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1. Introduction 

Initial processing steps in a computer vision system usually consist of low complex 
operations replicated on all the pixels of the image under processing. These operations are 
often very time consuming, particularly when they are executed on conventional serial 
computers. Every pixel-level processing represents millions of operations when moderate 
image sizes are considered. These processing stages provide the set of features of interest 
(object edges, movement, area, shape,…) with a considerable reduction of the data flow to 
subsequent processing stages. Higher level processing will benefit from such data to 
produce an abstract description of the scene and, if needed, to make a decision. 
In visual processing, a great deal of computation is made on B/W images. This is 
particularly relevant for intermediate level image processing. Pattern recognition, texture 
detection and classification, or prediction and estimation of motion, are some examples of 
operations managing binary data. This fact has motivated an intense research focused on the 
design and implementation of efficient algorithms dealing with 1-bit data flows. 
Traditionally, most of the algorithms in computer vision are executed on general-purpose 

computers using data from imagers as inputs. Recently, new bioinspired systems integrate 

together both sensing and processing stages, exploiting the massively parallelism inherent 

to early vision. These vision systems are usually analog or mixed-signal implementations 

allowing high density of integration as well as fast computation, with low/moderate 

accuracy. Often, these systems are not optimized to compute B/W images. Nevertheless, in 

some practical applications, (e.g., tracking with cellular active contours), the set of 

operations involving binary images are the main bottleneck from the time performance 

point of view. Keeping in mind the main constraints featuring integrated circuits: speed, 

area and reliability; the design of a special unit for binary image processing would be 

advantageous to be part of a complete computer vision system or even like an independent 

module. 

As for the suitable hardware platform, the ever larger availability of hardware resources and 
faster clock signals on today FPGAs permit to do image processing with similar time-
efficiency to that of custom ASICs from the recent past. Also, the time to market of FPGA-
based systems clearly outperforms that of ASICs. Altogether makes FPGAs a good 
candidate to host proof-of-concept systems or even ended solutions. 

Source: Image Processing, Book edited by: Yung-Sheng Chen,  
 ISBN 978-953-307-026-1, pp. 572, December 2009, INTECH, Croatia, downloaded from SCIYO.COM
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In this chapter, a pixel-parallel binary image computer is approached. The architecture 
consists of a 2D array of processing elements based on the simple instruction and multiple 
data paradigm. The spatial arrangement allows to associate one processor to one pixel or to 
a reduced number of pixels of the image and consequently to exploit the inherent 
parallelism in visual computing. A 48x48 processor array has been implemented and tested 
on a Xilinx Virtex II FPGA. Several examples of practical applications are included to show 
the efficiency of the proposed system. In addition, based on the International Technology 
Roadmap for Semiconductors an estimate of how the increasing integration density will 
affect both FPGA and ASIC solutions is discussed. From this study, some conclusions about 
the capabilities of state-of-the-art or near-future generations of FPGA to host processor 
arrays with practical size are made. 

2. Why a binary image computer? 

The development of a computer vision application is divided into three stages. In the first, 
low level vision, acquisition and pre-processing are performed in order to highlight the 
features of interest to the specific application. The second, known as mid-level vision, has as 
goal to process information from the previous stage to extract a set of characteristics that 
define the problem to be solved: objects features, textures, edges, etc. The last stage, high-
level vision, uses these results to obtain a more abstract description of the scene and makes 
decisions based on their content (Eklundh & Christensen, 2001). 
The mid-level processing steps uses a lower knowledge of the domain of the problem and a 
significantly lower level of abstraction than the high level vision. In the same way, the data 
type used also differs. Low and mid-level processing images are represented by arrays, e.g., 
intensity values, while high level vision only uses the relevant data, usually in a symbolic 
fashion, greatly reducing the information used. These data represent some kind of 
knowledge, like the size of an object, its shape or its relationship with other objects. In the 
mid-level steps, the original image is processed in order to extract these features: 
segmentation, extraction of the number of objects, their shape, area, etc. 
The amount of data to handle is very high, the operations that are performed have low 
complexity and they are massively parallel in a natural way, unlike what happens during 
the high level processing. The high computational effort, especially when dealing with high-
resolution images or with applications with very demanding time requirements, involves 
processing millions of data per second. One strategy to tackle this computational power is 
the parallelization since the processing of each pixel is independent of each other, being this 
one of the main characteristics of mid-level image processing. 
Another strategy to increase the time performance is to have an adequate representation of 
the data contained in the image arrays. In other words, the fewer the number of bits, the 
faster the processing. Thus, many algorithms employ gray-scale images instead of a color 
representation. A more aggressive optimization is to process binary images, i.e., 1 bit per 
pixel. Binary images are the simplest type of image. They have many other advantages, 
including easy acquisition, lower storage and transmission requirements and greater 
simplicity of the algorithms so they are widely used in many industrial and medical 
applications. It is true that in certain cases, such as the image segmentation in certain 
environments (Cheng et al., 2001) or the detection and treatment of shadows (Prati et al., 
2003), using color images eases the resolution of the problem and can not be used 
representations in gray-scale or purely binary. However, there are problems that can be 
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solved using only binary images (Szolgay & Tomordi, 1996) (Spiliotis & Mertzios, 1997) 
(Rekeczky, 1999) (Tseng et al., 2002). Moreover, many algorithms, including those 
processing color images have modules that use binary images (Garcia & Apostolidis, 2000) 
(Hsu et al., 2002) (Vilariño & Rekeczky, 2005) (Park et al. 2007). 
A binary image can contain two types of information. On the one hand, a scene, i.e., partial 
information on the intensity of radiation can be stored. This information can come from a 
binary sensing or a transformation of an image, e.g. a thresholding or a halftoning of a gray-
scale image. Furthermore, information contained in a binary image goes beyond shrinking 
the range to a 1-bit representation. The active pixels store information like edges, motion, 
occurrences of patterns, etc. This information enhances the original scene and speeds up the 
computation. Thus an algorithm can work with multiple binary images, representing the 
position of an object, the edges, and so on. 
The retinal vessel-tree extraction algorithm (Alonso-Montes et al., 2008) is a good example of 

all the facts mentioned above. This approach is based on active contours, fitting the vessels 

from the outside. It consists of a controlled region growing started from seeds placed out of 

the vessels. The first step is a pre-segmentation of the vessels to obtain the guiding 

information for the active contour and its initial position. Next, the evolution is done. This 

algorithm was designed to operate in a pixel-parallel fashion. Some of the images, as the 

retinal image or the guiding information, are gray-scale images. Nevertheless, the contour 

evolution is performed using binary images because regions, contours, collision points, etc, 

only need 1 bit for its representation. In addition, as it can be extracted from (Alonso-Montes 

et al., 2008), the pre-segmentation step consumes the minor part of the computation. This 

algorithm was implemented in a vision chip (see Section 3) and this step consumes only the 

3% of the time of the global computation. As a result, to speedup the computation is needed 

not only to pay attention to the more complex gray operations as additions or convolutions, 

but also to the simpler ones because in many algorithms they will limit the performance 

seriously. 

3. Hardware for image processing 

The most straightforward platform to implement a computer vision application is the 
personal computer. The main advantage of the Microprocessors is their versatility, the ability 
to perform many different tasks with a low cost. This permits any type of processing, 
although its performance is not always adequate. Even in this case it allows to simulate and 
study a wide range of applications, although the final implementation is done on another 
platform. The current trend is the growing number of processor cores due to the limitations 
in frequency scaling and power dissipation due to the transistor scaling (Creeger, 2005) 
(Schauer, 2008). They include parallel computation units to accelerate the computation, 
known as SIMD extensions (Gepner & Kowalik, 2006). Among other components in a 
personal computer, we must highlight the Graphics Processing Units, GPUs, because they 
reduce the workload of the main processor. Because of their specialization and because they 
include several hundred processing units, they have higher computing power. It is now 
possible to use them as generic accelerators using the concepts of GPGPU, General Purpose 
GPU. Nevertheless, they have certain limitations because of their fixed architecture, 
although the new families of graphics processors substantially improve its functionality 
(Owens et al., 2008) (Shen et al. 2005) (Soos et al., 2008). 
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A Digital Signal Processor, DSP, is a system based on a processor with an instruction set, 
hardware and software optimized for highly demanding applications with numerical 
operations at high speed. They are especially useful for processing analog signals in real 
time. They are systems that incorporate digital converter AD/DA for communication with 
the outside world (Tan & Heinzelman, 2003). Its flexibility comes from the ability to work 
with multiple data in parallel, its accuracy and expertise to the digital processing, and where 
the limitations of power and range are significant. However, it is not the most widely used 
platform for medium level operations by not being able to exploit the characteristics of such 
operations. However, for early vision tasks or higher-level, such as decoding or video 
compression, are a serious alternative to other platforms (Akiyama et al., 1994) (Hinrichs et 
al., 2000). A DSP reduces the hardware requirements by eliminating the no necessary 
hardware present in personal computers. 
To meet the high computational cost of computer vision applications it might be necessary 
to perform the processing steps in the focal plane. A Vision Chip or a Focal Plane Processor 
Array is, in a generic way, an array of simple processors with an associated image sensor, 
with a one to one correspondence between processors and pixels of the image. These 
systems have a high performance and, if sensors are available, the bottleneck of uploading 
the image diminishes. Vision Chips work usually in SIMD mode. SIMD, Single Instruction 
Multiple Data, is a technique used to achieve a high degree of parallelism in data processing. 
This technique, originally used in supercomputers, is present now in all personal computers. 
The SIMD refers to an instruction set that are applied the same operation on a broad set of 
data. A single control unit manages the process and each processor operates on different 
data sets. They are executed synchronously in all the processors. This paradigm concerns 
only the way that the control over the operations is done, not the internal structure of the 
processing units or their spatial organization. Including local bus and distributed memory it 
evolves into Processors Arrays. The main limitation of Vision Chips is the reduced area 
available for each processor, cutting the resolution. However, the performance and power 
consumption achieved is difficult to obtain with other platforms (Linan et al., 2001) (Dudek, 
2005) (Anafocus, 2007). 
A Field Programmable Gate Array, FPGA, is a device that contains programmable logic 
components by the user. These components are formed by a set of logical blocks with a 
network of interconnections also programmable. In this way, the blocks are programmed to 
emulate complex combinational functions that are then chained together using interconnects 
as buses. The major advantage of FPGAs is their internal interconnect capability, with a 
complex hierarchy of connections optimized for specific functions. Moreover, they allow to 
develop a highly parallel hardware with a very low cost compared to an integrated circuit. 
As the description is done using hardware description language, HDL (Maginot, 1992), the 
designer does not have to worry about the low level electronics problems, reducing the 
time-to-market. Hence they are widely used in many areas as accelerators. The inclusion of 
specific hardware as dedicated multipliers or memory blocks, DSP or even microprocessor 
units, makes it possible to consider an FPGA a System on Chip with a reduced cost. Recent 
advances in their development lead to a similar performance to recent specific integrated 
circuits, but with a lower cost. For this, FPGAs are widely used in image processing tasks 
(MacLean, 2005). However, they have certain limitations, as it is necessary to design a new 
hardware, as well as control units, for each application, the designer must be an expert in 
hardware, software and the algorithm to be implemented. Besides, the performance will 
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depend on the particular implementation done. It should be noted that when compared to 
the platforms described above, microprocessors, vision chips or other programmable 
systems, an FPGA implementation not only obliges to do an efficient adaptation of the 
algorithm, but also a new hardware design, so the required skill level is higher. 
An integrated circuit, IC, is the miniaturization of an electronic circuit composed of 

semiconductor devices and passive components fabricated on a semiconductor surface. Its 

biggest advantage is the miniaturization, allowing building large systems with processing 

low power and area requirements and high throughput. An ASIC, Application-specific 

integrated circuit, is an IC designed for a particular use, but concepts like SoC (System on 

Chip), which integrate the whole system on a single chip, or SiP (System in Package), where 

multiple chips are piled up, are increasingly extended. They include, in general, a 

microprocessor or microcontroller, memory blocks, digital interfaces such as USB or 

Ethernet, analog modules, such as DACs, etc. They are designed from scratch and a large 

number of parameters can be modified. On some occasions, the CMOS technology provide 

component libraries which can greatly cut down the design time. Anyway, the design is 

costly in terms of time and manufacturing, and except when the number of units produced 

is high or when the application is very specific or it has very tight specifications, solutions as 

FPGAs become a serious alternative (Courtoy, 1998). 

4. SIMD array for binary image processing 

Low and medium image processing levels have an inherent high degree of parallelism at 
algorithmic level. This fact is exploited during the design and implementation of new 
hardware. The increase in parallelism is now in the leading-edge commercial 
microprocessors. The inclusion of multiple processor cores can greatly speed up 
computation. However, this is not enough when we talk about early vision. Moreover, the 
hardware specialization in floating point units is not fully suitable for image processing.  
In a natural way, Single Instruction Multiple Data architecture is able to exploit such a 
massive parallelism. The creation of small processing units that only have to perform simple 
calculations in a matrix disposition, where each element of the matrix is associated with a 
pixel of the image, and with local connections matches the nature of early vision algorithms.  
The relationship between the size and the computing power of the processing elements is 
critical. Small processing units allow bigger arrays at the expense of not being able to 
perform complex operations. Operations have to be segmented, increasing the number of 
required clock cycles, but with a higher level of parallelism. However, low complex 
Processing Elements, PEs, shorten the critical path of the design, decreasing the cycle time, 
so performance will not be heavily penalized with highly complex PE. In the latter, the level 
of parallelism is limited but complex operations can be performed easier. The complexity of 
the hardware and the computational power must be balanced. In the proposed architecture, 
an effort was made to use the smallest possible processor in order to increase parallelism 
and to build a large array. Being binary images, the complexity of the processing elements 
does not need to be high to perform an efficient computation. 

4.1 The processing array 

Fig. 1 shows schematically the processing array. The array is composed of a single type of 
processing elements, named as PE, as described below. The data flow in and out of a PE to 
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the four nearest neighbors along the NEWS distribution network, a local communication 
system in four directions, north, east, west and south. It allows to interact through direct 
physical connections to the four cardinal points of each PE. To access to a farther PE, a 
strategy for moving data between PEs is needed. 
 

 

Fig. 1. The Processing Array schematic. Simple PE disposed regularly with local NEWS 
communication and a ring of dummy cells as boundary condition. 

To obtain a full functionality, a cell ring of dummy cells that provides a configurable 
contour condition for the array was added. These cells are formed only by a memory 
element that takes values 0 or 1 depending on the algorithm being executed. If a not 
constant condition is necessary, i.e. varies pixel by pixel, the outer ring of PEs of the array 
can be used, the latter, at the cost of image resolution. Nevertheless, constant and 
homogeneous boundary conditions are usually the case. 
The schematic of Fig. 1 shows that dedicated buses to load and download data are not 
present. The following approach is proposed: to use the existing local connections to 
perform shifts to upload and to download the data contained in the local memories of each 
PE. Thus, the global data buses are eliminated, being only necessary to design an interface 
between the array and the external memories, which stores the images, and to permit 
loading and unloading at one column per cycle. The interface is made by a series of 
multiplexers connected to the adequate input port of each PE which form the first column 
and allow to select between the value stored in the dummy ring (during processing) or the 
external memory (loading and unloading data). The output interface does not need 
additional hardware, since it is only necessary to connect the output of the PEs to the output 
bus. In this way, for an NxN array, N cycles are needed to upload or download an image.  
Although this setting seems limited in terms of speed, the inclusion of the two interfaces 
gives the same speed as implementations which include rows and columns decoders. Both 
cases require as many accesses to the array as rows or columns. However, the input and 
output interfaces improve loading times allowing to download and to upload the current 
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and the next image simultaneously, reducing the time by a factor 2. In contrast, the array 
random access is not permitted. In those cases where it is necessary to extract a concrete 
column of the array, shifts must be performed as many times as needed. However, despite 
this drawback, we achieve a significant improvement in the area consumed by the array and 
the processing speed. 
Due to the simplicity of the PE, it is expected a great regularity in the design of the array. 
Even in programmable architectures such as FPGAs, an automatic place & route provides a 
good approximation to a topographic implementation without requiring manual 
intervention. With respect to a full custom implementation, it is also expected a high 
integration. 

4.2 The processing element 

The processing element, PE, is shown in Fig. 2. There are three main modules: the Logical 
Unit, the Memory Bank and the Routing Module. It can be checked that there is not an 
associated control module. The control is done globally and it is common to all of them, 
greatly decreasing the area. In this way, all the PEs run the same instruction synchronously. 
Using an appropriate set of instructions, the control unit can be implemented with very 
reduced hardware resources. 
The Routing Module  
The Routing Module acts as the interconnection between the PE and the rest of processing 

elements of the array. It consists of a multiplexer of four 1 bit inputs to the PEs located in the 

NEWS positions. A 2 bits signal controls the direction of communication, providing the 

value of one of the neighbors within the PE. The output provided by the PE always comes 

from a position of the Memory Banks, as it will be detailed later, so no additional logic is 

necessary for control.  
 

 

Fig. 2. Processing Element schematic. It is composed by three modules: The Memory Bank, 
the Logic Unit and the Routing Module. 

This communication system is suitable for most of the low and mid-level operations as it can 
be extracted from the study of different algorithms in the literature or from the 
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configuration of the coefficients in the templates listed on the Cellular Wave Computing 
Library (Kék et al., 2007). This library collects some of the most used templates in image 
processing on CNNs. Although the proposed architecture has a different operating mode 
than a CNN, its templates are fully representative of low-level image processing algorithms 
(Fernandez Garcia et al., 2008).  
The Logic Unit 
The Logic Unit performs only the most basic Boolean operations: AND, OR and NOT. In 
order to increase flexibility, the Identity operator is also included. With this set of operations, 
we can build any kind of binary operation instructions because it forms a functionally 
complete set. 
The Logic Unit has two inputs for the 1-bit operands, labeled A and B, and one output, R, 
also 1-bit. The A operator drives the four operands, while the B, only drives the AND and 
OR gates. The multiplexer, controlled by a 2 bits signal, is responsible for providing the 
proper result in R. 
Operands A and B have different origins. B is always a memory value, internal to the PE. 

However, A can be either an internal value or a value from one of the neighboring PEs 

obtained through the Routing Module. To select between these two options is necessary to 

add a 2:1 multiplexer (see Fig. 2) that selects the correct source of A. Thus, A is present in all 

operations while B is only required when the operation involving two operands. 

It is interesting to highlight some of the functions of the Identity operator. Its main task is to 
act as data bus between the elements within the array and inside the PE. In this case, it 
serves to duplicate the value of a memory. It also stores the value of a neighbor in the PE 
local Memory Bank. Thus, we can move data across the array at a rate of one pixel per cycle. 
Thus, we are able to access elements that are not directly connected. 
The architecture of the Logic Unit allows the addition of new operations easily. For example, 

an algorithm may need to perform a more complex operation many times. In that case it 

might be worthy to add an extra operator to boost speed. In return, the size of the 

multiplexer increases, as the size of the global control lines does. It is also possible to replace 

the Logic Unit with a Look-Up Table or a ROM that stores the appropriate outputs for certain 

inputs, thus emulating the overall operations of the Logic Unit. Our implementation has the 

potential to address complex operations with a reduced set of logic gates. 

The Memory Bank 
The Memory Bank consists of a set of 1-bit registers. It has just an entry, labeled Mem_In, of 
1 bit and provides two simultaneous outputs, Mem_A and Mem_B, also 1-bit each. 
The data input by Mem_In port is controlled by a decoder which activates the write signal in 
the register selected by an S-bit control signal, where S means 2S=N, where N is the number 
of memory elements of the bank. An additional flag activates the writing on the Memory 
Bank. Thus the array can be blocked, holding its status, so interruptions in processing can be 
managed. 
The two simultaneous outputs allow a flexible management of resources of the PE. On the 

one hand, they allow for internal operations to provide two operands to the Logic Unit. On 

the other hand, when the operation requires access to the neighborhood of the PE, an 

operand is provided Mem_B while the second comes from the Routing Module through the 

external 2:1 multiplexer. In this case it is necessary to provide an external output, 

determined now by Mem_A. Two N:1 multiplexers with S-bit control signals, MuxA and 

MuxB, provide this functionality. 
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The configuration of the Memory Banks acts as a dual-port memory allowing to 
simultaneous reads and writes on the same memory position. Thus, operations such 
Register(2) = Register(1) OR Register(2) are possible, reducing the amount of memory needed 
to implement the algorithms and the area of each PE. 
Altogether, the necessary number of control bits is 3S+1. This module is the most critical, 
since it consumes the greatest percentage of area of the PE. Its size might have to be shrunk 
to comply with the specific algorithm implementation. In this way, it also reduces the fan-out 
of the global interconnections, each buffering a smaller number of memory elements, 
increasing speed. The design of the decoder and the multiplexer will depend on the 
platform that is implemented, aiming at the greatest efficiency. 
Functionality summary 
In summary, the processing elements shown in Fig. 2 can: 

• Select a neighbor 

• Select two memory values 

• Choose between two operation modes: 

• Two operands, one from the memory and other either from memory or an external 
element (AND, OR) 

• One operand from memory or from an external element (NOT, Identity) 

• Write the result in the memory bank 

• Provide a stable value as external output 
The PE control 
In order to increase the size of the array and as all PEs perform the same operation, it was 
decided to implement a global control system. It translates the high-level instruction into the 
signals arriving at each individual module of the PEs. This control can be implemented very 
easily if the instruction set is selected correctly. 
 

 OP A B R OUT 

  A_from A_address Address address address

nº bits 2 1 S S S S 
 

Table 1. Encoded instruction format for the Processing Element. 

Table 1 outlines the encoding of the instruction format for the PE. The meaning of each 
segment is as follows 

• OP segment encodes the operation performed by the Logic Unit. If there are specific 
operations its size must be adapted. 

• A segment encodes the address of the first operand. It consists of two fields, A_from and 
A_address. The first is a 1-bit flag indicating if it comes from the local Memory Bank or 
from the Routing Module. The second, S-bit wide, has a double meaning according to 
the value of the flag above. If it comes from memory, it encodes the memory address. 
Otherwise, the two least significant bits encode the neighbor from which the data come. 

• B encodes the address of the second operand, which always comes from the Memory 
Bank. 

• R segment indicates the memory address where the result of the current operation is 
stored. 

• OUT segment indicates the address inside the Memory Bank from where the data are to 
be provided to the array. 
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The total size of an instruction is 4S+3 bits. It should be noted that a 1 bit flag is needed to 
control the interruptions of the array, as specified above. 
The instruction decoding of the control signals for the particular elements within each 
module is undertaken by the Global Control Module. From Table 1 it can be extracted that 
each field directly controls the elements of the PE, without needing decoding. Therefore, this 
module can be implemented only by distributing the coded instructions to the PEs. For 
example, the OP field encodes directly the multiplexer of the Logic Unit. 

5. SIMD array programming 

By the nature of the instruction set, a Boolean equation that means how each PE changes its 

value according to a given neighborhood must be found. This equation can be obtained in 

various ways: from the original image and the expected image, observing the differences 

between them; translating the effects of a mask or a filter; directly designing the Boolean 

equation, etc. Next, a selection of algorithms to test and show as the proposed system works 

is listed. The examples were extracted from the Cellular Wave Computing Library, CWCL, 

which collects the most used templates in image processing on CNNs. This selection is not a 

limitation because it is a widely used platform for these tasks, being a representative set of 

low-level image processing operators. 

In terms of notation, the following variables are used to refer to the neighborhood of the 
central pixel, c: n, nw, se, etc. refer to north, northwest, southwest, etc. We will refer to 
instructions on the type neighbor{address}, for example north{R2}, meaning access to the #2 
memory address of the northern neighbor. If a neighbor is not specified, it is understood that it is 
the local memory of the PE under study. 

5.1 Binary edge detector 

The well known edge detector is a good model to show how the architecture works. This 
operator corresponds to the binarized version of the edge detector present in the CWCL and 
follows the outline of Fig. 3, where the mask T is defined in Eq. (1). 
 

 

Fig. 3. Algorithm for the binary edge detection. 
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The interpretation of this template is simple. Only when one or more neighbours n, s, e or w, 
are active, the central pixel is activated. This is equivalent to an OR between these four 
values. As the Logic Unit is not capable of operating simultaneously on the four neighbours, 
it is necessary to divide T into four sub-operations. Thus, in the first clock cycle the image is 
inverted. Then T is applied, requiring 4 clock cycles, to finally perform the AND between the 
previous results. Altogether, it takes 6 clock cycles. The pseudo-code is listed below: 
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• R0 ← input image 

• inversion 

• R1 ← NOT R0 

• template 

• R2 ← north{R1} 

• R2 ← R2 OR east{R1} 

• R2 ← R2 OR west{R1} 

• R1 ← R2 OR south{R1} 

• and 

• R1 ← R0 AND R1 
In this case, a four input OR may be implemented to enhance the speed in applications that 
require intensive use of edge detection. It clearly illustrates the possibilities of expanding the 
proposed Logic Unit for this architecture. Fig. 4 shows the application of this operator over a 
test image. 
 

(a) Input image 

 

(b) Edge detection 

Fig. 4. Binary edge detection example. 

5.2 Hole filling 

The Hole Filling is an iterative operation. It is used to fill the holes in all the objects that are 

part of an image. In a synchronous architecture, as the proposed here, it is executed 

iteratively a number of times that can be fixed beforehand or determined during the 

execution. The first case is the most common and it is the considered here. The algorithm 

used is described in (Brea et al., 2006) and shown in Fig. 5, where T is the same template 

described above in Eq. (1). 

 

 

Fig. 5. Algorithm for the Hole Filling. 

The pseudo-code of this operation is as follows: 

• R0 ← input image 

• 1st inversion 

• R1 ← NOT R0 
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• template 

• R2 ← north{R1} 

• R2 ← R2 OR east{R1} 

• R2 ← R2 OR west{R1} 

• R1 ← R2 OR south{R1} 

• 2nd inversion 

• R1 ← NOT R1 

• OR 

• R1 ← R0 OR R1 
A complete iteration of the algorithm requires 7 clock cycles. The number of iterations 
needed depends on the shape of the image and its size. The result of applying it on a test 
image is displayed on Fig. 6. 

5.3 Shortest path problem 

Finally, an implementation of the algorithm that solves the problem of the minimum path 

was done. The application is significantly more complex than the other examples outlined 

previously and it illustrates the capability of the SIMD array. 

The aim is to determine the shortest path between two points, avoiding a series of obstacles. 
It is based on the implementation discussed in (Rekeczky, 1999), which proposed a new 
approach to solve this problem by using CNN computing. In line with this strategy, a wave 
front with constant speed explores the labyrinth from the starting point. At each branching 
of the labyrinth, the wave front is divided. When two wave fronts are at an intersection, the 
first to reach will continue evolving while the rest remains static, avoiding the collision.  
 

 
(a) Input image 

 

 
(b) Hole Filling 

 
(c) Evolution steps 

Fig. 6. Hole Filling example. 
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Then, a prune of all paths is done, maintaining fixed the start and end points, which are 
external parameters of the system, so only the shortest path between those points remains. 
The algorithm has two stages, both to carry out iteratively. The first stage, the exploration, is 
shown in Fig. 7. The templates T1 and T2 defined in Eqs. (2) and (3) along with its 
translation into Boolean equations. 

 s+w+e+n=T1=I,=AT1 ⇒−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
0,5

010

101

010

:   (2) 

 ( ) ( ) w·s+s+we·+e+s+wn·=T2=I,=AT2 ⇒−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
1

010

101

010

:   (3) 

The second stage, the pruning, is done executing iteratively T3, defined in Eq. (4). This 
template is equivalent to an AND between the labyrinth and explored the result of invert 
the application of T2 on the explored labyrinth, so the above equations will be used again. 

 2

010

131

010

: −
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=I,=AT3   (4) 

During the exploration phase, T1 requires 4 clock cycles, T2 9 cycles and the additional logic 
operations, 3 cycles. All in all, each iteration requires 16 cycles. The pruning phase is 
executed in 9 cycles, 8 for T2 and one for the additional operations. The number of necessary 
iterations for each stage depends on the labyrinth. Fig. 8 shows the different stages of each 
phase on a test labyrinth. 
 

 

Fig. 7. Shortest path problem: exploration step. 
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The pseudo-code for both stages is shown bellow. 
 

Exploration step: 

• R0 ← input image 

• R1 ← start point 

• Template T1 

• R2 ← north{R0} 

• R2 ← R2 OR east{R1} 

• R2 ← R2 OR west{R1} 

• R2 ← R2 OR south{R1} 

• Template T2 

• R3 ← west{R1} 

• R4 ← R3 AND south{R1} 

• R5 ← R3 OR south{R1} 

• R3 ← R5 AND east{R1} 

• R3 ← R3 OR R4 

• R4 ← R5 OR east{R1} 

• R4 ← R4 AND north{R1} 

• R3 ← R3 OR R4 

• R3 ← NOT R3 

• Final operations 

• R2 ← R2 AND R3 

• R2 ← R2 OR R1 

• R1 ← R0 AND R2 

 Pruning step: 

• R7 ← end point 

• Join start and end point images 

• R1 ← R1 OR R7 

• Template T3 

• R3 ← west{R1} 

• R4 ← R3 AND south{R1} 

• R5 ← R3 OR south{R1} 

• R3 ← R5 AND east{R1} 

• R3 ← R3 OR R4 

• R4 ← R5 OR east{R1} 

• R4 ← R4 AND north{R1} 

• R3 ← R3 OR R4 

• R1 ← R1 AND R3 

6. Proof of concept: FPGA synthesis 

In order to test and verify the functionality of the proposed architecture, a description in 

VHDL was made for a subsequent implementation on a programmable architecture, 

specifically on an FPGA. 

6.1 Global system configuration 

Fig. 9 displays the schematic view of the global configuration of the proposed architecture. 

As our emphasis has been put on the array, the global system architecture addressed here is 

not optimized and it is only intended as an operation tester of the processing array. It is 

made up of the following elements: 

• Input and Output Memory Banks: to store images to be processed and the processed 
images. Both of them provide a column per clock cycle. 

• Instruction Storage: it stores the decoded instructions, the value of the dummy ring for 
each instruction and the interrupt signal, process. 

• Global Control: it synchronizes all existing modules. It consists of a finite state machine 
and the Instruction Decoder described above. 

• Processing Array: has an input column data of the stored image in the memory bank 
and as output, a column of the processed image. The control is done through the 
current instruction from the Instruction Memory. The process signal controls 
interruptions of the array acting on the decoder of the Memory Bank of each PE. 
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(a) Labyrinth 

 

 
(b) Shortest path 

 

 
(c) Exploration phase 

 

 
(d) Prune phase 

 

Fig. 8. Shortest path problem. Example 

• Address Generator: it calculates the address of the next instruction to execute. It allows 
loops in order to iteratively execute blocks of instructions, reducing memory 
requirements for storing the instructions. 

6.2 Implementation results 

The selected platform was an RC2000 card from Celoxica, which comprises a card with a 

PMC RC2000 PCI controller, which allows to insert the card into the PCI bus of a PC, and an 

ADM-XRC-II board by Alpha Data, with the following features: 

• Xilinx Virtex-II xc2v6000-4 FPGA 

• 6 banks x 2MB RAM ZBT 

• 2 banks x 4MB RAM ZBT 

• External clocks: [40KHz - 100MHz] and [25MHz – 66MHz] 
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Fig. 9. Global system architecture. 

The Xilinx Virtex-II xc2v6000 main characteristics are: 

• 6M equivalent logic gates 

• 33792 slices 

• 1056Kbits of distributed RAM 

• 144 dedicated multipliers 

• 144 dedicated RAM blocks 
The design and mapping process was done using the ISE 9.2i, from Xilinx. 
The selected array for the synthesis has a size of 48x48 processing elements, with a Memory 

Bank of 8 bits per PE (S=3). The external memory banks were implemented using the 

dedicated RAM blocks of the FPGA. The main results are summarized in Table 2. 
 

Occupied slices 26,428 (78%)

Slices Flip-Flops 20,165 (29%)

4-input LUTs 50,649 (74%)

Number of equivalent gates 527,716 

Maximum frequency achieved 67,3MHz 

Table 2. Main results of the FPGA implementation. 
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There are available resources on the FPGA which can increase the resolution of the array, 
the size of the PE memory, or the instruction storage. With the same configuration, the 
resolution can be increased to reach an array of 56x56 elements. 

6.3 Tested algorithms: Summary of results 

Table 3 gives a summary of processing times for each algorithm, considering only one 
iteration. The maximum working frequency for the Virtex-II FPGA xc2v6000 is 67.3MHz. It 
also includes the number of required memories for its implementation, including always the 
memory where the original image is stored and is not changed during processing, although 
this would not be necessary in all cases. It also includes results for other tested algorithms 
that have not been detailed in this chapter, but intended to illustrate more clearly the 
performance of the platform. 
 

Algorithm #cycles Time (μs) #memories

Edge detector 6 0.089 3 

Hit and Miss 10 0.149 3 

Hole Filling 7 0.104 3 

Skeletonization 84 1.248 5 

Shortest Path: exploration 16 0.238 6 

Shortest Path: prune 9 0.138 4 

Table 3. Processing times for the proposed sample algorithms. One iteration at 67,3MHz. 

For the iterative algorithms, Table 4 shows the total execution times. The test images have 
the same size as the matrix, i.e., 48x48 pixels 
 

Algorithm #cycles #iterations Time (μs)

Array load/Donwload 1 48 0.71 

Hole Filling 7 45 4.68 

Skeletonization 84 40 49.93 

Shortest Path: exploration 16 125 29.72 

Shortest Path: prune 9 75 10.03 

Table 4. Processing times for the iterative algorithms. One iteration at 67,3MHz. 

7. Technology evolution: FPGA vs. ASIC 

The impressive progress of new technologies, marked by Moore's Law (ITRS, 2007) allows 

increasingly integration density. This leads to more hardware resources with higher clock 

frequencies, increasing performance considerably. In this way, programmable systems such 

as FPGAs are able to get the same performance than recent past specific integrated circuits, 

IC, keeping the development times and the time-to-market at low(Nagy et al., 2006). In this 

section we examine the scaling possibilities of the SIMD architecture due to the technology 

evolution, both for FPGAs and ICs. 

7.1 FPGA 

The ever-increasing density of the CMOS technology market by the Moore’s Law means that 
the designers can choose FPGAs as a proof of concept system (Lopich & Dudek, 2005) or 
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even as an end system (Diaz et al., 2006). The time to market is another major reason why 
FPGAs are becoming increasingly competitive. A study based on the International 
Technology Roadmap for Semiconductors (ITRS) roadmap which estimates the increased 
logic capacity and speed of commercial FPGAs is shown below. Area reduction allows to 
integrate more logic. In this way, the parallelism that can be obtained with the proposed 
SIMD architecture will increase considerably, allowing large array sizes, so that the final 
solution could be based on an FPGA and not on an integrated circuit, cutting costs and 
design time. These results are shown in Fig. 10. 
 

 

Fig. 10. Scaling of the FPGA logic capability. Logic capacity in thousands of 6-input LUTs. 
Maximum resolution of a square matrix, in number of PEs per row. 

The method used for this estimate is as follows. Given the ability of the FPGA logic for a 

given year, the number of logic cells, and the prediction of the ITRS, the capacity of the 

FPGA logic cells for the target year is: 

A

B

A

B

Die

Die

Density

Density
··capacitycapacity AB =  

where the subscript A refers to the known year and B to the estimate year. As the ITRS 
shows, the chip size remains constant over the next years, thus simplifying the above 
equation. This study is based on the one detailed in (Varghese & Rabaey, 2001) and is a 
review of the last ITRS update (ITRS, 2007). This formula is valid only if the internal 
architecture of the FPGA does not change. 
The selected FPGA to start this study with is one of the most advanced from Xilinx, a Virtex-
5 XC5VLX330. The most salient characteristics are gathered in Table 5. This FPGA has more 
than 50,000 logic cells, CLBs, each composed of 2 slices, each one with 4 LUTs with 6 inputs 
and 4 Flip-Flops per slice. The logic contained in each CLB is summarized in Table 6. The 
technology used in the manufacturing process is 65nm at 1.0V with triple-oxide. We must 
emphasize that the Virtex 5 family changed its internal architecture from 4 input LUTs to 6 
input LUTs, with respect to previous family (Cosoroaba & Rivoallon, 2006) (Percey, 2007). 
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CLBs array LUT-6 Flip-Flops Distributed RAM Shift registers 

240x108 207360 207360 3420 Kb 1710 Kb 

Table 5. Virtex-5 XC5VLX330. Main hardware details. 

 

Slices LUT-6 Flip-Flops Distributed RAM Shift registers 

2 8 8 256 bits 128 Kb 

Table 6. Virtex 5 family. Hardware on each CLB. 

With these data, whereas the number of basic elements of the selected FPGA is 207,000 in 
2006, year that Xilinx introduced the Virtex 5 family, and assuming that the chip size 
remains constant, in 2010 it is possible to reach 481,000 elements. Fig. 10 shows the scaling of 
the current Virtex 5 family. The same figure includes what would be the maximum size of 
the SIMD processing array. This result should be taken as an upper bound and not as a 
precise value because they are not included the elements employed by control, memory 
instructions or even new features that may include newer FPGAs. 
Concerning the Virtex 5 family, each Processing Element requires 8 Flip-Flops and 14 6-LUT, 
keeping the same characteristics as the detailed in the previous implementation. Therefore, 
the limiting factor is the number of available LUTs. Thus, it appears that using the 2009 
technology node it would be possible to implement a QCIF array (144x176) and that before 
2013 and 2019 it is feasible to process images of 256x256 and 512x512 pixels, respectively, 
without dividing them into sub-windows, with a PE per pixel. 

7.2 ASIC 

For certain applications, an FPGA-based solution can not meet the appropriate requirements 
such as higher performance, lower consumption and higher integration. One of its uses is as 
coprocessor in focal plane vision systems, accelerating the binary computation, where the 
integration with gray image processing units is necessary. Thus, it is interesting to discuss 
the features of a full custom implementation. An ASIC implementation for the Processing 
Element is proposed in this section in order to explore the possibilities of scaling along the 
ITRS predictions. 
CMOS complementary logic with minimum size transistors will be used. This 

implementation is not optimal because using other CMOS logic families and specific design 

techniques, such as pseudo-nMOS or dynamic CMOS, a higher yield in both area and speed 

can be obtained. The different modules of the PE are conceived in the most straightforward 

manner. For example, a 2:1 multiplexer is formed by two 2-AND gates, an OR-2 and an 

inverter for the control signal. The features of the PE are the same as those detailed above: 

an 8-bit Memory Bank. A summary of the number of transistors per PE is given in Table 7. 

 

 Routing Memory Bank Logic Unit Other 

No. of transistors 46 902 60 20 

Table 7. Number of transistors for each Processing Element using CMOS logic. 

It should be noted that the area occupied by the memory banks amounts to the 87% of the 
total area. Each memory element is formed by a D master/slave Flip-Flop with reset and 
enable signals. Clearly the selected implementation is not the best. Using RAM-based 
elements will considerably reduce the number of transistors. This module will require a 
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greater effort during the design to optimize the area requirements. The adequate selection of 
the size of the Memory Bank for a particular implementation is critical. 
To determine the area occupied by each PE is assumed, similarly as for programmable 

architectures, that the integration density predicted by the ITRS includes the parameters that 

limit it. To estimate the size of the processing array it will also be assumed that the buffering 

is negligible compared to the processing hardware. This will not affect the precision with 

which the results are expected. 

 

(a) Integration density scalability 
 

 
(b) Processing Array scalability 

Fig. 11. Scalability of the ASIC implementation. 
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The results are summarized in Figs. 11.a and 11.b. The first one shows the maximum 

amount of PEs that a given technology is able to integrate by mm2. To ease the visualization 

the figure also shows the Near Term Years expanded. The second figure displays, for some 

array sizes, the total area that would be occupied according to the technological process 

selected. The planned integration density will allow use a processing array as accelerator in 

general purpose visual processors with a very low cost in terms of area, even in high 

resolution. We emphasize that with the 2001 technology, an array of 128x128 elements needs 

18mm2 and that, with the same area, it is possible to integrate an array of 256x256 elements 

in 2007. It should be remembered that this is only an estimation and that the design is not 

optimized. Just by using transmission gates for multiplexors and SRAM memories the area 

requirements are reduced by a factor of 5. With a more aggressive design strategy is feasible 

to reduce an order of magnitude in the occupied area. 

8. Conclusions 

The range of applications where binary images are used is very wide due to its particular 

characteristics, such as low storage and processing requirements or the simplicity of the 

algorithms. Many of early vision operations can be addressed using a small computer unit. 

Thus, the path to explore is to increase the parallelism. SIMD architectures, with simple 

processing elements arranged in a matrix topology with local connectivity between them, 

are able to efficiently exploit the characteristics of low and medium level operations. 

For the development of the processing element, special attention was paid to the reduction 

of its size while maintaining a generic functionality. Furthermore, it is easy to extend its 

functionality for those critical operations of a given algorithm. A limited set of instructions 

allows to easily translate a mask or filter or to deduce the Boolean equation that governs the 

change of status of each pixel of the image according to its neighborhood. 

Functionality and performance were verified using an FPGA, obtaining performance  
data that indicate that even on a programmable architecture, the efficiency is high. 
Furthermore, short term future FPGAs will allow to implement bigger arrays, achieving a 
higher degree of parallelism. In the same way, full-custom implementations allow to use the 
proposed Processing Array as co-processor on generic vision systems with low area 
requirements. 
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