470 research outputs found

    solar thermal based orc power plant for micro cogeneration performance analysis and control strategy

    Get PDF
    Abstract The paper deals with the performance assessment of a small scale cogeneration system for building applications, featuring an Organic Rankine Cycle-based plant bottoming a solar collector array for combined heat and electricity generation. A sliding vanes rotary expander and a water cooled condenser are employed in the recovery section. A comprehensive MATLAB® model accounts for the dynamic of each component, as both a stand-alone device and a plant-integrated unit: a parametric study is presented and an off-design analysis is performed to properly assess the performances of both the heat exchanger and the expander. Heat availability to the ORC heat exchanger is evaluated, based on solar availability, thermal losses in the pipes and plant requirements, in terms of operating temperature and pressures, having the collection area, the mass flowrate for the fluid in the solar collector branch and the fluid type in the recovery section as main variables. Due to the need for DHW production, a storage unit for hot water is present, upstream the recovery branch: dependently on the ability the fluid at the collector outlet has to meet the ORC requirements for proper operation (about 110°C), the ORC evaporator is fed and the recovery section enabled. Both continuous and unsteady operation underwent an in-depth analysis, as well as the benefits associated with different discharge times for the storage unit: dependently on whether the electrical output or the thermal one need to be maximized, a different control logic for the whole system comes out (e.g. either a flash or a progressive tank discharge). The virtual platform allowed the setting-up of a pilot plant, for direct performance assessment and model validation

    Optimal Aerodynamic Design of a Transonic Centrifugal Turbine Stage for Organic Rankine Cycle Applications

    Get PDF
    This paper presents the results of the application of a shape-optimization technique to the design of the stator and the rotor of a centrifugal turbine conceived for Organic Rankine Cycle (ORC) applications. Centrifugal turbines have the potential to compete with axial or radial-inflow turbines in a relevant range of applications, and are now receiving scientific as well as industrial recognition. However, the non-conventional character of the centrifugal turbine layout, combined with the typical effects induced by the use of organic fluids, leads to challenging design difficulties. For this reason, the design of optimal blades for centrifugal ORC turbines demands the application of high-fidelity computational tools. In this work, the optimal aerodynamic design is achieved by applying a non-intrusive, gradient-free, CFD-based method implemented in the in-house software FORMA (Fluid-dynamic Opti-mizeR for turboMachinery Aerofoils), specifically developed for the shape optimization of turbomachinery profiles. FORMA was applied to optimize the shape of the stator and the rotor of a transonic centrifugal turbine stage, which exhibits a significant radial effect, high aerodynamic loading, and severe non-ideal gas effects. The optimization of the single blade rows allows improving considerably the stage performance, with respect to a baseline geometric configuration constructed with classical aerodynamic methods. Furthermore, time-resolved simulations of the coupled stator-rotor configuration shows that the optimization allows to reduce considerably the unsteady stator-rotor interaction and, thus, the aerodynamic forcing acting on the blades

    Experimentally-validated models for the off-design simulation of a medium-size solar organic Rankine cycle unit

    Get PDF
    Organic Rankine Cycle is an efficient and reliable technology for the thermal-to-electricity conversion of low-grade heat sources but the variability in boundary conditions often forces these systems to operate at off-design conditions. The development of reliable models for the performance prediction of organic Rankine cycle power systems under off-design conditions is therefore crucial for system-level integration and control implementation. In this paper, a mathematical model for the evaluation of the expected performance of organic Rankine cycle power units in a large range of operating conditions based on experimental data collected in a medium-size solar organic Rankine cycle power plant is presented. Two different empirical approaches for the performance prediction of heat exchangers and machines, namely, constant-efficiency and correlated-based approaches, are proposed and compared. In addition, empirical correlations based on experimental data are proposed for the preliminary assessment of the energy demanded during the start-up phase and the corresponding duration. Results demonstrate that a good achievement in terms of accuracy of the model and reliability of the simulation performance can be obtained by using a constant-efficiency approach, with average errors lower than 5% and 2.5 K for the expected net power and outlet oil temperature respectively. The use of polynomial correlations leads to a more accurate estimation of the performance parameters used for evaporator and the turbine (in particular the evaporator heat effectiveness and the isentropic and electromechanical efficiency for the turbine), which strongly affect the main output variables of the model and, at the same time, are remarkably influenced by the operating conditions. A reduction in the average error in the prediction of the net power and outlet temperature of the heat transfer fluid to about 4% and 1.5 K respectively is therefore achieved by this approach. Average errors of 18.5% and 12.5% are achieved for the start-up time and the corresponding energy absorbed, respectively. Although the results obtained in terms of accuracy could be improved, these correlations can give an initial indication about the duration and energy required during this phase

    14th International Conference on Turbochargers and Turbocharging

    Get PDF
    14th International Conference on Turbochargers and Turbocharging addresses current and novel turbocharging system choices and components with a renewed emphasis to address the challenges posed by emission regulations and market trends. The contributions focus on the development of air management solutions and waste heat recovery ideas to support thermal propulsion systems leading to high thermal efficiency and low exhaust emissions. These can be in the form of internal combustion engines or other propulsion technologies (eg. Fuel cell) in both direct drive and hybridised configuration. 14th International Conference on Turbochargers and Turbocharging also provides a particular focus on turbochargers, superchargers, waste heat recovery turbines and related air managements components in both electrical and mechanical forms

    Structured mesh generation and numerical analysis of a scroll expander in an open-source environment

    Get PDF
    The spread of the organic rankine cycle applications has driven researchers and companies to focus on the improvement of their performance. In small to medium-sized plants, cyanthe expander is the component that has typically attracted the most attention. One of the most used types of machine in this scenario is the scroll. Among the other methods, numerical analyses have been increasingly exploited for the investigation of the machine's behaviour. Nonetheless, there are major challenges for the successful application of computational fluid dynamics cyan(CFD) to scrolls. Specifically, the dynamic mesh treatment required to capture the movement of working chambers and the nature of the expanding fluids require special care. In this work, a mesh generator for scroll machines is presented. Given few inputs, the software described provides the mesh and the nodal positions required for the evolution of the motion in a predefined mesh motion approach. The mesh generator is developed ad hoc for the coupling with the open-source CFD suite OpenFOAM. A full analysis is then carried out on a reverse-engineered commercial machine, including the refrigerant properties calculations via CoolProp. It is demonstrated that the proposed methodology allows for a fast simulation and achieves a good agreement with respect to former analyses

    Free piston expander with a variable built-in volume ratio and with an integrated linear alternator

    Get PDF

    Experimental and Numerical Dynamic Investigation of an ORC System for Waste Heat Recovery Applications in Transportation Sector

    Get PDF
    ORC power units represent a promising technology for the recovery of waste heat in Internal Combustion Engines (ICEs), allowing to reduce emissions while keeping ICE performance close to expectations. However, the intrinsic transient nature of exhaust gases represents a challenge since it leads ORCs to often work in off-design conditions. It then becomes relevant to study their transient response to optimize performance and prevent main components from operating at inadequate conditions. To assess this aspect, an experimental dynamic analysis was carried out on an ORC-based power unit bottomed to a 3 L Diesel ICE. The adoption of a scroll expander and the control of the pump revolution speed allow a wide operability of the ORC. Indeed, the refrigerant mass flow rate can be adapted according to the exhaust gas thermal power availability in order to increase thermal power recovery from exhaust gases. The experimental data confirmed that when the expander speed is not regulated, it is possible to control the cycle maximum pressure by acting on the refrigerant flow rate. The experimental data have also been used to validate a model developed to extend the analysis beyond the experimental operating limits. It was seen that a 30% mass flow rate increase allowed to raise the plant power from 750 W to 830 W
    • …
    corecore