1,187 research outputs found

    CMOS-3D smart imager architectures for feature detection

    Get PDF
    This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 μs, outperforming more conventional solutions.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e Innovación TEC2009-12686, IPT-2011-1625-430000Office of Naval Research N00014111031

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

    Full text link
    Research has shown that convolutional neural networks contain significant redundancy, and high classification accuracy can be obtained even when weights and activations are reduced from floating point to binary values. In this paper, we present FINN, a framework for building fast and flexible FPGA accelerators using a flexible heterogeneous streaming architecture. By utilizing a novel set of optimizations that enable efficient mapping of binarized neural networks to hardware, we implement fully connected, convolutional and pooling layers, with per-layer compute resources being tailored to user-provided throughput requirements. On a ZC706 embedded FPGA platform drawing less than 25 W total system power, we demonstrate up to 12.3 million image classifications per second with 0.31 {\mu}s latency on the MNIST dataset with 95.8% accuracy, and 21906 image classifications per second with 283 {\mu}s latency on the CIFAR-10 and SVHN datasets with respectively 80.1% and 94.9% accuracy. To the best of our knowledge, ours are the fastest classification rates reported to date on these benchmarks.Comment: To appear in the 25th International Symposium on Field-Programmable Gate Arrays, February 201

    Form Factor Improvement of Smart-Pixels for Vision Sensors through 3-D Vertically- Integrated Technologies

    Get PDF
    While conventional CMOS active pixel sensors embed only the circuitry required for photo-detection, pixel addressing and voltage buffering, smart pixels incorporate also circuitry for data processing, data storage and control of data interchange. This additional circuitry enables data processing be realized concurrently with the acquisition of images which is instrumental to reduce the number of data needed to carry to information contained into images. This way, more efficient vision systems can be built at the cost of larger pixel pitch. Vertically-integrated 3D technologies enable to keep the advnatges of smart pixels while improving the form factor of smart pixels.Office of Naval Research N000141110312Ministerio de Ciencia e Innovación IPT-2011-1625-43000

    Dynamically reconfigurable architecture for embedded computer vision systems

    Get PDF
    The objective of this research work is to design, develop and implement a new architecture which integrates on the same chip all the processing levels of a complete Computer Vision system, so that the execution is efficient without compromising the power consumption while keeping a reduced cost. For this purpose, an analysis and classification of different mathematical operations and algorithms commonly used in Computer Vision are carried out, as well as a in-depth review of the image processing capabilities of current-generation hardware devices. This permits to determine the requirements and the key aspects for an efficient architecture. A representative set of algorithms is employed as benchmark to evaluate the proposed architecture, which is implemented on an FPGA-based system-on-chip. Finally, the prototype is compared to other related approaches in order to determine its advantages and weaknesses

    VLSI architecture design approaches for real-time video processing

    Get PDF
    This paper discusses the programmable and dedicated approaches for real-time video processing applications. Various VLSI architecture including the design examples of both approaches are reviewed. Finally, discussions of several practical designs in real-time video processing applications are then considered in VLSI architectures to provide significant guidelines to VLSI designers for any further real-time video processing design works

    PRECISION: A Reconfigurable SIMD/MIMD Coprocessor for Computer Vision Systems-on-Chip

    Get PDF
    Computer vision applications have a large disparity in operations, data representation and memory access patterns from the early vision stages to the final classification and recognition stages. A hardware system for computer vision has to provide high flexibility without compromising performance, exploiting massively spatial-parallel operations but also keeping a high throughput on data-dependent and complex program flows. Furthermore, the architecture must be modular, scalable and easy to adapt to the needs of different applications. Keeping this in mind, a hybrid SIMD/MIMD architecture for embedded computer vision is proposed. It consists of a coprocessor designed to provide fast and flexible computation of demanding image processing tasks of vision applications. A 32-bit 128-unit device was prototyped on a Virtex-6 FPGA which delivers a peak performance of 19.6 GOP/s and 7.2 W of power dissipationThis work is funded by the Ministry of Science and Innovation, Government of Spain (projects TIN2013-41129-P and TEC2012-38921-C02-02) and the Xunta de Galicia (contract GRC 2014/008)S
    corecore