based Scheme 

As demonstrated in Chapter 2, a single PI-controller designed-optimized by 

frequency-domain methods (Bode plots) to offer good small-signal transient at an 

operating point may not give a satisfactory transient performance when the operating 

point changes. An obvious way to ensure good small-signal transient at any operating 

point is to get the optimal sets of proportional (Kp) and integral (Ki) gains of the PI 

controller [ ]sKK ip + at several operating points and then tune them appropriately 

with changes in operating point. 

 

 

 In this sub-section, the dynamic performance of boost converter with one such 

Gain-Scheduled-PI controller (GSPI) is studied. To begin with, the optimal PI-

controllers at several operating points are obtained using computer simulations. The 

near-functional relation between the PI-controller’s parameters and the operating 

point are determined. These functional relations are used for tuning the PI controller’s 

parameters when the operating point changes. Following this, simulation results 

demonstrating the performance of converter with GSPI are presented.  
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A. Development of GSPI Controller 

Using MATLAB-SIMULINK, the dc-dc boost converter (with parasitics1) has 

been simulated with thousands of combinations of proportional (Kp) and integral (Ki) 

gains. The sets of Kp and Ki that offered minimum settling time for a step change in 

reference voltage from 25 V to 27 V at various operating points are listed in Table 3.2.  

 
TABLE 3.2. ‘BRUTE-FORCE’ OPTIMIZED (BENCHMARK) PI- CONTROLLERS  

 

 

From Table 3.2, it may be seen that the integral gain has an almost linear 

relationship with the input voltage and is more or less independent of the load. The 

approximate relation of integral gain to input voltage has been found to be 

)10(*210 si VK −+=  (3.9) 

where Vs is the input voltage.  
 

                                                 
1 The circuit parasitics considered in this case are different from the one used in section 3.3. They are ESR of C = 0.15 ohms, 

ESR of L = 0.4 ohms. 

Input 
voltage (V) 

Load 
resistance (Ω) Ki Kp Location of zero 

of the controller 
Settling 
time (s)  

10 12.5 9 0.03 300 0.006057 
10 25 11 0.022 500 0.002738 
10 37.5 10.5 0.021 500 0.002625 
10 50 11 0.01833 600 0.002591 

12.5 12.5 15 0.01875 800 0.002698 
12.5 25 14.5 0.0145 1000 0.002459 
12.5 37.5 14.5 0.01318 1100 0.002399 
12.5 50 14.5 0.01318 1100 0.002351 
15 12.5 18 0.012 1500 0.002447 
15 25 17 0.0081 2100 0.002418 
15 37.5 16 0.00727 2200 0.002504 
15 50 16 0.00667 2400 0.002478 

17.5 12.5 39 0.04875 800 0.003333 
17.5 25 42.5 0.05313 800 0.00304 
17.5 37.5 44 0.055 800 0.002947 
17.5 50 50 0.0625 800 0.002962 
20 12.5 46 0.04182 1100 0.003087 
20 25 47.5 0.04318 1100 0.002923 
20 37.5 48 0.04364 1100 0.002874 
20 50 38 0.03455 1100 0.003216 
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However, the proportional gain Kp and hence the location of zero of the 

controller transfer function is not seen to follow any known functional relation. Due to 

non-availability of a definite functional relation between operating point and Kp, 

following the discussions in [77], the actual value of Kp has been made dependent on 

the output-voltage error. The relation is as follows. 

))((
minmaxmax exp)()( tea

ppp KKKtKp −−−=  (3.10) 

where, the factor ‘a’ decides the rate at which the value of Kp rises from Kpmin to Kpmax. 

Values of Kpmax (=0.04364) and Kpmin (=0.00667) are extracted from Table 3.2. The 

value of ‘a’ has been chosen to be 128 using computer simulations.  

 

Fig. 3.2. Gain-scheduled-PI (GSPI) controller-boost converter: Schematic.  

 

B. Simulation Results and Discussions 

The GSPI controller-boost converter scheme is shown in Fig. 3.2. The scheme 

has been simulated using MATLAB-SIMULINK. Fig. 3.3 compares the simulated 

response of the boost converter (considering the effect of parasitics) with GSPI and 

optimized-PI controller (taken from table 3.2) at a certain operating point. As the 

simulations were carried out on a large-signal averaged model of the converter (refer 

appendix B), switching effect is not seen in the responses. The settling time with 

optimal-PI is shorter than that with GSPI controller.  
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Fig. 3.3.  Performance comparison of GSPI and PI for step change in reference voltage from 25 V 

to 27 V at 0.05 s at Vs = 20 V, R = 50 Ω. 

 

Table 3.3 shows a comparison of simulated small-signal transients offered by 

the GSPI and benchmark PI controllers (Table 3.2) at various operating points. Here, 

the settling time refers to the time taken by the output voltage to reach and stay within 

5% of the step change in reference voltage.  It may be noticed that under high line 

conditions, the performance offered by GSPI controller is almost comparable to that 

offered by the benchmark optimized-PI. Nevertheless, it is clear that the 

approximations made to Ki (3.9) and the implemented control law for Kp (3.10) do not 

help in offering a performance better than that offered by the optimized-PI controllers.  

 

Table 3.4 summarizes the comparison of large-signal transients offered by GSPI 

and benchmark-PI controller. While in two cases (1 and 3) the performance offered by 

GSPI controller is better than that offered by benchmark-PI controller, in the rest of 

the cases, the responses with benchmark-PI controllers are better than those due to the 

GSPI controller. The reason for this could also be attributed to the approximations 

made to the gains of GSPI. However, unlike the small-signal transient responses listed 



Chapter 3 Dynamic performance improvement by enhancement in design and control techniques 

 41

in Table 3.3, GSPI offers large-signal transient responses comparable to those offered 

by the locally-optimized PI controllers.  

 

TABLE  3.3. GSPI VERSUS PI- CONTROLLER: SMALL-SIGNAL STEP RESPONSE 
 

Settling time (ms) 
Percentage overshoot 

(%) 
Reference 

voltage step 
Input 

voltage (V) 

Load 

current 

(A) 
From To 

GSPI 
Benchmark 

PI  
GSPI 

Benchmark 

PI  

10 2 25 27 19 < 7 10 2.9 

10 0.5 25 27 6.25 2.6 0 3.5 

15 1 25 27 4.75 2.4 0 4.2 

20 2 25 27 3.8 3 0 12 

20 0.5 25 27 3.62 3.2 0 3.5 

 

 

TABLE  3.4. GSPI VERSUS PI- CONTROLLER: LARGE-SIGNAL STEP RESPONSE 

step response Reference 
voltage step 

change 
(V) 

Settling time 
(within 5% of the 

reference step) (ms) 

% 
Overshoot/ 
undershoot 

 
 

Case 

Vs 
(V) 

Io 
(A) 

From To GSPI PI GSPI PI 

1 11 2 24.9 20.9 8 13 0 0 

2 10 0.5 21 25 7.25 6.25 0 0 

3 15 1 21 25 5 5.2 0 0 

4 20 2 21 25 4.2 3.1 0 0 

5 20 0.5 20.7 24.9 4.68 4.55 0 0 

 

One obvious disadvantage of the GSPI method is that the input voltage has to be 

sensed (Fig. 3.2). Besides, the analog implementation of control law (3.10) needs the 

use of multiplier and logarithmic ICs which are expensive. Digital implementations 

also need expensive DSPs for implementing the complex law. Even with an 

inexpensive microcontroller, the implementation is complex due to the additional 

interfacing and protection circuitry needed. Besides, such an implementation may also 

force a compromise either in the switching frequency of the converter or in the 
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sampling frequency of the variables due to the associated time-consuming 

calculations. On account of these practical issues, hardware implementation of the 

controller has not been attempted. 

3.2.2 Fuzzy Logic-Based Approach 

Recently, there have been several publications which apply fuzzy logic 

controllers (FLCs) to control power electronic converters [19]-[25], [54]-[61]. In 

general, these non-linear controllers have been shown to offer excellent dynamic 

response in power converters [19], [22]-[25], with references [22] and [25] 

demonstrating in particular, the excellent large-signal dynamic response 

characteristics offered by FLCs. 

 

To study the dynamic performance of the boost converter under consideration 

with an FLC, a Sugeno-type FLC has been simulated, built, and tested. This sub-

section presents the details of the FLC developed and the results (simulation and 

experimental) comparing the performance of FLC with benchmark PI-controllers. 

Prior to this, the benchmark PI- controllers are re-designed for reasons mentioned in 

the following sub-section. 

 

A. Re-design of Benchmark PI Controllers 

The benchmark-PI controllers designed in Table 3.2 are based on brute-force 

techniques and the effect of converter parasitics have been taken into account in the 

arriving at the controller parameters. As circuit parasitics vary from one converter to 

another, the benchmark PI controllers were re-designed based on the small-signal 

control-to-output transfer function (without parasitics) of the boost converter under 

consideration at the design operating points. Bode plots were used for the design.  
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Table 3.5 summarizes the different operating points considered, the designed PI 

controllers, and the phase margins offered by these controllers at the design operating 

point.  

 

TABLE 3.5. LOCAL LINEAR-PI CONTROLLERS 

Input 

voltage 

(V) 

Load 

current 

(A) 

Output 

voltage 

(V) 

Benchmark PI 

controller 

Phase 

margin 

(degrees) 

(theoretical) 

Gain 

crossover 

frequency 

(rad/s) 

(theoretical) 

Benchmark 

Controller 

realized in the 

hardware setup 

10 2 25 

s

s 1
85325.17

+
 

46.489 461.39 

s

s 1
100094.16

+
 

10 0.5 25 
s

s 1
100425.17

+
 45.3 981 

s

s 1
100094.16

+
 

15 1 25 
s

s 1
15175.16

+
 80.96 943 

s

s 1
14709.16

+
 

20 0.5 25 

s

s 1
205820

+
 

99.23 731 

s

s 1
212720

+
 

20 2 25 

s

s 1
202722

+
 

96.46 781 

s

s 1
212722

+
 

 

 

It must be noted that the zeros of these PI-controllers in Table 3.5 are located at 

the corner frequency of the converter’s control transfer function (without parasitics), 

with an aim to increase the closed-loop bandwidth at the given operating point. As 

changes in load do not affect the location of poles in the control transfer function 

appreciably, it may be noticed that the location of zero of the controllers designed for 

a particular input voltage is nearly constant. This also explains the reason behind the 

nearly-fixed location of zeros of the ‘brute-force’ benchmark controllers (Table. 3.2) 

at a constant input voltage. 
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The gains of the controllers in Table 3.5 have been tuned through computer 

simulations in order to optimize the settling time of the output voltage for a two volt 

step change in reference voltage. 

 

An experimental prototype of boost converter has been built and tested. 

Implementation details are given in Appendix C. Table 3.5 also lists the benchmark 

PI-controllers realized in the hardware set up. It may be noticed that the gain and zero 

of the controllers realized in the hardware set up are slightly different from the 

designed values. This discrepancy is due to limited choice of practical capacitor and 

resistor values. Fig. 3.4 shows the experimental step response of the converter (fitted 

with a locally-optimized PI controller) for a small change in reference voltage at a 

certain operating point. The settling time is about 7 ms.  

 
Fig. 3.4. Experimental step response of the boost converter with PI controller for a step change in 

reference voltage from Vref= 22 V to Vref= 24 V, at R = 12 Ω, Vs = 10 V (a) Step- marks 

the instant when the reference voltage changes (b) Inductor current (c) Output voltage 

(channel in ac coupling mode); Scale: voltage: 1 V/div, current: 1 A/div, time: 2ms/div 

 

Table 3.6 summarizes the settling times (obtained by simulations and 

experiments on a hardware prototype) offered by the various re-designed benchmark 

PI-controllers for a step change in reference voltage at their corresponding design 

operating points. Here also, the settling time refers to the time taken by the output 
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voltage to reach and stay within 5% of the step change in reference voltage. Although 

the design of controllers did not consider the effect of system parasitics, the 

simulation results tabulated here do consider the effect of circuit parasitics namely, 

ESR of inductor (= 0.15 Ω) and ESR of capacitor ‘C’ (= 0.1 Ω). The differences 

observed between the simulated and experimental settling times and transient 

overshoots is believed to be attributed to the non-exact modeling of system parasitics. 

The results obtained with these benchmark controllers will be compared with those 

obtained with fuzzy logic controller discussed in the following section.  

 

TABLE  3.6. PI- CONTROLLER: SMALL-SIGNAL STEP RESPONSE 

Simulation results Experimental results Reference 

voltage step 
Input voltage 

(V) 

Load 

current (A) 
From To 

Settling 

time (ms) 

Percentage 

overshoot 

Settling 

time (ms) 

Percentage 

overshoot 

10 2 22 24 7 2 7 10 (approx.) 

10 0.5 24 26 10 1.92 11.4 10 (approx.) 

15 1 25 27 6 0.185 8 5(approx.) 

20 2 25 27 7 0.37 7 0 

20 0.5 25 27 7.5 0.29 7 0 
 

 

B.  Fuzzy Logic Controller- Implementation Details 

A two-input Sugeno-type FLC similar to the one in [21] has been simulated, 

built, and tested with the boost converter whose specifications are given in Table 3.1. 

The overall schematic is shown by Fig. 3.5. The details of the FLC [22] developed are 

as below. 

FLC Inputs and Output- Description 

The inputs to the Sugeno-type FLC are  

1. The voltage error (e) (reference voltage subtracted from actual voltage.) 
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2. The change of the voltage error (ce) (ce = Vo([k+1]T) - Vo([k]T), where T is the 

period of sampling (and switching)).  

 

As shown in Fig. 3.5, prior to fuzzification, the inputs are multiplied by gains G2 

(=1/15.15) and G3 (=1). The range of each of the input sets is divided into five fuzzy 

sets with 50% overlap (refer Fig. 3.6).  

 

 

Fig. 3.5. FLC-based control of dc-dc boost power electronic converter 

 

 

 

Fig. 3.6 Membership functions for inputs 

 

 

The FLC is a PI-type FLC, in which the output of the controller is the 

incremental control action i.e. the incremental duty ratio. This is integrated further to 

get the actual control action. The universe of discourse of output memberships is 

spanned by 17 singletons taking values between -1 to 1. They are -1, -0.65, -0.5, -

0.45, -0.35, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.35, 0.45, 0.5, 0.65, 1. 
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FLC Rule Base 

The rules connecting the inputs and the output singletons are based on the 

understanding of the system. The rules have an if...then… structure with the inputs 

being combined by AND operator. The rule base (Table 3.7) used in [21] has been 

retained. The development of the rule base is based on understanding of the system. A 

few rules to mention are as below. 

1. When the output voltage is away from the reference and is moving away from 

at a much fast rate, large-change in control input to bring it towards the set 

point is essential.  

2. When the output voltage is far from the reference and approaching at a very 

fast rate (NL or PL), small change in incremental control input is given. 

The selection of rule base and its tuning are cumbersome and are based on 

computer simulation. In the next chapter, an in-depth analysis of rule bases of several 

FLCs are carried out and a simple way of obtaining the rule base is explained.   

 

TABLE  3.7. RULE TABLE OF SUGENO-TYPE FLC USED FOR CONTROLLING DC-DC BOOST CONVERTER 
 

e 

ce 
NL NS Z PS PL 

NL 1 0.5 0.2 0 -0.3 

NS 0.65 0.35 0.1 -0.1 -0.35 

Z 0.45 0.2 0 -0.2 -0.45 

PS 0.35 0.1 -0.1 -0.35 -0.65 

PL 0.3 0 -0.2 -0.5 -1 

 

De-fuzzification Method 

Among the several de-fuzzification methods, the popular centre of gravity 

method [65] (3.11) has been used. The de-fuzzified value (output of FLC) is 

multiplied by a gain G1 (=0.0113) (Fig. 3.5) to yield the incremental control action.  



Chapter 3 Dynamic performance improvement by enhancement in design and control techniques 

 48

 

∑
∑

=

== N

i i

N

i ii
o

w

wc
Z

1

1
*

 (3.11) 

where wi is the membership value of the output set i, ci is the corresponding singleton 

value, N is the number of output singletons, and Zo is the defuzzified value.  
 

C. Simulation and Experimental Results and Comparison of 

Performance with Linear-PI Controller 

 The FLC described in the previous sub-section has been simulated using 

MATLAB-SIMULINK. Besides, hardware realization of the controller has been 

achieved using a MSK243 [75] starter kit employing TMS320F243 [76] digital signal 

processor (DSP). This sub-section discusses the simulated and experimental results. 

 

Simulated Results and Comparison 

 Fig. 3.7 compares the simulated reference-voltage-step responses of the boost 

converter offered by FLC and by locally-optimized PI controller (discussed in section 

3.2.2 (A)) at a certain operating point. For this small-step change in reference voltage, 

the transient response offered by locally-optimized PI controller is much better than 

that offered by FLC.  

 

Table 3.8 compares the settling times and transient overshoots offered by the 

controllers for a small-step change in reference voltage at different operating points. It 

may be seen that in most of the cases, the transient response offered by the locally-

optimized PI controller is much better than that offered by the FLC.  
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(a)                                                                               

 
 (b) 

Fig. 3.7.  Simulated reference-voltage-step-up transients offered by FLC and PI controllers at Vs = 

10V, Io = 2A, step of Vref from 22 V to 24 V (a) output voltage (b) inductor current. 

 

TABLE  3.8.  SIMULATED STEP RESPONSE – COMPARISON BETWEEN FLC AND LINEAR-PI CONTROLLER 
 

Step response 

(V) 

Settling time (within 5% of 

the step) (ms) 

% 

Overshoot Case 
Vs 

(V) 

Io 

(A) 
From To Fuzzy PI Fuzzy PI 

1 10 2 22 24 13 7 3.04 2 

2 10 0.5 24 26 40 10 2.88 1.92 

3 15 1 25 27 8.5 6 0.55 0.185 

4 20 2 25 27 5.5 7 0.148 0.37 

5 20 0.5 25 27 7 7.5 0 0.29 
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Experimental Results and Comparison 

Fig. 3.8 shows the experimental step response of the converter with FLC for a 

large step-change in reference voltage. Fig. 3.9 shows the corresponding response of 

the converter fitted with a locally-optimized PI controller. The response offered by the 

PI controller is more oscillatory than that offered by the FLC. Besides, the settling 

time with FLC is smaller than that with the PI controller.  

 

Fig. 3.8.  Experimental step response of the classical boost converter with FLC for a large step-

change in reference voltage Vref at Vs = 11 V, Io = 2.1 A (when Vo = 24.9 V) (a) Inductor 

current (b) Vref  step change from 24.9 V to 20.9 V (c) Step Vref  (inverted); Scale: voltage: 

1 V/div, current: 1A/div, time: 2ms/div. 

                 

Fig. 3.9.  Experimental step response of the classical boost converter with PI controller for a large-

step change in Vref at Vs = 11 V, Io = 2.0 A (when Vo = 24.9 V) (a) Inductor current (b) Vref 

step from 24.69 V to 20.77 V (c) Step Vref ; Scale: voltage: 1 V/div, current: 1A/div, time: 

2 ms/div. 
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Table 3.9 compares the experimental small-step and large-step reference-

voltage-change transient responses offered by FLC and linear-PI controllers at various 

operating points. It may be seen that for large-signal transients (case 1 and 3), the 

response with FLC is much better than with PI controller in one case (case 1) and is 

almost comparable to that offered by the PI in other case (case 3). For small-signal 

transients (case 2 and 4) the response with PI is only marginally better than that 

offered by FLC. 

 

TABLE 3.9. COMPARISON OF EXPERIMENTAL RESULTS: FLC VERSUS PI-CONTROLLER 

step response 
step response 

(V) 
settling time (within 
5% of the reference 

step) (ms) 

% 
Overshoot/ 
undershoot 

 
 

Case 

Vs 
(V) 

Io 
(A) 

From To fuzzy PI fuzzy PI 

1 11 2 24.9 20.9 6  12 25 10 

2 11 2 23.3 24.9 8 7 12.5 26 

3 20 0.5 20.7 24.9 8 8 4.7 6.66 

4 20 0.5 23.5 25.1 6 6 13.3 0 
 

Discussions 

Simulation results (Table 3.8) demonstrate the fact that by and large, the locally-

optimized PI controller gives a better small-signal transient than the FLC. However, 

with cases 4 & 5 (Table 3.8), the converter’s small-signal transient response with FLC 

is better than that offered by the converter with local-PI controller.  

 

In the experimental results (Table 3.9, case 2 and 4), the advantage offered by 

locally-optimized PI controller is only marginal over FLC. Besides in case 3 of Table 

3.9, the large-signal transient offered by PI is better than that offered by FLC. The 

following discussion explains the discrepancy observed in the large-signal transient 

response. 
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The FLC has been implemented using a DSP and the PI controller has been 

realized using analog circuitry. The quantization errors occurring on account of the 

limited word length of DSP often affect the performance of the realized controller. 

Besides, with a controller having small gain terms (as in the present case in which 

gain G1 = 0.0113 in FLC) implemented on a fixed point processor (TMS320F243), 

the rounding-off errors may become significant, if not handled properly. The 

truncation and rounding-offs errors may slow down the rate of change of control 

action. In other words, the system damping is increased. This is believed to be one of 

the reasons behind the large-signal transient of PI being better than that of the FLC in 

case 3 (Table 3.9).  

 

Although the above discussion answers the question of large-signal response 

(experimental) of PI controller being better than that of FLC, it does not explain the 

reason behind the good small-signal transient (obtained by simulations) offered by 

FLC over local-PI controller in cases 4 & 5 (Table 3.8). Thus, a blind comparison of 

transients offered by the controllers without addressing the following issues will be of 

not much use. 

 

1. The reason behind FLC offering good large-signal transient in most cases. 

2. The reason behind FLC offering small-signal transient response comparable to 

that offered by the localized-PI controller in some cases. 

3. The systematic design procedure of getting an FLC that offers good small-

signal transient response in the power converter. 

 

For answering the above questions, in the next chapter, the structure of several 

FLCs implemented with power converters is analyzed in detail based on which, the 
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transient response offered by FLC is also explained. Design of FLCs to offer good 

small-signal transient response is also explained. 

 

Due to complexity of control algorithm and expensive realizations, FLCs have 

not become popular in the control of power converters. To overcome this drawback, 

in the next chapter, a fast and inexpensive alternative of FLC namely, the non-linear 

function controller (NLFC) that has the potential to be used in future power supplies 

is also proposed.  

 

3.3 A Note on Other Linear Compensators 

In many applications a compensator realized using two zeros and two/three 

poles (3.12) is used [93], [94]. The zeros Z1 and Z2 are chosen to compensate for the 

system/converter poles. The pole at the origin ensures zero steady-state error. The 

pole P1 is placed above the cross-over frequency to ensure that the gain slope does 

not become positive on account of RHP zero and zero introduced by ESR of the filter 

capacitor. The pole P2 is a high frequency pole that ensures high frequency roll-off at 

-20 dB/dec.  
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With such a compensator, the gain-crossover frequency will be better that that 

realized using simple PI controllers. A re-designed controller corresponding to the 

operating conditions given by Vs = 15 V, Vo = 25 V, and R = 25 Ω is given below.  
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As mentioned before, the pole at the origin ensures zero steady state error. The 

two closely placed zeros compensate the system (converter) poles and provide 

differential action. Fig. 3.10 shows the frequency response of the loop gain when the 

converter is at the design operating of  Vs = 15 V, Vo = 25 V, and R = 25 Ω. The effect 

of parasitics in the converter is neglected. The RHP zero of the control transfer 

function is located at 32374 rad/sec. The system poles are located at 1593.5 rad/sec. 

With the above compensator, the gain crossover frequency is about 6470 rad/sec 

which is much higher than that realized using PI controller (refer table 3.5). It must be 

noticed that even in this case, the bandwidth realized is significantly less than the 

RHP zero location.  

 

Fig. 3.10.  Frequency response plot with re-designed controller. 
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Fig. 3.11 shows the simulated response with the re-designed controller for a step 

change in reference voltage from 25 V to 27 V. Here also the effect of system 

parasitics is neglected. The settling time of the output to reach within 5% of the final 

value is about 3 ms. An important point to be noted is that even for this small step 

transient, the boost inductor current is increased to a large value (5.7 A). This is due 

to the differential action introduced by the zeros of the controller. This high transient 

inductor current will require the inductor size to be increased besides increasing the 

device stresses.  

 
(a) 

 

  
(b) 

 
Fig. 3.11.  Simulated reference-voltage-step-up transients offered by redesigned controller at Vs = 

15V, Io = 1A, step of Vref from 25 V to 27 V (a) output voltage (b) inductor current 
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The re-designed controller is a third order controller. The transient response will 

be dependent on the state of these energy elements and their rates of changes. In 

general, due to the higher number of energy elements, a high order controller/system 

will be more sensitive to changes in operating point than a relatively lower order 

controller/system. Thus in the rest of the thesis, the investigation is carried out with PI 

controller as benchmark for boost converter.  

 

3.4 Discussions and Conclusions 

The following conclusions can be drawn from the discussions in this chapter. 

1. Small-signal dynamic response problem due to RHP zero in a boost converter 

operating in CCM can be mitigated by appropriately selecting the boost 

inductor value. However, the resulting inductor current will have a high 

ripple which is an important consideration.  

2. Linear-PI controller designed at an operating point offers the nearly best 

transient response possible at the operating point in the case of boost 

converters. However, it must be noted that the response is still slow as the 

closed-loop bandwidth is limited by the presence of RHP zero in the control-

to-output transfer function of the converter. Unless the RHP zero is avoided 

or pushed farther in the right-half of the complex-s-plane, an improvement in 

closed-loop bandwidth is difficult. In this chapter, the best possible transient 

that can be obtained through modifications in control techniques has been 

explored. The other alternative to achieve an even fast transient response (by 

avoiding the RHP zero) is to modify the converter topology itself. Such a 

modified topology that introduces one more operating interval in the 
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converter is carried out in Chapter 5. The later part of the thesis will focus on 

this ‘tri-state’ class of converters. 

3. The integral gain of an adaptive PI controller need not be changed for getting 

an optimum transient when the load alone changes. It has been observed that 

the integral gain has an almost-linear relation with input voltage. On the other 

hand, the proportional gain does not hold any well-defined functional relation 

with the operating point.  

4. In spite of implementation complexities of two-input FLC and GSPI 

controllers, not much advantage in terms of small-signal transient response 

over the locally-optimized PI controller is observed. However, the two-input 

FLC offers good large-signal transient, the reason for which will become 

obvious in the next chapter. 
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CHAPTER 4  
 

NON-LINEAR FUNCTION CONTROLLER: A SIMPLE AND 

COST-EFFECTIVE ALTERNATIVE TO FLC 
 

4.0 Introduction 

In the previous chapter, dynamic response problem in boost converter has been 

investigated using fuzzy logic controller (FLC). Typically, FLCs are realized using 

microcontrollers or digital signal processors (DSPs) [21].  Due to FLC’s complex 

algorithm, the computational overhead on the processor is high. Also, with an 

increased preference to operate power converters at high switching frequencies, there 

is a significant reduction in the computational time available for implementing the 

control logic. Thus, expensive high-speed processors will be required to implement an 

FLC for a high frequency power converter. 

 

FLC realizations using inexpensive microcontrollers [20], [23] require that 

either the sampling frequency or the converter’s switching frequency be reduced, 

forcing a compromise on the dynamic response performance of the converter. In 

addition, as mentioned in Chapter 3, high quantization and rounding-off errors add to 

performance degradation and sometimes may even result in limit cycles when 

employing low-priced microcontrollers with limited word length and PWM resolution 

[66]. 

 

Many problems related to digital implementation do not arise in an analog 

realization of FLC [56]. However, such an analog implementation employs a large 

number of components for fuzzification, rule-base, and de-fuzzification. Hence the 
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overall controller occupies a large physical space. In addition, any attempt to increase 

the number of fuzzy sets for increasing the granularity will be cumbersome as this 

would also increase the size of rule base and also the number of operational amplifiers 

(op-amp) used in the realization.  

 

In this chapter, based on an investigation on the input sets and rule bases, it is 

shown that the rule table of most of the FLCs typically utilized in the control of power 

electronic converters in other publications [19]-[25], [54]-[61] (including the one that 

has been discussed in Chapter 3) can be approximated to a single-input-single-output 

(SISO) non-linear function. This simplifies very greatly the analysis and realization of 

the controller. With this simplification in place it would be more appropriate to call 

the implemented controller as ‘Non-Linear Function Controller (NLFC)’ than as 

‘Fuzzy Logic Controller (FLC).’ This simplified structure can be realized with a 

simple non-linear analog circuit using minimum number of components. Even with 

digital implementation, the computational overhead of the processor will be 

significantly reduced. The simplified structure also makes it easier to explain the 

excellent large-signal performance of FLCs (reported in the previous chapter) 

over linear controllers. In addition, the process of designing NLFCs (and indeed 

FLCs) to yield good small-signal dynamics similar to linear controllers becomes 

logical.  The motivation behind the simplification of FLC into NLFC comes from [61], 

in which the reduction of a two-input FLC with a skew-symmetric type of rule table 

typically used in control of power converters into a single-input FLC is described.  

 

In this chapter, reduction of an FLC rule table of the type typically used in 

power converter control applications into an NLFC is first described. It is seen that in 

several power converter control applications, the FLCs take error and change-in-error 
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of the output variable as inputs and compute the incremental control action which is 

integrated to get the actual control input. The simplification of such a PI-type FLC 

turns out to be a Non-linear PI Controller (NPIC), as will be explained and 

investigated in greater detail in this chapter. Such an NPIC is proposed, developed, 

and tested on a classical single-switch dc-dc boost converter. While the NPIC behaves 

as a linear-PI controller delivering excellent transient performance for small 

disturbances around the steady-state operating point, its non-linearity helps in 

achieving excellent large disturbance response. Experimental results are presented to 

demonstrate this aspect clearly. Simulation results are also presented to show that the 

response of NPIC is almost identical to that of an FLC. The simplification of PI-FLC 

to NPIC has also been used to predict the gain margin of the system beyond which the 

system breaks into limit cycle oscillations. The predicted stability limits are then 

verified experimentally. 

 

Section 4.1 analyses the structure of several FLCs used in power converter 

control applications. Based on this, section 4.2 establishes and explains the 

approximation of two-input FLCs into a simple non-linearity, the NLFC. Sections 4.3 

and 4.4 present analog circuit realization of NLFC. Section 4.5 verifies the 

equivalence of NLFC and FLC. Section 4.6 analyzes the similarity between NPIC 

(reduced form of PI-FLC) and linear-PI controllers. It also suggests design methods 

that can help in achieving good transient response with NPICs in power converters. 

Section 4.7 describes the design of NPIC with an example. The PI-FLC equivalent to 

NPIC described in section 4.7 is developed in section 4.8. Section 4.9 discusses the 

experimental results comparing the transient response performances offered by NPIC 

and linear-PI controllers. Section 4.10 describes and presents the stability analysis 

based on describing function method. Section 4.11 concludes the chapter. 
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4.1 Analysis of FLC Structure in Power Converter Control 

In this section, the structure of several FLCs that have been used to control 

power converters in the past are investigated, based on which, a simple non-linearity 

that approximates the rule table is discussed. Furthermore, the FLC itself is replaced 

by a simple analog circuit. 

 

  

Fig. 4.1.  Membership functions- shapes (a) input (Sugeno and Mamdani) (b) output singletons 

(Sugeno) (c) output (Mamdani) 

4.1.1 Shape of Input and output Membership Functions 

The first stage in all FLCs is the fuzzification of the inputs. The FLCs proposed 

in [19]-[23], [25], [54]-[59], take error and change in error of output state variable as 

inputs. Reference [24] proposes an FLC for buck-boost and Sepic converters, in 

which the inputs are the output voltage error and the inductor current error. In all the 

above cases, the shape of all the input membership functions other than those at the 

extreme ends of the range are triangular (refer Fig. 4.1(a)) and have a 50% overlap. 



Chapter 4 Non-linear function controller: a simple and cost-effective alternative to FLC 

 62

The triangular membership functions are symmetric in [20]-[21], [23], [24], [25], [59] 

and asymmetric in [19], [54], [57]. 

 

The output membership functions are either singletons as in Sugeno-type FLCs 

(Fig. 4.1(b)) [21]-[23], [56] or triangular/trapezoidal with 50% overlap (Fig. 4.1 (c)) 

as in Mamdani-type FLCs [19], [20], [54], [24], [25], [57], [58]. The membership 

functions are asymmetric triangles in [54] and [57].  

 

The membership grades of the output membership functions are generally 

determined either by Mamdani’s minimum fuzzy implication or by Larsen’s product 

implication [65]. Among the several defuzzification methods [65], centroid method is 

widely used [19]-[23], [55], [57]. 

 

 Considering an FLC with triangular (symmetric/asymmetric) input and output 

membership functions having 50% overlap, the input-output relation can be expressed 

as a fuzzy associative memory (FAM). Irrespective of the different fuzzy operators 

and implications, FLCs having the same FAM will give the same output for the same 

inputs at which rules are defined in the FAM (rule table). This fact is used in the 

proposed simplification. 

4.1.2 Rule Base Structure 

The heart of FLC is the rule/knowledge base. In this sub-section, the rule bases 

of several FLCs implemented with power converters are examined.  It is seen that in 

most cases, the rule base has a Toeplitz [64] structure i.e the output membership 

functions along the diagonal and off-diagonal elements are same as in Table 4.1. Even 

in cases where it is seen to deviate, upon a greater examination, the structure is found 

to be near-Toeplitz. Such a Topelitz structure of the rule base is the basis for 
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simplification of FLC that is dealt in greater detail in the rest of this chapter. It is also 

seen that a large number of FLC rule tables are also skew-symmetric. 

 

Table 4.1 shows a Toeplitz rule base with output membership functions constant 

along each (top-left to lower-right) diagonal. Here ‘x1’ and ‘x2’are the inputs to the 

FLC. The membership functions on the leading diagonal are zero (Z) and those on 

either side of the leading diagonal take opposite signs as well. Such an exact Toeplitz 

rule base has been used in [19], [20], [25], [54]-[58].  

 
TABLE 4.1. TOEPLITZ RULE TABLE 

    x1 
x2 

PL PS Z NS NL 

NL Z NS NL NVL NVL 
NS PS Z NS NL NVL 
Z PL PS Z NS NL 

PS PVL PL PS Z NS 
PL PVL PVL PL PS Z 

 

The rule tables in [59] and [60] have zeros along their diagonal and have near-

Toeplitz structure with only 4 violations out of 49 rules. Information about the rule 

table structure in [23] is not available.  

 

The rule tables of fuzzy-P and fuzzy-I controllers in [24] is near-Toeplitz with 

violations at the extreme ends when the magnitude of output voltage error becomes 

too large (PL or NL).  

 

The rule base of Sugeno-type FLC used in [21] and [22] is shown in Table 4.2. 

It must be noted that this rule table is the same as that of the FLC developed in section 

3.3. It looks as if it does not have a Toeplitz-matrix structure. However, Table 4.3, 

which has been derived by linear interpolation of Table 4.2, by extending the range of 

change-in-error ‘ce’ input (by two times), and by increasing the granularity of error 

‘e’ input, has a near-Toeplitz structure. The 14 elements (out of 81) that violate the 
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property are marked in bold letters. The magnitude of terms that make the matrix 

deviate from having an exact Toeplitz structure is insignificant in most of the cases. It 

should be noted that the rule base is not only near-Toeplitz, but also near-skew-

symmetric.  

 

 

TABLE 4.21. SUGENO-TYPE FLC RULE TABLE [21] 
 

e1 
ce NL NS Z PS PL 

PL 0.3 0 -0.2 -0.5 -1 
PS 0.35 0.1 -0.1 -0.35 -0.65 
Z 0.45 0.2 0 -0.2 -0.45 

NS 0.65 0.35 0.1 -0.1 -0.35 
NL 1 0.5 0.2 0 -0.3 

 
 

TABLE 4.3. EXTENDED SUGENO-TYPE FLC RULE TABLE  
 

e 
ce NL NM NS NVS Z PVS PS PM PL 

PVVL 0 -0.1 -0.2 -0.35 -0.5 -0.75 -1 -1 -1 

PVL 0.1 0 -0.1 -0.2 -0.35 -0.5 -0.75 -1 -1 

PL 0.2 + 
0.1 

0.1 + 
0.05 0 -0.1 -0.2 -0.35 -0.5 -0.75 -1 

PS 0.35 0.2 + 
0.025 0.1 0 -0.1 -0.2-

0.025 -0.35 -0.5 -0.75  + 
0.1 

Z 0.5-
0.05 

0.35-
0.025 0.2 0.1 0 -0.1 -0.2 -0.35- 

0.025 
-0.5 + 
0.05 

NS 0.75-
0.1 0.5 0.35 0.2 + 

0.025 0.1 0 -0.1 -0.2-
0.025 -0.35 

NL 1 0.75 0.5 0.35 0.2 0.1 0 -0.1-
0.05 -0.2-0.1 

NVL 1 1 0.75 0.5 0.35 0.2 0.1 0 -0.1 

NVVL 1 1 1 0.75 0.5 0.35 0.2 0.1 0 

 

4.2 Toeplitz Rule Tables and Reduction of Two-input FLC 

to NLFC 

Reference [61] suggests that a two-input FLC rule table having skew-symmetric 

property can be reduced to a SISO non-linearity. In this sub-section, the rationale 

                                                 
1 e = Vo- Vref ; ce = e(k) – e(k-1) 
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behind such a simplification is described. Furthermore, it will be explained that for 

such a simplification, it is sufficient for the FLC rule table to be a Toeplitz matrix and 

not the more restrictive skew-symmetric matrix, as assumed in [61].  

  

Let us consider the FLC rule bases given in Table 4.1. Let us assume that the 

input membership functions are symmetrical and have 50% overlap as in Fig. 4.1(a). 

Due to zero-diagonal Toeplitz-structure of Table 4.1, the set of inputs that contribute 

to the same output ‘r’ form parallel lines (Fig. 4.2(a)) in the x1-x2 plane. The number 

of parallel lines increases with an increase in granularity of the inputs. With infinite 

granularity, for getting the output ‘r’ corresponding to an input set u={x1, x2}, a single 

variable ‘d’ that represents the signed distance of the parallel line (in which the set 

‘u={x1, x2}’ lies) from the leading diagonal ‘diag’ (4.1) (refer Fig. 4.2(b)) in the x1-x2 

plane can be used instead of the two-variable input set u={x1, x2}.  

0xx:diag 12 =λ+ . (4.1) 

In (4.1), ‘λ’ is the magnitude of slope of that diagonal in the x1-x2 plane, whose 

singleton (membership) value in the rule table is zero (Z). The distance ‘d1’ of any 

input u1={x1,1 , x2,1} from the leading diagonal can be obtained as  

2

1,11,2
1

1 λ

λ

+

+
=

xx
d . (4.2) 

The non-linear property of FLC is preserved by the non-linear function ψ that 

maps the distance ‘d’ in x1-x2 plane to its singleton (membership) value ‘r’ (refer Fig. 

4.2(c)). Consequently, the output of FLC with the assumption of an infinite 

granularity is given by  

( )dr ψ=  (4.3) 

Thus, the two-input FLC rule table is reduced to a SISO “Non-Linear Function 

Controller (NLFC).” It must be noted that this reduction is based on linear 
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interpolations of the output membership functions in the rule table. Hence, it is only 

an approximation of the FLC rule table with close matches at the vertices (rules) 

defined in the rule table. However, as FLCs themselves are based on expert 

knowledge of system that is not quantified, such an approximation is justified.  

 

An odd non-linearity like the one in Fig. 4.2(c) is obtained by reduction of a 

skew-symmetric rule-table. In cases, when the rule table is not skew-symmetric but is 

only a Toeplitz matrix (with zero diagonal), simplification of rule-table into SISO 

non-linearity is still possible. However, the resulting non-linear function will not have 

an odd symmetry (refer. Fig. 4.2 (d)).  

 

    

(a)    (b)      (c)    (d) 

Fig. 4.2.   (a) Output membership functions in x1-x2 plane (b) converting inputs from x1-x2 plane to 

d-r plane (c) mapping a skew symmetric rule table in d-r plane (d) mapping of a non-skew 

symmetric rule table in d-r plane. 

 

4.3 NLFC- The Economical and Fast “FLC” and its 

Circuit Realization 

The reduction of multi-input complex rule table into a single non-linearity ‘ψ’ 

simplifies the circuit realization. Even with digital implementation, the computational 

overhead on the processor is significantly reduced. A simple analog circuit in which 
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the non-linearity is divided into several piecewise sections with each section realized 

by two resistors and a diode is shown in Fig. 4.3(a) [62]. Thus, even large FLC rule 

tables that need more granularities can be realized with the addition of a few 

components. It should be noted that this circuit realizes ‘-ψ.’ The various slopes and 

threshold voltages are given below. 

 

−−= ccV
R
R

V
4

3
1 ; 

+−= ccV
R
R

V
4

3
1 '

'
'  (4.4) 

−−= ccV
R
RV

6

5
2 ;  +−= ccV

R
RV

6

5
2 '

''  (4.5) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=−=

5

2

3

2

1

2
2

3

2

1

2
1

1

2

R
R

R
R

R
RG;

R
R

R
RG;

R
RG

 (4.6) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

5

2

3

2

1

2
2

3

2

1

2
1 'R

R
'R

R
R
R'G;

'R
R

R
R'G

 (4.7) 

 

  

Fig. 4.3.  Cheap and Fast “FLC” (a) circuit realization (b) simulated non-linearity ‘-ψ’.  

  

The circuit in Fig. 4.3(a) realizes an NLFC with the magnitude of slope 
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increasing with that of ‘d.’ To realize a non-linearity with  both increasing and 

decreasing slopes, a combination of circuits in Figs. 4.3 and 4.5 (pre-processing 

circuit) may be used. Besides being simple and economical, the NLFC implemented 

using the circuit in Fig. 4.3 will have fast response which is desirable in power 

converter control applications. 

 

4.4 Handling Asymmetrical Input Membership Functions 

In the case of asymmetric triangular input sets [54] as in Fig. 4.4(a), pre-

processing of inputs may be needed prior to processing using (4.2) and (4.3). This can 

be explained with the help of an example. At a normalized value of input ‘x = 0.5,’ 

rules related to PM alone are fired in the FLC in Fig. 4.4(a). On the other hand, rules 

related to both PS and PM are fired in the FLC with symmetrical input sets for ‘x = 

0.5,’ (Fig. 4.4(b)). This will result in a large error in the de-fuzzified value, especially 

when the vertices of the asymmetrical sets are far apart. The error in such cases can be 

reduced if the set of vertices {-1, -0.5, -0.2, 0, 0.2, 0.5, 1} of the asymmetrical sets are 

mapped to those {-0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75} in the symmetrical sets (refer 

Fig. 4.4(c)). This ‘pre-processing,’ although may not be essential in most cases, if 

unavoidable, may be realized (with a sign inversion) using the circuit in Fig. 4.5 [62]. 

Here, only the positive half of the mapping is shown. The various slopes and 

thresholds of this circuit are given by (4.8) and (4.9).  It must be noted that if all the 

inputs of an FLC have similar asymmetric memberships, the pre-processing circuit 

may be avoided. An example for this will be given in later in this chapter.  
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(a)                                             (b)                                                  

 
Fig. 4.4.  Membership functions (a) asymmetrical (b) symmetrical (c) mapping. 

 

 

         
Fig. 4.5.  Preprocessing circuit (a) realization (b) mapping. 
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Fig. 4.6 shows a comparison of a two-input FLC and an NLFC. It may be 

noticed that the proposed simplification of FLC to NLFC reduces the complexity of 

FLC algorithm involving fuzzification, inference from rule table, and defuzzification 

processes.  

 

(a) 

 

(b) 

Fig. 4.6.  Comparison of FLC to NLFC (a) FLC (b) NLFC. 

 

To summarize, an FLC and its simplified form NLFC will deliver a near-similar 

output under the following conditions. 

• Input membership functions are symmetrical/asymmetrical triangular with 

50% overlap. Preprocessing circuit may be needed to map the asymmetrical 

inputs to symmetrical ones.  

• Output membership functions are symmetrical/asymmetrical triangular with 

50% overlap as in Mamdani-type FLCs or singletons as in Sugeno-type FLCs.  

• The rule table is a Toeplitz or a near-Toeplitz matrix. 
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With FLCs satisfying the above three conditions, there will be closer match of 

the outputs of FLC and NLFC at the points (rules) defined in the rule table. The 

overall rule surface generated by FLC to that produced by NLFC will be closer with 

the degree of closeness depending upon the fuzzy operators (AND, OR) and 

defuzzification (centroid, centre of sums) employed. Investigation of simplification in 

case of FLCs violating the above conditions is beyond the scope of this thesis, as most 

of the FLCs implemented with power converters for which details are available [19]-

[25], [54]-[61] satisfy the above two conditions.  

 

4.5 Verification of Equivalence Between NLFC and FLC 

To demonstrate the simplicity of NLFC and its near-similarity to the two-input 

FLC having a Toeplitz rule-table, the Mandani-type FLC implemented to control a 

dc-dc boost converter in [20] is considered. Table 4.1 represents rule table with inputs 

‘x1’ and ‘x2’ replaced by output voltage error ‘e’ and change-in-error ‘ce’ respectively. 

The input and output membership functions are symmetrical and are similar to the one 

represented in Fig. 4.4(b) upon normalization. Hence, pre-processing gains are not 

needed in the NLFC realized. The processed input ‘d’ (4.2) of NLFC may be verified 

to be the addition of ‘e’ and ‘ce’ inputs (λ=1). The non-linear function ‘ψ’ is shown in 

Fig. 4.7(a). It must be noted that the gain 211 λ+  has been integrated with the non-

linear function ‘ψ.’ Up to |d|=0.5, the output ‘r’ follows the input. Due to trapezoidal 

end-sets (in the output set), the output ‘r’ is limited to ±0.8 (when PL or NL alone is 

fired). The presence of trapezoidal sets and saturation have been taken into account by 

a change in the slope of ‘ψ’ beyond |d|=0.5 and by saturation of output ‘r’ at ±0.8 for 

|d|>0.75. Fig. 4.7(c) shows the simulated outputs of FLC and NLFC when excited 

with inputs (Fig. 4.7(b)) spanning the entire e-ce plane. By and large, the difference 



Chapter 4 Non-linear function controller: a simple and cost-effective alternative to FLC 

 72

between the two outputs is negligible, thereby suggesting NLFC as a simple and cost-

effective alternative to the two-input FLC.  

  

      (a)                                                  (b)  

  

(c) 

Fig. 4.7.  Equivalence of NFLC & FLC (a) NLFC- Function mapping (b) Inputs to NLFC & FLC (c) 

Outputs of NLFC & FLC and their difference. 

 

4.6 NLFC :  Performance Analysis 

In this section, the NLFC concept is applied to a large class of FLCs known as 

PI-FLCs [23]. PI-FLCs are FLCs in which the inputs to the controller are the error ‘e’ 

and change-in-error ‘ce’ of the plant’s output (state) variable (refer Fig. 4.8(a)).  The 
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simplified from of PI-FLC, when applying the NLFC concept yields the Non-Linear 

PI Controller (NPIC), which is introduced in this section. A discussion on the 

converter’s dynamic-response enhancement follows this. The structure of NPIC is 

also used explain the rationale behind the excellent large-disturbance handling 

capabilities of PI-FLCs.  

 

4.6.1 NPIC/PI-FLCs Versus Linear-PI Controllers 

In a PI-FLC, the inputs are error ‘e’ and change-in-error ‘ce.’    

cexex == 21 ;  (4.10) 

The above inputs are fed to the FLC block to compute the incremental control 

action ‘∆d,’ which is further integrated to get the actual plant control. This integration 

involved in post-processing imparts the name ‘PI-FLC’ to the controller.  

PIPI--FLCFLC

NPICNPIC

PIPI--FLCFLC

NPICNPIC

 

Fig. 4.8.  Schematic diagrams (a) PI-FLC (b) NPIC. 

 

The simplified form of such a PI-FLC based on NLFC-concept, namely NPIC is 

shown (inside the dotted block) in Fig. 4.8(b). The structure of NPIC has been derived 

from Fig. 4.6(b). The processed input ‘d’ in NPIC (Fig. 4.8(b)) is obtained using 

(4.11) (derived from (4.2)) and fed to the non-linearity ψ. 

(a) 
 
 
 
 
 
 
 
 
(b) 
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The output ‘r’ of ψ is multiplied by a gain ‘m’ and then integrated to get the 

actual plant control input ‘D.’ 

 

Fig. 4.9(a) shows a system schematic in which an NPIC is used to control a 

power converter. The ‘filter’ block is used to filter the switching noise of the 

converter. For the sake of simplicity, let the input membership functions be assumed 

to be symmetrical with 50% overlap. Hence, Φ1(e) and Φ2(ce) are replaced by ‘e’ and 

‘ce.’ To show the similarity between NPIC scheme and linear-PI controller, let us 

consider a linear-PI controller given by  
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(a) 

 
(b) 

Fig. 4.9.  Power converter control schematic (a) with NPIC (b) with linear-PI controller 
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The first term in (4.13) represents the addition of error and its derivative 

(change-in-error) with a gain. The system schematic with PI controller in Fig. 4.9(b) 

has been drawn using (4.13). This scheme is structurally similar to NPIC-based 

scheme (Fig. 4.9(a)). This structural similarity between NPIC and linear-PI controller 

is advantageously used in obtaining good small-signal performance. The following 

section explains the associated design steps.  

 

4.6.2 Transient Performance Improvement in NPIC 

Linear-PI controller designed at an operating point generally offers a good 

small-signal transient performance at the designed operating point.  Such a good 

transient performance can also be achieved using NPIC/PI-FLC, if the NPIC is 

designed to mimic the PI controller for low values of input ‘d.’ This is achieved by  

1. setting the parameters ‘λ’ and ‘m’ of NPIC as given by (4.14) and (4.15),  

2. setting the slope of non-linearity ‘ψ’ to unity (near the origin) 

3. replacing preprocessing gains Φ1(e) and Φ2(ce) by unity (under the 

conditions defined in sub-section 4.4).  

 

In many control applications, as the normalizing gain given to change-in-error 

input is generally small, it may be assumed that 1>>λ .   

2
22 ;11;11 K≈≈+≈+⇒>> λλλλλλ  (4.14) 

1Km =  (4.15) 

For higher values of input ‘d,’ i.e for large disturbances, the equivalent gain of 

NPIC/PI-FLC is set high. This changes the control input to the power converter at a 

rate faster than that in the linear-PI controller. As a result, NPIC/PI-FLC is capable of 

delivering good transient performance for large disturbances. Similar to the design of 
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a two-input FLC, the non-linearity ‘ψ’ at various values of input ‘d’ is determined 

from knowledge of the system behavior and is corrected using computer simulations.  

 

It should be noted that at an operating point different from the design operating 

point, similar to a PI controller, the NPIC/PI-FLC also does not guarantee a good 

small-signal transient response. Adaptive tuning [23] may be needed in such a case. 

  

4.7 Example System and NPIC/PI-FLC Description 

Based on a benchmark-PI controller, an NPIC has been designed, simulated and 

a hardware model has been built and tested on a single-switch dc-dc boost power 

converter. This sub-section describes the converter and controller specifications.  

 

4.7.1 Boost Converter Specifications 

A single-switch dc-dc boost power converter shown in Fig. 1.1 and with the 

specifications given in Table 3.1 has been considered as an example system. The 

other parameters of the converter are ESR of L = 0.2 Ω, ESR of C = 0.15 Ω, 

MOSFET (‘S’) ‘ON’ resistance = 0.115 Ω, and diode forward voltage drop = 0.8 V.   

 

Neglecting the effect of parasitics, at a given operating point, the small-signal 

control-to-output-voltage transfer function of the boost converter (operating in 

continuous conduction mode (CCM)) can be verified as 
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where D = duty ratio (control input) at the operating point, Vs = supply voltage, Vo = 

output voltage, R = load resistance. The transfer function in (4.16) is a repetition of 
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(2.1). The above transfer function is used in designing a benchmark PI controller that 

offers a good small-signal response, based on which the NPIC/PI-FLC is derived.  
 

4.7.2 NPIC/PI-FLC Description 

A benchmark PI controller that delivers good small-signal transient performance 

at Vs=15 V, and R=33 Ω, has been designed. The design of PI controller is based on 

small-signal model of the boost converter. The controller has been tuned further on 

the hardware prototype model to offer good small-signal transient performance. The 

benchmark PI controller obtained accordingly is given by  

s

s

sTc

1
10004.3)(

+
⋅= . (4.17) 

 

The parameters of NPIC that has an identical small-signal behavior as that of the 

benchmark PI controller are obtained using (4.14) and (4.15). They are as follows. 

 

10002 == Kλ  (4.18) 

4.31 == Km  (4.19) 

 

The cut-off frequency of filters in Figs. 4.9(a) and 4.9(b) is 10 kHz. The 

differentiator block is approximated by a transfer function with a zero at the origin 

and a pole at 3500 Hz.  

 

The small-signal model of the system described by (4.16) is valid only for small 

range of variations ‘∆D’ of the control input ‘D’ around the operating point. This 

range ‘∆D’ decides the input range of the NPIC beyond which the non-linearity ‘ψ’ 

will have a gain higher than unity. Input voltage perturbations that account for a ∆D 

of 0.015 were carried out on the boost converter model with PI controller (Refer Fig. 

4.9(b)) using MATLAB-SIMULINK [63]. With such perturbations, the signal at ‘A’ 
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had a maximum variation of 0.8 units. Hence, the non-linearity ‘ψ’ will have a unity 

gain until the magnitude of its input ‘|d|’ is 0.8 units. Beyond |d| = 0.8, the non-

linearity ‘ψ’ is tuned by simulations on the NPIC-boost converter closed-loop model 

(see Fig. 4.9(a)) using input voltage perturbations of different magnitudes. 

 

In the hardware implementation, as the gain ‘ψ’ is high at higher values of 

inputs, many times, op-amp saturation was found to hinder the realization of the 

desired non-linearity. To avoid this, the gain of non-linearity has been reduced by a 

factor (=1/4.44) and appropriately compensated by an increase in the output gain ‘m’ 

which is realized in the integrator stage. The corrected value of m is given by  
 

1.154.3*44.4 ≈=m  (4.20) 

 

The non-linear function (ψ) mapping from ‘d’ to ‘r’ is shown in Fig. 4.10. Here, 

it can be seen that the gain at origin is no longer unity but is reduced to 0.225 

(=1/4.44). 

 

(a)                                                            (b) 

Fig. 4.10.  Non-linear function ψ mapping of SISO-FLC (a) the overall function with saturation (b) 

the mapping zoomed near the origin. 
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4.8 Deriving the Equivalent PI-FLC from NPIC 

In this section, a PI-FLC that is equivalent to the NPIC designed in the previous 

section is presented. Simulation results are presented that demonstrate the similarity 

between the two controllers. 

 

4.8.1 PI-FLC Equivalent to NPIC 

To derive a PI-FLC that approximates the designed NPIC, the input range (‘d’) 

of nonlinearity ‘ψ’ of NPIC (-6.325 to +6.325) has been divided into 5 piece-wise 

sections namely (-6.325 to -1.6, -1.6 to -0.8, -0.8 to 0.8, 0.8 to 1.6, and 1.6 to 6.325). 

The inputs to the PI-FLC are the processed error ‘ep’ (≈e.) and processed change-in-

error ‘cep,’ (= ce/(1+λ2)1/2 , λ = 1000). 

 

The range of ‘ep’ and ‘cep’ are limited to ±6.325 units. Each of the inputs is 

divided into seven asymmetrical membership functions as shown in Fig. 4.11(a).  

 

Table 4.4 is the rule table. To generate this table, the value of ‘d’ corresponding 

to different values of inputs ep and cep are found. The singleton value corresponding 

to the processed inputs ep and cep is the output membership ‘r’ in ‘ψ’ of NPIC 

corresponding to the computed ‘d’ (= cep + ep). It must be noted that since the 

membership functions in the inputs have the same asymmetry, additional pre-

processing circuits have been avoided as mentioned in section 4.4. 

 

TABLE 4.4. RULE TABLE OF PI-FLC 
    ep 
cep NL NM NS Z PS PM PL 

PL 0 10.54 12.77 15 15 15 15 
PM -10.54 0 0.18 1.63 3.857 6.085 15 
PS -12.77 -0.18 0 0.18 1.63 3.857 15 
Z -15 -1.63 -0.18 0 0.18 1.63 15 

NS -15 -3.857 -1.63 -0.18 0 0.18 12.77 
NM -15 -6.085 -3.857 -1.63 -0.18 0 10.54 
NL -15 -15 -15 -15 -12.77 -10.54 0 
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(a) 

 

  

(b) (c) 

Fig. 4.11.  (a) PI-FLC- Input membership functions (b) Input-output relation of NPIC (c) Input-

output relation of PI-FLC. 

 

4.8.2 Performance comparison of PI-FLC and NPIC 

Figs. 4.11(b) and 4.11(c) show the rule-surfaces of NPIC and PI-FLC. While the 

output values of the two surfaces are matching at the inputs specified in the rules, at 

the other values of inputs, the surfaces are reasonably close. To show that the NPIC 

and PI-FLC offer a nearly equivalent control performance, simulations were carried 

out on the classical boost converter models controlled by PI-FLC and NPIC for step 

changes in reference voltage, load resistance, and input voltage. Figs. 4.12(a) and 

4.12(b) demonstrate that the transients observed in duty ratio and output voltage are 

nearly identical in both the cases. Thus it can be concluded that NPIC is a fairly good 

and simple approximation of PI-FLC. 
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(a) 

 

(b) 

Fig. 4.12.  Performance comparison of NPIC and PI-FLC for random disturbances in the power 

converter; Input voltage transients at 0.025 s, 0.065 s, 0.105 s, 0.145 s, 0.185 s; reference 

voltage transients at 0.01 s, 0.05 s, 0.09 s, 0.13 s, 0.17 s; load resistance changes at 0.05 s, 

0.09 s, 0.13 s, 0.17 s (a) Duty ratio (b) Output voltage legend: ‘..’ PI-FLC, solid line- 

NPIC. 

 

4.9 Experimental Results  

In this sub-section, experimental results demonstrating the dynamic performance 

of NPIC and linear-PI controllers are presented and compared. Figs. 4.13(a) and 

4.13(b) show the non-linear function ‘ψ’ (inverted) of NPIC realized using the circuit 

in Fig. 4.3(a). Due to diode voltage drops and tolerance of resistors, the break points 

are not sharp and slightly different from the designed values. However, this does not 
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affect the performance of the controller substantially. The values of various 

components are as below.  

Ω==Ω==Ω==
Ω==Ω=Ω=

kRRkRRkRR
kRRkRkR

 22'; 2.2'; 36'
 8.1'; 7.2; 12

665544

3321  (4.21) 

The positive and negative saturation levels of the circuit have different 

magnitudes due to op-amp characteristics. Figs. 4.14 and 4.15 show the experimental 

responses of the boost converter fitted with NPIC and benchmark-PI controllers 

respectively for a small step increase in load. Due to the small magnitude of 

disturbance, as per design, the response is identical in both the cases. Figs. 4.16 and 

4.17 show the step responses for a large change in load. The 1% settling time with 

NPIC is about 6 ms while that with PI controller is about 12.5 ms. This clearly 

demonstrates the excellent large-disturbance handling capability of NPIC/FLC. 

 

(a)                                                                           

 

 (b) 

Fig. 4.13.  Non-linear function ψ - hardware realization; Oscilloscope in xy-mode; (a) overall non-

linearity; scale: x-axis (input ‘d’)= 2 V/div, y-axis (output ‘r’) = 5 V/div (b) non-linearity 

zoomed near the origin; scale: x-axis (input ‘d’)= 1 V/div, y-axis (output ‘r’) = 1 V/div 
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Fig. 4.14. Experimental step response of the converter with NPIC for a step change in load from Io= 

0.75 A to Io= 0.9 A, at Vs = 15 V, Vo = 25 V (a) Step- marks the instant when the load 

changes (b) Inductor current (c) Output voltage (oscilloscope channel in ac coupling 

mode); Scale: voltage: 0.2 V/div, current: 1 A/div, time: 2ms/div. 

 

Fig. 4.15. Experimental step response of the converter with PI controller for a step change in load 

from Io= 0.75 A to Io= 0.9 A, at Vs = 15 V, Vo = 25 V (a) Step- marks the instant when the 

load changes (b) Inductor current (c) Output voltage (channel in ac coupling mode); Scale: 

voltage: 0.2 V/div, current: 1 A/div, time: 2ms/div. 

 

Figs. 4.18(a) and 4.18(b) show the simulated response of the converter for a 

large-step change in reference voltage. The response of the converter with PI 

controller shows a dominant integral action. On the other hand, the response with 
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NPIC shows a high peak current overshoot. At the expense of high device current 

stress, the NPIC achieves a settling time smaller than that achieved using the linear-PI 

controller. Figs. 4.19(a) and 4.19(b) show the corresponding experimental step 

response. The experimental results agree well with the simulated results.  

 

 

Fig. 4.16. Experimental step response of the converter with NPIC for a step change in load from Io= 

0.75 A to Io= 2.0 A, at Vs = 15 V, Vo = 25 V (a) Step- marks the instant when the load 

changes (b) Inductor current (c) Output voltage (oscilloscope channel in ac coupling 

mode); Scale: voltage: 0.5 V/div, current: 2 A/div, time: 2ms/div. 

 

 

Fig. 4.17. Experimental step response of the converter with PI controller for a step change in load 

from Io= 0.75 A to Io= 2.0 A, at Vs = 15 V, Vo = 25 V (a) Step- marks the instant when the 

load changes (b) Inductor current (c) Output voltage (oscilloscope channel in ac coupling 

mode); Scale: voltage: 0.5 V/div, current: 2 A/div, time: 2ms/div. 
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Figs. 4.20(a) and 4.20(b) show the simulated response of the converter for a step 

change in input voltage Vs. Once again, the time taken by output voltage to recover 

back to 25 V in the case of converter with NPIC is smaller than that taken by the 

converter with PI controller. These results clearly demonstrate the excellent large-

disturbance handling capability of NPIC/FLC. 

 

 

 
(a) 

 
 (b) 

Fig. 4.18. Simulated step response of the converter with NPIC and PI controllers for a step change 

in reference voltage from Vref = 20 V to Vref = 27.5 V, at Vs = 15 V, load resistance R = 

12.5 Ω (a) output voltage (b) inductor current. 
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(a) 
 
 
 
 
 

 
  

(b) 
 

Fig. 4.19. Experimental step response of the converter with (a) NPIC (b) PI for a step change in 

reference voltage from Vref = 20 V to 27.5 V, at Vs = 15 V, load resistance R = 12.5 Ω. 
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(a) 
 

 
 

(b) 
 

Fig. 4.20. Simulated step response of the converter with NPIC and PI controllers for a step change 

in input voltage from Vs = 15 V to Vs = 13 V, at Vref = 25 V, load resistance R = 12.5 Ω 

(a) output voltage (b) inductor current. 

 

4.10 Stability Analysis of NPIC 

Limit cycles have been reported in FLC systems [89] under large transient 

disturbances. These limit cycles are undesirable sustained oscillations occurring in a 

system due to the control or state variable hitting its non-linear hard-limits. When 

limit cycles occur in a power converter, the voltage across the components and device 

currents are extremely large challenging the life of the power converter. Thus, the 

study of limit cycles and the conditions under which they are initiated in a converter is 

essential.  
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The simplification of PI-FLC to NPIC makes it easy to predict the gain margin 

‘K’ of the system beyond which limit cycles occur. Such an analysis has been carried 

out under the maximum loaded conditions (R = 12.5  Ω, Vs = 12.5 V, and Vref = 25 V) 

of the boost converter under study and is presented here. In this section, two different 

aspects of analyzing stability are discussed. The stability analysis presented here is 

limited to NPICs that don’t need input pre-processing. 

 

4.10.1 Gain-Margin without Considering System Non-linearities: 

The boost power converter-NPIC system has several non-linearities. The non-

linearities in the system include 

• Non-linear nature of NPIC including its saturation 

• Control input (duty ratio) limitation (from 0 to 0.85) 

• Unidirectional inductor current (from 0 to infinity) 

• Unidirectional output voltage (from 0 to infinity). 

 

Among the above-mentioned non-linearities, under transient disturbances, the 

first three non-linearities may become active depending on the magnitude of 

disturbance. The fourth non-linearity is generally inactive in most cases. 

 

In the present approach of analyzing stability, the non-linearity of NPIC ‘ψ’ is 

treated as a simple gain whose value is equal to its slope at the origin of the d-r plane. 

All the non-linearities in the converter and controller are assumed to be inactive and 

the converter is represented by its small-signal model. Stability analysis is carried out 

using well-known frequency-domain technique of root locus. The gain margin ‘K’ 

predicted so is valid only for disturbances of infinitesimal magnitude at the operating 

point considered. For the boost converter-NPIC system under consideration, using 
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root locus technique, the gain margin ‘K’ has been calculated to be equal to 4.9 at the 

operating point under consideration. 

 

4.10.2 Describing Function Approach- Gain Margin Considering 

NPIC’s Non-linearity 

 

A fairly good prediction of gain margin is expected if the non-linearities listed 

before are taken into consideration. However, in this sub-section, for the sake of 

simplicity, the non-linearity of NPIC alone is considered for predicting the gain 

margin ‘K’ at which the system breaks into limit cycles. All the other non-linearities 

are assumed to be inactive. The NPIC is modeled using describing function method 

[67], [68]. The describing function ‘N(A)’ of NPIC’s non-linearity ‘ψ’ (represented by 

Fig. 4.10(a)) has been computed using SIMULINK and is shown in Fig. 4.21.   

 

Fig. 4.21. Describing function of NPIC’s non-linearity ‘ψ’ with output saturation. 

 

The Nyquist plot of the rest of the system (G(s) = converter + filter + 

preprocessing circuits + other gains) and negative inverse (-1/N(A)) of describing 

function of NPIC are plotted on the same complex frequency plane (refer Fig. 4.22). 

Any intersection between the two curves predicts the existence of a limit cycle, whose 

frequency corresponds to the frequency value in the G(s) curve. With no intersection 
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between G(s) and -1/N(A) curves, the system without any extra gain (K=1) is 

predicted to be stable (Refer curve (b) on Fig. 4.22). Limit cycles at 388 Hz are 

predicted at a gain ‘K=2.3’ at which G(jw)*K (curve (a) in Fig. 4.22) touches the -

1/(N(A) curve.   

 

Fig. 4.22.  Onset of limit cycles predicted by describing function method; (a) Nyquist plot of G(s)*K 

(system with the incremental gain ‘K’) at the verge of instability (b) Nyquist plot of G(s) 

alone with K=1 (stable). 

 

Although describing function method takes into account the non-linearity of 

NPIC, it should be noted that the rest of the system (G(s)) is assumed to be 

represented by its small-signal model. Hence, in order to investigate the performance 

in the actual converter, the gain of NPIC was increased and the converter was 

switched on. At an extra gain of 3.3, the converter exhibited limit cycles upon start-up. 

Fig. 4.23 shows limit cycles observed in the experimental set up. The frequency of 

limit cycles is about 370 Hz.  It should be seen that while the output of NPIC 

(incremental control action ‘r’) hits its hard limits (op-amp saturations), the other 

quantities namely the duty ratio, the inductor current, and the output voltage do not hit 

their corresponding hard-limits.  
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Fig. 4.23. Experimental waveforms showing the converter exhibiting limit cycles at an extra gain of 

3.3 (a) Output ‘r’ of ‘ψ’ (5 V/div) (b) Inductor current (5 A/div) (c) Duty ratio (0.5 

units/div) (d) Output voltage (4 V/div) with channel in ac mode  

 

The discrepancy between gain margin predicted by describing function analysis 

(K = 2.3) and that observed in the experiments (K = 3.3) is believed to be attributed to 

the difference between the small-signal and large-signal models of the converter and 

to the non-exact modelling of system parasitics. It must be noted that with some 

disturbances, the other non-linearities in the converter such as duty cycle limits also 

become active. In such cases, a more detailed analysis may be needed to predict the 

gain margin.  

 

4.11 Chapter Conclusions 

Rule tables of Fuzzy logic controllers (FLCs) of the type typically implemented 

with power converters have an exact-Toeplitz or near-Topelitz structure. Such an FLC 

can be reduced to an NLFC which can be realized using fast and inexpensive analog 

circuitry. NLFC can be easily designed and analyzed when compared to the original 

two-input FLC. Besides, it also gives an insight into the design of FLCs to offer good 

dynamic performance in power converters. An example design of NPIC, the 

simplified form of PI-FLC, from a benchmark-PI controller to offer good transient 
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response in a classical boost converter has been presented. Experimental results 

demonstrating the good dynamic performance offered by NPIC have been discussed.  

A stability analysis to predict the gain margin at which limit cycles occur in the boost 

converter employing NPIC has been discussed.   

 

With this, the investigation of dynamic performance improvement in boost and 

buck-boost-derived converters by enhancements in design and control schemes is 

complete. The rest of the thesis discusses the improvement in dynamic performance 

by modifications in the converter topology.  
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CHAPTER 5 
 

NOVEL TRI-STATE CLASS OF BOOST AND BUCK-BOOST-

DERIVED CONVERTERS WITH FAST DYNAMICS 
 

5.0 Background 

As mentioned in Chapters 1 and 2, classical single-switch boost and buck-boost-

derived dc-dc converters operating in CCM suffer from dynamic response problem 

due to the presence of RHP zero in their small-signal control-to-output transfer-

function. The problem is further compounded due to change in operating point which 

makes the RHP zero move in the complex frequency (s) plane. 

 

Chapters 1 and 2 explained the effect due to the RHP zero in a conventional 

boost converter in time and frequency domains and the difficulty in achieving good 

small-signal bandwidth. Designers are generally forced to limit the overall closed-

loop bandwidth to a low frequency dictated by the worst-case RHP zero location. 

Typically the bandwidth is limited to 1/30th of the switching frequency [12]. 

 

In this chapter, a novel ‘tri-state’ class of converters derived from boost and 

buck-boost-based dc-dc converters is presented. The converters belonging to this tri-

state class have an additional degree of control freedom that can be exploited 

effectively to avoid the dynamic response problem due to the presence of RHP zero 

occurring in the control-transfer-function of their classical counterparts.  

 

The chapter is organized as follows. The tri-state class of converters will be 

introduced and the motivation behind the elimination of RHP zero will be explained. 
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The discussions after this will focus primarily on the tri-state versions of boost and 

flyback converters. Firstly, the ‘tri-state boost’ converter and the control freedom 

offered by the converter are explained. A simple control method that avoids the RHP 

zero in the control-transfer-function is presented. The steady-state operation and the 

small-signal model (under the proposed control method) of the converter are also 

presented. The superior dynamic performance of the converter over the classical boost 

converter is established through computer simulations and experimental results.  

 

Following the discussions on tri-state boost converter, similar theoretical 

analysis, and discussions on tri-state flyback converter supported by experimental 

results are presented. 

5.1 Tri-State Class of Converters- Motivation 

The time-domain effect of RHP zero in the classical boost converter has been 

explained in section 2.1. A step increase in duty ratio triggered by a sudden load 

increase causes the output voltage to dip initially before it starts to rise (Fig. 2.2). This 

effect of RHP zero can be eliminated and an improvement in the dynamic response of 

the converter is expected if the ‘OFF’ interval of the converter is in principle made 

independent of the ‘ON’ interval. Such a de-coupling is made possible by introducing 

an additional ‘inductor-free-wheeling interval’ in the converter. The class of 

converters having this additional ‘inductor-free-wheeling’ interval, on account of the 

three-state cyclic-steady-state operation (CCM) is named as ‘tri-state’ class of 

converters. Fig. 5.1 demonstrates the decoupling of ‘capacitor-charging’ (OFF) 

interval from the ‘boost’ (ON) interval. Any increase in ‘boost’ interval can be 

achieved by a corresponding reduction in ‘free-wheeling ‘interval without having to 

change the ‘capacitor-charging’ interval as shown in Fig. 5.1. 
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Fig. 5.1  Tri-State class of converters- Motivation 

 

Fig. 5.2 shows the classical versions of popular boost and buck-boost-derived 

converters and their corresponding ‘tri-state’ topologies. The additional switch or 

diode (or both) needed to realize ‘tri-state’ operation are represented as Sf and Df .  

 

Fig. 5.2  Circuit diagrams of classical and modified tri-state boost and buck-boost-derived power 

converters (list continues in the next page also. Please refer to the next page for figure 

captions) 
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Fig. 5.2  Circuit diagrams of classical and modified tri-state boost and buck-boost-derived power 

converters (a) Classical boost converter (b) Tri-State boost converter (c) Classical buck-

boost converter (d) Tri-state buck-boost converter (e) Classical flyback converter (f) Tri-

state flyback converter (g) Classical full-bridge transformer-isolated boost converter (h) 

Full-bridge transformer-isolated tri-state boost converter (i) Classical push-pull isolated 

boost converter (i) Push-pull isolated tri-state boost converter. 
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While the classical versions of boost, push-pull isolated boost, buck-boost, and 

flyback require both a switch and a diode for realizing tri-state operation, the full-

bridge transformer isolated boost converter requires only an additional diode. An 

existing converter which does not need any additional component is the cascade-

buck-boost (CBB) converter (Refer Fig. 5.3), known popularly for its low switch-

voltage-stresses. By appropriately controlling the switches S1 and S2, an inductor 

current waveform similar to that in Fig. 5.1 can be obtained. An application of tri-

state operation of this converter in single-phase power factor correction will be 

discussed later in the thesis. 

 

 

Fig. 5.3  An existing converter with possible tri-state operation- Cascade-buck-boost converter 

5.2 Tri-State Boost Converter 

In this section, the steady-state operation and small-signal model of tri-state 

boost converter are presented. Following this, using a simple ‘constant-Do’ control 

scheme, dynamic performance improvement in the converter over classical boost 

converter is demonstrated through simulation and experimental results.  

 

Fig. 5.4 shows another variation of the proposed tri-state boost converter, 

different from that in Fig 5.2(b). Though there are differences in the two converters 

from a practical-implementation point of view, from the control point of view both 
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converters operate in a similar manner. For example, the switch Sf of the converter 

shown in Fig.5.4 (Circuit B) carries less current than that of the converter shown in 

Fig. 5.2(b) (Circuit A). Thus, Circuit-B can be expected to be more efficient. However 

in Circuit-A, the switches Sf and Sm form a totem-pole arrangement and commercial 

MOSFET driver ICs can be used to drive them. The discussions in this chapter 

specifically focus on Circuit-A variation of the converter, though much of the 

discussion is valid for Circuit-B as well. 

 

Fig. 5.4. Tri-state boost converter –another alternative (Circuit B) 

 

As mentioned before, the proposed tri-state boost converter shown in Fig. 5.2(b) 

has three intervals of operation (Fig. 5.5) in cyclic steady-state. They are  

1. The ‘freewheeling’ interval (Df T): The boost-inductor current is in the 

freewheeling mode. The switch Sf is ON and Sm is OFF. The diode D is 

reverse-biased and the capacitor C supplies the load.  

2. The ‘boost’ interval (Db T): Both Sm and Sf are ON and the inductor 

current builds up. Once again the diode D is reverse-biased and 

capacitor C takes care of the load.  

3. The ‘capacitor-charging’ interval (Do T): Both Sm and Sf are OFF and 

the diode D is forward-biased. The inductor current ramps down as the 

transfer of power to the load side takes place, with the capacitor C 

being charged.  



Chapter 5 Novel tri-state class of boost and buck-boost-derived converters with fast dynamics 

 99

It may be noted that 

1DDD obf =++  (5.1) 

Due to the above constraint (5.1), any two of the three intervals can be 

controlled independently provided the third interval does not vanish to zero. Thus, 

unlike in a classical boost converter, the tri-state boost converter allows the boost 

interval (Db T) to be changed at the expense of the freewheeling interval (Df T), 

without having to alter the capacitor-charging interval (Do T). This has the capability 

of avoiding the RHP zero in control transfer function of the tri-state boost converter. 

. 
Fig. 5.5. Equivalent circuits under different intervals of operation (a) ‘Freewheeling’ interval (Df T) 

(b) ‘Boost’ interval (Db T) (c) Capacitor-charging interval (Do T). 
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The currents and voltages in the switches and diodes can be easily determined 

from the waveforms shown in Fig. 5.6 for analysis and design purposes. A point to be 

noted is that during the capacitor-charging interval (Do T), the MOSFETs, Sm and Sf, 

are both off. Thus in circuit-A, the drain voltage of Sm is undefined during this 

interval.  

 
Fig. 5.6. Theoretical steady state waveforms of the tri-state boost converter   (a) Boost-inductor 

current (b) Boost-inductor voltage (c) Voltage across A and B. (d) Anode-cathode voltage 

of Diode D. 

 

Another issue which is of significant importance is the related to the sequence of 

operation of the intervals. The sequence of the intervals of operation can be different 

from that in Fig. 5.1 (Df → Db → Do). For example, in Fig. 5.7, the operating sequence 

is (Db → Df → Do). This latter sequence has the disadvantage of additional losses in 
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the inductor and in the devices, Sf  and Df , due to higher freewheeling current. 

 
Fig. 5.7.  Alternative sequence for converter operation (Db → Df → Do) 

 

5.2.1 DC Analysis 

In this sub-section, the dc-analysis of the tri-state boost converter is presented.  

A. Boost Voltage Gain 

Applying the volt-second balance across the inductor L (Fig. 5.2(b)) and 

assuming a lossless converter, the dc characteristics of the tri-state boost converter 

can be shown to be  
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where Vo is the dc output voltage, Vs is the dc input voltage, Io is the dc output current, 

and Is is the dc source current. From (5.2), it can be seen that by varying Db/Do ratio, 

the output voltage of the converter can be varied. 

 

B. Inductor Current Ripple (Iripple) 

The inductor current ripple can be calculated using the following expression. 

 
L

TDVI bs
ripple =  (5.3) 
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C. Average Inductor Current (IL) 

Assuming an inductor current sequence of Df Db Do as in Fig. 5.8, the 

average inductor current is obtained by the following expression.  

dcf
bs

L ID
L

TDV
I +−= )1(

2
 (5.4) 

where, Idc is the free-wheeling current in the inductor.  

 

 

Fig. 5.8.  Inductor current waveform with (Df → Db → Do) sequence 

 

D. Peak Inductor Current (Ip) 

Assuming an inductor current sequence Df Db Do as in Fig. 5.8, the peak 

inductor current is obtained by the following expression.  

dc
bs

p I
L

TDV
I +=  (5.5) 

 

E. Average Input Current 

Assuming a lossless transfer of power, the average input current Is and average 

output current Io are related by the following expression.  
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F. Output Voltage Ripple (Vo_ripple) 

With filter capacitor C, cycle time T, and ignoring ESR of the capacitor, the 

output voltage ripple can be calculated using the following expression. 

 
)1(
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−
=  (5.7) 

 

5.2.2 Control Characteristics- A simple ‘Constant-Do’ Control 

Method 

The presence of the ‘free-wheeling’ interval (Df T) introduces one more degree 

of control-freedom. As a result, there are several ways of controlling the converter. 

Among them, to start with, a simple control method in which Db is varied with Do 

being fixed is investigated in the rest of this chapter. This simple control method is 

named ‘Constant-Do’ control method.  

 

In the ‘constant-Do’ control method, the maximum gain of the converter (Vo/Vs) 

is reached when Db=1-Do (that is Df = 0) and the value of this theoretical maximum 

gain is 1/Do (see (5.2)). Thus, if a boost gain of 5 is required, the value of Do should be 

less than 0.2. Any increase in the energy demand by the load is met by an increase in 

the boost interval (Db T) and a corresponding decrease in the freewheeling interval (Df  

T). The instantaneous drop in energy supply to the output side and the resulting output 

voltage dip experienced in classical boost converter are avoided here as Do T remains 

unaffected. 

5.2.3 Small-Signal Characteristics 

The state equations of the tri-state boost converter during the various intervals 

are given in (5.8)-(5.10). 
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With fixed capacitor-charging time (Do T) and the control input being Db, using 

state-space averaging and linearization, the control-to-output (Db-to-Vo) transfer-

function for the tri-state converter can be obtained as 
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Detailed derivation of the above expression is given in Appendix A. As 

expected, (5.11) shows the absence of RHP zero. On the other hand, the control-to-

output transfer-function (5.12) [repetition of (2.1)] of the classical boost converter has 

an RHP zero. 
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 Here D is the duty ratio at the operating point. 

 

For a classical boost converter (5.12), the dc gain and the pole and zero 

locations vary with operating point due to changes in the duty cycle D. Conversely, in 

tri-state boost converter (5.11), with the control method fixing Do, the pole-zero 

locations are fixed and the dc gain depends only on the input voltage Vs. Thus, the 

task of designing the controller for the tri-state boost converter under ‘constant-Do’ 

control scheme is further simplified. 

 

Taking the ESR (Rc) of the capacitor also into account, the control-to-output 

transfer-function of the tri-state boost converter can be shown to be 
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The left-half plane zero in (5.13) is due to the ESR of the filter capacitor. The 

input-to-output transfer-function (audio susceptibility) without considering the effect 

of parasitics is given by the following expression. 
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Under the proposed ‘constant- Do’ control scheme, the audio susceptibility 

depends primarily upon the input voltage.  

5.2.4 Simulation and Experimental Verification 

A tri-state boost converter and a conventional ‘benchmark’ boost converter of 
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same specifications (see Table 5.1) were designed, simulated using MATLAB 

SIMULINK [63], built, and tested. A comprehensive procedure on the design of these 

filter components is given in Chapter 7. Details of simulation are given in appendix B. 

Hardware implementation details are given in appendix C. The output specifications 

of the converter were 50W/25V and the switching frequency was 50 kHz. This sub-

section presents simulation and experimental results, comparison, and discussions. 

 

TABLE 5.1. BOOST CONVERTERS’ SPECIFICATIONS 
 

Input voltage L C Do
* Output 

voltage R 

10 to 20 V 275 µH 540 µF 0.3 25 V 10 to 100 
Ω 

* Value needed only for tri-state boost converter 
 

 

 

Fig. 5.9. Experimental waveforms of the tri-state boost converter at half load (Vs = 14V and Io = 

1.2 A) (a) inductor current (b) voltage across inductor (c) cathode to anode voltage of 

diode D  (d) voltage across A and B. Scale: current: 0. 5 A/div (ground not shown), 

voltage: 20 V/div, time: 5µs/div. 

 

Fig. 5.9, a composite plot obtained by combining two different oscilloscope 

plots, shows the steady-state experimental waveforms of the tri-state boost converter. 

The experimental waveforms confirm the expected theoretical waveforms of Fig. 5.6. 
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It is seen that the inductor current shows a small droop during the freewheeling 

interval primarily because of the conduction losses in the ESR of inductor and in the 

devices Sf and Df. 

 

Fig. 5.10. Control-to-output Bode plots under minimum line  (10 V) and maximum load (2 A) - 

Classical boost converter / open-loop operation. 

 

A.  Open-Loop Performance 

The location of RHP zero of the classical boost converter is closest to the 

imaginary axis in the complex s-plane under minimum input voltage and maximum 

load condition. Under this operating condition, the theoretical and experimental 
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(obtained using HP4194A gain-phase analyzer) Bode plots of the designed classical 

boost converter are shown in Fig. 5.10. It is seen that due to the presence of complex 

poles (at a frequency close to 180 Hz) and RHP zero (at a frequency close to 1060 

Hz), the phase rolls down towards -270 degrees. However, the ESR of the output-

capacitor introduces a zero (at a frequency close to 6000 Hz) which causes the phase 

to recover to -180 degrees. 

 

Fig. 5.11. Control-to-output Bode plots under minimum line (10 V) and maximum load (2 A) –Tri-

state boost converter / open-loop operation. 

 

Fig. 5.11 shows the corresponding Bode plots of the tri-state converter under the 

above operating conditions. The experimental Bode plot has a low dc gain, a flatter 

overall gain curve, and also higher phase compared to the simulated plot which can 
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perhaps be attributed to the losses in the system. This is because, under low line and 

high load conditions, the effect of parasitics such as forward voltage drops of diodes 

and voltage drops in the parasitic resistance of inductor become significant. In the 

next chapter, a closer match of experimental and theoretical Bode plots taken under 

conditions of a relatively higher input voltage and lighter (half) load (during which 

the effect of circuit parasitics is relatively less), will be shown. This will confirm the 

correctness of the modeling approach. The Bode plots, as theoretically predicted, 

resemble that of a simple second order system without any RHP zero. At high 

frequencies, the normal left-half plane zero due to the ESR of the capacitor shows up. 

 

Figs. 5.12 and 5.13 show the simulated variations of inductor current and output 

voltage for a step change in duty ratio applied to classical and tri-state boost 

converters respectively. The characteristic initial undershoot seen in the output 

voltage (Fig. 5.12) of the classical boost converter due to RHP zero is absent in the 

tri-state converter (Fig. 5.13). 

 

Fig. 5.12. Inductor current (upper) and output voltage (lower) waveforms of classical boost 

converter for a step increase in duty ratio from D = 0.5 to 0.51 at Vs = 12.5 V, Vo  = 25 V, 

Io  = 2 A 
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Fig. 5.13. Inductor current (upper) and output voltage (lower) waveforms of tri-state boost converter 

for a step increase in duty ratio from D = 0.3 to 0.31 at Vs = 12.5 V, Vo  = 25 V, Io  = 2 A  

B. Closed-Loop Performance 

The settling time of the output (to reach and stay within 5% of the steady-state 

value) for a small step-change in reference voltage and the bandwidth of the loop 

transfer-function have been used as measures to compare the closed-loop 

performances of the two converters.  The objective of the controller design was to 

obtain a phase margin of at least 45 degrees and a large bandwidth. 

 

For the classical boost converter, the transfer-function of the controller designed 

to achieve good performance is given below. 

s

1
100

s

0.8)s(Tc

+
=  (5.15) 

 

With the above controller, a cross-over frequency of 270 Hz has been realized. 

The phase margin achieved is about 48 degrees (Fig. 5.14). Due to the presence of 

RHP zero, the controller designed can achieve only a low overall bandwidth. 
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Fig. 5.14. Loop transfer-function Bode plots under minimum line (10 V) and maximum load (2 A)- 

Classical boost converter 

 

As mentioned earlier, in the case of the tri-state boost converter, the design of 

controller is simple as the corner frequency of the control transfer function is fixed. 

This permits obtaining any bandwidth (of course, up to half the switching frequency) 

with a lead-lag controller having a zero located either at the resonant frequency of the 

transfer-function or at slightly higher frequencies. A design goal of 5 kHz was set and 

the transfer-function of the controller designed is given below.  
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Fig. 5.15. Loop transfer-function Bode plots under minimum line (10 V) and maximum load (2 A)-

Tri-state boost converter. 

 

The experimental loop-gain cross-over frequency of the converter is 5.5 kHz 

and the phase margin is over 90 degrees (refer Fig. 5.15). It was found that the 

converter’s small-signal response is affected by the losses in the circuit, particularly 

by the losses in the freewheeling path.  It is believed that this accounts for an 

experimental phase higher than the simulated value (Fig. 5.15). The theoretical gain-
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phase curves in Fig. 5.15 have been plotted taking into account several parasitic 

quantities including the ESR of the capacitor (0.05 Ω), the ESR of the filter inductor 

(0.15 Ω), the diode drops and the MOSFET ON-resistance (0.3 Ω). In spite of this, 

there is a mismatch in the Bode plots, particularly in the phase plot. This is perhaps 

due to the low input voltage (10 V) at which these measurements were made. 

 

Figs. 5.16 and 5.17 show the closed-loop response of the two converters for a 

step change in reference voltage. It is seen that the tri-state converter has a smaller 

settling time (700 µs) as against 40 ms settling time of the classical boost converter. 

Table 5.2 summarizes the performance of the two boost converters. As expected, the 

efficiency of the tri-state boost converter is less than that of the classical boost 

converter due to the losses in the additional circuit elements. An improvement in 

efficiency of the tri-state converter by optimizing the inductor current through 

adjustments in the control input Do will be presented in the next chapter. 

 

 

Fig. 5.16. Experimental step response of the classical boost converter for a step change in voltage 

reference (a) Step reference change (b) Inductor current (from 4.8 A to 5.1 A) (c) Output 

voltage (from 24.6 V to 25.5 V). Scale: voltage: 0.5 V/div, current: 0.5 A/div, time: 

5ms/div 
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Fig. 5.17. Experimental step response of the Tri-state boost converter for a step change in voltage 

reference (a) Inductor current (b) Output voltage (from 24.5 V to 25.4 V) (c) Step 

references change. Scale: voltage: 1 V/div, current: 0.5 A/div, time: 200µs/div  

 
TABLE 5.2.  COMPARISON OF EXPERIMENTAL PERFORMANCE OF CONVERTERS 

 
 Crossover 

frequency 
Phase 

margin Settling time* Full-load 
efficiency 

Classical 
boost 270 Hz 48 degrees >40 ms 84% 

Tri-state 
boost 5500 Hz >90 deg 0.7 ms 74% 

 

* To reach within 5% of steady-state value 

5.3 Tri-State Flyback Converter 

Fig. 5.18 shows the tri-state flyback converter. The free-wheeling interval is 

introduced by the additional switch Sf connected in parallel to the zener diode Dz . The 

zener diode Dz is used to dissipate the energy trapped in the leakage inductance of the 

transformer.  

 

In this section, the operation and small-signal model of the tri-state flyback 

converter is first presented. Following this, simulation and experimental results (under 

‘constant-Do’ control scheme) demonstrating the dynamic performance improvement 

are discussed. It should be noted that a similar work was reported in [70] in the year 

2002 while our work on tri-state family of converters was in progress. Since similar 
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results are already published, the tri-state flyback converter is discussed here for the 

sake of completeness. However, there are differences between the implementation 

considered here and that discussed in [70]. For example, the inductor current follows 

a sequence Db Df Do in the implementation reported in [70], whereas it follows 

Db Do Df here. Besides, in one of the two topologies proposed in [70], the current 

freewheels through a switch (MOSFET) whose source is connected to the positive rail 

of the supply. Discussions on the driver IC requirement of this switch are not 

available. 

 

Fig. 5.18.  Tri-state flyback converter- circuit diagram. 

 

5.3.1 Tri-State Flyback Converter - Switching Sequence and 

Theoretical Waveforms 

Under cyclic-steady-state tri-state operation, the status of the switches in tri-state 

flyback converter (Fig. 5.18) is as below. 

Boost interval   -  (Db T)  Sm alone is ON 

Capacitor charging interval - (Do T)  D alone is ON 

Free-wheeling interval  - (Df T)  Sf, Df - ON 

 

The theoretical waveforms of the various quantities are shown in Fig. 5.19. Here 

Im is the equivalent magnetizing current in the coupled inductor. Ipy is the current in 
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the primary winding and ID is the current in the secondary winding.  

 

The steady-state voltage gain of the converter can be obtained by applying volt-

second balance across the equivalent inductor. The voltage gain can be verified as  

o

b

s

o

D
Dn

V
V

=  (5.17) 

 

Fig. 5.19. Ideal theoretical steady state waveforms of the tri-state flyback converter   (a) Gate-source 

voltage of switch Sm (b) Gate-source voltage of Sf (c) Magnetizing current in the 

equivalent inductor (d) Primary winding current (e) Secondary winding current (f) 

Voltage across the primary winding. 

 

5.3.2 Tri-State Flyback Converter- Small-Signal Characteristics 

The state equations of the tri-state flyback converter obtained by neglecting the 

effect of parasitics, assuming the transformer turns ratio to be unity (n=1), and 
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replacing the coupled inductor by its magnetizing inductance Lm as follows. 
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With a fixed capacitor-charging time (Do T) and the control input being Db, 

using state-space averaging and linearization, the control-to-output (Db-to-Vo) 

transfer-function for the tri-state flyback converter can be obtained as 
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The above transfer-function (assuming n=1) is exactly same as the one obtained 

with the tri-state boost converter (5.11) and has the same advantages as those of the 

tri-state boost converter’s control transfer-function discussed in the previous section. 

The control-to-output transfer-function of the single-switch flyback converter shown 

in Fig. 5.2(e) (with n=1) has an RHP zero and is given by the following expression. 
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In (5.22), D stands for the duty ratio of the switch at the operating point. It may 

be seen that similar to the case of the classical boost converter, the locations of poles 

and the RHP zero change dynamically with changes in operating point.  

 

Considering the effect of parasitics namely the diode forward voltage drop Vd, 

ESR of the capacitor Rc, resistance of the primary winding rp, resistance of the 

secondary winding rs, and the MOSFET resistance mr, the control-to-output voltage 

transfer-function of the tri-state flyback converter under ‘constant-Do’ control scheme 

(5.21) gets modified. The modified transfer function can be verified as 
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Once again it may be seen from (5.23) that an LHP zero has been introduced on 

account of the ESR of the filter capacitor. 

5.3.3 Simulation and Experimental Results 

A tri-state flyback converter with the specifications given in Table 5.3 has been 

designed and simulated. A hardware prototype has been built and tested. Simulation 

models are described in appendix B. Circuit implementation details are given in 

appendix C. This section presents simulation and experimental results demonstrating 

the excellent dynamic performance of the converter.  
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TABLE 5.3. TRI-STATE FLYBACK CONVERTERS’ SPECIFICATIONS 
 
 

Input 
voltage Lm C Do

* Output 
voltage 

Io 
(rated) 

Switching 
frequency n Vz of 

Dz 
20 to 40 V 240 µH 100 µF 0.3 25 V 2 A 100 kHz 1 100V 

* Value needed only for tri-state flyback converter 
 

 

Fig. 5.20, a composite plot obtained by combining two different oscilloscope 

plots, shows the steady-state experimental waveforms of the tri-state flyback 

converter under certain load and line conditions. The experimental waveforms 

confirm the expected theoretical waveforms of Fig. 5.19. The ringing observed in 

these waveforms is attributed to the leakage inductance of the windings and the 

parasitic capacitances.  

 

Fig. 5.20. Experimental waveforms of the tri-state flyback converter at half load (Vs = 35V and Io = 

1 A)  (Ipy)- Primary current, scale: 5 A/div (Vgs-Sm) – Gate-source voltage of Sm, scale: 10 

V/div, (Vpy)- Voltage across the primary winding, scale : 50 V/div (Vds Sm)- Drain-source 

voltage of Sm, scale: 50 V/div, time: 5µs/div. 

 

Fig. 5.21 shows the theoretical (with and without considering the effect of 

parasitics) and experimental Bode plots (obtained using HP4194A gain-phase 
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analyzer) of the control-to-output (Db-to-Vo) transfer.  

 

 

 

Fig. 5.21. Control-to-output (Db-to-Vo) Bode plots under Vs = 35 V and Io = 1 A –Tri-state flyback 

converter. 

 

As the ideal theoretical (without parasitics) and the experimental plots of the 

converter differ considerably, Bode plots taking into account the converter parasitics 

have also been plotted. The parasitics of the converter considered are listed below. 

 

ESR of Capacitor C   =  0.07 Ω 

Diode forward drops Vd   = 0.8 V (approximated) 

MOSFET forward resistance mr = 0.075 Ω (from data sheet) 

Primary winding resistance rp   =  0.059 Ω (measured)  
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Secondary winding resistance  rs =  0.057 Ω (measured) 

 

It may be noticed that with the inclusion of the parasitics, the theoretical 

predictions are closer to the experimental results (Fig. 5.21). This verifies the 

correctness of the predicted small-signal model of the converter. 

 

 

 

Fig. 5.22. Control-to-output (D-to-Vo) Bode plots under Vs = 35 V and Io = 1 A –Classical flyback 

converter. 

 

A classical flyback converter has been realized using the circuit in Fig. 5.18 by 

simply disabling the gate pulses to Sf. The theoretical (with and without considering 

ESR of filter capacitor) and experimental (obtained using HP4194A) control-to-
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output Bode plots of the classical flyback converter are shown in Fig. 5.22. It may be 

noticed that due to the presence of RHP zero, the phase plot rolls towards -270 

degrees but eventually recovers back indicating the existence of LHP zero due to ESR 

of the filter capacitor. 

 

5.3.4 Closed-Loop Performance 

For closed-loop performance, a design goal of 10 kHz was set for the tri-state 

flyback converter. A cascaded combination of lead-lag and PI controller (5.16) has 

been used to achieve the required bandwidth theoretically.  
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Fig. 5.23. Loop transfer-function Bode plots at Vs = 35 V and Io = 1 A -Tri-state flyback converter. 

 

Fig. 5.23 shows the experimental and theoretical loop-transfer-functions. While 

the theoretical bandwidth is 10 kHz, the experimental bandwidth obtained is about 6 

kHz. As may be noticed from Fig. 5.23, an increase in the overall gain of the 

experimental Bode plots will lead to a closer match of experimental and theoretical 
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Bode plots and also a higher bandwidth close to the design bandwidth of 10 kHz. 

Perhaps, the non-exact modeling of parasitics in the converter (leakage inductance not 

considered) and the parasitics of the controller have resulted in a reduction in the 

experimental bandwidth. Nevertheless, the experimental bandwidth is still better than 

the bandwidth (1/30th of switching frequency) realized typically with classical flyback 

converter. A full load efficiency (under minimum line conditions Vs=20V) of 74% has 

been obtained with the tri-state flyback converter using the ‘constant-Do’ control 

scheme.  

 

5.4 Importance of Tri-state Class of Converters  

To establish the importance and need of tri-state class of converters, a literature 

survey on non-isolated single-stage-single-switch power converters that perform boost 

action without presenting a RHP zero in the control transfer function has been done. 

Recently (June 2004), an interesting solution to RHP zero problem has been proposed 

in [90] for the case of a classical boost converter with an output LC filter. By 

magnetically coupling the boost inductance and LC filter inductance, RHP zero is 

eliminated from the control-transfer function. A disadvantage of this scheme is that an 

additional inductor and capacitor are used which occupy more physical space than a 

switch and diode that is needed in the case of a tri-state boost converter. Besides, 

effect of line voltage variations on the frequency response of the converter is not 

discussed. It is believed that line voltage variations will alter poles of the transfer 

function significantly and may restrict the closed-loop bandwidth achieved. This is 

unlike the case of a tri-state boost converter employing ‘constant-Do’ control scheme.  

 

A qualitative comparison of tri-state class of converters with popular CUK and 

SEPIC (Single-ended primary inductance) converters has also been done. One of the 
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prime advantages of both Cuk and SEPIC converters is that unlike the case of the tri-

state converters, both the input and output currents of these converters are smooth 

resulting in a significant reduction in filter capacitances (both input and output). 

 

On the downside, a major disadvantage of both SEPIC and Cuk converters is 

that they employ four energy elements and exhibit fourth order response [86]. As a 

result, the small-signal closed-loop bandwidth realized with these converters is 

generally much limited. Besides, the control transfer function of the SEPIC converter 

has an RHP zero at high frequency. However, the small-signal bandwidth is believed 

to be limited primarily by the fourth order behavior of the converter and not by the 

RHP zero in this case. 

 

Similar to SEPIC converter, the bandwidth of Cuk converter is also limited by 

its fourth order behavior. Besides, the control transfer function of the converter has a 

pair of complex conjugate zeros that shift between right-half and left-half of the 

complex frequency plane when the load conditions change [87]. This also limits the 

small-signal bandwidth obtained from the converter.  

 

5.5 Chapter Conclusions 

This chapter has proposed tri-state versions of boost and buck-boost-derived 

converters that avoid the dynamic response problem due to the presence of RHP zero 

in the control-to-output transfer-function of their corresponding classical versions. 

The additional degree of control-freedom introduced in the converter in the form of a 

freewheeling interval has been exploited through a simple ‘constant-Do’ control 

technique to achieve this elimination of RHP zero. Analytical, simulation and 

experimental results of the tri-state boost and flyback converters have been presented 



Chapter 5 Novel tri-state class of boost and buck-boost-derived converters with fast dynamics 

 125

and compared with those of their classical converter versions. The results clearly 

demonstrate the superior dynamic performance of the proposed tri-state converters. 

Similar improvement in dynamic performance is expected in the case of other tri-state 

converters over their corresponding classical versions. The proposed converters can 

be used in applications wherever fast-response boost/buck-boost action is needed. 
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CHAPTER 6 
 

DUAL-MODE CONTROL OF TRI-STATE CONVERTER FOR 

IMPROVED PERFORMANCE  
 

6.0 Background 

Chapter 5 introduced the tri-state class of power converters. A ‘constant-Do’ 

control scheme, in which the ‘capacitor-charging’ interval of the converter is kept 

constant was investigated in greater detail. Significant improvement in dynamic 

performance of the tri-state converter over that offered by its classical counterpart was 

verified through simulations and experimental results. A key problem with the 

‘constant-Do’ control scheme is that the resulting inductor current is large especially 

under high line and load conditions, thereby causing high circuit losses. Improvement 

in operating efficiency of the converter by optimizing the magnitude of inductor 

current is the topic of discussion in the present chapter.  

 

To optimize the inductor current and hence to improve the steady-state operating 

efficiency without much compromise in the dynamic performance, in this chapter two 

variations of a novel dual-mode control (DMC) scheme, both of which effectively 

exploit the additional degree of control-freedom offered by the tri-state boost 

converter are proposed and compared. This proposed DMC schemes aim to meet the 

multiple objectives of excellent small-signal transient response, large dynamic range 

of operation, and improved efficiency. Unlike the ‘constant-Do’ control scheme, the 

DMC schemes vary both the ‘boost’ and the ‘capacitor-charging’ intervals to achieve 

the desired transient and steady-state performance objectives. 
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The chapter presents the complete small-signal transfer function model of the 

tri-state boost converter. Based on this model, design of controllers for the proposed 

DMC control methods are carried out using multi-variable control techniques. The 

superior performance of tri-state boost converter with DMC schemes over the one 

with ‘constant-Do’ scheme and over that of the classical boost converter with PI 

control is established through simulations and experimental results. The DMC 

schemes achieve a significant (about 10%) improvement in converter’s efficiency for 

a wide load range over the ‘constant-Do’ control scheme. The limitations of the 

proposed DMC schemes are discussed briefly. A detailed discussion on the limitations 

of the control scheme and its implications on selecting the power and control 

components will be discussed in the next chapter.  

 

Although the discussions in this chapter are limited to DMC of tri-state boost 

converter, it is believed that the proposed control method will also improve the 

operating performance of the other tri-state converters discussed in Chapter 5.  

 

Section 6.1 describes the limitations of tri-state boost converter employing 

‘constant-Do’ control scheme. Section 6.2 introduces and describes the DMC scheme. 

This section also presents the complete small-signal control-to-state transfer function 

model of the tri-state boost converter. Section 6.3 verifies the small-signal model of 

the converter experimentally. A comparison of steady-state and dynamic 

performances offered by classical boost converter and tri-state boost converter under 

the various control schemes is given. Section 6.4 concludes the chapter. 
 

6.1 Dual-mode control (DMC) scheme- Motivation 

In this section, the limitations of tri-state boost converter employing ‘constant-

Do’ control scheme are discussed. In particular, the upper limit established on the 
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boost voltage gain and the reason behind the high magnitude of inductor current under 

high line and load conditions are explained. This brings out the need for the proposed 

DMC scheme. 
 

6.1.1 ‘Constant-Do’ Control Scheme- Limit on the Voltage Gain 

The tri-state boost converter has one more degree of control-freedom, due to the 

introduction of the free-wheeling interval. The dc voltage gain of the converter is 

given by ((5.2) repeated).  
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Thus, with Do held constant in the ‘constant-Do’ control scheme, an upper limit is 

established on the boost voltage gain. A higher boost gain, if needed, can be achieved 

only by changing Do. 

 

6.1.2 ‘Constant-Do’ Control Scheme- Magnitude of Inductor 

Current 

From Table 5.2, it may be noticed that the full load efficiency of tri-state boost 

converter employing ‘constant-Do’ control scheme is about 10% lower than the 

classical boost converter. This increased power loss may be attributed to the extra 

circuit elements employed. Another important reason is that the ‘constant-Do’ control 

scheme establishes a large free-wheeling current in the converter that increases the 

circuit losses significantly. It is this increase in loss due to large free-wheeling current 
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that is sought to be reduced in the proposed DMC method.  

 

The inductor freewheel current Idc can be shown to be  
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where, Ip-p is the peak-to-peak inductor ripple current and Ip is the peak inductor 

current. Fig. 6.1 shows the variation of free-wheel current with Do for the tri-state 

boost converter considered in Chapter 5. When Do is set at a low value, the free-wheel 

current is high resulting in increased power loss. Setting a high value of Do brings 

down the free-wheeling current and hence the power loss, but reduces the maximum 

possible boost ratio (6.2). In addition, a high value of Do also results in a smaller free-

wheeling interval (Df T).  As the free-wheeling interval acts as an ‘energy reservoir,’ 

any reduction in the free-wheeling interval leads to a reduced range of disturbances 

within which the converter offers fast dynamic response. An in-depth analysis of this 

aspect will be given in the next chapter, which deals with the design of the converter. 

 

Fig. 6.1. Theoretical variation of free-wheeling current versus Do at P = 50W, Vs = 15 V, Vo = 25 

V, f = 50kHz, and L = 278 µH. 

 

Under near-constant operating line and load conditions, the ‘constant Do’ control 

scheme will be the best choice to attain the multiple-objectives of achieving high 

efficiency, wide dynamic range of operation, and required boost ratio. However, when 
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the line and load conditions of the converter vary over a wide-range, the ‘capacitor-

charging’ interval (Do T) will also have to be varied in order to achieve the multiple 

goals desired for the reasons given below. 

 

Let the input voltage of the converter increase under a constant load. Under 

‘constant-Do’ control scheme, this increases the steady-state inductor current from 

IDC1 to IDC2 (refer Fig. 6.2) (as shown by (6.3)). It may be seen that the resulting free-

wheeling interval is long indicating large energy storage in the inductor. If, however, 

interval Do T is increased while still satisfying the boost gain needed (6.1), then the 

free-wheeling current Idc (6.4) and hence the circuit losses can be brought down as 

shown in Fig. 6.2. Such a ‘dual-mode’ control (DMC) scheme having two control 

inputs namely, Db and Do is proposed in this chapter. 

 

 

Fig. 6.2. Comparison between inductor currents established by constant-Do and DMC schemes for 

an increase in input voltage from Vo/2 to ¾ Vo.  

 

6.2 Dual Mode Control (DMC) Approach 

In this section, to start with, the tri-state boost converter’s small-signal transfer-
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function model is presented. A grouping of control-inputs to converter states is then 

done and on this basis, the DMC scheme is established. Two variations of the DMC 

scheme are presented and associated controller designs are discussed. 

 

6.2.1 Tri-State Boost Converter- Small-Signal Model 

Using state-space averaging and linearization, the control-input-to-converter-

state transfer-function matrix G(s) of the tri-state boost converter can be obtained as 

below. Detailed derivations are given in Appendix A. 
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where IL is the average inductor current, Vo is the average output voltage, and   

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−⎟
⎠
⎞

⎜
⎝
⎛ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
1

)2(
)2(1

1)(

1

1)(

32

22

2
2

2
ob

b

o

obs

o

s

ob

ob

o

bs

o

s

oo DD
sCRD

RD
DDV

D
V

R
sC

DRD
DDsL

D
DV

D
V

s
RD

Ls
D
LC

sG  (6.6) 

From the transfer function matrix (6.6), it can be seen that the Db-to-Vo transfer 

function (G11(s)) does not have an RHP zero. However, the Do-to-Vo (G12(s)) transfer 

function does have an RHP zero that shifts with the converter’s operating point. In 

addition, the Do-to-IL (G22(s)) transfer function has a negative gain that has to be 

handled appropriately in the control loop. 

  

6.2.2 Grouping of Control Inputs and Converter States 

In multi-variable control system involving N-inputs and N-outputs, there are N! 

ways to form control loops. In such cases, Relative Gain Array (RGA) ([71], [72]) 

attempts to give the best combination of control inputs and system outputs.  The RGA 

matrix also gives an estimate of the steady-state interaction between the different 
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loops.  Given a transfer function matrix G(s), RGA (Γ(0)) is generally obtained from 

the zero frequency (s=0) transfer function gain matrix G(0), given by 

{ }TGG 1)0()0()0( −∗•=Γ   (6.7) 

where operator ‘●*’ represents element-by-element matrix multiplication, superscript 

-1 stands for matrix inversion operation and superscript T stands for matrix transpose 

operation. In the RGA, in any ith row 
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where Γij stands for the element in the ith row and jth column and N is the row length 

of the square matrix Γ(0). The element Γij represents a measure of the influence of the 

jth control input on the ith system state. Hence, if in the ith row, 

jkikij ≠∀Γ>Γ       ),0()0(   (6.9) 

then the jth control input has a higher influence on the ith system state than the other 

control inputs.  Thus RGA helps us to find the appropriate grouping of the system 

states and control inputs. 

 

In the tri-state boost converter, from (6.6), the small-signal gains at zero-frequency 

(s=0) are given by 
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Obtaining the RGA using (6.7) and (6.10),  
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In (6.11), Γ11 is always greater than Γ12. This indicates that system state Vo has 

to be grouped with control input Db. Similarly, it can be seen that IL and Do should be 

grouped together. In addition, as mentioned before, the Do-to-Vo transfer function has 

an RHP zero and hence grouping Vo with Do will complicate the controller design as is 

the case in a classical single-switch boost converter. Thus, in the DMC scheme, Db 

value will be decided by the output voltage error and Do value by the inductor current 

error. 

 
 

Fig. 6.3.      Direct Dual-mode control (DDMC) scheme 

 

6.2.3 Control Method 1- Direct Dual-Mode Control (DDMC)  

The first DMC scheme proposed for tri-state boost converter is shown in Fig. 

6.3. This scheme, named as ‘direct dual-mode control (DDMC) scheme,’ employs 

two controllers, namely a voltage controller that decides Db from the output voltage 

error and a free-wheel current controller that decides Do from the inductor current 

error. The fast output voltage dynamics of ‘constant-Do’ control scheme is preserved 

by making the rate of change of Do slower than that of Db during transients.  Hence 

the output voltage loop is realized as a fast loop whereas the free-wheeling current 

loop is made relatively slow. Also, when the free-wheeling interval (Df T) vanishes to 
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zero, Do will be decided by the inductor current error and Db will be limited to (1-Do). 

If instead, Do is made dependent on Db, then the detrimental effect of RHP zero will 

appear again whenever Df vanishes as Do will be forced to change faster with Db.  

 

The inductor free-wheel current reference signal, Idc(ref) in Fig. 6.3 is set by 

‘Idc(ref) calculator’ as follows. Assuming no-loss converter operation, the average input 

current, Is can be derived from power equivalence. 

s
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 For maintaining tri-state operation (Df ≠ 0), the average inductor current has to 

be more than the average input current. The DMC achieves this by fixing the inductor 

free-wheeling current reference as 

s
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where K is a factor greater than unity. The K-factor decides the magnitude of the free-

wheeling/average inductor current. During start-up, as the output current is zero, the 

inductor reference current will also be zero as per (6.13). Hence, for proper start-up, a 

minimum value of Do (=0.1) overriding the DMC scheme is set. 

 

In general, as the magnitude of inductor current ripple is quite small compared 

to the free-wheeling current’s magnitude over a wide range of operation, either the 

average inductor current or the free-wheel current in the inductor can be used in the 

current loop. In the experimental results presented in this chapter, the inductor current 

has been sampled thus obtaining the free-wheeling current and fed back as Idc (Fig. 

6.3). An advantage of the DDMC scheme is that as the currents (inductor current and 

load current) are sensed directly, current limit protection can be easily implemented. 
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A. Significance of K-Factor  

Unlike the case of classical boost converter wherein the selection of power 

components are generally independent of the parameters of the employed control 

scheme, in the case of DMC-based scheme, the size and rating of power components 

are also dependent on the choice of K-factor. This can be inferred from (6.13). A low 

value of K-factor results in a small free-wheeling interval and improves the 

converter’s operating efficiency. However, the dynamic operating range of the 

converter is reduced, due to which the tri-state operation is lost more readily under 

large-signal dynamic operation. On the other hand, a high value of K-factor, although 

ensuring wider dynamic range of operation, lowers the efficiency. Hence as a 

compromise, a value of K-factor equal to 1.3 has been selected and used to obtain the 

experimental results that are discussed in the next section. The design aspects of the 

control scheme including the proper selection of K-factor and its implications on the 

size and rating of the power components will be discussed in the next chapter. 

 

B. Design of Controllers for DDMC 

In DMC scheme, the current loop is made one order slower than the voltage 

loop. Hence the design of output voltage and free-wheel current controllers is done 

using sequential loop-closing method. The fast voltage loop controller is designed 

based on G11(s) with the current loop open. For designing the free-wheel current 

controller, the overall transfer-function between IL and Do with the presence of 

interactions G12(s) and G21(s) and with the voltage loop closed (Fig. 6.4) can be used. 

This systematic procedure will prevent any instability in the designed loops. 

Alternatively, the current loop can also be designed based on G22(s) alone neglecting 

the effect of voltage loop on the current loop as being high speed disturbance 
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interaction on a slow system. As the current loop is made at least one order slower 

than the voltage loop, a simple integrator with an integral gain dictated by system 

stability margins is sufficient for the DDMC scheme.  

 

Fig. 6.4.  System model with cross-couplings for accurate current controller design (DDMC) 

 

6.2.4 Control Method-II: Indirect Dual-mode Control (IDMC) 

Although the DDMC scheme offers excellent transient and steady-state 

performance as will be demonstrated in section 6.3, it requires sensing of the input 

voltage and the load current in addition to output voltage and inductor current. The 

indirect dual-mode control (IDMC) scheme, shown in Fig. 6.5 eliminates most of the 

sensors of DDMC scheme. Here, the magnitude of the steady-state inductor current is 

controlled indirectly by fixing the steady-state length of the free-wheeling interval. 

The motivation for this method comes from the following discussion.  

 

 

Fig. 6.5.  Indirect dual-mode control (IDMC) scheme 
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Neglecting the ripple current term in (6.3), the inductor free-wheeling current 

can be written as  

o

o
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The reference value of free-wheeling current is given by (6.13). Combining 

(6.13), (6.14) and (6.3) 
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From (6.16), it can be seen that Df is constant when K-factor is kept constant. 

The IDMC advantageously uses this relation (6.16) by fixing the steady-state value of 

Df and avoids sensing of inductor current, input voltage, and load current. However, 

unlike DDMC, implementing output current limit protection will require additional 

current sensor and appropriate circuitry. 

 

The controller design for the IDMC is much simpler than for the DDMC scheme. 

The voltage controller design is similar to that in the DDMC scheme. The Do-

controller is simply a low pass filter (see Fig. 6.5) with a cut-off frequency (fc) much 

lower than the cross-over frequency of the voltage loop. This makes sure that the 

variations in Do are much slower than the variations in Db, thereby preserving the fast 

dynamic response characteristics of the output voltage (similar to ‘constant-Do’ 

control scheme). 

 

A disadvantage of both DDMC and IDMC schemes is that for large disturbances, 

the dynamics are slow as they depend on the slow-acting current loops. The fast 
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dynamic range of the converter is determined by the amount of energy stored in the 

inductor. A detailed discussion on the range of disturbances within which fast 

dynamic operation of the converter is preserved will be given in the next chapter.  

6.3 Simulation and Experimental Results 

A tri-state boost converter and a classical boost converter with the specifications 

in Table 6.1 (Table 4.1 repeated here) were designed and simulated using MATLAB 

SIMULINK. The design values of L and C (described in the next chapter) for both 

converters were 278µH and 510µF respectively. Hardware prototype models were 

built and used to verify the theoretical predictions. This section presents certain 

critical simulation and experimental results. Simulation models are given in appendix 

B. The hardware circuitry is given in appendix C.  

TABLE  6.1. CONVERTERS’ SPECIFICATIONS 

Input 

voltage 
Do

* 
Output 

voltage 

Output 

power 

Switching 

frequency 

10 to 20 V 0.3 25 V 50 W 50 kHz 
* Value needed only for tri-state boost converter with constant Do 

 

6.3.1 Verification of Small-Signal Model 

 Figs. 6.6 to 6.9 show the theoretical (with and without considering the effect of 

parasitics) and experimental Bode plots (obtained using HP4194A gain-phase 

analyzer) of G11(s), G21(s), G12(s), and G22(s) of the G(s) matrix (6.6) under a certain 

converter operating condition. As the ideal theoretical (without parasitics) and the 

experimental plots of the tri-state boost converter differ considerably, the transfer 

function matrix was again derived and plotted taking into account the converter 

parasitics with ESR of filter capacitor = 0.115 Ω (measured), ESR of boost inductor = 

0.4 Ω (measured), MOSFET ON-resistance = 0.27 Ω (from data sheet) and diode 
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forward voltage drop = 1 V (approximated). The transfer function matrix G’(s) with 

parasitics can be verified as given below (refer Appendix A for detailed derivation). 
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where, RM =  MOSFET ON-Resistance, RL = Inductor ESR, Rc = Capacitor ESR, VD = 

Diode Forward voltage drop, IL = Average inductor current, R  = Load resistance. It 

may be noticed that with the inclusion of the parasitics, the theoretical predictions are 

closer to the experimental results. 

 



Chapter 6 Dual-mode control of tri-state converter for improved performance 

 140

 

 

 
 

Fig. 6.6.  Db-to-Vo Bode plots- Tri-state boost converter/ open-loop operation at Vs = 15V, Vo = 25V, 

Io=1A, Db= 0.3586 and Do=0.4188; legends: **-theoretical (with parasitics), ..- 

experimental, _-theoretical (without parasitics). 



Chapter 6 Dual-mode control of tri-state converter for improved performance 

 141

 

 

 
 

Fig. 6.7.  Db-to-IL Bode plots- Tri-state boost converter/ open-loop operation at Vs = 15V, Vo = 25V, 

Io=1A, Db= 0.3586 and Do=0.4188; legends: **-theoretical (with parasitics), ..- 

experimental, _-theoretical (without parasitics). 
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Fig. 6.8.  Do-to-Vo Bode plots- Tri-state boost converter/ open-loop operation at Vs = 15V, Vo = 25V, 

Io=1A, Db= 0.3586 and Do=0.4188; legends: **-theoretical (with parasitics), ..- 

experimental, _-theoretical (without parasitics). 
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Fig. 6.9.  Do-to-IL Bode plots- Tri-state boost converter/ open-loop operation at Vs = 15V, Vo = 25V, 

Io=1A, Db= 0.3586 and Do=0.4188; legends: **-theoretical (with parasitics), ..- 

experimental, _-theoretical (without parasitics). 

 



Chapter 6 Dual-mode control of tri-state converter for improved performance 

 144

It may be noticed from Fig. 6.8 the Do-to-Vo transfer function (G12(s)) has an 

RHP zero. The presence of RHP zero results in the phase plot rolling towards -90 

degrees before recovering back to 0 degree on account of the presence of LHP zero 

introduced by the ESR of output capacitor.  Besides, it is also seen that the magnitude 

of G12(s) is more sensitive to system parasitics than those of the other transfer 

functions. This, once again, suggests that Do should not be grouped with Vo.  

 

6.3.2 Closed-Loop Performance- Controller Design 

The design of controllers for DDMC and IDMC schemes was based on the 

discussions in section 6.2. The voltage-loop controller designed for both DDMC and 

IDMC schemes is a cascaded combination of a PI and a lead-lag controller (6.27) that 

ensures zero steady-state error and a small-signal voltage-loop (G11(s)*V_cont(s)) 

bandwidth of about 5 kHz at the designed operating point.  
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The above controller was also used in the ‘constant-Do’ control scheme. For the 

DDMC scheme, a small-signal current-loop (G22(s)*I_cont(s)) bandwidth of 500 Hz 

was achieved using a simple integrator given by  

s
scontI 7.96)(_ =   (6.28) 

  

For the IDMC scheme, the Do-controller (filter) has a cut-off frequency (fc) of 

about 160 Hz and is given by  

1
1000

1(s)   _
+

= sfilterI   (6.29) 
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For the classical boost converter, the PI controller designed is based on the 

discussions in [22] (Table 3.5) and is given by 

s

s

scontVboost
1

15175.16)(_
+

⋅=   (6.30) 

 

6.3.3 Closed-Loop Performance- Simulation and Experimental 

Results 

The closed-loop performances of the various converters/control schemes have 

been tested through simulations and experiments, under the operating conditions of Vs 

= 15 V, Vo = 25 V, and Io = 1 A (R=25 Ω). 

 

Fig. 6.10 shows a simulated comparison of steady-state inductor currents of the 

tri-state boost converter under ‘constant-Do’ (Do=0.3) and DDMC schemes (K=1.3). 

The inductor free-wheel current under the DDMC scheme is about 1.1 amperes less 

than that under the ‘constant-Do’ control scheme. This has the potential to achieve a 

significant improvement in the converter’s operating efficiency under DMC scheme.  

 

(a)   (b) 

Fig. 6.10.  Simulated steady-state inductor current waveforms of tri-state boost converter (Vs=15 V, 

Vo= 25 V Io= 1 A) (a) ‘constant-Do’ control scheme (b) DDMC scheme (K=1.3). 



Chapter 6 Dual-mode control of tri-state converter for improved performance 

 146

Figs. 6.11(a) and 6.11(b) show the theoretical (with and without considering the 

effect of parasitics) and experimental Bode magnitude plots (obtained using HP4194A 

gain-phase analyzer) of Vref-to-Vo (closed voltage-loop G11(s)*V_cont(s) with Do held 

constant) and Iref-to-IL (closed current-loop G22(s)*I_cont(s) with Db held constant) in 

DDMC scheme. As per the design, the experimental voltage loop has a closed-loop 

bandwidth of about 5 kHz. The current-loop bandwidth is nearly 500 Hz. Fig. 6.12 

shows that the classical boost converter has an experimental bandwidth of 270 Hz. 

 
(a) 

 
(b) 

Fig. 6.11.  Closed-loop Bode magnitude plot at Vs = 15V, Vo = 25V, Io=1A, Db= 0.3586 and 

Do=0.4188; (a) closed voltage loop (b) closed current loop. 
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Fig. 6.12.  Classical boost converter- closed-loop Bode magnitude plot at Vs = 15V, Vo = 25V, Io=1A, 

legends: **-theoretical (with parasitics), ..- experimental, _-theoretical (without 

parasitics). 

 

Figs. 6.13, 6.14, 6.16, and 6.18 show the experimental reference-voltage step 

responses of the various converters/control schemes. The excellent dynamic 

performance of the DMC schemes over the classical boost converter is clearly 

demonstrated. Moreover, in agreement with the simulation results, the steady-state 

inductor current (before step transient) under the ‘constant-Do’ control scheme is 

about one ampere more than that under the DMC schemes. Fig. 6.17 shows the slow 

current loop response (inductor current optimization) under the DDMC and IDMC 

control schemes. Table 6.2 summarizes the closed–loop bandwidths and settling time 

of the various converters/control schemes for a reference voltage step-change.  

TABLE  6.2.  COMPARISON OF EXPERIMENTAL PERFORMANCE OF CONVERTERS 

Bandwidth 
 

Voltage loop Current loop 

settling 

time 

Full load 

efficiency 

Classical Boost 270 Hz -- 5.5 ms 86% 

Constant Do 5 kHz --- 0.7 ms 68% 

DDMC 5 kHz 500 Hz 0.6 ms 79% 
Tri-state 

boost 
IDMC 5 kHz fc=160 Hz 0.6 ms 82% 
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Fig. 6.13.  Experimental reference voltage step response of a tri-state boost converter with ‘constant-

Do’ control scheme (a) step reference change (b) inductor current (ground at -1 div) (c) 

output voltage from 23.8 V to 25.1 V (oscilloscope in ac mode with ground at -3 div); 

Scale: voltage: 0.5 V/div, current: 2A/div, time: 200µs/div. 

 

 

 

Fig. 6.14.  Experimental reference voltage step response of a tri-state boost converter under DDMC 

scheme; (a) step reference change (b) inductor current (ground at -2 div) (c) output 

voltage from 24.1 V to 25.1 V ; Scale: voltage: 0.5 V/div, current: 1A/div, time: 

200µs/div. 
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Fig. 6.15. DMC scheme- demonstration of vanishing free-wheeling interval for a step change in 

reference voltage from 24.1 V to 25.1 V. (a) inductor current (b) output voltage;  scale: 

current: 1A/div, voltage: 0.5 V/div, time: 100µs/div. 

 

 

 

Fig. 6.16.  Experimental reference voltage step response of a tri-state boost converter with IDMC 

scheme; (a) step reference change (b) inductor current (ground at -4 div) (c) output 

voltage from 24.1 V to 25.1 V (oscilloscope in ac mode with ground at -3 div); Scale: 

voltage: 0.5 V/div, current: 1A/div, time: 200µs/div. 
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(a) 

 

(b) 

Fig. 6.17. Slow current loop operation for a step change in reference voltage from 24.1 V to 25.1 V 

(a) DDMC scheme; scale: current: 1A/div, time: 1 ms/div (b) IDMC scheme; scale: 

current: 1A/div, time: 500 µs/div. 

 

 

 

Fig. 6.18. Experimental step response of the classical boost converter for a step change in voltage 

reference (a) step reference change (b) inductor current (ground at -1 div) (c) output 

voltage from 24.1 V to 25.1 V (oscilloscope in ac mode with ground at -3 div); Scale: 

voltage: 0.5V/div, current: 1A/div, time: 1ms/div. 



Chapter 6 Dual-mode control of tri-state converter for improved performance 

 151

Fig. 6.15 (obtained upon zooming of Fig. 6.14) shows that the free-wheeling 

interval under DMC (both schemes) vanishes in the first cycle itself after the 

disturbance thereby boosting up the inductor current. Although the converter shifts to 

a two-state operation involving Db and Do similar to a classical boost converter, it 

exhibits faster dynamics than the classical boost converter. This is due to the fact that 

once the converter voltage has reached the reference value, the free-wheeling interval 

once again appears and the inductor acts as an ‘energy reservoir’ for the excess energy. 

Due to lack of such an ‘excess energy reservoir’ in a classical boost converter, energy 

oscillations occurring between the boost inductor and output capacitor result in slow 

dynamics. Fig. 6.15 shows that once the output voltage surpasses the reference 

voltage, the converter shifts to another two state operation involving Df and Do in 

order to keep the output voltage equal to the reference value. 
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Fig. 6.19. Efficiency versus load power at Vs=20 V and Vo=25 V. 

6.3.4 Efficiency Comparison 

Fig. 6.19 shows the variation of steady-state efficiencies of the various 

converters/control schemes with output power for an input voltage of Vs=20 V. The 

tri-state boost converter with either DDMC or IDMC scheme achieves an 
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improvement in efficiency of about 10% over that with ‘constant-Do’ scheme, 

although the converter is still about 5% less efficient when compared to the classical 

boost converter.  

 

Beyond 40 W of delivered power, the IDMC scheme is seen to be less efficient 

than the DDMC scheme. This is due to the fact that the free-wheeling interval in 

DDMC becomes less than that in the IDMC scheme which leads to lower free-wheel 

inductor current. The reason for this can be explained as follows. For a fixed value of 

K-factor, the length of the free-wheeling interval in DDMC scheme becomes smaller 

with an increase in load. On the other hand, in the case of IDMC scheme, the length 

of the free-wheeling interval is independent of load.  For the same value of K-factor, 

as will be demonstrated later in the next chapter (Fig. 7.2), the length of the free-

wheeling interval obtained using DDMC scheme will be higher than that obtained 

using IDMC scheme. Thus, ideally, the efficiency obtained using DDMC scheme 

should be less than that obtained using IDMC scheme for a specific load and K-factor. 

In Fig. 6.19, at 40 W of delivered power, the two efficiencies are observed to match. 

This indicates an equally long free-wheeling interval in both the cases. Assuming a 

perfect K-factor setting in DDMC scheme (K=1.3), using the free-wheeling interval, 

the value of K-factor corresponding to IDMC scheme can be calculated to be 1.3563. 

This 4.3 % deviation in the setting of K-factor in the hardware setup is perhaps 

responsible for the IDMC scheme being less efficient than DDMC scheme beyond 40 

W of delivered power.  In practice, this may not be a disadvantage as the K-factor can 

be marginally tuned in the case of IDMC scheme to realize higher efficiencies, if 

necessary. 
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6.4 Chapter Conclusions 

In this chapter, two variations of a novel multi-variable DMC approach to 

achieve multiple objectives of attaining good steady-state converter efficiency and 

good transient response in a tri-state boost converter has been proposed and described. 

The small-signal model of the tri-state boost converter has been verified 

experimentally. The design of controllers for the proposed DMC schemes has been 

discussed.  The superior dynamic performance of the tri-state boost converter with 

DMC schemes over classical boost converter has been verified experimentally. An 

experimental determination of efficiency shows that the tri-state converter with DMC 

is about 10% more efficient than that with ‘constant-Do’ control scheme and is about 

5% less efficient than the classical boost converter.  Thus, the tri-state boost converter 

with DMC scheme offers a compromise between the classical boost converter and the 

tri-state boost converter with simple ‘constant-Do’ control scheme. It is believed that 

such a DMC scheme can also be used in case of tri-state versions of other boost and 

buck-boost derived converters to offer improvements in efficiency and in dynamic 

performance. As mentioned earlier, the size and ratings of power components depend 

on the control settings i.e the choice of K-Factor in the DMC schemes. The next 

chapter presents a systematic design procedure for selecting of power and control 

components of the tri-state boost converter employing DMC schemes. 
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CHAPTER 7 
 

DESIGN AND EVALUATION OF TRI-STATE BOOST 

CONVERTER  

7.0 Introduction 

Chapter 6 discussed two variations of a multi-variable dual-mode control (DMC) 

scheme that effectively exploit the control freedom offered by tri-state boost converter 

with an aim to attain a good compromise between the contradictory multiple-goals of 

achieving good dynamic performance and high efficiency. As mentioned in the 

previous chapter, the dynamic and steady-state performances of the converter under 

DMC schemes are closely inter-related and in turn decide the size and rating of power 

components and also the design of feedback controllers. The aim of this chapter is to 

investigate in greater detail the trade-offs involved in the design of DMC based tri-

state boost converter and to present a systematic design procedure for both variations 

of the DMC schemes. The relation between dynamic and steady-state performances is 

investigated and used appropriately in selecting the power and control components. 

An example design is presented and the design is validated through simulations and 

experiments.  

 

Section 7.1 describes the trade-offs involved in the design of DMC-based tri-

state boost converter. Section 7.2 explores the disturbance margins of the converter 

within which fast dynamic response is ensured. Based on the disturbance margins 

offered by the converter, section 7.3 presents the design algorithm which involves 

selection of control and power components. Section 7.4 explains an example design. 

Section 7.5 presents simulation and experimental results investigating the 
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performance of converter for disturbances of different magnitudes. Section 7.6 

concludes the chapter. 

7.1 Trade-Off in DMC of Tri-State Boost Converter 

As mentioned in the previous chapter, unlike the case of a classical boost 

converter in which the size of power components are generally independent of the 

parameters of the controller, in the case of DMC of tri-state boost converter, the 

choice of control parameters decide the ratings of the power components. In this 

section, this aspect is brought out through description of the trade-offs involved in the 

DMC-based control of tri-state boost converter.  

 

The free-wheeling interval Df T in the converter serves as an extra energy 

‘reservoir,’ the length of which decides the magnitudes of free-wheeling current Idc 

and average inductor current IL. The relationship between Idc, average input current Is, 

average output current Io, and Df is given by (5.6) [repeated here again in (7.1)]. 
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From (7.1), it may be seen that at a given line and load condition, increasing Df
* 

in the IDMC scheme (Fig. 6.5) will result in an increase in Idc. Similarly increasing K-

factor and hence Idc
* (Fig. 6.3) in the DDMC scheme will result in an increase in Df.  

 

Setting a high Df
* in IDMC scheme or a high Idc

* in the DDMC scheme will 

result in high inductor free-wheeling current Idc, high average inductor current IL, and 

hence a large storage of energy. This excess storage helps in achieving excellent 

dynamic response. This is because, when the load demand suddenly increases, the 

converter, through a reduction in Df T and an increase in boost interval Db T is able to 



Chapter 7 Design and analysis of tri-state boost converter 
 

 156

release the stored energy as well as boost up the input power drawn from the source. 

As a result, the dynamic performance is improved. However, for certain types of 

disturbances (to be discussed in the next section), Df T vanishes and the converter 

enters a slow two-state operation with the slow control input Do alone being active 

(Db saturated to 1-Do). When operating with a long Df T, i.e with Df
* set high in IDMC 

scheme or with Idc
* set high in DDMC scheme, fast dynamic property is lost only for 

extremely large disturbances. Although a high Df
* (or Idc

*) is desirable from dynamic 

response point of view, due to the resulting high inductor current IL, the size and 

ratings of the power components are increased. Besides, the operating efficiency is 

also reduced due to high inductor current and associated losses in system parasitics.   

 

On the contrary, a small Df
* (or Idc

*) results in smaller component size and 

ratings and better efficiency. However, the converter enters the slow two-state 

operation even for small disturbances.  

 

The above trade-off involved in selecting Df
* (or Idc

*) is implemented by the ‘K-

factor’ in the scheme. The K-factor is related to Df T and Idc and hence is also a 

measure of energy in the ‘reservoir.’ The DDMC scheme directly uses K-factor (7.2) 

[(6.13) repeated] in deciding the control reference Idc
* (Fig. 6.3). 
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The IDMC scheme (Fig. 6.5) uses K-factor indirectly through its control 

reference Df
* (7.3) [(6.16) repeated]. 
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It must be noted that even in the IDMC scheme, (7.2) is satisfied, if the inductor 

ripple current is neglected. Thus, the K-factor unifies the design of DDMC and IDMC 
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schemes. The choice of K-factor and hence the extra energy in the reservoir are decided 

by disturbance margins offered by the converter within which fast-dynamic operation of 

the output voltage is preserved. The following section defines the disturbance margins 

of the converter that play a critical role in the converter design.  

7.2 Converter Disturbance Margins 

Three classes of margins (limits) have been identified in the converter operating 

under DMC schemes, namely transient margin, quasi-steady-state margin, and steady-

state margin. They are defined as below. 

 

 

(1) Transient margin: Transient margin is defined as the maximum disturbance that 

the converter can tolerate by a reduction in Df T in the first cycle after a disturbance. 

 

 

(2) Quasi-steady-state (QSS) margin: In the DMC schemes, quasi-steady state refers 

to the intermediate state (after a transient disturbance) in which the output voltage 

regulation is complete and the inductor current optimization is still in progress. QSS 

margins are defined under the assumption that the control input Do remains practically 

constant until the output voltage reaches the desired state. QSS margin refers to the 

limit on the magnitude of disturbances in the input or reference voltage, below which 

output voltage regulation is fast, being independent of the inductor current 

optimization. For disturbances of magnitude greater than this, the output voltage 

regulation is slow due to dependency on the slow inductor current loop.  
 

(3) Steady-state margin: These are the limits beyond which the converter will not be 

able to meet the system objectives. For example, a hard-limit is set on the minimum 

value of Do which in turn limits the maximum possible boost voltage gain (6.2). Any 

attempt to get a higher gain will result in the control inputs Db and Do hitting their 
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respective saturation levels of 0.9 and 0.1 respectively and the output voltage limited 

to the maximum possible value (=10*Vs). 

 

Of the three classes of margins defined above, steady-state margin is primarily 

used in determining the suitability of the tri-state converter for a specific application. 

Apart from this, it does not play any active role in determining the component size 

and design of controllers. On the other hand, the transient and quasi-steady-state 

margins are directly involved in determining the K-factor and hence decide the trade-

off between dynamic response and steady-state performance.  

 

 In this section, three important disturbance margins belonging to QSS and 

transient classes of margins that play a critical role in deciding the converter trade-off 

are defined. These margins will be used in subsequent sections in the design of DMC 

scheme that can tolerate a definite disturbance.  

 

7.2.1 Output Voltage Margin (Vo_margin) 

This is a QSS margin. Vo_margin is defined as the maximum change in the 

reference voltage Vref that can be realized by the fast output voltage loop at the 

expense of the free-wheeling interval Df T. For an output voltage (Vo) demand beyond 

this margin, the dynamics will be slow due to dependency on the slow-Do control 

loop. This margin is computed assuming constant input voltage Vs. Under limiting 

conditions, maximum Vo (=Vo(limit)) is obtained when Df T vanishes. Thus, Vo_margin can 

be derived as below. 
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From (7.4), it may be concluded that a long free-wheeling interval (Df T) 

guarantees a large Vo_margin. 

 

7.2.2 Input Voltage Margin (Vs_margin) 

This is also a QSS margin. Vs_margin is defined as the maximum dip in Vs that the 

fast output voltage loop can tolerate at the expense of Df T, above which the transient 

response of output voltage is dependent on the slow-Do loop. Assuming a constant 

load current (and voltage) before and after the input voltage disturbance, Vs_margin can 

be derived using (6.1) as follows. 
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where Vs1 and Vs2 signify input voltages before and after the disturbance. From (7.5), 

it can be seen that an increase in Df, will permit a large input voltage dip that can be 

handled by extra energy stored in the inductor itself. This also results in fast dynamic 

response of the output voltage.  

 

Equation (7.5) also represents the transient-input-voltage margin (i.e. the dip in 

Vs which the converter can tolerate in the first cycle after disturbance), when an ideal 

controller is assumed. This can be explained with reference to Fig. 7.1(a). Here, the 

light and bold waveforms represent the inductor current before and after a dip in Vs 

(that just hits Vs_margin) respectively. The corresponding dip in Vs (transient-input-

voltage margin) may be verified to be the same as in (7.5). It must be noted that in 

practical implementations, analysis of transient-input-voltage margin is of not much 

use due to its dependency on the controller, which is generally not ‘intelligent’ 
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enough to offer a transient as in Fig. 7.1(a). Hence, the simpler QSS margin alone 

(7.5) is used in the design of the converter. 

 

(a)  

  

 (b) 

Fig. 7.1.  Inductor current waveforms (a) Vs change (b) Load (or Vref) change  

 

7.2.3 Load Current/Power Margin ( (∆Io)max [ or (∆Po)max ] ) 

This belongs to the class of transient margins. Load current margin is defined as 

the maximum incremental load current that the converter can supply in the first cycle 

after a sudden load (or Vref) increase. In Fig. 7.1(b), the light and bold waveforms 
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represent the inductor current before and after a load (or Vref) increase that makes Df T 

vanish. The shaded area shows the incremental load current. 

 

Let Io1 and Io2 be the load currents just before and after the load transient. From 

Fig. 7.1(b), the output current Io1 before the load transient can be derived as below. 
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Similarly, the output current Io2 after the occurrence of disturbance can be 

shown to be 
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From (7.6) and (7.7), the incremental load current can be obtained as follows. 
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This margin is computed assuming that the output voltage Vo does not change 

appreciably in the first switching cycle after the disturbance.  Load power margin 

(∆Po)max is the product of load current margin (∆Io)max and output voltage Vo. This 

margin is important as it gives an estimate of the incremental power transferred and 

hence an indication of the time taken to reach the final state. 

 

It must be noted that for load changes, 
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As a result, for load step changes, the dynamics of Vo is generally 

independent of the slow-Do loop. Hence a QSS-class of margin is not defined for 

load changes.  
 

 

To summarize, from (7.4), (7.5) and (7.8), it is evident that an increase in energy 

‘reservoir’ interval Df T in turn increases the dynamic performance range (disturbance 

margins) of the converter.  

 

7.2.4 Relationships between Disturbance Margins and K-factor 

In this sub-section, the relationships between K-factor and the various defined 

disturbance margins under IDMC and DDMC schemes are given. 

 

A. IDMC Scheme 

In this scheme, the K-factor has a straightforward relationship with the control 

input (reference) Df
* given by (7.3). Fig. 7.2(b) shows the variation of the wheeling 

duty-ratio (Df) with K-factor. The converter margins (7.4), (7.5) and (7.8) can be 

rewritten using (7.3) as below.  
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Equation (7.10) shows that the margins of the converter under IDMC scheme 

are independent of the power output. Besides, it may be noticed that the load margin 
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(∆Po)max is dependent on the inductance value L while the other two margins are 

independent of L. 

 

B. DDMC Scheme 

Unlike the IDMC scheme, the disturbance margins offered by the converter in 

the DDMC scheme do not hold simple relationships with the K-factor. Instead the 

following steps are to be followed to get the disturbance margins. 

 

Assuming Vo, Io, Vs, Is, L, and K-factor to be known, Do and Df are needed for 

finding the disturbance margins (7.4), (7.5), and (7.8). Io is related to Idc by the 

following relation. 
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Substituting (5.2) in (7.11) and solving for Do we get 
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where, Idc is directly related to K-factor (7.2). Equation (7.12) can be used to find the 

duty ratios Df and Do, using which the disturbance margins offered by the converter 

can be calculated (7.4), (7.5), and (7.8). Unlike the case of IDMC scheme, in the 

DDMC scheme, the margins depend both on the inductance value and the power 

delivered. Fig. 7.2(a) shows the variation of the free-wheeling duty-ratio (Df) with K-

factor under DDMC scheme for the tri-state boost converter whose specifications are 

given in Table 6.1. 
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(a) 

 

(b) 

Fig. 7.2.  Variation of free-wheeling interval with K-factor (a) DDMC scheme (b) IDMC scheme; 

Legend: square- Vs=20 V, starred- Vs=15 V, circled Vs=10 V, dashed line-Po=10 W; 

continuous-Po=25 W, dotted–Po=50 W. 

7.3 Design of Tri-state Boost Converter 

In this section, the design algorithm of DMC based tri-state boost converter is 

presented. This involves selection of boost inductance L, filter capacitance C, 

switches (Sm, Sf), and diodes (Df, D) (refer Fig. 5.2(b)), and controllers used in the 

scheme. The inputs needed are  

1. input voltage range 
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2. rated load current 

3. rated output voltage, and  

4. preferred margins of disturbances in reference voltage (Vo_margin), input 

voltage (Vs_margin), and load current (∆Io)max [or power (∆Po)max].  

 

The preferred margins of disturbance are specific to the application. Choosing 

high margins will result in high Df T, and hence high inductor current. As mentioned 

before, this will also affect the efficiency.  

 

7.3.1 Step 1: Disturbance Margins- Selection of K-Factor 

To start with, the design algorithm assumes an IDMC scheme (even if a DDMC 

scheme is desired) in which the K-factor holds a simple relation with Df  (7.3). As the 

inductance L is unknown, a plot of Vo_margin and Vs_margin of converter at different line 

and load conditions versus K-factor is drawn using (7.10). These plots that relate the 

disturbance margins to the K-factor are named as ‘disturbance margin curves.’  

From the curves, the K-factor that gives disturbance margins slightly greater than the 

design specifications is selected.  

 

7.3.2 Step 2: Selection of Boost Inductance  

Assuming nominal operating conditions, with the value of selected K-factor, the 

values of Df, Db, and Do are calculated using (5.1), (5.2), and (7.3). Once K-factor is 

known, Idc is calculated using (7.2). The boost inductance L is calculated on the basis 

of the percentage (5% to 10%) ripple current under nominal line conditions. At this 

point, the values of inductance L and free-wheeling current Idc need to be checked. 

High values of L or Idc result in a large-sized inductor. If such a condition arises, a 

compromise has to be made on the disturbance margin specifications and the design 
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has to be started from step 1. 

 

7.3.3 Step 3: Correction of K-factor 

 The output power margin (∆Po)max curves are plotted using (7.10) in the case of 

IDMC scheme. The value of (∆Po)max at the selected value of K-factor is checked to 

be greater than or equal to the desired margin. If the margin is less than the 

specification, the value of K-factor is increased and the process may be repeated from 

step 1.  

 

For DDMC scheme, the disturbance margin curves at various line/load 

conditions (with selected value of L) are plotted using (7.11) and (7.12). Generally, 

the disturbance margins offered by DDMC scheme are more than those offered by 

IDMC scheme. This is due to the fact that for the same value of K-factor, since the 

inductor ripple current is neglected in the case of IDMC scheme, the corresponding 

free-wheeling interval is shorter than that in the case of DDMC. This is also evident 

from Fig. 7.2. Thus, the selected K-factor in DDMC may be reduced appropriately, if 

needed.  

 

7.3.4 Step 4: Design of Output Capacitor ‘C’ 

The output capacitor is selected by the well-known methods based either on the 

hold-up time or on the output voltage ripple constraint. 

 

7.3.5 Step 5: Choice of Switches 

The maximum voltage stress across D is Vo and across Df is Vs.  As the potential 

at point A (Fig. 5.2(a)) cannot be more than Vs+ VD (VD being the diode drop), the 

maximum voltage stress across Sm is Vs+VD and across Sf is Vo. The current rating of 



Chapter 7 Design and analysis of tri-state boost converter 
 

 167

each of the devices is chosen to be at least 1.5 times the inductor peak current Ip under 

low-line and high-load conditions to allow current overshoots during transients. 

 

7.3.6 Step 6: Design of controllers  

The design of controllers is based on the assumption that the variations in Do are 

much slower than the variations in Db. The design uses the small-signal model of the 

converter (Fig. 7.3) obtained by state-space averaging and linearization given by 

(7.13), (7.14) [(6.5) and (6.6) repeated].  
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(1) DDMC scheme: The small-signal model of the closed-loop system is shown in 

Fig. 7.3(a). As mentioned in Chapter 6, since Do is a slow control variable, the voltage 

controller K1(s) (same as V_cont(s) (6.27) in Chapter 6) is designed based only on 

G11(s) (7.14) alone using standard frequency domain techniques such as Bode plots. 

The slow controller K2(s) (same as I_cont(s) (6.28)) is designed either using G22(s) 

alone or using the overall transfer function between IL and Do (with voltage loop 

closed) given by (7.15). In both the cases, the effect of sample and hold module is 

neglected. 
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(2) IDMC scheme: The small-signal model is shown in Fig. 7.3(b). The design of 

K1(s) is dependent only on G11(s) similar to the case of DDMC scheme. K3(s) (same 
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as I_filter(s) (6.29)) is a simple filter with a cut-off frequency at most 1/10th the 

bandwidth of the voltage loop. The system stability with K3(s) can be checked using 

Gidm(s)*K3(s), where Gidm(s) is the Do-to-Db transfer function given by  
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(a)  

  

 (b) 

Fig. 7.3.  Small-signal model- (a) DDMC scheme (b) IDMC scheme. 

7.4 Design Example 

In this section, an example design of a DMC based (DDMC & IDMC) tri-state 

boost converter of the following specifications is presented.  

Vs = 10-20 V, Vo = 25 V, Po (rated) = 50 W  
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fs = 52.3 kHz ,  Vs_margin = -2.5 V , Vo_margin = 5V , (∆Io)max =0.05 A [or (∆Po)max = 

0.05A*25V=1.25 W]. 

 

It should be noted that the converter specifications are the same as those of the 

converter discussed in Chapter 6 (Table 6.2). The following design steps also verify 

the selection of power and control components used in Chapters 5 and 6.  

 

7.4.1 Step 1: Disturbance Margin- Selection of K-Factor 

To start with, assuming an IDMC control scheme, the variations of Vo_margin and 

Vs_margin with K-factor under various line and load conditions of the converter are 

plotted using (7.10) (refer Fig. 7.4). It may be seen that a K-factor of 1.2 guarantees a 

Vs_margin of -2.5 V (at Vs ≥ 15 V) and a Vo_margin of about 5 volts.  

 

At this value of K-factor, Vs_margin under minimum line conditions (Vs=10 V) is 

only -1.7 V, which doesn’t meet the specifications. However, as a further dip in the 

input voltage (at Vs=10 V) will trigger the under-voltage protection module, it is 

sufficient if Vs_margin meets the specifications under nominal (Vs = 15 V) conditions. 

 

7.4.2 Step 2: Seletion of boost inductance  

With the value of K-factor set at 1.2, under nominal line conditions (Vs=15 V), 

using (5.1), (5.2), and (7.3) it may be verified that  

Df = 0.1667, Db =  0.33333 and Do =  0.5.  

The free-wheeling current ‘Idc’ is calculated using (7.2) at the maximum loaded 

condition.  

A. 4
15

2*25*2.1Idc ==  (7.17) 

Assuming a 9% ripple in the inductor current, the inductance can be verified as 
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(a) 

 

(b) 

Fig. 7.4.  Variation of disturbance margins with K-factor at different load and line conditions (a) 

Vo_margin (b) Vs_margin; Legend:  square- Vs=20 V, starred- Vs=15 V, circled Vs=10 V. 

 

7.4.3 Step 3: Correction of K-factor  

The load current margin curves under IDMC scheme are shown in Fig. 7.5. 

With K_factor set at 1.2, the power margin offered by the converter is 1 W (≈ 0.04 A * 

25 V) which is less than the specifications (1.25 W). Thus, K-factor is increased to 1.3. 
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Fig. 7.5.  (∆Io)max versus K-factor- IDMC scheme (refer Fig. 7.4 for legend). 

 

For the DDMC scheme, the disturbance margins are calculated using (7.11), 

(7.12), (7.4), (7.5), and (7.8). The margin curves are shown in Fig. 7.6. For meeting 

the margin specifications, the K-factor in this case is also set at 1.3. The above 

process justifies the selection of K=1.3 (in both DDMC and IDMC schemes) used 

in Chapter 6.  

 

7.4.4 Step 4: Selection of Output Capacitor C 

Under minimum-line-maximum-load conditions (Vs=10 V, Io=2 A, Do= 

0.33333), the output capacitor C is selected to limit the ripple in the output voltage to 

0.2%. 
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Two electrolytic capacitors whose capacitance sum to C = 510 µF have been 

used in the hardware implementation. (refer Chapters 5 and 6). If necessary, the effect 

of equivalent series resistance (ESR) of the capacitors upon the voltage ripple can also 

be considered in the design. 
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(a) 

 
(b) 

 

(c) 

Fig. 7.6.  Variation of disturbance margins with K-factor (DDMC scheme) (a) Vo_margin (b) Vs_margin 

(c) (∆Io)max; Legend: square- Vs=20 V, starred- Vs=15 V, circled Vs=10 V, dashed line-

Po=10 W; continuous-Po=25 W, dotted–Po=50 W. 
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7.4.5 Step 5: Design of Controllers 

The controller K1(s) is designed using G11(s) (7.14) to give a small-signal 

voltage-loop (G11(s)*K1(s)) crossover frequency of about 5 kHz at Vs = 15V, Vo = 

25V, Io=1A.  K1(s) is a cascaded combination of PI and lead-lag controllers given by 
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The last term in (7.20) represents the output voltage filter. It may be noticed that 

the above equation (excluding the last term) is a repetition of (6.27).  
 

A.  Design of Current Controller K2(s) for DDMC  

The current-loop controller is a simple integrator and has been designed by 

using G22(s) alone. The designed current controller that gave a current-loop 

(G22(s)*K2(s)) crossover frequency of 500 Hz is given by [(6.28) repeated] 

 

s
7.96)s(K 2 = . (7.21) 

B. Design of Df Controller K3(s) for IDMC  

At Vs = 15V, Vo = 25V, Io=1A, the selected K3(s) is given by [(6.29) repeated] 

 

11000
s

1)s(K 3
+

=  (7.22) 

 

The transfer function Gidm(s) (7.16) was computed. The Gidm(s)*K3(s) loop is 

theoretically stable up to a filter (K3(s)) cut-off frequency of 6721 rad/s. Hence loop 

stability is ensured with the filter (K3(s)) selected in (7.22). 
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7.5 Results and Discussions 

A tri-state boost converter with the design specifications, components and 

controllers designed in section 7.4 has been simulated using MATLAB-SIMULINK. 

A hardware prototype has also been built and tested. As experimental results 

demonstrating small-step response with the designed converter and controllers are 

reported in Chapter 6 (section 6.3), the aim of this section is to investigate the 

dynamic response of the converter for disturbances that fall within and outside the 

derived margins. For the purpose of investigation, step disturbances in reference 

voltage, input voltage, and load current have been investigated.  

 

The definitions of Vs_margin and Vo_margin are based on the assumption that for 

disturbances whose magnitude are within the defined margins, the slow control input 

Do undergoes only a little change until the output voltage reaches the desired state. It 

was observed that although the Do-controllers (K2(s) (7.21) and K3(s) (7.22)) make the 

variations of Do slower than that of Db, the rate of change of Do is not as slow as to 

verify the slow dynamic performance of the converter when a disturbance violates its 

defined margin. Thus, in order to carry out such a study, the controllers K2(s) (7.21) 

and K3(s) (7.22) have been re-designed (7.23) to slow down the variations in Do 

further.  
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7.5.1 Investigation of Dynamic Performance of Tri-state Boost 

Converter under IDMC Scheme 

In this subsection, the dynamic performance of tri-state boost converter (under 

IDMC scheme) for disturbances that fall within and outside the defined margins is 

investigated. 

A. Step Changes in Reference Voltage (Vref) 

Fig. 7.7 shows the experimental response for step-Vref change, the magnitude of 

which is less than Vo_margin (=7.8 V).  Prior to t1, the converter is in steady tri-state 

operation. Between t1 and t2, the free-wheeling interval Df T is zero and the energy in 

boost inductance L and filter capacitance C is boosted up. At t2, output voltage Vo is 

close to Vref. The converter enters another two-state operation involving freewheeling 

(Df T) and capacitor-charging (Do T) intervals in an attempt to maintain Vo closer to 

Vref. The desired output voltage Vo is achieved without the intervention of the slow Do 

loop. Hence, in spite of the large step disturbance, the response is fast. 

 

Fig. 7.8 shows the experimental step-Vref response, the magnitude of which is 

greater than Vo_margin (= 6.1 V) at the operating point considered. Between t1 and t1’, 

due to the loss of Df T, the initial rate of rise of Vo is high. At t1’, the maximum Vo that 

can be achieved by making Df T vanish is reached. Beyond t1’ and up to t2, the 

dynamics of Vo are slow due to dependency on the slow- Do loop. The converter 

continues to operate in the two-state mode involving Db T and Do T until t2, when the 

converter enters the two-state operation involving Df T and Do T to maintain Vo closer 

to Vref. At t3, the converter enters QSS as Vo has settled and IL optimization is 

underway. 
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Fig. 7.7.  Experimental small-Vref step response (IDMC) at Vs=15V, R=62.5 Ω; (a) Vref step (b) iL 

(ground at -1 div) (c) Vo from 26 V to 30 V (oscilloscope in ac mode with ground at -3 

div); Vo_margin=7.8 V scale: voltage: 2 V/div, current: 1A/div, time: 500 µs/div. 

 

 

Fig. 7.8.  Experimental large-Vref step with IDMC scheme at Vs=15V, R=62.5 Ω; (a) Vref step (b) iL 

(ground -3 div) (c) Vo from 20.5 V to 30.5 V (oscilloscope in dc mode with ground at -3 

div); Vo_margin= 6.1 V; scale: voltage: 5 V/div, current: 2A/div, time: 5 ms/div. 

 

B. Step Changes in Load Conditions 

Figs. 7.9 and 7.10 show the experimental step-load responses. The load current 

margin ((∆Io)max) under these conditions is 0.11 A. For the small-step-load change, the 

output voltage dip is practically zero (Fig. 7.9). The Vo dip observed for the large-
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step-load change (> (∆Io)max) shown in Fig. 7.10 is not only small but the voltage 

recovery is also fast. The reason for this has been explained in section 7.2.3 (7.9). 

 

Fig. 7.9. Experimental small-Io-step (0.4 A to 0.5 A) response at Vo=25 V and Vs=15 V with IDMC 

scheme (a) step load change (b) iL (ground at -1 div) (c) Vo (oscilloscope in ac mode with 

ground at -2 div); (∆Io)max = 0.11 A; scale: voltage: 0.25 V/div, current: 0.5 A/div, time: 

200µs/div. 

 

Fig. 7.10. Experimental large-Io-step (0.4 A to 2 A) response at Vo=25 V and Vs=15 V with IDMC 

scheme (a) step load change (b) iL (ground at 0 div) (c) Vo (oscilloscope in ac coupling 

mode with ground at -1 div); (∆Io)max = 0.11 A; scale: voltage: 0.5 V/div, current: 2 A/div, 

time: 500µs/div. 

 

C. Step Changes in Input Voltage 

Fig. 7.11 shows the simulated response of the converter for a small step change 
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in input voltage that falls within the defined input voltage margin (Vs_margin = -3.5 V) at 

the operating point under consideration. It may be noticed that the output voltage dip 

is insignificant. As the output voltage error is insignificant, the control effort is also 

small and as a result, the output voltage recovery is slow. Tri-state operation is not 

lost during the transient.  

 

Fig. 7.11.  Simulated response (IDMC) for a small dip in input voltage from 15 V to 14 V at Vo=25 V 

and Io=1 A, Vs_margin = -3.5 V. 

 

 

Fig. 7.12.  Simulated response (IDMC) for a large dip in input voltage from 15 V to 10 V at Vo=25 V 

and Io=1 A,  Vs_margin = -3.5 V. 

 

Figs. 7.12 shows the simulated response of the converter for a large step change 

in input voltage that violates the Vs_margin (= -3.5 V) at the specified operating point. In 
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this case, the output voltage dip is significant. Besides, the voltage recovery is also 

dependent on the slow-Do control loop as may be seen from the transient response. 

 

7.5.2 Investigation of Dynamic Performance of Tri-state Boost 

Converter under DDMC Scheme 

In this subsection, the dynamic performance of tri-state boost converter (under 

DDMC scheme) for disturbances that fall within and outside the defined margins is 

investigated. 

 

A. Step Changes in Reference Voltage (Vref) 

Fig. 7.13 shows the experimental response of the converter for step-Vref change, 

the magnitude of which is less than Vo_margin (= 13.06 V) Similar to the response 

observed in the case of IDMC scheme, the two-state operation involving Db T and Do 

T is initially observed followed by the other two-state operation involving Df T and Do 

T to maintain Vo closer to Vref. Once again, the desired Vo is achieved without the 

intervention of the slow Do loop and the output voltage dynamics are fast.  

 

Although the response of the converter under DDMC scheme is similar to that 

obtained with IDMC scheme (Fig. 7.7), it may be noticed that the peak inductor 

current is higher in the case of DDMC scheme. The difference in inductor currents is 

mainly attributed to the difference in the steady-state values of Df under the operating 

conditions considered (Vs=15V, R=62.5 Ω). This is also evident from the relatively 

higher steady-state inductor current observed in the case of DDMC scheme before the 

occurrence of the disturbance. The steady-state value of Df under IDMC scheme is 

0.23 and under DDMC scheme is 0.32. Due to this large difference in free-wheeling 

interval, the corresponding inductor current is also boosted up to a large value in the 
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DDMC scheme when the step disturbance occurs. The higher inductor current has 

also resulted in a relatively shorter settling time of the output voltage in the case of the 

DDMC scheme. A reduction in the peak inductor current, if desired, may be achieved 

by a corresponding reduction in the K-factor in DDMC scheme.   

 

Fig. 7.13.  Experimental step response of a tri-state boost converter with DDMC scheme for a large 

step change in voltage reference at Vs=15V, R=62.5 Ω; (a) Vref step (b) inductor current 

(ground at -3 div) (c) output voltage from 26 V to 30 V (oscilloscope in ac mode with 

ground at +1 div); Vo_margin= 13.06 V; scale: voltage: 2.5 V/div, current: 2 A/div, time: 500 

µs/div. 

 

Fig. 7.14 shows the experimental response of the converter for a large-step 

change in reference voltage that exceeds the Vo_margin (= 9.2 V) at the specified 

operating point. It may be noticed that the inductor current in this case rises much 

faster than that observed in the case of the IDMC scheme (Fig. 7.8). The difference in 

the rates of rise of inductor current observed in DDMC and IDMC scheme is again 

attributed to the difference in values of Df. Given an operating point and a fixed value 

of K-factor, as the free-wheeling interval in the DDMC scheme is longer than that in 

the IDMC scheme (Fig. 7.2), the initial rate of rise of inductor current due to the 

vanishing free-wheeling interval is higher in the case of DDMC scheme. Saturation of 
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inductor is also observed. Due to this, energy is dumped into the output capacitor 

from the input at a much faster rate resulting in fast dynamic response of output 

voltage. Thus, the dependency of output voltage dynamics on the inductor current is 

not very obvious.  

 

Fig. 7.14.  Experimental step response of a tri-state boost converter with DDMC scheme for a large 

step change in voltage reference at Vs=15V, R=62.5 Ω; (a) step reference change (ground at 

+2.0 div) (b) inductor current (ground at -4 div) (c) output voltage from 19 V to 30.3 V 

(oscilloscope in dc mode with -20 V offset and with ground at -3 div); Vo_margin= 9.2 V; 

scale: voltage: 2 V/div, current: 2A/div, time: 1 ms/div. 
 

  

(a)        (b) 

Fig. 7.15.  Simulated step response of a tri-state boost converter with DDMC scheme for a large step 

change in voltage reference at Vs=15V, R=62.5 Ω; (a) inductor current (b) output voltage 

from 19 V to 28.3 V ;  Vo_margin= 9.2 V. 
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To show the dependency of output voltage dynamics on the slow-Do loop in the 

absence of inductor saturation, simulations using SIMULINK has been carried out. 

Fig. 7.15 shows the simulated output voltage transients under DDMC scheme without 

inductor saturation. Here, the dependency of output voltage on the inductor current is 

clearly observed.  

 

B. Step Changes in Load Conditions 

Figs. 7.16 and 7.17 ((i) and (ii)) show the response of the converter under 

DDMC scheme for step changes in load that fall within and outside the load current 

margin ((∆Io)max = 0.136 A). The responses are much similar to those obtained with 

IDMC scheme (Figs. 7.9 and 7.10). For the small-step load change (Fig. 7.16), the 

output voltage is practically constant. Even in the case of large-step change in load 

that violates the load power margin (Fig. 7.17), the voltage dip is almost zero.   

 

 

Fig. 7.16.  Experimental response for a small step change in load current from 0.4 A to 0.5 A at Vo=25 

V and Vs=15 V for DDMC (a) step load change (b) inductor current (ground at -3 div) (c) 

output voltage (oscilloscope in ac mode with ground at -2 div); scale: voltage: 0.25 V/div, 

current: 0.5 A/div, time: 200µs/div. 
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(i) 

 

(ii) 

Fig. 7.17.  Experimental large-Io-step (0.4 A to 2 A) response at Vo = 25 V and Vs = 15 V with DDMC 

scheme (a) step load change (b) inductor current (ground at -1 div) (c) output voltage 

(oscilloscope in ac mode with ground at -3 div); scale: voltage: 0.5 V/div, current: 2 A/div,  

(i) time scale : 2 ms/div (ii) time scale: 100 µs/div. 

 

C. Step Changes in Input Voltage 

Figs. 7.18 and 7.19 show the simulated step-input voltage (Vs) dip responses under 

DDMC scheme. Similar to the response observed with IDMC scheme, the output 

voltage does not change significantly for the small dip (that falls within the defined 
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Vs_margin) in input voltage. The dip in output voltage Vo is high in the other case in which 

the dip in input voltage violates Vs_margin (refer Fig. 7.19). The recovery of output 

voltage also depends on the slow current loop. 
 

 

Fig. 7.18.  Simulated response (DDMC) for a small dip in input voltage Vs from 15 V to 14 V at Vo=25 

V and Io=1 A;. Vs_margin = -4.2 V. 

 

 

Fig. 7.19.  Simulated response (DDMC) for a large dip in input voltage Vs from 15 V to 10 V at 

Vo=25 V and Io=1 A. Vs_margin = -4.2 V. 

 

7.6 Chapter Conclusions 

In this chapter, three disturbance margins that play a critical role in deciding the 
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trade-off existing between dynamic and steady-state performances of a DMC based 

tri-state boost converter have been defined. The role of these margins in deciding the 

size and ratings of the circuit components has been investigated. The systematic 

design procedure of a DMC based tri-state boost converter has been explained with an 

example.   Simulation and experimental results have been presented to investigate the 

operation of converter for disturbances which fall within and outside the defined 

margins. Similar disturbance margins can be defined in the case of other converters 

belonging to the tri-state family (refer Chapter 5). A similar design approach may be 

followed for deciding the size and rating of power components. With this, the 

discussions on dc-dc applications of tri-state class of converters are complete. The 

next chapter will explore the strengths of tri-state class of converters in single-phase 

ac-dc power factor correction applications. 
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CHAPTER 8 

APPLICATION OF TRI-STATE CONTROL CONCEPT IN 

SINGLE-PHASE POWER FACTOR CORRECTION 

RECTIFIERS 
 

8.0 Introduction 

The previous chapters (5, 6, and 7) discussed the dc-dc applications of tri-state 

class of converters. The discussions were focused primarily on the tri-state boost 

converter. Boost and buck-boost topologies are also popularly used in single-phase ac-

dc power factor correction (PFC) applications. The requirements of power converters 

to be used in PFC applications are discussed in detail in appendix D. Appendix D also 

presents a literature survey on popular PFC rectifiers and their associated problems.  

 

The prime objectives of a PFC rectifier are drawing a sinusoidal input current in 

phase with the ac input voltage, delivering a tightly regulated dc output voltage, and 

ensuring fast dynamics of operation for sudden changes in line and load conditions. 

For achieving these goals, as explained in the appendix D, a PFC rectifier should have 

an additional energy storage element. Besides, two degrees of control freedom are 

needed for meeting the load-side and line-side demands. Converters belonging to the 

‘Tri-state’ family, on account of the availability of an extra degree of control-freedom, 

constitute potential candidates for application as PFC rectifiers. Thus, in this chapter, 

the application of tri-state converters in single-phase PFC is investigated. 

 

To begin with, the suitability of tri-state converters in PFC is described. 

Following this, a simple and effective control method for unity-power-factor rectifiers 
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based on cascade buck-boost (CBB) converter, a member of the tri-state class of 

converters is proposed. The proposed “dual-mode” control method effectively exploits 

the additional degree of control freedom provided by the CBB converter and achieves 

sinusoidal input current while providing a tight output voltage regulation. In addition, 

the control method also de-couples the output voltage control loop from the often-slow 

input-current-reference generator, resulting in excellent output voltage dynamic 

response. The theoretical analysis, choice of circuit elements, and the applicable range 

of operating conditions of the proposed control scheme are also presented. Excellent 

steady-state and transient performance of the converter are demonstrated through 

simulation and experimental results. A qualitative comparison of the converter 

performance with popular PFC converters is also given.  

 

Section 8.1 reviews the goals of a PFC rectifier and the strengths of the tri-state 

converters in achieving these goals. Section 8.2 investigates the suitability of tri-state 

boost and tri-state buck-boost-derived converters in PFC application. In section 8.3, a 

cascade-buck-boost-based PFC rectifier is studied. The dual-mode control scheme for 

CBB-PFC is proposed and the associated control trade-offs are described. This section 

also discusses the design of power and control components of the CBB-PFC 

employing dual-mode control scheme. Simulation and experimental results 

demonstrating the steady-state and dynamic response characteristics of the converter 

are presented. A qualitative comparison of DMC-based CBB-PFC with popular 

single-phase PFC rectifiers is also given in this section. Section 8.4 concludes the 

paper.  

8.1  Achieving Steady-State Goals in a PFC Rectifier 

In this section, a possible way of achieving sinusoidal input current and tightly-
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regulated output voltage in a single-stage PFC rectifier through storage of second 

harmonic energy in an inductor is described. These discussions will also form the 

basis for explaining the suitability of tri-state converters in PFC applications. 

 

Let us consider the PFC rectifier shown in Fig. 8.1. Let the input current (Iin(t)) 

be sinusoidal and in-phase with the input voltage Vin(t). Neglecting the switching 

ripple in the input current, the input current and voltage can be written as below.  
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Here Im and Vm are the peak ac line current and voltage respectively. The input power 
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Fig. 8.1.  A PFC rectifier with internal inductor energy storage. 

 

It may be noticed from (8.2) that the input power drawn form the utility has a 

second (line-frequency) harmonic content and a dc content which equals the delivered 

output power. If the second harmonic energy content reaches the output terminals, the 

output voltage will have a second harmonic ripple. There are two possible ways to 

avoid the second harmonic ripple in the output voltage. They are as follows. 

1. With an inductor designed to store insignificant energy, a large output 

capacitor is needed to minimize the second harmonic ripple in the output 

voltage. This approach is popular and is used in classical boost and buck-

boost PFC rectifiers. 
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2. The inductor with switch network can be used to absorb the second harmonic 

content of the input power and prevent it from reaching the output terminals. 

Theoretically, no output capacitor is needed in this case. 

 

Of the above two approaches, generally, the output voltage dynamics of PFC 

rectifiers adopting the first approach will be poor due to large output capacitor and in 

many cases, due to the associated control scheme (Details are given in appendix D). 

The second approach based on inductive energy storage has not been explored much 

in literature. The following discussions describe the approach.  

 

Let us assume that all the second harmonic content of input power is absorbed 

by the inductor and switch network itself, so that the output voltage is free from ripple 

at twice the line frequency. Assuming an ideal converter operation, using (8.2), the 

instantaneous inductor volt-ampere can be verified to be  
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To find the inductor current and the corresponding voltage across the inductor that 

will yield this VA (8.3), let us assume that the inductor current IL(t) has a DC 

component (Idc) and a variable component(iL(t)) given by 

)()( tiItI LdcL +=   (8.4) 

From (8.3) and (8.4),  
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The following steps are followed to solve for iL(t). 
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Integrating (8.6), we get 
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Solving for iL(t) 
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Discarding the negative value, the overall inductor current is given by 
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The current component IM (=8 IR
2) in (8.10) is an integration constant. The 

current Ik can be shown to be the rms value of the inductor current as follows.  
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Fig. 8.2 shows the waveforms of the various quantities. Ideally, with an inductor 

current following the relation in (8.10), the PFC rectifier can deliver a well-regulated 

output voltage while drawing a sinusoidal input current. It should be noted that the 

current Ik can be set at any value by the designer. However, it should not be less than a 

certain minimum in order to meet the PFC goals. This point will become obvious later 

in this chapter. 
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Fig. 8.2.  Dual goal achievement- PFC rectifier, VL-voltage across inductor, IL- inductor current, 

VAL- inductor volt-ampere. 
 

8.2  Suitability of ‘Tri-state’ Class of Converters in PFC 

Applications 

In this section, the suitability of tri-state boost and tri-state buck-boost-derived 

converters in PFC applications is investigated. Approaches based on both capacitive 

and inductive (second-harmonic) energy storage are considered and explained.  

 

8.2.1 Suitability of Tri-state Boost Converter 

A prime advantage of tri-state boost PFC rectifier (both inductive and capacitive 

energy storage) over classical boost PFC rectifier is that by appropriately controlling 

the switches, it is possible to limit the output voltage overshoots within permissible 
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limits without boosting up the energy in the inductor. This is not possible in a 

classical boost PFC rectifier. 

 

The tri-state boost PFC converter with most of the second harmonic energy 

stored in the output capacitor does not offer much advantage over the classical boost 

PFC scheme.  The reasons are listed as below. 

1. The output capacitor needed in the tri-state PFC converter is as large as the 

one needed in the case of classical boost converter. 

2. With negligible energy stored in the inductor, the tri-state operation will be 

lost in most part of the line frequency cycle and the converter will just 

function as a simple boost converter with two switches in series. This will 

result in additional losses in the extra switch. Besides, the losses due to reverse 

recovery of the diodes (D and Df) will be higher than that due to reverse 

recovery of the single diode in boost PFC rectifier. These factors will result in 

a lower efficiency of tri-state boost PFC rectifier when compared to that of a 

classical boost PFC rectifier.  

3. Fast dynamics of output voltage is also not ensured due to large-size of the 

filter capacitor. Besides, it is believed that similar to a boost PFC scheme, any 

attempt to enhance the dynamic response of output voltage in tri-state boost 

PFC rectifier will result in increased distortion of the input current.   

 

 

The tri-state boost PFC rectifier with second harmonic energy stored in the 

boost inductor also does not offer significant advantage over the classical boost PFC 

scheme. This can be explained as below. 

 

With the inductor storing all the second harmonic energy, the average current in 

the inductor will be high. Assuming a large inductor, the inductor current ‘IL’ can be 
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considered to be a constant (with negligible ripple). Neglecting the effect of 

switching, the input and output currents of the scheme can be written as 

)()(*))()((*)(
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Under any loaded condition, the average load current Io will become more than 

|Iin(t)| during some part of the ac cycle (around the zero-cross), during which a 

solution for ‘Db(t)’ does not exist (refer (8.12)). Any attempt to deliver the desired 

output current during these conditions (be setting Do(t) > 0 ) will result in increased 

input current distortions. On the other hand, if Do(t) is set to zero under these 

conditions, second harmonic ripple will start appearing in the output voltage which 

would demand a large capacitance. 

 

Thus it may be concluded that in spite of the presence of extra degree of control-

freedom, the tri-state boost converter with either inductive or capacitive second-

harmonic energy storage does not offer much advantage over the classical approach. 

 

8.2.2 Suitability of Tri-state Buck-Boost-Based Converters 

Single-phase power factor correction (PFC) using a buck-boost-based converter 

has a wide output voltage range. Unlike the popular boost-PFC converters, the buck-

boost-based PFC converter can even deliver an output voltage lower than the peak ac 

input voltage, if required.  

 

Tri-state buck-boost-based PFC converters (buck-boost, flyback, and cascade-

buck-boost (CBB) converters) with second harmonic energy stored primarily in the 

output capacitor, do not offer any significant advantage over their corresponding 

classical counterparts. Thus, in this sub-section, the suitability of these converters 
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with second harmonic energy stored in the inductor (coupled inductor in the case of 

flyback converter) in PFC applications is investigated.  

 

With the inductor storing all the second harmonic energy, the average current in 

the inductor will be high. Assuming a large inductor, the inductor current ‘IL’ can be 

assumed to be a constant (with negligible ripple). Under these conditions, neglecting 

the effect of switching, the input and output currents can be written as 
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With a large inductor current, the above two equations can be satisfied under all 

operating conditions in the buck-boost-based PFC rectifier i.e., a total decoupling of 

input current control and output voltage control can be achieved. Thus, the extra 

degree of freedom offered by the tri-state operation in the case of buck-boost-based 

PFC rectifier can be effectively exploited to achieve both sinusoidal input current and 

ripple-free output voltage.  To demonstrate this, a cascade-buck-boost-based PFC 

rectifier is explored in detail in the rest of this chapter.  

 

8.3 Cascade-Buck-Boost PFC Converter (CBB-PFC) 

In this section, the tri-state operation of CBB-PFC rectifier (Fig. 8.3) with 

inductive energy storage is explored. A novel control method for the CBB-PFC 

converter is proposed. The proposed ‘dual-mode control (DMC)’ method is a 

modified form of the IDMC scheme discussed in Chapter 6 for the tri-state boost 

converter. The control method is simple to implement and meets the PFC objectives. 

As mentioned before, the second harmonic component of input power is absorbed in 

the converter itself and is prevented from reaching the output terminals, resulting in 

low output voltage ripple. The proposed control method independently controls the 
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output voltage and input current. The separation of output voltage control from the 

input current control makes fast dynamic response of the converter possible for 

limited range of load step changes. However, for large load changes, the converter 

offers slow dynamic response.  

 

Fig. 8.3. Cascade buck-boost- PFC (CBB-PFC) converter 

 

The important discussions in this section include a brief review of CBB 

converter operated in tri-state mode, description of the proposed control scheme and 

its limitations, trade-off between inductor size and efficiency, and selection of 

inductor and output capacitor. The anticipated good steady-state and transient 

performance are verified through simulation and experimental results on a prototype 

converter that was designed and built. A qualitative comparison of the converter 

performance with the popular single-phase PFC converters is also given. 

8.3.1 CBB Converter- Degrees of Control-Freedom 

The CBB converter (Fig. 8.3) has four valid operating states corresponding to 

the status of S1 and S2. In the proposed PFC scheme, the converter is operated as a tri-

state converter. When operated as a dc-dc converter, the inductor current under cyclic-

steady-state has three intervals of operation (refer Fig. 8.4), namely ‘boost’ interval 

(Db T) {both S1 and S2 ON}, ‘free-wheel’ interval (Df T) {S2 ON and S1 OFF}, and 

‘capacitor charge’ interval (Do T) {both S1 and S2 OFF}. The fourth state (S1 ON and 

S2 OFF) is invalid. Also, in any switching cycle,  
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1=++ ofb DDD . (8.14) 

 

Fig. 8.4.  Inductor (IL) and switch ‘S1’ (IS1) waveforms. 

 

The control freedom offered by CBB converter in the form of an inductor-free-

wheeling interval can be used to shape the inductor current as in (8.10) and hence 

meet the steady-state PFC goals. In addition, as mentioned before, this interval also 

helps in de-coupling the output voltage control from the input current control (8.13). 

This helps in achieving excellent transient performance as will be demonstrated later 

in the chapter. 

8.3.2 Dual-Mode Control Scheme for CBB-PFC 

In this sub-section, the control requirements of CBB-PFC are discussed. The 

dual-mode control (DMC) scheme for PFC is introduced and described. The control 

trade-offs are described in detail. 

A. Control Requirements and Grouping of Control Inputs of 

CBB-PFC 

Two loops, namely an input current loop for shaping the input current to a 

sinusoid and an output voltage loop for delivering a well-regulated output voltage are 
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needed in the control scheme. A third loop is needed to optimize the rms value of 

inductor current ‘Ik,’ (8.10). With these three loops in place, the input current is 

shaped sinusoid, the output voltage is tightly regulated, and the inductor current is 

also optimized for better performance. 

 

As the CBB-PFC rectifier has two independent (Db, Do,) and one dependent 

control input (Df) and three control objectives to be met, there is a need to group each 

of the control inputs to an objective that has to be met. As the input current is drawn 

only during the boost interval (Db T), Db is used for shaping the input current. 

Similarly, since output capacitor is charged only during the ‘capacitor-charging’ 

interval (Do T), Do is used to control the output voltage. Neglecting the switching 

ripple in the inductor current and using (8.10), the average input and output currents 

can be written as 
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The above two equations assume that the control inputs Db and Do are totally 

independent. Such an independence is possible only under the conditions when the 

inductor current is high enough so that 

1)()( ≤+ tDtD ob . (8.17) 

 

Condition (8.17) is satisfied by the third (slow) loop that controls Ik. This is done 

indirectly by adjusting the ac-cycle-averaged steady-state value of free-wheeling duty 
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ratio (Df
*). The free-wheeling interval serves as a ‘reservoir’ of extra energy (similar 

to a tri-state boost converter). The longer the free-wheeling interval, the higher the 

current Ik (refer Fig. 8.6), the larger the stored energy, and hence better is condition 

(8.17) met. The added advantage of having a higher Df is that for a step change in load, 

the converter offers good dynamic response as the excess energy in the inductor is 

readily released by a reduction in the free-wheeling interval, under transient 

conditions. However, for large load changes, the inductor may lose all its energy and 

the dynamics will be slow. This will be demonstrated later. 

 

B. Dual-Mode Control (DMC) Scheme 

The proposed dual-mode control (DMC) scheme for the CBB-PFC rectifier is 

shown in Fig. 8.5. As pointed out earlier, the scheme has three control loops, namely 

1. A charge control [39], [40] based input current (Irect) shaping loop that decides Db. 

As the input current is pulsed, to avoid ringing and oscillations in the sensor 

circuit, the inductor current is sensed and is integrated during the ‘Db T’ interval to 

get the input current.  

2. A fast output voltage error loop that decides Do. 

3. A slow Df-error loop that decides the peak value of rectifier current (Irect(pk)
*) to get 

the required inductor current Ik satisfying (8.17). 

 

In the DMC scheme, when the free-wheeling interval vanishes to zero, Db 

becomes the ‘master’ control input with dependency only on the input current error. 

Control input Do becomes the ‘slave’ control input with saturation at 1-Db. The 

reason for these choices can be explained as follows. Let us assume instead Do to be 

the master and Db to be the slave control input. When a load (increase) step occurs, 

the output voltage dips. Do increases in an attempt to draw more energy from the 
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inductor for maintaining the output voltage. As a result, Df is reduced to zero at first 

followed by a reduction in Db. With a reduced Db, the energy input from the ac 

source is also brought down. This cuts down the energy supply to the inductor and 

worsens the output voltage dip. The system will not be able to recover from such a 

transient. To avoid this Db is given the highest priority, followed by Do, and then Df.  

 

 

Fig. 8.5.  Dual-mode Control scheme for CBB-PFC rectifier 

C. DMC of CBB-PFC- Trade-Offs and Limitations 

The trade-offs in the CBB-PFC converter will be explained with respect to the 

converter that was designed, simulated and built. The specifications of the converter 

are Vs = 85-110V, 60 Hz, Vo = 100 V, and Io (rated) = 1 A. The component values 

chosen were L = 13.6 mH, C = 470 µF, Lin = 700 µH, and Cin = 0.94 µF. For the 

purpose of analysis, the effect of line filter (Lin, Cin) is neglected in the sections to 

come and Vin is assumed to be equal to Vs (Fig. 8.5). 
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The first trade-off in CBB-PFC exists between size of the inductor and operating 

efficiency of the converter. In the proposed PFC scheme, the second harmonic energy 

is absorbed in the inductor. If the inductance is low, high losses (due to parasitic 

resistances) occur in the power converter due to high inductor current. High inductor 

current also results in high crest factor of the input current causing EMI problems. A 

reduction in inductor current and crest factor of input current can be achieved by 

increasing the inductance value. However, this increases the size of the inductor. 

Increasing the inductor size can be expected to slow down the transient performance 

of the converter.  

 

Fig. 8.6.  Variation of inductor rms current with Df
* at Vs= 85 V, Po=100 W. 

 

The choice of free-wheeling duty reference Df
* introduces another trade-off 

between steady-state efficiency and meeting the objectives of PFC rectifier. At an 

operating point, Df
* decides the rms value of inductor current Ik. Setting a high value 

of Df
* in the control scheme results in a high inductor current and hence a large energy 

storage (refer Fig. 8.6). Although, this results in excellent steady-state and transient 

response, on the downside, it increases the component size and ratings and lowers the 

operating efficiency of the converter. On the other hand, setting a very low value of 

Df
* is also not possible as there is a minimum (‘limiting’) Df

* corresponding to each 

operating line and load condition below which second (line frequency) harmonic 
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distortions will start appearing at first in the output voltage followed by input current 

distortions. 

 

This ‘limiting’ Df
* at each operating condition is obtained by solving the non-

linear constrained optimization problem given by (8.18).  
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Expanding (8.18) using (8.15)-(8.17) 
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Fig. 8.7.  Variation of ‘limiting’ Df* with operating conditions, at Vo=100 V 

 

The solution of this optimization problem (8.19) will be the minimum cycle-

averaged Df
* that minimizes the inductor current Ik, while allowing Db and Do to vary 
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freely to achieve sinusoidal input current and tight output voltage regulation (8.17). A 

plot of this minimum Df
* at various line/load conditions is shown in Fig. 8.7. It may 

be noticed that the ‘limiting’ Df
* needed at high-line and light-loaded conditions is 

higher than that needed at low-line and high-loaded conditions.  

8.3.3 Selection of Power/Control Circuit Components 

Given the ratings of a PFC rectifier, this section describes the selection of power 

circuit components of the CBB converter. The choice of components of the prototype 

CBB-PFC converter (Vs=85-110V, 60 Hz, Vo = 100 V, Io (rated) = 1 A) that was built 

and tested is presented here as an example.  

 

A. Selection of Inductance ‘L’ 

Unlike the case of a boost-based PFC wherein the size of power circuit 

components are generally independent of the control parameters and settings, in the 

case of CBB-PFC, the reference Df
* also plays an important role in deciding the 

inductor size and energy storage and hence the rating of the power switches. The 

inductor must be chosen in such a way that the minimum of free-wheeling interval in 

an ac cycle just touches zero, while still satisfying the input/output PFC requirements 

(8.15)-(8.17). Under such inductor ‘optimum storage’ conditions 
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Using (8.15) and (8.16), (8.20) can be rewritten as follows. 

( )
π≤ω≤=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ω
ω

−

+
t0 ,1

)t2(Sin
L2
IVI

R
VwtsinI

 maximum
mm2

k

o
m  (8.21) 

 



Chapter 8 Application of tri-state control concept in single-phase power factor correction rectifiers 
 

 203

Given the worst case operating conditions (minimum line and maximum load) 

and assuming an ideal converter operation (efficiency = 1), the unknowns in the above 

equation are the inductor current Ik, the inductor value L, and the cycle-instant at 

which the above relation is maximized. Under ‘optimum storage’ conditions the 

maximum of equation (8.21) was found using Mathematica [73]. It was seen that in 

most cases, the maximum occurred approximately at ωt = π/4 radians.  

 

Thus (8.21) can be simplified as 

rad
4

t     ,1

L2
IV

I

R
V

2
I

mm2
k

om
π

=ω≈

ω
−

+
  (8.22) 

 

The above equation relates Ik and L. Table 8.1 shows a comparison between 

inductor currents Ik at Vo=100V, Vs =85 V, Io= 1A (for different values of inductance 

L) calculated using (8.22) and (8.21).  

 

TABLE 8.1. COMPARISON OF INDUCTOR CURRENTS CALCULATED USING EXACT (8.21) AND APPROXIMATE 

(8.22) RELATIONS 

L (mH) 15 13.6 10.8 5.5 2.75 

Ik (using (8.22)) 4.745 4.940 5.425 7.283 10.06 

Ik (using (8.21)) 4.735 4.924 5.413 7.277 10.06 
 

 

Thus, it may be concluded that (8.22) may be sufficient in designing the 

inductor. The inductor rms current Ik is chosen to be a multiple of the maximum input 

rms current under minimum line and maximum load conditions. Equation (8.22) is 

then solved to find the actual inductance value. For the power converter under 

consideration, at Vs=85 V and Io (rated) = 1 A, the input current Iin (assuming ideal 

converter operation and neglecting the effect of line filter) is 1.17 A. Taking into 

consideration the reduced operating efficiency and increased input current crest factor 
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due to high inductor current, the rms value of inductor current Ik is chosen to be about 

4.25 times the input current. Thus, with Im=1.17* 2 , R=100 Ω, Ik=4.25*Iin, the 

inductance L can be calculated as 13.1 mH using (8.15). A laminated iron core 

inductor of L=13.6 mH has been selected in order to keep the size and cost low. 

Although a laminated iron core inductor has been used, it will be demonstrated 

through experimental results in section 8.4.4 that the converter performance in terms 

of efficiency is not affected. 

 

B. Selection of Output Capacitor ‘C’ 

The output capacitor is selected based on the required hold-up time. Although 

energy is stored in inductor L as well, the storage is insufficient to meet hold-up time 

requirements. For the CBB rectifier under consideration, the output capacitor 

designed (without considering the energy storage in L) to hold the output voltage 

above 75 V (75% of rated output voltage) for about 10 ms is 457 µF. If the storage in 

inductor is also considered, the capacitor requirement is reduced to 440 µF. In the 

hardware implementation, a 470 µF capacitor has been used.  

 

C. Selection of Diodes and Switches 

Table 8.2 summarizes the maximum voltage stress across the various devices 

based on which the switches and diodes may be selected. The maximum current in all 

the devices listed in Table 8.2 is equal to the peak inductor current. As inductor 

current limit has been set at 10 A in the experimental set up, the devices have to be 

rated for a minimum of 10 A. 

 

TABLE 8.2. VOLTAGE STRESS ACROSS VARIOUS SWITCHES 

S1 S2 D1 D2 Bridge diodes 

Vm(=156 V) Vo (= 100 V) Vm Vo Vm 
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D. Controllers and Hard-limits Set in the DMC Scheme 

The reference value of free-wheeling interval (Df
*) in the control scheme (Fig. 

8.5) has been set at 0.57. From Fig. 8.7, it can be seen that with this Df
*, second (line 

frequency) harmonic ripple in output voltage and distortions in input current will start 

appearing when the power delivered falls below 50 W (at Vs = 85 V).  

 

The maximum value of Db has been limited to 0.75. In addition, Db is also 

limited when the inductor current exceeds the current limit which was set at 10 A. 

This current limit module is not shown in Fig. 8.5 for the sake of simplicity. 

 

         

                               (a)                                       (b) 

Fig. 8.8. Simplified converter model for design of voltage-loop converter  (a) current-fed converter 

model (b) averaged model with diode D2 replaced by current source. 

 

Although the DMC scheme is simple, because of the non-linear nature of the 

converter/control system, system modeling was difficult. A simple design approach 

for voltage-loop controller is to model the converter as a current source feeding an 

RC-load as shown in Fig. 8.8. With this approach, the Do-to-Vo transfer function of 

the converter can be written as follows. 
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Using (8.23), the voltage loop controller was designed to be  
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 Due to the lack of a simplified model relating Df to Irect(pk), the corresponding 

controller that operates on the Df error loop to generate Irect(pk)
* has been designed 

based on computer simulations using MATLAB SIMULINK and tuned during 

experiments in the hardware prototype model. The designed PI-controller is given by 

s

1
6.77

s

8.38)s(Tc

+
= . (8.25) 

8.3.4 Simulation and Experimental Results 

A CBB converter of the specifications mentioned earlier (in section 8.3.2(C)) 

has been designed, simulated using MATLAB SIMULINK, and a hardware prototype 

has been built and tested. Simulation models are given in Appendix B. Hardware 

implementation details are given in Appendix C. Figs. 8.9 and 8.11 show respectively 

the simulated and experimental waveforms under certain line and load conditions. In 

both cases, the inductor current is seen to follow the relation (8.10).  

 

The small (about 0.15 V) second harmonic ripple observed in the output voltage 

(Fig. 8.9 (b)) is due to the fact that the selected voltage controller (8.24) is not able to 

vary Do fast enough to minimize the ripple. To verify this, simulations were carried 

out using a voltage controller having 10 times the gain of that in (8.24) [poles and 

zeros remaining the same]. The results are shown in Fig. 8.10. It may be noticed that 

the output voltage ripple in this case is reduced by almost 1/10th of that obtained with 

the original controller in (8.24). In the experimental set-up, such a high gain on the 

voltage controller led to noise amplification. A better layout may avoid this problem.  

 

As the second harmonic energy is absorbed in the inductor itself, the output 

voltage ripple in experimental waveforms (Fig. 8.11) is only about 0.4 %. Fig. 8.11(e) 

shows the various frequency components of the input current. The overall THD of the 
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input current is 3.35 % . The rms values of various components are I(fundamental 

60Hz)=1.46217 A, I(180Hz)=0.025 A, I(300Hz)=0.025 A, and I(420Hz)=0.0224 A. Thus, from 

Figs. 8.11(b) and 8.11(e), it may be concluded that the input current is nearly 

sinusoidal.  

 

 
(a) 

 

 

(b) 

 

Fig. 8.9.  Steady-state waveforms of DMC based CBB-PFC rectifier at Vs=85 V, Vo=100 V, Io=1 A, 

Df
*=0.57 (a) Input and inductor currents (b) Output voltage. 
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(a) 

 

 
(b) 

 

 

(c) 

 

Fig.8.10.  Simulated steady-state waveforms of DMC based CBB-PFC rectifier at Vs=85 V, Vo=100 

V, Io=1 A, Df
*=0.57- Investigation with increased voltage-loop gain  (a) Inductor current 

(b) input current (c) output voltage. 
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Fig. 8.11.  Experimental steady-state waveforms at Vs=85 V, Vo=100 V, Io=1 A. (a) inductor current 

(ground at -1 div, scale: 2A/div) (b) input current (scale: 1A/div) (c) input voltage (scale: 

100 V/div)  (d) output voltage (oscilloscope in ac-coupling mode with ground at -3 div, 

scale: 1V/div); time scale: 5ms/div (e) Harmonic spectrum of input current; scale: x-

axis:50 Hz/div, y-axis: 10dBA/div; GND at +2 div (f) Inductor current (zoomed) showing 

tri-state operation (scale: 0.1 A/div, waveform has an offset of -2.7 A time: 10 µs/div. 
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The inductor current in Fig. 8.11(f) demonstrates tri-state operation at switching 

frequency (50 kHz). The core loss at 50 kHz is believed to be low as the inductor 

ripple current and the flux variations in the core are much smaller than their 

corresponding DC and twice-the-line-frequency (120 Hz) components. The jumps 

observed in the inductor current at the beginning of free-wheeling and boost intervals 

are believed to be attributed to the parasitic capacitance of the inductor. This can be 

explained as below.  
 

Fig. 8.12 shows the equivalent model [83]-[85] of laminated iron-core inductor. 

The equivalent inductance Lac and resistance Rac are frequency dependent quantities. 

Rac models the skin and proximity effects. The parallel capacitance Cw models the 

turn-to-turn and turn-to-iron stray capacitances. 

               

Fig. 8.12. Equivalent model of laminated iron-core inductor 
 

The inductor model in Fig. 8.12 may be used to explain the jumps observed in 

the inductor current waveform (Fig. 8.11(f)). At the beginning of ‘boost’ interval (Db 

T), when S1 and S2 are switched on, the equivalent capacitance Cw, which is initially 

charged to 100 V (output voltage) discharges and recharges in the opposite polarity to 

the magnitude of the input voltage. This charging current appears as jumps in the 

measured inductor current waveforms. Similarly at the beginning of ‘free-wheeling’ 

interval (Df T), the capacitance discharges its stored charge which accounts for the 

jump encountered in the inductor current observed at the beginning of the interval. 

Cw 

Lac Rac 
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The inductor current jump observed at the beginning of the ‘capacitor-charging’ 

interval (Do T) is on account of the charging of Cw to the output voltage.  The 

maximum change of polarity of voltage across the inductor is experienced at the 

beginning of the ‘boost’ interval. As a result, the magnitude of inductor current jump 

is also higher in this case, as may be observed from Fig. 8.11(f). In spite of the 

presence of capacitance ‘Cw’ and its effect on the switching waveforms, the input and 

output conditions of the PFC rectifier are satisfied suggesting laminated iron core 

inductors in such energy storage applications. Further investigations needed in this 

aspect are left for future exploration.  

 

Fig. 8.13 shows the simulated response for a small-step change in load. For this 

load change, the output voltage recovery is very fast. Figs. 8.14 and 8.15 show 

respectively the simulated and experimental responses of the converter for a large-

step change from half load to full load. As soon as the load step occurs, the output 

voltage starts dipping and the fast (output voltage) controller increases Do. As Irect(pk)
* 

is decided by the slow-Df loop, the input current does not change much immediately. 

With little change in energy drawn from the source and increased energy drawn by the 

load, the inductor loses all its energy. The output voltage dips further and the dip 

continues until the input current rises up to charge the inductor. Once the inductor 

current is sufficiently high to meet the demand, the output voltage recovers smartly 

and reaches its desired state. After this, the inductor current takes several ac cycles to 

reach its steady-state, during which the output voltage shows little change. This is due 

to the presence of free-wheeling interval that decouples control of output voltage 

control from that of the input current. This is unlike the case of a boost-based PFC 

rectifier in which output voltage and inductor (input) current reach steady-state 

together.  
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The voltage dip can be reduced and the transient response can be made faster by 

increasing the stored energy in the capacitor C, or by increasing the stored energy in 

the inductor either by increasing Df
* or by increasing L.  

 

 

(a) 

 

 

(b) 

 

Fig. 8.13.  Simulated step load transient response of the CBB PFC rectifier at Vs=85 V, Vo=100 V, 

Io=0.5 A to 0.55 A, Df
*=0.57. (a) Inductor and input current. (b) Output voltage. 
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(a) 

 
(b) 

Fig. 8.14.  Simulated step load transient response of the CBB-PFC rectifier at Vs=85 V, Vo=100 V, 

Io=0.5 A to 1 A, Df
*=0.57. (a) Inductor and input current. (b) Output voltage. 

 

 

Fig. 8.15.  Experimental response for step load change at Vs=85 V, Vo=100 V, Io=0.5 A to 1 A, 

Df
*=0.57; (a) Output voltage (scale: 5 V/div, oscilloscope in ac coupling mode with 

ground at 3.2 div) (b) Inductor current (ground at -2.5 div, scale: 2A/div) (c) Input current 

(scale: 5A/div; ground at -3 div) time scale: 50ms/div. 
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Fig. 8.16 shows the experimental steady-state efficiency of the converter and the 

total harmonic distortion (THD) of the input current at various line and load 

conditions. It may be noticed that the THD of input current at light loads is higher 

than that at high loads. This is due to the choice of Df
* (refer section 8.3.3(D)). Setting 

of Df
* to a constant value in the DMC scheme results in the magnitude of inductor 

current Ik being reduced under light loads. Due to this, the operating efficiency of the 

converter is high even under partial loaded conditions. To explain this, the 

relationship between inductor current Ik ad Df
* has to be known. The exact 

relationship between Df
* with Ik is complex and is given by 
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For simplicity, if we assume a large inductance, the second term inside the 

square root in the denominator can be neglected. (However, it must be noted that in 

practice, the inductor ripple current is significant). 
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Solving this, the approximate relation between Ik and Df
* can be obtained as  
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Thus, with Df
* held constant, and with a reduction in load, the current Ik is also 

brought down. Although the above expression neglects the inductor ripple current, it 

basically gives an indication that the inductor current indeed decreases with a 
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reduction in load at a constant Df
*. This explains the high operating efficiency 

obtained under partial and light load conditions (Fig. 8.16).  

 

 

 

Fig. 8.16 Experimental variation of steady-state efficiency and input current THD (multiplied by 5) 

with delivered power at extreme line conditions; legends: dotted line -Vs=110 V, solid 

line – Vs=85 V. 

 

8.3.5 Comparison of CBB-PFC with Popular PFC Rectifiers 

In this sub-section, the proposed DMC based CBB-PFC rectifier is qualitatively 

compared with popular stand-alone boost PFC and cascaded boost-buck PFC 

converters. 

 

A. CBB-PFC Versus Stand-Alone Boost PFC Rectifier 

One of the major advantages of the CBB converter over stand-alone boost-based 

PFC rectifier is that the output voltage can also be lower than the peak of the input 

voltage. Thus, the maximum device voltage stress in CBB converter is always lower 

than that in the boost PFC converter. In addition, the inrush current problem that 

occurs in the boost PFC at start-up can be avoided in the CBB converter. Besides, the 
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CBB converter has an additional degree of control freedom that is exploited in 

preventing the second harmonic energy from reaching the output terminals. The 

control freedom helps in decoupling the control of output voltage from that of the 

input current. This also reduces the output filter capacitance, which in the case of a 

boost-PFC is high, being designed to reduce the output voltage ripple. 

 

On the down side, the CBB converter has an additional switch and an additional 

diode. The second harmonic energy is stored in the inductor, which results in a high 

input current crest factor and increased device current ratings. The energy storage in 

inductor is also likely to result in a lower operating efficiency when compared to the 

boost-PFC converter. It must be noted that although energy storage in inductor may 

be considered as a disadvantage of the CBB scheme, an inexpensive laminated core 

inductor which also has a longer life time when compared to electrolytic capacitors 

has been used. 

 

B. CBB-PFC Versus Cascaded Boost-Buck PFC Rectifier 

The cascaded boost-buck (CaBB) converter is the dual of the CBB converter. As 

a result, it also has the additional degree of control freedom that helps in decoupling 

the control of input current from that of the output voltage. The second harmonic 

energy in CaBB-PFC scheme is stored in the intermediate capacitor which is a more 

efficient way of energy storage when compared to the inductive energy storage in the 

CBB converter. However, since energy in CBB converter is processed only once in 

the inductor, whereas in the CaBB it is processed twice, direct comparison of their 

operating efficiency is difficult.  

 

As the first stage in the CaBB converter is a boost-stage, the device voltage 

stress in the scheme is much higher than the corresponding stress in the CBB 
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converter. In addition, although power loss due to reverse recovery of diodes occurs 

in both converters, the loss will be relatively lower in the case of CBB converter due 

to the low voltages involved. An advantage of having a boost front-end stage (in 

CaBB converter) is the low crest factor of input current. However, the boost-stage 

cannot limit the inrush current upon start-up which, can be avoided in the CBB 

converter. 

 

In the CaBB converter, the output voltage is absolutely free from the second 

harmonic ripple, whereas in the DMC-based CBB converter, it is dependent on the 

control setting Df
*, the higher the setting, the lower is the ripple. As mentioned earlier, 

the setting of Df
* also affects the operating efficiency and device current ratings. 

 

The output voltage dynamics of CaBB converter is generally good due to high 

energy storage in the intermediate capacitor. Similar dynamics can be obtained in the 

CBB converter by increasing the energy storage either in the inductor (by increasing 

Df
* or L or both), or in the output capacitor C. However, increasing L/C will increase 

the size and cost of the converter. 

 

In addition to the line-side LC-filter, the CaBB converter has four energy 

elements (two inductors and two capacitors), whereas the CBB converter employs 

only one inductor and one capacitor. As the buck converter acts like a constant power 

load presenting a negative load resistance characteristics on the boost stage in the 

CaBB PFC rectifier [74], the controller design for the boost stage is dependent not 

only on the line side performance but also on the load-side characteristics. Being a 

single-stage converter, it is believed that the CBB converter does not face this 

problem. 
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It needs to be mentioned that, although the DMC-based CBB-PFC rectifier 

offers several advantages over CaBB PFC rectifier, it is not clear if these advantages 

make it really superior over the cascaded scheme. Further explorations are needed to 

clarify this aspect. 

C. Dual-Mode Versus Other Control Techniques of CBB-PFC  

The CBB-PFC has two switches and hence there are two degrees of control 

freedom. A chosen control technique can employ one of the following two control 

approaches. 

1. The control technique exploits the control freedom in achieving tight output 

voltage regulation and shaping the input current to sinusoid  

2. The control technique does not exploit the control freedom offered by the 

converter. The prime control need is to shape the input current to a sinusoid. 

The output voltage is roughly regulated with a large second harmonic ripple.  

 

Depending upon the nature of control, the filter components of the converter 

will be different. When approach 1 is employed, as in the present DMC based scheme,  

second harmonic power drawn from the input is absorbed in the inductor thereby 

increasing its size.  

 

Converters employing control methods following approach 2 are similar to 

boost pre-regulators. However, unlike boost pre-regulators, the output voltage can be 

either lower or higher than the peak input voltage. The size of inductor will be small 

in this case, although a bulky filter capacitor will be needed in order to reduce the 

output voltage ripple (on account of second harmonic power reaching the output 

terminals). The lower the output voltage, the larger will be the capacitor needed. A 

down-stream converter may be needed if load regulation demands are stringent. 
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Typically, the voltage loop bandwidth of the pre-regulator is lower than the frequency 

of the mains resulting in poor dynamic response. This is because, increasing the 

bandwidth of the voltage loop will introduce distortions in the input current reference 

and hence, in the actual input current. References [47] and [50] employ control 

schemes that come under this category. Reference [92] employs a similar scheme to 

control an interleaved buck-boost converter.  

 

Control methods employed in [48] and [49] fall under approach 1, in which 

second harmonic energy drawn from the mains is stored in the inductor. Reference 

[49] uses a control method that exploits the control freedom offered by a two-switch 

buck-boost converter, a converter much similar to cascade buck-boost converter. 

However, the paper does not present results discussing the dynamic performance of 

the control/converter scheme. Besides, the output voltage is controlled indirectly by 

shaping the inductor current. The circuit parasitics, which have not been taken into 

account in shaping the inductor current, will result in second harmonic ripple 

appearing in the output voltage. 

 

Reference [48] employs sliding-mode-based control to shape the input current 

and regulate the output voltage. The performance goals of this scheme are the same as 

those of the proposed DMC scheme. The control scheme was designed and simulated 

for the specifications given in Sec.8.3.3. A brief discussion and evaluation of the 

control method is given below.  

 

Fig. 8.17 shows the overview of the scheme. This diagram is drawn based on the 

understanding of the control scheme presented in [48]. Similar to the DMC scheme, 

here also there are three loops, viz., input current shaping loop, output voltage 

regulation loop and inductor current loop.  
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1. Input current shaping loop 

The input current is shaped by controlling S1. The equivalent control is given by  

L

rect
eq i

KVu =1 . (8.29) 

Here iL is the instantaneous inductor current and Vrect is the rectified input voltage. 

The numerator term represents the input current. The parameter K decides the 

input-output power balance. The above expression is similar to (8.15) that relates 

Db to input current and inductor current. 
  

 

Fig. 8.17 Block schematic diagram of sliding-mode control scheme for CBB-PFC – based on the 

method in [48] 

 

2. Output voltage regulation loop 

The output voltage is regulated by controlling S2. The equivalent sliding control is 

given by  
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Here λ is chosen by the designer. Under steady-state, the above expression is 

similar to (8.16) that relates Do, output current and inductor current. 

 

3. Inductor current loop 

This is the slow loop similar to the Df-error loop in the DMC scheme. The 

inductor current error decides the parameter K which in turn ensures power 

balance. The parameters K5 and K6 in Fig. 8.17 are dependent on the load 

resistance and reference voltage. Details can be obtained from [48].  

  

 
(a) 

 
(b) 

Fig. 8.18 Simulation results demonstrating the performance of control scheme employed in [48] at 

Vs = 85 V, Vref = 48 V and Po = 100 W (a) Inductor and input current (b) output voltage. 
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Excellent steady-state and transient state behavior are obtained when the 

reference voltage is set low. Fig. 8.18 demonstrates the excellent start-up transient 

offered by the converter when the reference voltage is set to 48 V and load power is 

set to 100 W. However, the scheme was found to have the following two drawbacks. 

 

1. Irrespective of the load conditions, the inductor current reference used in the 

control scheme is the same. Thus, under light load conditions, the converter’s 

efficiency will be low. Unlike the scheme in [48], in the proposed DMC scheme, 

the inductor current goes down when the load becomes low (8.28) thereby 

boosting the operating efficiency.  

2. In the sliding-mode control scheme, the switch S1 is used to control the input 

current and S2 is used to control the output voltage. These switches are 

controlled independently. When the output voltage reference is moderately high 

(for example, 85V DC with a 85 V RMS AC input), the converter operates like a 

buck rectifier (S2 switched off) during start-up and the desired output voltage 

would never be realized. This problem is demonstrated in Fig. 8.19, when the 

converter input voltage is set at 85V (RMS) and the output voltage reference is 

set at 100V DC. The operation of the converter in the buck mode and the control 

scheme’s inability to boost the output voltage beyond 80 V are clearly seen. In 

the proposed DMC scheme, the intervals of the converter are controlled (instead 

of the individual switches) with the boost interval being the master interval. 

Thus, such a start-up problem does not arise. 

 

Thus, it may be concluded the proposed DMC scheme for the CBB-PFC is 

superior to the other control techniques currently available in the literature.  
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Fig. 8.19 Simulation results demonstrating the drawback of sliding-mode control scheme employed 

in [48] (a) Inductor and input current (b) output voltage. 

 

8.4 Chapter Conclusions 

In this chapter, the application of tri-state converters in single-phase ac-dc PFC 

rectifiers has been investigated. It has been shown that the tri-state boost PFC 

converter may not offer significant advantage over the classical boost-PFC. On the 

other hand, in tri-state versions of buck-boost-derived converters, it is possible to 

decouple the controls of input current and output voltage. This also results in meeting 

the multiple-objectives of a PFC rectifier. To demonstrate this multiple-goal-

achievement, a cascade-buck-boost PFC converter has been designed, built, and tested. 

A simple dual-mode control scheme has been proposed for a PFC unit based on CBB 

converter that exploits the control freedom offered by the converter to achieve 

(a) 

(b) 
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sinusoidal input current and tight output voltage regulation. The control of output 

voltage and input current are de-coupled thereby resulting in good dynamic response. 

The limits and trade-offs in the control scheme have been explained. Simulation and 

experimental results that demonstrate the steady-state and transient performance of 

the converter with the proposed control scheme have been presented. A qualitative 

comparison of the proposed PFC scheme with other popular single-phase PFC 

schemes has been given. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

9.0 Background 

Classical single-switch boost and buck-boost power converters and their 

derivatives are used in dc-dc switch-mode power converters and in ac-dc power factor 

correction applications. In both the applications, the dynamic performance of the 

above-mentioned converters for disturbances is generally slow.  

 

In dc-dc applications, although dynamic response problem is encountered in 

these converters for both small and large disturbances, the reason behind the slow 

dynamic response is different in either case. For small disturbances, the dynamic 

response is slow on account of the presence of a characteristic RHP zero in the small-

signal control-to-output transfer function of the converter. As the RHP zero also 

changes its location in the complex frequency plane with changes in operating point, 

the closed-loop bandwidth is typically limited to frequencies much less than the 

switching frequency. For large disturbances, an important reason for the sluggish 

dynamic response is related to the characteristics of linear controllers that are often 

optimized for small-signal performance at one operating point. 

 
 

 In single-phase ac-dc PFC applications, the absence of an additional degree of 

control freedom in single-switch boost and buck-boost rectifiers and the prime 

objective to shape the input current to a sinusoid forces a compromise in the dynamic 

response offered by the converter. Typically, a closed loop bandwidth much less than 

the ac line frequency (50/60 Hz) is realized.   
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In this thesis, several solutions to dynamic response problem in boost and buck-

boost-derived converters have been proposed. The solutions fall under the following 

two categories.  

• Mitigation of dynamic response problems by enhancements in converter 

design and control techniques  

• Modification of the existing converter topology to overcome the problem. 

 

9.1 Mitigation of RHP Zero Problem by Refining the 

Design Approach 

Chapter 3 discussed this approach. The aim of this approach was to mitigate the 

small-signal dynamic response problem due to RHP zero in the classical boost dc-dc 

converter by appropriate selection of the boost inductance. Through a theoretical 

analysis it has been proved that even when operating in CCM, the RHP zero in the 

control transfer function can be shifted farther in the complex frequency plane 

provided the inductance is below a certain value. However, the resulting inductance is 

small which will eventually result in an undesirable large ripple current. The analysis 

has also been extended to explain the well-known fast dynamic response 

characteristics of the converter when operated in discontinuous conduction mode.  

 

9.2 Dynamic Performance Improvement by Modifications 

in the Employed Controller 

This approach was discussed in Chapters 3 and 4. The aim of this approach was 

to improve the dynamic performance of the classical boost converter (in dc-dc 
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applications) by modifications in the controllers employed. The controllers considered 

for dynamic performance improvement are listed below. 

• Locally-optimized Linear-PI controller 

• Gain-scheduled-PI (GSPI) controller and 

• Fuzzy logic controller (FLC)  

 

It has been observed that linear-PI controller designed at an operating point 

offers the nearly best transient response possible at the operating point in the case of 

boost and buck-boost converters. However, it must be noted that the response is still 

slow as the closed-loop bandwidth is limited by the presence of RHP zero in the 

control-to-output transfer function of the converter.  

 

GSPI and FLC controllers, in spite of implementation complexities, do not offer 

much advantage in terms of small-signal transient response over the locally-optimized 

PI controller. However, for large-signal transients, as pointed out by many researchers, 

FLC is better than linear-PI controllers. Simulation and experimental results on a 50 

W prototype dc-dc boost power converter have been presented to demonstrate the 

dynamic performances offered by GSPI and FLC.  

 

9.3  Non-linear function controller 

An in-depth analysis has been carried out on FLCs used in power converter 

control applications. It has been shown that the rule table of two-input FLCs of the 

type typically used in the control of power electronic converters can be replaced by a 

single-input-single-output non-linearity and the entire FLC can be realized using a 

fast and inexpensive non-linear analog circuitry. The reduced controller form has been 

named as Non-linear Function Controller (NLFC). Simulation results showing the 
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near equivalence of NLFC and multi-input FLC have been presented. A Non-Linear 

PI Controller (NPIC) (reduced form of PI-FLC) has been developed for a classical 

boost converter. Although a boost converter has been taken for example, it must be 

noted that the proposed NLFC/NPIC is relevant to all power converters, in general. 

The structural similarity of NPIC to linear-PI controller has been used to design an 

NPIC that offers good small-signal dynamic performance (at an operating point). An 

example design has been given. Experimental results demonstrating a similar small-

signal dynamic performance and an improved large-signal dynamic performance of 

the converter with NPIC over that obtained with a linear-PI controller have been 

presented.  

 

It must be noted that although NPIC offers better large-signal response when 

compared to that offered by PI-controller and good small-signal performance similar 

to the PI-controller at the design operating point, the NPIC (and hence the original PI-

FLC) may not offer good small-signal performance when the operating point changes. 

 

The simplification of two-input FLC to SISO-non-linearity has been 

advantageously used in predicting the stability margins of the system consisting of the 

classical dc-dc boost converter and NPIC controller. Describing function analysis has 

been used for the purpose. The predicted stability limits have been verified using 

simulation and experimental results. 

9.4 Dynamic Performance Improvement by Modifications 

in the Converter Topology 

Although locally-optimized PI controllers offered a better small-signal transient 

response than the other controllers explored in Chapters 3 and 4, due to reduced 
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small-signal bandwidth on account of the presence of RHP zero, the transient 

response was still slow. Unless the RHP zero is avoided or pushed farther in the right-

half of the complex-s-plane, an improvement in closed-loop bandwidth was difficult.  

 

Tri-State Class of Converters 

To achieve a significant improvement in the dynamic response in boost and 

buck-boost-derived converters (in dc-dc applications), Chapter 5 explored the other 

alternative of making modifications in the converter topology itself. An additional 

degree-of-control-freedom in the form of an ‘inductor free-wheeling interval’ has 

been introduced in these converters. The family of converters obtained so has been 

named as ‘tri-state’ family of converters. A list of classical boost and buck-boost-

derived converters and their tri-state versions has been given.  

 

At the cost of an additional diode or an additional switch or both, the tri-state 

converters are able to avoid the RHP zero in their control-to-output transfer function. 

This has resulted in a significant improvement in the dynamic performance of these 

converters over their classical counterpart. Hardware prototypes of tri-state boost and 

tri-state flyback converters have been designed, built, and tested. Using a simple 

‘constant-Do’ control scheme, simulation and experimental results demonstrating the 

absence of RHP zero and improvement in dynamic performance have been presented. 

The performance of tri-state boost and tri-state flyback converters has also been 

compared with those offered by their corresponding classical counterparts. The results 

clearly indicate the significant improvement in dynamic performance. 

 

Dual-Mode Control Scheme for Tri-State Boost Converter 

Although the dynamic performance of the converter with the ‘constant-Do’ 

control scheme discussed in Chapter 5 is good, under high line and load conditions, 
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the inductor current is excessively high. This results in a reduction in the steady-state 

operating efficiency of the converter.  To optimize the inductor current and thereby 

improve the efficiency of the converter without much compromise in the dynamic 

operating range of the converter, two variations of a multivariable dual-mode control 

(DMC) scheme, namely, direct dual-mode control scheme (DDMC) and indirect dual-

mode control (IDMC) scheme have been proposed in Chapter 6. These schemes vary 

both the ‘boost’ (Db T) and ‘capacitor-charging’ (Do T) intervals to achieve fast output 

voltage dynamics and relatively slow inductor current optimization. An improvement 

in efficiency of the converter by about 10% (at full load) over that obtained when 

using ‘constant-Do’ control scheme has been achieved. Experimental results showing 

an identical small-signal dynamic response of the tri-state boost converter under the 

various control schemes has also been presented.  

 

Design of Tri-State Boost Converter 

The presence of ‘free-wheeling’ interval in tri-state converter acts as an energy 

reservoir. This reservoir not only helps in achieving excellent small-signal dynamic 

operation, but also enables obtaining good large-signal dynamic response for external 

disturbances of limited magnitude. The length of the free-wheeling interval also 

decides the size and rating of power components. The relationship between length of 

the free-wheeling interval and margins offered by the converter for various 

disturbances within which fast dynamic response of the converter’s output voltage is 

preserved has been presented in Chapter 7. A systematic design procedure for 

calculating the power and control components of the converter (under DDMC and 

IDMC schemes) and for getting the pre-defined margins of disturbance has also been 

given. The dynamic performance of the converter for disturbances whose magnitudes 
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fall within and outside the defined disturbance margins have been studied through 

simulation and experimental results. 

9.5 Investigation of Tri-state Converters for Performance 

Improvement in Single-Phase AC-DC PFC 

Applications 

The presence of additional degree of control freedom in tri-state converters 

make them potential candidates for application in single phase PFC rectifiers, where 

there is a need to achieve multiple goals namely drawing a sinusoidal input current at 

unity power factor from the ac mains, delivering a well-regulated output voltage, and 

offering fast dynamic response for step disturbances. Accordingly, the application of 

tri-state boost and tri-state buck-boost-derived ac-dc converters in single phase PFC 

has been investigated in Chapter 8. It has been shown that while the tri-state boost 

PFC rectifier does not offer much advantage over the classical boost-PFC rectifier, the 

tri-state buck-boost PFC converter and its derivatives are capable of meeting the 

multiple-PFC objectives. A cascade buck-boost converter, which is a derivative of 

buck-boost converter, has been taken for detailed investigation in PFC applications. A 

novel dual-mode control method that aims at achieving the multiple goals in the CBB-

PFC has been proposed. The operation of the converter-control scheme has been 

analyzed in detail. The multiple-goal achievement in PFC has been demonstrated 

through simulation and experimental results. It has been demonstrated that the 

converter also offers excellent output voltage dynamic response for step loads below a 

certain magnitude. 

As the second harmonic energy from ac-line is stored in the inductor in the 

CBB-PFC, a design procedure to select the inductor and other power circuit 
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components has been given.  The associated design trade-offs have been described. 

The CBB-PFC has been qualitatively compared with single-phase stand-alone boost 

PFC and cascaded boost-buck converter. It must be noted that although the CBB-PFC 

offers many advantages over cascaded boost-buck-PFC, it is not clear if these 

advantages make them really superior to cascaded boost-buck PFC. Further work 

related to establish the converter as a useful solution for PFC problem is left for future 

explorations.  

9.6 Future work 

Some ideas that can be considered in future for implementation are as below. 

1. The DMC schemes for tri-state boost converters make the optimization of 

inductor current at least one order slower than the control of output voltage i.e., 

control input Do is made one order slower than control input Db. Investigations 

on the best possible rates of change of Db and Do that achieve the desired steady-

state in the shortest possible time without affecting stability are left for future 

investigation. The implication of such an optimum change in control inputs on 

the size and ratings of power components is also left for future investigation.  

2. Due to non-availability of a proper model, the controllers of CBB-PFC have 

been designed based on computer simulations. Development of a model of the 

converter that will help designers in deciding the controller is a major task that 

is left for future explorations. Besides, as mentioned in before, detailed 

investigation and comparison of CBB-PFC with cascaded boost-buck converter 

with respect to cost, size, and performance is also left for future exploration. 

These investigations will establish the usefulness of CBB-PFC rectifier.  
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APPENDIX A  
 

TRI-STATE BOOST CONVERTER: DERIVATION OF 

COMPLETE SMALL-SIGNAL TRANSFER FUNCTION 

MODEL 
 

A.0 Background 

Chapter 5-7 discuss the tri-state boost converter. The small-signal control-

inputs-to-converter-state transfer function of the converter has been used in several 

places. In this section of the thesis, the complete derivation for the control-input-to-

converter-state transfer function taking into account the effect of system parasitics is 

presented. 

 

A.1 Complete Transfer Function- Derivation 

Let us consider the tri-state boost converter (Fig. 5.2(b)). Let us consider the 

following parasitics in the converter. 

 

RM =   MOSFET ON-Resistance, 

RL =  Inductor ESR,  

Rc  =  Capacitor ESR,  

VD  =  Diode Forward voltage drop. 
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Let  IL be the average inductor current, Vo be the average output voltage, V be 

the average voltage across the capacitor, and  R be the load resistance. The state 

equations of the converter can be written as below. 
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The average equation of the converter can be written as below. 
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For obtaining the small-signal model, perturbations are introduced in the control 

inputs Db and Do (only one control input is perturbed at a time). As a result, the 

dynamic variables IL and V change. Let the perturbed variables be 
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In the sections to follow, the transfer function between the converter states and 

each of the control input (the other control input is kept constant) is derived and the 

transfer-function matrix (6.17) is derived. 

A.2 Derivation of Db-to-State Transfer Functions 

In this case, the control input Do is held constant. This is similar to the case of 

transfer functions derived in the case of the ‘constant-Do’ control scheme 

discussed in chapter 5. Applying the perturbed variables (A5) [other than Do] to (A4) 

we get 
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The small-signal model can be obtained by removing the dc terms and neglecting the 

non-linear terms in the above set of equations.  
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Taking laplace transforms 
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Eliminating V(s) form the above set of equations, the Db-to-IL transfer function 

(G21’(s)) can be computed as 
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Similarly, eliminating IL(s) from (A7), the Db-to-V transfer function can be 

computed as  
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The relation between the output voltage Vo and capacitor voltage V can be 

shown to be 

oCLo DaRiavv +=  (A14) 

Substituting the perturbed variables in (A14), 

( ) ( ) oCLLoo DaRIIVVaVV ˆˆˆ +++=+  (A15) 

Neglecting the dc terms in (A15) and taking the Laplace transforms, we get 
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Rearranging (A16) and substituting for ‘a,’ we get 

( )CR1)()( CssVsVo +=  (A17) 

Thus, the overall Db-to-Vo transfer function (G11’(s)) can be written as 
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A.3 Derivation of Do-to-State Transfer Functions 

In this case, the control input Db is held constant. Applying the perturbed 

variables (A5) [other than Db] to (A4) we get 
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The small-signal model obtained by removing the dc terms and neglecting the non-

linear terms is given by  
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Taking laplace transforms 
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Eliminating V(s) form the above set of equations, the Do-to-IL transfer function 

(G22’(s)) can be computed as 
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Similarly, eliminating IL(s) from (A7), the Db-to-V transfer function can be 

computed as  
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The relation between the output voltage Vo and capacitor voltage V is 

oCLo DaRiavv +=  (A24) 

Substituting the perturbed variables (A11) in (A24), 

( ) ( ) ( )ooCLLoo DDaRIIVVaVV ˆˆˆˆ ++++=+  (A25) 

Neglecting the DC terms in (A12) and taking the laplace transforms, we get 
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Using (A21), it can be shown that the above relation reduces to  

( )CR1
)(

)(
)(
)(

C
s

sD
sV

sD
sV

oo

o +=  (A27) 

Thus, the overall Do-to-Vo transfer function (G12’(s)) can be written as 
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It may be noticed that the above transfer function has an RHP zero. This again 

justifies the control input Do not being grouped with the output voltage (chapter 6). 

A.4 Control-to-State Transfer Functions in the Absence of 

Parasitics 

In the absence of parasitics, the control-to-system state transfer functions (G11(s), 

G12(s), G21(s), G22(s)) can be written from G11’(s), G12’(s), G21’(s), G22’(s) (A9), 
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As IL=V/(RDo) =Vs(Db+Do)/(RDo
2)(steady-state inductor current) 
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once again, as IL=V/(RDo) =Vs(Db+Do)/(RDo
2), 
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The above transfer functions G11(s), G12(s), G21(s), and G22(s) are the same as those 

obtained in chapter 6. 

  

 



Appendix B: MATLAB-SIMULINK Models of the various converter-controller schemes  

 247

APPENDIX B  

MATLAB-SIMULINK MODELS OF THE VARIOUS 

CONVERTER-CONTROLLER SCHEMES 
 

B.0 Tri-State Boost Converter  

 

Fig. B.1.  Tri-state boost converter- Simulation (SIMULINK) model  

 

The parameters of the converter namely the filter inductance (L=278 µH), filter 

capacitance (C= 540 µF), and load resistance, R have to be stored in the matlab 

workspace before executing the model in Fig. B.1. Besides, as the inductor current is 

unidirectional in the tri-state boost converter, it is essential to limit the current to 

positive values. This has been achieved by having a non-linear limiter on the 

integrator ‘inductor current.’  
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B.1 Switch Logic 

The model in Fig. B.2 takes as input the Db and Do signals and derives the 

appropriate PWM signals driving the later stages.   

Saturation1 (Do limiter) limit- 0.1 to 1; Saturation (Db limiter) limit- 0 to 0.9. 

 

Fig. B.2.  Switch logic- Simulink model.  

B.2 Tri-State Boost Converter- ‘Constant-Do’ Control 

Scheme  

 

Fig. B.3.  Tri-state boost converter- ‘Constant-Do’ control scheme- Simulation (SIMULINK) model  
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B.3 Tri-State Boost Converter- Direct Dual-Model Control 

(DDMC) Scheme  

 

Fig. B.4.  Tri-state boost converter- DDMC scheme- Simulation (SIMULINK) model  

 

B.3.1 Subsystem  ‘PI Controller2’ 

PI-Controller2 in Fig. B.4. 

 

Fig. B.5.  PI-controller (voltage-loop) used in DDMC and IDMC schemes- Simulation (SIMULINK) 

model  
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B.4 Tri-State Boost Converter- Indirect Dual-Model 

Control (IDMC) Scheme  

Tri-state boost converter shown in Fig. B.1, switch logic shown in Fig. B.2, and 

PI-controller shown in Fig. B.5 have been used even in the IDMC scheme. 

 

Fig. B.6.  Tri-state boost converter- IDMC scheme- Simulation (SIMULINK) model  

 

B.5 Tri-State Flyback Converter- ‘Constant-Do’ Control 

Scheme  

 

Fig. B.7.  Tri-state flyback converter- ‘Constant-Do’ control scheme- Simulation (SIMULINK) 

model  
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B.5.1 Subsystem ‘Tri-state Flyback Converter with Switch Logic’  

 

Fig. B.8.  Subsystem – ‘Tri-state flyback Converter with Switch logic’- Simulation (SIMULINK) 

model  

 

B.5.2 Subsystem  ‘Tri-state Flyback Converter’  

 

Fig. B.9.  Subsystem – ‘Tri-state flyback Converter - Simulation (SIMULINK) model  
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B.6 Dual-mode Control of Cascade Buck-Boost Power 

Factor Correction (CBB-PFC) Converter  

 

Fig. B.10.  Dual-mode control of CBB-PFC- Simulation (SIMULINK) model  
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B.6.1 Subsystem ‘CASCADE BUCK-BOOST CONVERTER’ 

 

Fig. B.11.  Subsystem ‘CASCADE BUCK-BOOST CONVERTER’- Simulation (SIMULINK) 

model. 

 

B.6.2  Subsystem ‘AVERAGE CURRENT COMPUTER’ 

 

Fig. B.12.  Subsystem ‘AVERAGE CURRENT COMPUTER’- Simulation (SIMULINK) model  
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B.6.3 Subsystem ‘PFC SWITCH LOGIC’ 

 

Fig. B.13.  Subsystem ‘PFC SWITCH LOGIC’- Simulation (SIMULINK) model 

B.6.4  Subsystem ‘Db Evaluator’ 

 

Fig. B.14.  Subsystem ‘Db Evaluator’- Simulation (SIMULINK) model 

 

B.6.5 Subsystem ‘Df Controller’ 

 

Fig. B.15.  Subsystem ‘Df Controller’- Simulation (SIMULINK) model 
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B.6.6  Subsystem ‘Db Generator’ 

 

Fig. B.16  Subsystem ‘Db Generator’- Simulation (SIMULINK) model 

B.7  Classical Boost Converter (Averaged Model) 

Controlled by Gain-Scheduled PI Controller 

 

Fig. B.17  Classical boost converter with GSPI controller- Simulation (SIMULINK) model 

Compute Kp:  

u= Vref- Vo;  f(u) = (Kpmax-(Kpmax-Kpmin)*exp(-128*abs(u)))*u 

Compute Ki: 
 
u(1)= Vref-Vo;  u(2)=Vs;  f(u)=u(1)*(10+2*(u(2)-10)) 



Appendix B: MATLAB-SIMULINK Models of the various converter-controller schemes  

 256

B.7.1  Subsystem ‘’Large-signal averaged model of boost converter’ 

 

Fig. B.18  Subsystem ‘Large-signal averaged model of boost converter’- Simulation (SIMULINK) 

model 

Description of various functions: 

IL =  averaged inductor  

D =  averaged duty ratio 

Vc =  averaged capacitor current 

Vo =  averaged output voltage 

Fcn:   output  =  IL*(1-D)*ESR*R/(R+ESR)*1/L 

Fcn1:   output = Vc*R/(R+ESR)*1/(R*C);  

Fcn2:  output = Vc*(1-D)*u(3)/(u(3)+ESR)*1/L 

Fcn3:  output = IL*(1-D)/C 

Fcn4:  output = IL*(1-D)*R*ESR/(R)+ESR)*1/(R*C) 

Fcn5:  output = IL*(1-D)*R*ESR/(R+ESR) 

Fcn6:  output = Vc*R/(R+ESR) 
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B.8  Classical Boost Converter (Averaged Model) 

Controlled by Linear-PI Controller 

Large-signal averaged model of boost converter in Fig. B.18 has been used. 
 

 

Fig. B.19  Classical boost converter with Linear-PI controller- Simulation (SIMULINK) model 
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B.9  Classical Boost Converter (Averaged Model) Controlled by PI-FLC and NPIC Controllers: 

Refer to chapter 4 for details related to NPIC and PI-FLC blocks. Large-signal averaged model of boost converter in Fig. B.18 has been used. 

 

Fig. B.20  Classical boost converter with PI-FLC and NPIC Controllers- Simulation (SIMULINK) model. 
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APPENDIX C  

HARDWARE IMPLEMENTATION DETAILS OF THE 

VARIOUS CONVERTER/CONTROL SCHEMES 
 

C.0 Tri-state Boost Converter- ‘Constant-Do’ Control 

Scheme  

 

 
Fig. C.1.  Tri-state boost converter- Hardware implementation  
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C.1 Classical Boost Converter- PI-based Control Scheme  

 

Fig. C.2.  Classical boost converter- Hardware implementation  



Appendix C: Hardware implementation details of the various converter/control schemes  

 261 

C.2 Tri-State Boost Converter- Direct Dual-Mode Control Scheme  
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Fig. C.3.  Direct Dual-mode control- Implementation  



Appendix C: Hardware implementation details of the various converter/control schemes  

 262 

C.3 Tri-State Boost Converter- Indirect Dual-Mode Control Scheme  
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Fig. C.4.  Indirect Dual-mode control- Implementation 
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C.4 Tri-State Flyback Converter- ‘Constant-Do’ Control Scheme 
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Fig. C.5.  Tri-state flyback converter with ‘constant-Do’ control scheme- overall schematic  
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C.5 Dual-Mode Control of Cascade-Buck-Boost PFC Converter- Circuit Schematic  
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Fig. C.6.  Dual-mode control of CBB-PFC- Circuit Implementation  
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APPENDIX D 

SINGLE-PHASE AC-DC POWER FACTOR CORRECTION 

RECTIFIERS: A SURVEY 
 

D.0 Introduction 

One of the key applications of boost and buck-boost-derived converters is in 

single-phase ac-dc power factor correction (PFC). Traditionally, the front-end of off-

line power supplies operating from ac-mains consists of a diode bridge rectifier 

followed by a bulky capacitor filter. Such an arrangement results in drawing an input 

current rich in harmonics, which in turn distorts the ac-mains voltage at the point of 

common coupling and deteriorates the quality of utility power supply. Several 

international standards and restrictions [82] have been imposed on the harmonic 

content of the current drawn form the utility. Reducing the harmonic content in the 

input current (this also implies improvement in input power factor) has been an active 

topic in power electronics since early 80’s. Several PFC circuit topologies aimed at 

reducing the input current harmonics have emerged over the past decade. Among 

them, the single-switch boost PFC rectifier is the most popular one, followed by 

flyback-based PFC schemes. In this appendix, the power factor correction problem is 

presented to begin with. Following this, a literature survey on the popular PFC 

techniques is also given. 

D.1 Single-Phase AC-DC Rectifiers- Overview of Problems 

In the nutshell, the prime objectives of a PFC rectifier can be summarized as 

below. 
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1. The input current should be sinusoidal drawn at nearly unity power factor 

2. The output voltage should  be tightly regulated 

3. The dynamic response of the converter has to be fast 

4. The voltage and current stress on the switches should be low as they reflect 

on the cost of the converter. 

5. The control scheme has to be simple and  

6. The converter should be cost-effective.  

 

Among the above listed objectives, achieving objectives 1, 2, 3, and 6 

simultaneously is often a difficult task. This can be explained as below. 

 

Let us consider a PFC rectifier drawing a sinusoidal input current Iin form the 

utility voltage Vin and delivering a well-regulated output voltage Vo.  

( ) ( )tsinV)t(V    ;tsinI)t(I minmin ω=ω=  (D.1) 

 

The input power (Pin(t)) can be written as follows. 

⎟
⎠
⎞

⎜
⎝
⎛ ω−

=•=
2

)t2(Cos1IV)t(I)t(V)t(P mmininin  (D.2) 

 

The above expression shows that the input power consists of a constant 

component and a component that varies at twice the line-frequency. Assuming a 

lossless power processing, the dc-part of the input power will be equal to the output 

power Po(t). Thus,   

2
IV

)t(P mm
o =  (D.3) 

 

Fig. D.1 shows the waveforms of the various quantities. With the energy input 

(from the source) changing at twice the line frequency and with a constant energy 
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demand by the load, any single-phase PFC scheme needs an extra energy-storage 

element to store the second harmonic power component (D.2). The extra energy-

storage element increases the cost of the converter in many cases.  Besides the 

energy-storage element, PFC converters should have at least two degrees of control-

freedom to shape the input current to a sinusoid and to provide a tight output voltage 

regulation. Converters with less control inputs fail to meet one or more of the PFC 

objectives. This aspect will become clear in the next section. 

 

 

 

Fig. D.1. Waveforms of an ideal single-phase PFC rectifier (a) Input voltage (b) Input current (c) 

Input power 

 

In general, the rate at which energy is built and processed in the extra-energy-

storage element (‘reservoir’) and the amount of extra-energy stored (size of the 

‘reservoir’) decide the dynamic response characteristics of the converter. While the 

storage-level in the ‘reservoir’ increases with its size, the rate at which energy is built 

and processed decreases with the increase in size of the storage element. PFC 

converters with large energy storage show little change in the output voltage for small 

load disturbances. However, sluggish dynamic response of the converter can be 
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observed when the load disturbance is large enough to exhaust the extra energy in the 

‘reservoir.’  

In the case of many PFC rectifiers, in addition to the size of storage element, 

employing fast controllers to enhance the dynamics of output voltage often distorts 

the input current. Due to this, the bandwidth of output voltage loop is generally 

limited to below the line frequency. This will also be explained in detail in the next 

section by considering a boost-PFC rectifier as an example.  

 

D.2 Applications of Boost and Buck-Boost converters in 

Single-Phase AC-DC Power Factor Correction and 

Associated Problems 

In this section, a survey [30], [31] of solutions available in literature for the PFC 

problem is presented and discussed. For the sake of simplicity, the survey is presented 

on the basis of the second-harmonic energy storage available in the converter.  

D.2.1 Energy Storage on Load-side Capacitor 

Stand-alone boost, buck-boost rectifiers and their derivatives are popular 

examples that store the second harmonic energy in the output capacitor. In this sub-

section, the problems associated with each of these PFC techniques are discussed. 

 

A. Stand-Alone Boost PFC Rectifier 

Fig. D.2 shows the boost-PFC rectifier with a commonly used control scheme. 

This converter has only one control input (duty ratio of the switch ‘S’), that can be 

used either to shape the input current to a sinusoid or to regulate the output voltage 



Appendix D Single-phase ac-dc power factor correction rectifiers: A survey 
 

 
 

269

tightly, but not both. Generally, shaping the input current is given a higher priority, 

this being a PFC converter. With an input current shaped to a sinusoid and with 

negligible energy storage in the inductor [2], all the second harmonic energy from the 

input (D.2) is passed to the filter capacitor C. This results in a high second harmonic 

ripple in the output voltage, which is generally reduced by employing a huge 

capacitor. On account of this high output voltage ripple, boost-PFC is generally used 

as a pre-regulator. 

 

The following issues are associated with boost-PFC techniques. 

 

 

Fig. D.2. Single-phase-single-stage boost PFC rectifier (pre-regulator) - converter and control 

scheme. 

 

 

Slow output voltage dynamics 

A popular control scheme [32], [38] employed with boost-PFC is given in Fig. 

D.2. It may be seen that the output voltage error is processed by a voltage controller to 

yield the peak of the rectifier current Irect(pk). For the input current to have a low THD, 
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Irect(pk) should ideally be a dc. To achieve this, the second harmonic ripple in the 

output voltage should be prevented from distorting Irect(pk). This demands the need for 

the voltage control loop to have a bandwidth less than twice the line frequency (100 

Hz or 120 Hz). Typically, a low voltage-loop bandwidth (20 Hz) is realized [32]. 

 

One of the ways of improving the voltage-loop bandwidth would be to estimate 

the voltage ripple and filter it from the sensed output voltage signal. Such a ripple 

compensation technique has been employed in [33]. A voltage loop bandwidth of 

100-200Hz has been reported. Although this is a significant improvement over the 

bandwidth obtained from a classical control scheme without ripple estimation, the 

scheme is complex. Reference [34] reports another ripple estimation technique based 

on adaptive learning. However, here also the scheme is complex as it employs phase-

locked loop and requires sensing of the output current.  

 

 

Reverse recovery loss 

Another issue which is of significant importance in boost-PFC circuits is the 

power loss due to reverse recovery of the output diode. During reverse recovery 

process (occurs when the main switch turns on), the reverse recovery current of the 

diode flows through the boost switch. This increases the turn-on losses of the boost 

switch and causes severe electromagnetic interference problems. 

 

A simple way of reducing the effect of reverse recovery problem is to employ 

ultra fast recovery diodes. Silicon-carbide (SiC) diodes that have negligible reverse 

recovery current can avoid this loss. However, besides being expensive, the forward 

voltage drop of SiC diodes is also high (about 2.5 V).  
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Another way of alleviating this problem would be to operate the converter in 

discontinuous-conduction mode (DCM) or in DCM-CCM boundary. However, 

operation in DCM or at the border of DCM-CCM increases the current stress on the 

switches. Reference [35] introduces a new branch consisting of a diode and a coupled 

winding of the boost inductor and alleviates the problem due to reverse recovery of 

the output diode. A 2% improvement in efficiency of the boost converter has been 

reported.  

 

Avoiding the input voltage sensor and multiplier/divider in the control scheme 

The boost-PFC scheme in Fig. D.2 needs sensing of the input voltage. Besides, 

the scheme employs multipliers and divisors for modulating the duty ratio to shape 

the input current to a sinusoid and for input voltage feed-forward. If the input voltage 

sensor and multiplier circuitry are avoided, significant reduction in component count 

and cost of the converter will be achieved. Several control schemes that avoid input 

voltage sensor and multipliers/dividers are available in literature. Reference [36] 

discusses a technique of avoiding the input voltage sensor in boost and buck-boost 

based PFC rectifiers.  The following discussion describes the underlying motivation. 

 

Under steady-state the input current and input voltage are in phase and the 

power converter emulates an equivalent resistance Req given by 

eq

in
in R

V
I =  (D.4) 

where inI  is the average input (inductor) current in one switching cycle. The 

relation between input and output voltages is given by 

)1( D
V

V in
o −
=  (D.5) 
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Substituting (D.5) in (D.4) 

( )D
R
V

I
eq

in
O −= 1  (D.6) 

In (D.6), the unknown duty D can be obtained by comparing the average input 

current (obtained in the previous switching cycle) with a waveform (refer Fig. D.3) 

whose time variation in every switching period ‘T’ is given by  

⎟
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⎝
⎛ −
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t

R
V

eq

O 1  (D.7) 

 

Fig. D.3. Avoiding the input voltage sensor and multipliers 

 

References [37] and [42] discuss similar ways of avoiding the input voltage 

sensor and multipliers in which the diode current and switch current are respectively 

sensed and used generate the duty ratio pulse. 

 

Inrush current 

Almost all boost-based PFC converters suffer from inrush current problem when 

powered on as there is no series switch to limit the rising current. This problem in the 

case of PFC rectifiers attracts significant importance as the magnitude of inrush 

current depends on the part of the ac cycle at which the circuit is powered on. 
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Thermistors with negative temperature coefficient limit are generally used to limit the 

inrush current. 

 

 

Device voltage stress 

The voltage stress across switches and diodes used in stand-alone boost PFC 

rectifiers is equal to the output voltage, which is higher than the peak of the line 

voltage. This, in particular, plays a critical role in deciding the cost of the converter. 

 

B. Single-Switch Buck-Boost/Flyback PFC Rectifier 

Flyback and buck-boost converters typically use the output capacitor as the extra 

energy-storing element in PFC applications (refer Fig. D.4). Flyback converters 

operating in DCM are very popular in small and medium power PFC converters for 

the following reasons. 

 

1. When operated in DCM with a constant duty ratio, the average input current 

follows the shape of the input voltage and the additional current loop is 

avoided. 

2. The output voltage can be adjusted to be even lower than the peak of the input 

voltage, if required. 

3. Unlike the boost PFC rectifier, the buck-boost and flyback PFC rectifiers 

avoid the inrush current problem due to the presence of a series switch. 

4. Implementation of galvanic isolation between the input and the output is 

simple with flyback topology. 

 

Some of the important issues related to flyback/buck-boost-based PFC topology 

are listed below. 
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(a) 

 

(b) 

Fig. D.4. Circuit diagram (a) Flyback PFC (b) Buck-boost PFC 

 

Input Current and Current Control Loop 

Unlike the boost converter, the input current of flyback/buck-boost PFC 

topology is chopped. This increases the EMI-associated problems and filtering 

requirements. When operated in DCM, the device current stresses and EMI filtering 

requirements are much higher than those when operated in CCM.  

 

For flyback and buck-boost PFC converters operating in CCM, the control 

scheme generally implemented is almost similar to the one implemented with the 

boost PFC converter (Fig. D.2). However, as the input current is not the same as the 

inductor current, a charge-control-based [39] input current control is typically 

implemented with flyback converters [40].  
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Slow Dynamic Response 

Similar to boost-PFC converter, the output voltage dynamics of flyback-PFC 

operating in CCM is slow. The small-signal bandwidth obtained is generally less than 

the line frequency (50 or 60 Hz). 

 

Large Filter Requirement 

The storage of second-harmonic energy in the output capacitor increases the size 

of the output capacitor.  Unlike the boost-PFC converter, as the output voltage can 

even be less than the peak value of the line voltage, the size of the capacitor depends 

on the magnitude of the output voltage, the lower the output voltage, the larger is the 

capacitance.  

 

Leakage Inductance of the Flyback Transformer 

A common problem with flyback converter is the leakage inductance of the 

primary winding that causes high voltage spikes when the switch is turned-off. The 

energy trapped in the primary inductance when the flyback converter is operated as a 

dc-dc converter may be transferred back to the source by using a two-switch topology. 

However, in PFC application, due to the presence of diode bridge, the energy cannot 

be pumped back to the source. Reference [41] suggests a two switch flyback converter 

with regenerative clamping in which the energy trapped in the leakage inductance is 

transferred to the source.  

 

Device voltage stress 

The maximum voltage stress across the (primary-side) switch is very high being 

the summation of the input voltage peak and the output voltage reflected back to the 
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primary. The maximum voltage stress across the diode on the secondary side is equal 

to addition of output voltage and peak of the line voltage transferred to secondary.  

 

Avoiding the input voltage sensor and multiplier/divider in the control scheme 

Similar to the case of boost-PFC rectifier control, [36], [43] and [44] present 

control schemes for flyback/buck-boost PFC rectifier operating in CCM in which the 

input voltage sensor and multiplier and are avoided. The motivation may be briefly 

described as below.   

 

Under steady-state, the average input (switch) current is in phase with the input 

voltage and the converter emulates a resistance Req.  

eq

in
in R

V
I =  (D.8) 

where inI  is the average input (switch) current in one switching cycle. The input 

and output voltages are related by 

)1( D
DV

nV in
o −
=  (D.9) 

where, n is the turns ratio of the transformer. Substituting (D.9) in (D.8) 
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In (D.10), the unknown duty D can be obtained by comparing the integral of 

switch current with a non-linear carrier waveform (refer Fig. D.5) whose time 

variation in every switching period ‘T’ is given by  
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Fig. D.5. Avoiding the input voltage sensor and multipliers 

 

D.2.2 Energy Storage on the Intermediate Bus Capacitor 

Cascaded PFC scheme, BIFRED and BIBRED converters and parallel PFC 

(PPFC) schemes are few examples of PFC schemes that store the second harmonic 

energy in the intermediate capacitor. 

 

A.  Cascaded PFC Scheme 

As PFC converters are needed to shape line current to a sinusoid as well as 

deliver a tightly regulated output voltage, a cascaded boost-buck or boost-forward 

scheme [30], [31] (Fig. D.6) is commonly used to meet both the load-side and line-

side objectives. In such a scheme, the first (boost) stage is controlled to shape the 

input current to a sinusoid. The load-side converter is controlled to deliver a tightly 

regulated output voltage. The intermediate bus capacitor stores the second harmonic 

energy. 

 

 

Fig. D.6. Cascaded PFC scheme 
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The following issues are important in relation to cascaded PFC scheme.  

1. The maximum device stress of the devices is equal to the intermediate 

bus voltage, which is higher than the peak of the input voltage. 

2. The scheme has a high component count, weight, and cost. 

3. The rated output power Po is processed twice before being dumped into 

the load. This reduces the operating efficiency of the scheme. 

 

Nevertheless, the cascaded scheme is still popular as it offers excellent load-side 

dynamic response (with the energy stored in the intermediate bus capacitor being 

sufficiently high) and meets very well the line and load side requirements. 

B.  Single-Stage PFC {S2PFC} Schemes 

S2PFC schemes are obtained by reduction of cascaded converter schemes in 

which the cascaded stages share the same electronic switch. BIFRED (Boost 

integrated with Flyback rectifier/energy storage/dc-dc converter), BIBRED (Boost 

integrated with Buck rectifier/energy storage/dc-dc converter) [45], and S2IP2 (single-

stage isolated power factor corrected power supply) schemes discussed in [46] are 

well-known members belonging to this category. While BIFRED converter has been 

derived by reducing the cascaded schemes of boost & flyback, BIBRED converter has 

been obtained from the cascaded combination of boost & forward topologies. The 

S2IP2 in [46] has been derived from the cascaded combination of boost and forward 

converters.  

 

These converters, like the original cascaded scheme store energy in the 

intermediate bus capacitor. However, unlike the original cascaded scheme, they have 

only one switch which is shared between the line side and load-side stages. Thus,  the 
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control freedom is greatly reduced. References [45] and [46] suggest the use of duty 

ratio variations for regulating output voltage and switching frequency variations for 

reducing the input current harmonics. A voltage-loop bandwidth of 10 kHz has been 

reported with the scheme in [45].  

 

One of the disadvantages of S2PFC schemes is that the boost-stage is generally 

operated in DCM. This increases the switch current stress. Another disadvantage is 

that the efficiency of power conversion is generally low similar to the cascaded 

scheme. Besides, the control complexity is also high. 

 

 

Fig. D.7. Input and output power waveforms to illustrate PPFC concept 

C. Parallel PFC Schemes (PPFC) 

Fig. D.7 shows the input and output powers of the PFC scheme drawing 

sinusoidal input current from the ac mains. From t1 to t2, the input power drawn is 

higher than the load power, whereas from t0 to t1 and from t2 to t3, the output power 

delivered is higher than the input power. In PPFC schemes, the excess input power 

between t1 to t2 is stored in an additional storage capacitor and is used up during t0 to 

t1 and t2 to t3. It may be shown that unlike the cascaded scheme wherein the entire 



Appendix D Single-phase ac-dc power factor correction rectifiers: A survey 
 

 
 

280

rated power is processed twice resulting in efficiency degradation, in this case, only 

32% of the rated power is processed twice. This results in efficiency improvement.  

 

Fig. D.8. Full Bridge Boost Parallel PFC scheme 

 

PPFC schemes have been discussed in [51] and [52]. The scheme in [51] is 

shown in Fig. D.8. Here, 68% of the rated power flows from the ac mains to the load 

while the rest 32% is stored in CB and processed twice by the boost-forward topology. 

A full-load efficiency of about 90% has been reported. Besides, fast output voltage 

dynamics is also achieved, although not demonstrated experimentally. Reference [53] 

presents a systematic approach of deriving PFC converter configuration that achieves 

tight output regulation. Systematic circuit synthesis aimed at achieving high operating 

efficiency through a reduction in the redundant power processing is also discussed.  

D.2.3 Energy Storage in Cascade Buck-Boost Converter and in Two-

Switch Buck-Boost Converter 

Fig. D.9 shows a cascade-buck-boost (CBB) PFC rectifier. This converter is the 

dual of cascaded boost-buck scheme discussed in the previous section. Similar to a 
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buck-boost/flyback converter, this converter is capable of delivering an output voltage 

less than the peak of the input voltage, if desired. In addition, the converter has an 

addition degree of control freedom that can be effectively exploited to achieve 

sinusoidal input current and tight output voltage regulation. Besides, the converter is 

also known popularly for low device voltage stresses.  

 

Either the inductor L or the capacitor C can be used to store the second harmonic 

energy drawn from the line.  
 

 

References [47] and [50] employ control schemes that switch the CBB converter 

operation between buck and boost modes based on the relative magnitudes of the 

instantaneous input and output voltages. The second harmonic energy in these 

schemes is stored primarily in the output capacitor. These schemes focus mainly on 

shaping the input current and do not fully exploit the control freedom (due to the 

presence of two switches) offered by the converter. As a result, the output voltage 

contains second (line frequency) harmonic ripple and its dynamic response is slow.  

 

 

Fig. D.9. Cascade buck-boost PFC scheme 

 

Reference [48] employs a sliding-mode based control scheme which does 

exploit the control freedom due to the presence of two switches. In the scheme, the 

second harmonic energy is stored in the inductor. Issues related to selection of 
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inductor current reference in the control scheme, the magnitude of inductor current 

under various load and line conditions, and trade-off between inductor size and 

converter efficiency have not been addressed in the paper.  

 

 Reference [49] proposes an inverting two-switch buck-boost PFC converter and 

a control scheme that under ideal conditions meets the steady-state objectives of the 

PFC converter by storing the second harmonic energy in the inductor. However, the 

paper does not present results demonstrating the dynamic behavior of the 

converter/control scheme. Also, as the output voltage is not directly controlled, but 

controlled through the shaping of the inductor current, the presence of circuit 

parasitics which are not taken into account in shaping the inductor current will result 

in high output voltage ripple. 

 

In chapter 8 of the thesis, a novel dual-mode control scheme for CBB-PFC is 

presented. The control scheme helps to meet the steady-state objectives of PFC by 

storing energy in the inductor. Design issues related to the selection of power and 

control components are discussed in detail with the help of an example. The steady-

state and dynamic performance of the converter are demonstrated though simulation 

and experimental results. 

 


