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Abstract—This paper reports a multi-layered smart image
sensor architecture for feature extraction based on detection
of interest points. The architecture is conceived for 3D IC
technologies consisting of two layers (tiers) plus memory. The
top tier includes sensing and processing circuitry aimed to
perform Gaussian filtering and generate Gaussian pyramids in
fully concurrent way. The circuitry in this tier operates in mixed-
signal domain. It embeds in-pixel Correlated Double Sampling
(CDS), a switched-capacitor network for Gaussian pyramid
generation, analog memories and a comparator for in-pixel ADC
(Analog to Digital Conversion). This tier can be further split
into two for improved resolution; one containing the sensors and
another containing a capacitor per sensor plus the mixed-signal
processing circuitry. Regarding the bottom tier, it embeds digital
circuitry entitled for the calculation of Harris, Hessian and DoG
detectors. The overall system can hence be configured by the user
to detect interest points by using the algorithm out of these three
better suited to practical applications. The paper describes the
different kind of algorithms featured and the circuitry employed
at top and bottom tiers. The Gaussian pyramid is implemented
with a Switched-Capacitor (SC) network in less than 50 µs,
outperforming more conventional solutions.

Index Terms—Smart CMOS Imagers, Chip architectures, Fea-
ture image extraction, Gaussian pyramid.

I. INTRODUCTION

CMOS technologies enable to embed readout, analog-to-
digital conversion, control, processing and communica-

tion circuitry along with high-quality photo-sensors. These
embedding capabilities are instrumental for the realization of
high-performance smart imagers and compact vision systems
[1]. Besides the incorporation of on-chip smartness, CMOS
Image Sensors (CIS) art is evolving towards: enhanced photo-
sensing quality [2], [3]; increased spatial resolution, frame rate
and data rate [4]; ability to detect low-light and multi-spectral
signals [5], [6]; and enlarged flexibility and configurability
[7], among others. All these developments are opening new
application domains which were not feasible for CCDs [8].
CISs are also replacing CCDs at applications which used to be
CCD niches [9]. All in all, the outcome is that CISs currently
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dominate the market of area imagers, with more than 90% of
the total share [10].

The most important asset of CISs is the incorporation of
intelligence on-chip [1]. Different levels of intelligence can be
contemplated. The lowest involves basically readout, control
and error correction, and is the only one yet exploited by
industry [11], [12]. Higher intelligence levels, as required to
analyzing, extracting and interpreting the information con-
tained into images have been explored for years at academia
[13] - [25], but with scarce industrial impact [11]. From now
on we will refer to CISs with high-level intelligence attributes
as CVSs, where CVS stands for CMOS Vision Sensor.

A common strategy to design CVSs consists of using a
sensing front-end composed of an array of smart pixels. As
a difference to active pixels, which embed the minimum cir-
cuitry required for photo-sensing and pixel addressing, smart
pixels include also memories and processors [14]. Smart pixels
are usually arranged into Single Instruction Multiple Data
(SIMD) architectures [27], which perform parallel processing
by making sensory data to interact following uniform laws.
SIMD sensory front-ends extract image features (such as
salient points, edges, etc.) through the parallel implementation
of early vision tasks [28] using either hardwired, software-
controlled or mixed architectures. The extracted features can
then be used, instead of full frames, as inputs for subsequent
image analysis. This significantly reduces the computational
load of any ulterior processing, what in turn increases the
efficiency in the realization of vision tasks. Conventional
solutions, on the contrary, simply consists of a sensory front-
end that delivers full frames to a digital processor [29].

CVS-SIMD chips to realize early vision tasks at thou-
sands fps (frames per second) rate and with very low power
consumption have been reported elsewhere [16] - [18]. The
industrial art includes also vision-systems that combine early
processing (to extract features) and post processing into a
single chip [11], [15]. However, a drawback of these sensors,
and the ultimate reason why they are not yet widely employed,
is the rather large pixel pitch and reduced fill factor of their
smart pixels. These features make CVS-SIMDs to have limited
sensitivity and modest spatial resolution, thereby constraining
their usage to applications with limited field-of-view and active
illumination. This paper describes a CVS-SIMD architecture
which overcomes these drawbacks through the usage of 3-D
integration technologies [30] and the subsequent improvement
of the form factors and footprints of the functional structures
embedded at the pixels and at the whole chip. These improve-
ments are achieved owing to the vertical distribution of sensing
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and processing resources across the vertical layers of a 3-D
structure.

The architecture described in this paper tackles the detection
of interest points for scale-invariant and rotation-invariant
feature detectors. Interest points are customarily employed by
vision system architects for object detection and classification,
image retrieval, image registration and tracking [31]. Out from
the different algorithms, our architecture can be configured by
the user to implement three widely accepted ones, namely: i)
the classical Harris-corner detector [32]; ii) the Scale Invariant
Feature Detector (SIFT) [33]; and iii) the Hessian operator,
which is the one used in the Speed-Up Robust Features
(SURF) [34]. A basic rationale for configurability is the lack
of uniqueness of detector algorithms, as [35] demonstrates for
volume reconstruction applications. Our proposal faces this
drawback by allowing users to select the specific detector
which is better suited to each application. Configurability also
enables the accuracy-speed trade-off to be tuned. To the best
of our knowledge, the architecture reported in this paper is the
first one implementing different interest point detectors into a
single, dedicated system.

A key ingredient of the proposed architecture is the extrac-
tion of Gaussian pyramids, which comprise a set of images
of different resolutions called octaves. Every octave is the
result of down-sampling the previous octave by a factor of
2. In turn, every octave is made up of a series of images
called scales. Every scale is the result of performing a Gaus-
sian filtering with given width (σ-level) on a previous scale.
The main challenge for the extraction of Gaussian pyramids
is to implement programmable Gaussian filters in accurate
and controllable manner. We particularly employ Switched-
Capacitor (SC) networks, based on our previous proposal
reported in [36], as this method enables to emulate inherently
linear diffusion networks, which is advantageous versus using
nonlinear resistors [16], [37]. Besides this, other relevant
feature of the herein reported architecture arises from the
possibility of in-pixel processing elements to be multiplexed in
time to operate on different data and to be used for concurrent
implementation of CDS (Correlated Double Sampling) and
ADC (Analog-to-Digital Conversion).

This paper is not intended to reporting a specific silicon
prototype, but a novel sensory-processing architecture whose
physical implementation relies on CMOS standard structures;
i.e., novelty relies on the way circuit structures are arranged
into the architecture. Silicon implementation themselves are
similar to other previously demonstrated through state-of-
the-art silicon by the authors and other groups. We first
briefly describe the functional target and overview previous
hardware implementations of feature detectors, on the one
hand, and of Gaussian filters, on the other. Then, the proposed
architecture is addressed, including a comparison with state-
of-the-art custom chips performing feature detection. Finally,
the conclusions are outlined.

II. FEATURE DETECTORS: ALGORITHMS, HARDWARE
IMPLEMENTATIONS AND GENERAL 3-D ARCHITECTURES

Feature detectors are widely used for computer vision
applications such as object detection and classification, image

retrieval, 3D reconstruction or tracking, among others [38].
Ideal feature detectors should be invariant against image
changes caused by translations, rotations, scale modifications,
partial occlusions and affine transformations; and should not
be impacted by neither added noise nor changes of the
illumination conditions. Their outcome should be the same
despite these changes, although repeatability is usually traded
for computer efficiency in practical implementations.

Feature detector implementation involves seeking for the
matching of a set of local features between two images and
comprises three main stages, namely: 1) interest points (also
called keypoints) detection; 2) descriptor vector generation;
and 3) matching. There are different techniques for each of
these steps; and many ways of combining these techniques
towards feature detection. For instance, [39] overviews up to
20 different combinations of interest point detectors, descriptor
vectors and matching techniques for visual tracking. The three
algorithms chosen for implementation into our architecture,
namely the classical Harris-corner detector, the Scale Invariant
Feature Detector (SIFT) and the Speed-Up Robust Features
(SURF), are widely used and cover an ample application
range. Furthermore, the three detectors addressed in our ar-
chitecture share the common feature of using convolution type
operators with Gaussian kernels, thus being very well suited
for re-configuration.

A. Detection of Interest Points at the Different Algorithms

The classical Harris corner detector finds keypoints through
the so-called first moment or autocorrelation matrix of Eq.(1),
where Ix and Iy denote the first derivatives along the x and
y directions in the image plane, and wk is the neighborhood
around a point (xk, yk) in the image plane used for the calcula-
tion of the derivatives [32]. Usually, previous to obtaining the
autocorrelation matrix, the image is filtered with a Gaussian
kernel, which enhances robustness with noisy images. A pixel
is an interest point if it is a maximum of the autocorrelation
function. The algorithm is completed with a non-maximum
suppression based on the trace and the determinant of the
autocorrelation matrix, both formulated in Eq.(2) and Eq.(3).
The variable R defined in Eq.(4) states whether or not a pixel
is a corner. If R is positive, the pixel is regarded as a corner.
If R is negative the pixel is sorted out as an edge, and if R is
zero or small, the pixel is part of a flat or homogeneous region.
k is a constant that can be modified in order to enhance the
stability of the interest points. This tuning will depend on the
application. The Harris corner detector is invariant to rotations,
but it yields very limited invariance to scale changes. Its
simplicity and relatively low computation time when compared
to other point detectors are its main assets.
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Det(A) = BD − C2 (3)

R = Det(A)− k · Tr2(A) (4)

The Harris corner detector is provided with scale invariance
by incorporating scale space to the image representation. This
is known as Harris-Laplace [40]. The keypoints are found
as the local extrema over the so-called Laplacian-of-Gaussian
(LoG) defined in Eq.(5), where σn is the corresponding scale,
and Lxx and Lyy denote the second derivatives along the x
and y directions. As in the classical Harris algorithm, a non-
maximum suppression can be applied.

|LoG(xk, yk, σn)| = σn
2|Lxx + Lyy| (5)

Let us now consider SURF; it employs the so-called Hessian
operator [34]. The Hessian operator is a matrix whose entries
are the second derivatives around a pixel. These second
derivatives are smoothed by Gaussian filters with the aim of
reducing noise levels. The interest points are calculated as
the extrema of the Hessian matrix. The same non-maximum
suppression method as in the classical Harris corner detector
is used. Also, Hessian-Laplace is possible.

The Difference-of-Gaussians (DoG) is the method used by
SIFT for interest point detection [33]. SIFT relies on the scale
space. In this method the keypoints are found as the local
extrema among three successive DoGs. A DoG is obtained as
the difference between two consecutive scales. The scales are
generated through the Gaussian pyramid. Usually, a pyramid
consisting of 3 octaves with 5 scales each suffice for many
applications. Although the interest point detection in SIFT is
based on DoGs, local maxima directly among the scales is
also suggested by D. Lowe [33].

B. Overview of Feature Detectors Hardware Art

Only dedicated hardware, using either FPGAs or custom
chips, is addressed here. Also, since most interest point
detectors rely on the generation of the Gaussian pyramid and
the application of a differentiation operator to the generated
scales, only SIFT realizations are covered; the conclusions
drawn for SIFT apply to other algorithms. Out from the SIFT
implementations addressed here, [43] - [45] correspond to
FPGA implementations, while [46] and [47] correspond to
custom chips. None of these implementations includes the
sensing devices; in all cases images are provided by separate,
external sensors.

In [43] the image is split into regions of interest and
a pipeline flow is realized at each region, thus increasing
parallelism. Frame rates of 56fps for VGA images are obtained
by using a pyramid with 18 modules (3 octaves with 6 scales
each). Based on the observation that the generation of the
Gaussian pyramid consumes up to 92% of the total resources,
separable Gaussian kernels are employed for increased com-
putation efficiency.

The work in [44] modifies the original SIFT algorithm to
reduce area and computation time, while keeping good feature
matching. It detects features at 30fps on QVGA images. Two

different strategies are adopted for efficient generation of the
pyramid, namely: i) using one Gaussian filter module per scale
and octave – 18 modules in total; ii) separating the Gaussian
kernel into horizontal and vertical sub-kernels.

Reference [45] achieves video frame rate processing for
VGA images by using a scheme similar to that in [11]; namely,
by first splitting the image into what they call segments, and
then applying pipelining within each segment.

In reference [46], parallelism is achieved by using several
SIMD units for the Gaussian pyramid generation. Also, VGA
images are split into 300 regions of 32×32 each, and the SIFT
algorithm is completed only in those regions where features
are detected. This approach yields 30fps for VGA images.

Reference [47] also employs 18 modules for Gaussian pyra-
mid generation. A distinctive feature of the adopted approach
is that feature matching is performed once every 30 frames.
In the rest of frames, object level matching is realized. These
strategies feature real time operation with full HD images.

The most important message conveyed by the description
above is that the generation of Gaussian pyramids represents
the Gordiano knot for interest point detector implementation.
Different architectural strategies are employed to cope with
the computational load of Gaussian pyramid generation, such
as: reducing the number of octaves and scales, using several
Gaussian kernels, separating these kernels into horizontal and
vertical sub-kernels, etc. Ultimately, all these strategies are
meant to increase parallelism by evolving from a single-core
processing architecture to a multiple-core one. Under these
premises the usage of CVS-SIMD chips with dedicated smart-
pixels seems to be pertinent for two reasons: i) they yield the
maximum possible degree of parallelism by using a processing
core per pixel; ii) they combine the sensing and processing
operations into a single system, thus precluding the usage of
external sensors.

The potential advantages of CVS-SIMDs can be assessed
by comparing performance levels of the CVS-SIMD chip in
[16], to those of the digital chip in [46]. The former extracts
the Gaussian pyramid by using a resistive grid with a pixel per
resistive node. The chip permits a fine control of the σ-level
of the Gaussian kernel by means of a sampling mechanism.
The complete Gaussian pyramid is generated in less than
10 µs (without accounting for the downloading of Gaussian
pyramid images) for images with QCIF resolution. Regarding
the former chip, [46], it performs feature detection (Gaussian
pyramid and extrema location) in 180 µs over a 32 × 32
image. Then, for a VGA image, by splitting it into 300 regions
and using 4 units for Gaussian filtering and extrema location,
13.5 ms are required to complete the detection of interest
points. These two chips do not perform the same function;
however, since Gaussian pyramid generation takes around
90% of the resources for interest point detection, the three-
orders-of-magnitude difference among them motivates further
exploration of CVSSIMD solutions. Potential advantages of
these architectural solutions with distributed pre-processing
versus conventional digital architectures are further discussed
in [16] and references thereof.

Our approach for Gaussian pyramid generation is concep-
tually equivalent to that in [16]; in both cases, resistive grids
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are employed to obtain natural solutions of the heat-diffusion
equations and hence implement Gaussian filters. Leaving aside
the fact that [16] does not address 3-D integration, differences
arise in the approach used to realize the resistive grid. The
solution reported in [16] employs continuous-time circuits
with the resistors implemented through MOS-transistors. This
has two major drawbacks: on the one hand, it raises non-
linearity problems; on the other hand, it requires high precision
circuits to control the time constant and hence set the sigma-
level for Gaussian filtering. On the contrary, we herein employ
discrete-time resistive grids with resistors emulated by SC
circuits – based on our previous proposal in [36]. Thus, sigma-
levels are controlled in very simple manner, by setting the
number of clock cycles, and the operation is inherently linear.

C. General CMOS-3D Architectures for Feature Detectors
Algorithms previously described for interest point detection

involve different hierarchical steps each with different image
representations, different amount of data and different abstrac-
tion levels. Resorting to 3D technologies enables emulating
such a hierarchical, conceptual structure and, particularly,
mapping every function of a feature detector onto correspond-
ing physical tiers – see Fig. 1(a). This would lead to the highest
possible performance, as the hardware of every tier would
suit the function to be implemented. In this figure, all low-
level image processing functions but extrema location are at
pixel level and would be implemented in the analog domain.
Extrema location is more conveniently implemented in the
digital domain, especially if the non-maximum suppression
shown in Eq.(2), Eq.(3) and Eq.(4) is executed. Still, a pre-
selection of possible extrema location can be incorporated
to the analog plane, and thus realized in parallel, for better
tradeoff between processing speed and power consumption.
As Fig. 1(a) shows, the circuits for A/D conversion would be
distributed among the tier for extrema location and the tier for
the composition of the Harris, Hessian and DoG images. The
large area for the circuits for A/D conversion (ideally in-pixel
A/D conversion to keep the highest possible parallelism) and
for the digital circuits found in the tier for extrema location
would decrease parallelism in both tiers. The rest of the tiers
would work in the digital domain. At the intermediate-level of
image processing, the feature description tier would provide
certain degree of parallelism as the descriptor vector of every
keypoint can be calculated independently of any other interest
point. At this level, only a percentage of the M ×N pixels of
the image are processed (typically 1% of the M × N pixels
[33]). At the highest level of abstraction, feature matching
would imply more irregular and complex memory accesses.
In this case, task parallelism would replace data parallelism.

Fig. 1(b) shows a more realistic architecture. This approach
would be possible on CMOS-3D technologies like that of MIT
Lincoln Laboratories, as that reported in reference [49], where
the sensors were bump-bonded to an FDSOI CMOS stack
of three tiers. It is important to emphasize that in Fig. 1(b)
the sensing plane is separated from the rest of tiers not to
degrade the fill-factor. The processing continues being next to
the sensor thanks to the TSVs between tiers and a photosensor-
per-processor assignment is still possible. In this architecture,

Fig. 1. Different partitions of the functionality of feature detectors across
different tiers on CMOS-3D technology: (a) ideal situation; one tier for every
function, (b) a more realistic situation, with the sensors in a dedicated tier
not to degrade fill-factor, and (c) another example of CMOS-3D technology
with the sensing and the Gaussian pyramid construction in the same tier.

the A/D conversion would be allocated in the second and
third tiers, rendering again the extrema location in the digital
domain. The bottom tier is a memory to store scales and
extrema or keypoints. Every keypoint is stored with its σ-level
and its (x, y) coordinates in the image plane. It should be noted
that this architecture would perform interest point detection.
Feature description and matching would be implemented on a
companion chip.

If only two tiers with an eventual memory block are
available, the distribution of pixels and smart processing in
two different tiers is not feasible. This approach is shown
in Fig. 1(c), where sensing and Gaussian pyramid lie in the
same tier. We leave the Harris, Hessian and DoG calculations,
as well as extrema location for the bottom tier, while the
eventual memory block would be used to store scales and
extrema locations. Circuits for in-pixel A/D conversion are
distributed among the top and the bottom tiers. Sensing and
Gaussian pyramid generation with one pixel-per-processor
assignment allows exploiting the inherent parallelism of low-
level image processing. The degree of parallelism is reduced
in the bottom tier. Finally, and as in the architecture of Fig.
1(b), the implementation of Fig. 1(c) is oriented to interest
point detection; the difference is that now the limited number
of tiers causes sensing and Gaussian pyramid generation to lie
in the same tier, degrading the pixel pitch and fill factor.

III. CMOS-3D STACK FOR INTEREST POINT
DETECTORS

Fig. 2 shows an architecture for interest point detection
where sensors lie in a dedicated tier as in reference [49],
so that different active pixels are possible. The last tier in
this architecture is a DRAM memory block which is actually
the implementation choice in [50]. Unfortunately, this block
cannot be used as a frame buffer due to the fully-parallel
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asynchronous access required by the top tier. For prototyping
purposes, the sensors (tier 1 in Fig. 2) and the pre-processing
(tier 2 in Fig. 2) are in the same tier - the one described
below. The processing circuitry in this tier is devoted to the
construction of the Gaussian pyramid. In the herein reported
prototype each cell in this tier has 4 SC diffusion links, one
CDS and part of an ADC, with the latter being distributed
between two tiers. As a consequence, for an image of M ×N
pixels or photodiodes we need 1/4 × M × N cells. The
fact that there is only one CDS and A/D converter per 4
photodiodes and 4 SC nodes causes the acquisition to be in
4 successive cycles, requiring additional switches to complete
the conditioning circuits for sensing. Also, the analog to digital
conversion of either the input image or a given scale takes 4
consecutive cycles. Note, however, that we still have a pixel
per SC network node arrangement, keeping the parallelism in
the Gaussian filtering.

The bottom tier contains the registers of the single slope
A/D converter, one 8-bit register per pixel, and the circuits
for the local extrema calculation of Harris, Hessian and DoG
detectors. Finally, there is only one TSV per cell connecting
the two tiers of processing. This TSV drives the enable signal
of the registers of the bottom tier.

A. Top-tier Design

A simplified schematic of the cell in the top tier is shown
in Fig. 3. Hardware re-using is a must in order to keep the
cell with a reasonable area. The sensing is performed with the
classical 3T Active Pixel Sensor (APS). The four photodiodes
share a unity gain stage implemented with a source follower.
The block labeled Analog Memory and CDS contains the four
state capacitors (CPi) of the SC network, one per photosensor,
which are also employed as analog memories to store the
input image through the four cycles during the acquisition.
The capacitor C in conjunction with the inverting stage K
and the corresponding capacitor CPi perform in-pixel CDS.
Four cycles are needed to complete the CDS acquisition of
the 4 photodiodes. An offset-compensated comparator made
up of the inverter within the ADC block and the capacitor C
is the circuitry of the in-pixel 8-bits single slope ADC laid in
the top tier. The ADC is completed with the registers in the

Fig. 3. Simplified schematic of the cell or processor element in the top tier
of the CMOS-3D stack.

bottom tier. The output of the comparator is the enable signal
for such registers; hence only one TSV per cell is required to
interconnect tiers. It should be noted that the top tier provides
either the input image after running CDS, or a given diffusion
or Gaussian filtered image with a particular sigma. In both
cases, the four pixels per cell are stored in the state capacitors
(CPi), and four cycles of conversion take place to transfer the
whole image between tiers.

1) Nominal Analysis: Fig. 4 displays the schematic of the
CDS circuit with its corresponding time diagram for a given
photodiode or state capacitor (CPi). Signal Vref is an analog
reference common to the four state capacitors. The output of
this circuit is given by Eq.(6), with VPi(t0) and VPi(t1) being
the readings from the photodiode/pixel Pi at the beginning and
end of the exposition time.

V (CPi) = Vref +
C

CPi
(VPi(t0)− VPi(t1)) (6)

Fig. 5 shows the complete scheme of the 8-bit single-slope
A/D converter with its timing diagram. The signal Vramp is
the global ramp for all the in-pixel ADCs. The result of the
comparator is given by Eq.(7). If the gain stage K is large
enough, a small (Vramp − VPi) value around VQ, with VQ
being the quiescent point of the comparator, will lead the
output of the comparator to a logic state, enabling/disabling
the writing of the registers allocated in the bottom tier.
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Fig. 4. Schematic and time diagram of the CDS circuit in the top-tier of the
CMOS-3D stack.
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Vout = −K(Vramp − VPi) + VQ (7)

The Gaussian filtering, also called diffusion, is performed
with a SC network. Fig. 6 and Fig. 7 sketch the SC network
used for Gaussian pyramid construction. In Fig. 6 every state
capacitor is identified as CPi,j (CPi in Fig. 3), with i, j being
the coordinates in the grid (image), and VPi,j the voltage
stored at capacitor CPi,j . The diffusion or exchange of charge
takes place with the neighbors located along the four cardinal
directions with two non-overlapping clock cycles (signals φ1
and φ2 in Fig.7(a) by means of the bi-linear SC network
displayed on Fig. 7(a) [36]. Fig. 7(d) plots a 4 × 4 grid, in
which every square represents a cell of 4 state capacitors.
The state capacitors of every cell (4 pixels) are connected
with the switched diffusion block A (Fig. 7(a)). The inter-
cell connections among neighboring cells are implemented
with the switched diffusion block B (7(d)). It should be noted
that along every cardinal direction for inter-cell connectivity
there are two switched diffusion blocks of type B between two
nodes, making up the bi-linear SC implementation.

On the other hand, the σ level is defined by the number
of cycles of φ1 and φ2 and the relation between the state
capacitor CPi,j and the exchange capacitors CE . If we denote
by n the number of cycles, the voltage at a state capacitor
CPi,j at cycle n is given by Eq.(8).

Vij(n) = Vij(n− 1) + [Vi−1j(n− 1) + Vi+1j(n− 1) +

+Vij−1(n− 1) + Vij+1(n− 1)− 4Vij(n− 1)]
CE
C

1+4
CE
C

(8)

A similar equation can be found for the case of the Gaussian
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Fig. 7. Schematic of the: (a) Diffusion network node, (b) SC resistor (Block
A), (c) half SC resistor (block B) and (d) 4× 4 Network.

kernel, as listed in Eq.(9).

Vij(n) = Vij(n− 1) + [Vi−1j(n− 1) + Vi+1j(n− 1) +

+Vij−1(n− 1) + Vij+1(n− 1)− 4Vij(n− 1)] e
− 1

2σ2

1+4e
− 1

2σ2
(9)

By looking at equations (7) and (8), it is easy to identify
the σ achieved per each individual cycle [36], as indicated in
Eq.(10).

σ0 =

(
2× lnCi,j

CE

)−1/2
(10)

The application of two successive Gaussian filters with σ0
is equivalent to a Gaussian kernel with a certain σ level.
This allows our SC network, which has a level of filtering
σ0 fixed by the Ci,j/CE ratio, to approach up any Gaussian
kernel by recursive filtering of Gaussian kernels with σ0. The
dependence of σ with the number of cycles n is given by
Eq.(11), explained in [36].

σ =

√
2nCE

4CE + Ci,j
(11)

The sequence of operations required for the transition
between octaves is shown in the time diagram of Fig. 8.
Signals φdiff si are used for initialization purposes at the
beginning of every scale [36]. Signals φdiff oi with the ending



IEEE JETCAS-SPECIAL ISSUE ON HETEROGENEOUS NANO-CIRCUTS AND SYSTEMS 7

Octave 1
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Φdiff2_o1
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Φ1/4

Φ1/16

Φdiff2_o3

Scale 1 Scale 2

...
Φdiff1_o1_Pi

Φ'1/4

... ...

Octave 2
Scale 1 Scale 2

Octave 3
Scale 1 Scale 2

Fig. 8. Control signals for the generation of octaves and scales.

oi meaning the octave where they are employed. For instance,
signal φdiff o1 drives the switches that control the charge
exchange among nodes of the SC network for the first octave,
and signal φdiff o1/o2 does the same for the first two octaves.
Signals φ1/4 and φ1/16 perform the 1/2 downscaling between
octaves, meaning 1/4 of the pixel count, by merging the value
of four state capacitors. Signal φ1/4 performs the binning of
the four state capacitors within a cell, while signal φ1/16 does
the same for inter-cell connectivity. It should be taken into
account that when going from the first to the second octave the
merging of four state capacitors changes the capacitance from
CPi,j to 4×CPi,j , while CE changes to 2×CE , modifying the
ratio Ci,j/CE , and thus the σ level. This is fixed by decreasing
the new state capacitor from 4× to 2 × Ci,j with the switch
φ′1/4 (not shown in the figures). The transition from the second
to the third octave proceeds without any further modification.
On this occasion, only one of the four cells would interact
with its neighbors. Fig. 7 shades in gray color the cell that
would interact with its neighbors in the third octave. The cell
connections are indicated with dotted lines in Fig. 7.

2) Error Analyses: In this work the design parameters
are set by the loss of true matches of interest points when
comparing two objects with the SIFT algorithm. Fig. 9 shows
an example of matching between interest points for an object
with a known rotation. The true matches are obtained by the
comparison of the descriptor vectors associated with every
interest point, and by spatial matching. In the case of a
known transformation, the spatial matching is easy to check
by comparing the locations of the interest points of the query
image (left hand-side of Fig. 9) after applying the known
transformation with those of the image in the database (right
hand-side of Fig. 9). The spatial distance between a pair of
interest points should be inferior to a certain threshold. When
a pair of keypoints complies with the descriptor vectors and
the spatial criteria, they are sorted out as a true match. If the
transformation is unknown, statistical methods like RANdom
SAmple Consensus (RANSAC) are applied to provide the
transformation [51].

The number of interest points and true matches should
be large enough not to compromise the task (e.g. object
detection). Unfortunately, a hardware implementation leads to
an avoidable loss of true matches when compared to a pure
software solution due to circuit non-idealities (e.g. finite gain)
and parameter deviations as mismatch and global variations. In
this work we have included the effect of hardware deviations

Fig. 9. Examples of matches between interest points of two images.

following a normal distribution for the following parameters
of an image with M ×N resolution:

1) the gain of the source follower of every cell (a normal
distribution of 1/4 M ×N values)

2) the gain K of the inverter and the capacitor C employed
for the CDS (a normal distribution of 1/4 M×N values)

3) the capacitors that make up the diffusion network (CPi,j

and CE), (a normal distribution of M ×N values)
The variation in the gain of the source follower KSF for a

given pixel i, j is gathered in Eq.(12).

Vouti,j =
(
KSFi,j + ∆KSFi,j

)
Vini,j (12)

Eq. (13) conveys the variation of the capacitors C and
CPi,j in the output voltage of the CDS stage. C and CPi,j

are designed nominally identical. The dependence of C with
the pixel is indicated with the sub index CDS i, j in Eq.
(13). Eq. (13) also shows the effect of a finite gain K, and its
dependence with the pixel location i, j. Eq. (6) is the output
voltage of the CDS stage without variations.

Vouti,j =
Ki,jCCDSi,j

CP ii,j+(Ki,j+1)CCDSi,j
Vref +

+
[
1− Ki,jCCDSi,j

CPi,j+(Ki,j+1)CCDSi,j

]
VQ

+
Ki,jCCDSi,j

CPii,j+(Ki,j+1)CCDSi,j
[Vph(t0)− Vph(t1)] (13)

Eq. (14) captures the effects of variations of the state
and exchange capacitors, CPi,j , and CE , in the diffusion or
Gaussian filtering. Eq. (8) represents the diffusion without
variations.

Vi,j(n) =
Vi,j(n−1)CPi,j+Vi,j+1(n−1)CEi,j+1

CPi,j+CEi,j+1+CEi+1,j+CEi,j−11+CEi−1,j
+

Vi+1,j(n−1)CEi+1,j+Vi,j−1(n−1)CEi,j−1+Vi−1j(n−1)CEi−1,j

CPi,j+CEi,j+1+CEi+1,j+CEi−1,j+CEi−1,j
(14)

Fig. 10 shows the effect of hardware variations in loss
of true matches. These curves were taken for VGA images.
The nominal gain of the inverter stage for CDS was fixed at
K=2000, the nominal gain of the source follower at KSF =0.9,
and the nominal capacitances were C=150 fF, CPi,j=150 fF,
and CE=20 fF. These values are reasonable in a hardware
implementation. The x axis represents the value of 6σ in the
distribution of the parameters in the array. For the simulations,
the implementation of the SIFT algorithm found in [52] was
modified including the variations in K, KSF and the capac-
itors CCDS (labeled Cnom in Fig. 10), the state capacitors
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Fig. 10. Effect of variations in the gain of the source follower KSF , the
gain of the CDS stage K, and the capacitors used for the CDS stage C, and
the capacitors of the SC network; the state CP and exchange CE capacitors.

CPi,j (identified as CP ) and the exchange capacitors of the
diffusion network CE .

The top two sub-figures in Fig. 10 display the effect of
variations in K, KSF . The same variation in both parameters
was used. In absolute terms the variation in KSF is smaller
than that of K, as KSF is much smaller than K. In this
case, variations in K and KSF of ∆K = 6σ = 300 for
K = 2000, and ∆KSF = 6σ = 7mV/V for KSF = 0.9
produce an acceptable loss of around 10% of true matches.
These variation levels are feasible in a circuit realization. We
can also observe a smaller variation in the number of true
matches in the software version caused by the statistical nature
of the RANSAC method used for matching.

The bottom two sub-figures in Fig. 10 collect the effect of
variations in C. We have adopted the same level of variation in
all the capacitances. Two curves are plotted: 1) with variations
in CP and CE , and 2) with variations in CCDS and CP . The
variations in CCDS and CP yield a larger loss percentage of
true matches. This is reasonable as the CCDS/CP ratio defines
the gain of the CDS stage (see Eq.6). In this case, variations
in CCDS and CP above 1%-2% would lead to a significant
loss of true matches.

The cell of the top tier (see Fig. 3) has been implemented
with the CMOS UMC 0.18 µm technology. The gain of the
CDS and the ADC blocks is realized with a double cascode
inverter. The state capacitors of the diffusion network CPi have
been designed with an MIM structure with metal layers M5
and M6, and a nominal value CPij = 150fF , and the presence
of a transistor with the drain and source terminals shorted. This
enhances the capacitance without a significant degradation in
area. This, in turn, helps decrease dynamic effects like charge
injection and feedthrough.

Fig. 11 shows the evolution of the voltage at the four state
capacitors of a cell after 10 cycles of diffusion in the SC
network, with every diffusion cycle taking 90 ns (this time can
easily be shortened). As we can see, the SC network settles
down to a stationary state in less than 5 µs. Less than 50 µs
would suffice for a complete Gaussian pyramid of 3 octaves
with 6 scales each. These data are in line with those published

Vp2

Vp1

Vp3

Vp4

Diffp1

Diffp2

Diffp3

Diffp4

Fig. 11. Evolution of the voltage at the four state capacitors of a cell after
10 cycles of diffusion in the SC network.

TABLE I
ERRORS IN THE EVOLUTION OF THE FOUR CAPACITORS OF A CELL IN THE

SC NETWORK IMPLEMENTED.

Diff Vp1 Vp2 Vp3 Vp4
E rr (%) E rr (%) E rr (%) E rr (%)

1 -0,3179 0,2912 0,4836 0,2254
2 0,5124 0,3382 0,5307 0,3633
3 -0,132 0,3338 0,147 0,2423
4 0,2742 0,469 0,4136 0,4386
5 -0,1112 0,3643 0,0728 0,2995
6 0,2283 0,5218 0,3405 0,4855
7 -0,0649 0,3601 0,0456 0,3196
8 0,2354 0,5287 0,3092 0,5077
9 -0,0173 0,339 0,0468 0,3192
10 0,2588 0,5201 0,3039 0,5106

in [16], outperforming conventional solutions like those found
in [46] and [47] with a speed-up factor, exclusively considering
Gaussian pyramid generation, close to 1000×.

Table I lists the voltage errors of our SC realization ex-
pressed as % at every node CPi when compared to the
expected values of an error-free SC network. These errors
should be added to the circuit deviations (mismatch and global
variations) collected in Fig. 10. The cell has been designed to
keep dynamic errors and circuit deviations from their nominal
values at low enough levels as not to cause further losses
of true matches. This, despite the analog processing, would
permit to provide an overall output close to that of a pure
software solution for the realization of a feature detector.

3) Top tier Performance Metrics: Fig. 12 shows the layout
of a top-tier cell. This layout is used to extract metrics on area
consumption, power dissipation and processing speed — used
in Section III.C for comparison purposes. The photodiodes
labeled PD1 - PD4 occupy an area of 8 µm × 8 µm. They are
made up of an n-type diffusion over a p-type substrate to avoid
the area overhead of an n-type well. The state capacitors (CPi)
are laid down with metal layers M4 and M5, thus allowing to
place circuitry underneath. The circuitry for charge exchange
with the neighbors along the north direction is below the
state capacitor between the photodiodes PD1 and PD2. The
circuits for connecting neighbors across the south direction are
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Fig. 12. Layout of a cell in the top tier.

below the capacitor between the photodiodes PD3 and PD4:
the connections with the western and eastern neighbors are
below the capacitors between PD1 and PD3, and PD2 and
PD4, respectively. Switches for configurability are distributed
below the capacitor between PD3 and PD4 and the rest of
the cell. The gain stages are also labeled in Fig. 12. The area
occupied by a cell is 43×43 µm2 which results into 475µm2

per pixel and amounts up to 36.5mm2 for a QVGA sensor.
Three stages are identified regarding power consumption

and processing speed:
1) the acquisition of the scene by the photodiodes
2) the storage of the acquired image into the state capac-

itors CPi and the diffusion of Gaussian filtering in the
SC network

3) the in-pixel A/D conversion
Regarding acquisition phase the following has to be con-

sidered: i) the photodiodes and ii) the source follower. In a
worst case scenario the voltage at the photodiodes changes
from 0 to Vdd (1.8V). In the CMOS UMC 0.18µm technology
the intrinsic capacitance amounts to 54fF for a 8×8 µm2

photodiode. The source follower consumes power during the
reset and during the sampling photodiode phases, which last
for 1.5µs and 10µs respectively. The bias current for the
source follower is set to 1µA. This leads to a total charge
variation during the acquisition of ∆Qacq=46.4pC per cell
(four photodiodes) — 11.6pC per pixel.

The power dissipated by the storage of the acquired scene
in the state capacitors and the diffusion or Gaussian filtering
in the SC network can be estimated taking into account that:
i) the gain stage used as buffer (see Fig. 3) is biased at 1µA;
ii) the gain stage consumes power in voltage follower mode
throughout the sampling of the acquired image by the source
followers and their reset, Tsf = 11.5 µs, and during the reading
of the values stored at the state capacitors CPi, namely, the
Gaussian pyramid; and iii) 18 scales are generated, with Tdiff
= 2.5µs per scale. The total charge variation caused by storage

TABLE II
FIGURES OF MERIT OF THE CIRCUITS IN THE TOP TIER

Area Processing Power
Speed Dissipation
Gauss.

Pyramid
36.5 mm2 50 µs 75 mW

w/o ADC w A/D
3.74 ms and
w ADC im. acq.

of values at the state capacitors and the Gaussian filtering,
∆Qmem, is given in Eq. (15), amounting to 110.5pC per
pixel. Notice that 36 readings with Tvf = 1.5µs per reading
cycle are needed for the subsequent A/D conversion of every
scale required for DoGs; 24 for the first octave, as there are
4 readings per cell, and 6 readings per octave for the second
and third octaves.

∆Qmem = 1µA× (Tsf +Tvf × 36 +Tdiff × 18) = 110.5pC
(15)

Finally, the charge variation due to the in-pixel A/D con-
version has been estimated through electrical simulations of
a complete ramp (single-slope), amounting to approximately
110pC per pixel, which, with 36 conversions, yields a total
charge variation due to the A/D of ∆QAD = 3960pC per
pixel. All in all, the charge variation per pixel results in
∆Qpx = 4082.1pC.

The computation time is estimated through Eq. (16), as-
suming: i) an integration (exposure) time Tint = 120µs; ii) a
sampling and reset time through the source followers Tsf =
11.5 µs; iii) a time for every reading through the gain stage
in voltage follower mode Tvf = 1.5 µs; iv) a time for scale
Tdiff = 2.5µs; and v) a time for comparison estimated through
electrical simulations for the in-pixel ADC, TAD = 100µs per
scale at most. This leads to a time per frame Tfr = 4.27ms;
3.74ms without the acquisition time.

Tfr = (Tsf +Tint)×4+(Tvf +Tdiff +TAD)×36 = 4.27ms
(16)

The above data lead to current per pixel Ipx ≈ 1µA,
which amounts to 1.8µW per pixel, leading to 150mW for a
QVGA array as the worst case. We have estimated an average
consumption of 75mW for the whole array.

Table II includes previously calculated metrics. It is seen
that the A/D conversion of every scale penalizes the processing
speed. This can be partially alleviated through the distribution
of photodiodes and circuitry in two different tiers. If this was
case, every photodiode would be assigned to one cell, cutting
the number of A/D conversions from 24 down to 6 for the
first octave, i.e. from 3.74ms to 1.8ms. Note that no other
A/D conversion is required, and that in a more conventional
approach with a digital chip like those of references [46] and
[47], the image is taken from an external camera board; camera
board and chip combined would have a similar bottleneck due
to A/D conversion.
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Fig. 13. Sequence of operations in the CMOS-3D stack.

B. Bottom-tier Design

As it was said before, the A/D converter is shared among
the two tiers, with the comparators in the top tier, and a set of
M×N 8-bit registers in the bottom tier for an image of M×N
resolution. Such registers store the scales of the Gaussian
pyramid or the input image. The registers are arranged in
a mesh of 1/4 M × N banks. Every bank contains 6 8-bit
registers; 4 of them for the scale k−1, and two for the current
scale k. This permits to process the image at scale k−1 while
the image at scale k is being read from the top tier as the
A/D conversion is being performed. The pixels of scale k− 1
stored in every bank register are named as: P1, P2, P3 and
P4, corresponding with image coordinates: (i, j), (i, j + 1),
(i + 1, j) and (i + 1, j + 1). The four pixels P1 − P4 are
digitized in series; hence, four conversion cycles are needed
for the whole image in the first octave. The 1/4 downscaling
for the second and third octaves, however, permits to perform
the analog to digital conversion of the whole image in just one
cycle.

Fig. 13 shows the operations executed in the CMOS-3D
stack for the first octave. The top tier provides the diffusion
or scale k. After this, several operations are run in parallel
along the four cycles needed to perform the A/D conversion
of the whole M×N image for the first octave. The operations
running during the analog to digital conversion of pixel P1 at
scale k are:

1) writing of pixel P4 of scale k − 1 into the memory
2) the difference of Gaussian between scales k − 1 and

k − 2, namely DoG(k-1)
3) horizontal, dx, and vertical derivates, dy, which are used

not only for Harris, but also for subsequent stages of the
SIFT algorithm

4) Harris and Hessian detection over scales
The results of the above operations are sorted out in groups

of 128 bits (16 words of 8 bits each) and transfer in burst
mode to the DRAM memory. Fig. 14 depicts the architecture
of the circuit located in the bottom tier. The images from the
buffer array are read row by row in groups of 20 registers in
order to provide the first and second derivatives along rows
and columns (as we will see below, the two nearest neighbors
along a row are required to calculate the second derivative).
For every row i, the 20 columns of pixels Pi within a row
are selected through the multiplexers seen in Fig. 14. Four
multiplexers are needed for this task. Two of them are shared
by the first and the second octaves for scales k and k − 1.
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Fig. 14. Architecture of the digital circuit located in the bottom tier of the
CMOS-3D stack.

Both scales are required in the DoG calculation. The two other
multiplexers are employed for the third octave. It should be
noted that for the first and the second octave, the multiplexers
can be shared, as we always access all the registers along a
row. In the case of the first octave we need 4 reading cycles to
transfer pixels P1−P4. In the second octave and beyond, we
do such a transfer in only one cycle due to the 1/4 downscaling
between octaves. The lowest frequency needed for reading and
performing all these operations is set by the first octave, being
10 Mhz in order to read all the pixels Pi in less than 100 µs,
which is the time for the A/D conversion.

Fig. 15 shows the schematic of a bank register in the bottom
tier. Every bank comprises 6 8-bit registers, and as said before,
there is only one TSV per register bank connecting the two
tiers. This is a 1-bit signal driving two AND gates with φconv13
and φconv24 as inputs, yielding the enable signals for the top
two registers, R 13 K and R 24 K. The top two registers
store the pixels of scale k. The four bottom registers keep
pixels P1 − P4 for scale k − 1. Scales k and k − 1 are
available on the corresponding buses of every set of registers
for DoG calculation. The sequence of operations to achieve
every scale in the first octave is as follows. Pixel P1 is
digitized into register R 13 K with φconv13 on. Subsequently,
pixel P2 is digitized and stored in register R 24 K, following
a similar process with signal φconv24 on. During this phase
the DoG for all pixels P1 of scale k − 1 are calculated and



IEEE JETCAS-SPECIAL ISSUE ON HETEROGENEOUS NANO-CIRCUTS AND SYSTEMS 11

Φconv13

count<7:0> count<7:0>

Φconv24

k<7:0>

ΦWE1 ΦWE2

ΦWE3 ΦWE4

Φrow_iB
U
S
_K

B
U
S
_K
-1

M
U

X
 4

:1
 (8

 b
its)

control_muxk_1

WE WEMux 
2:1

Φconv13
Clk1

WE

WE

Clk2

R13_K R24_K

R1_K_1 R2_K_1

R3_K_1 R4_K_1

Clk1

Clk2 Clk2

Clk2

Φrow_i

WE

WE

Fig. 15. A register bank of the bottom tier. R 13 K and R 24 K let the
conversion of scale k while scale k − 1 is being read. The other registers
store the pixel values of scale k − 1.

written into the DRAM. After reading pixels P1 the content
of register R 13 K is transferred into register R 1 K by
means of signal φWE1 on. Later on, pixels P3 are digitized in
register R 13 K while the pixels P2 are read, and the process
continues up to pixels P4, completing the first octave.

The pixel arrangement of four pixels within a cell along
with their serial analog to digital conversion causes not to
have all the pixels available at one cycle of digitization. For
instance, during the digitization of pixel P2 at scale k, only
the pixels P1 of the scale k are available in the register
banks. Besides, the reading of the register banks for further
processing is carried out in a row by row order. As a result,
only the derivatives along certain directions can be provided.
It is possible, for instance, to calculate the derivative along
the x direction (dx) of pixel P2 during the cycle of analog to
digital conversion of P2, by accessing the adjacent pixels P1
along a row. It would not be possible, however, to provide the
derivatives along the vertical direction, because pixels P3 are
not available yet.

The solution adopted in our architecture to overcome this
issue is to calculate the first derivatives or gradient along a
different set of axis which has been rotated 45 degrees with
respect to the conventional coordinates. The gradient is now
calculated with the next set of equations:

d
′

x(i, j) = I(i+ 1, j + 1)− I(i− 1, j − 1) (17)

d
′

y(i, j) = I(i+ 1, j − 1)− I(i− 1, j + 1) (18)

This process is illustrated in Fig. 16, which shows a set
of register banks in the bottom tier. In this case, only the
pixels P1, marked in gray, are available. The pixels where the
derivatives are calculated are marked with an X. It is possible
to provide the derivatives along the new x and y axes for pixels
P2 as indicated in Fig. 16. This process is being done at the
same time as the reading of the register banks.

The strategy we followed for the second derivatives, needed
for the Hessian matrix, is different. An approach to the second
derivative is made by recreating the neighbor located one pixel
apart along the horizontal and vertical directions. This is done
by interpolating the pixels located two pixels apart from the
one under study. Thus, in this procedure, the neighbor at (i+

dx
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Fig. 16. Arrangement for gradient calculation.

1, j) is generated as I(i + 1, j) = [I(i + 2, j) + I(i, j)]/2,
yielding the following set of equations:

Ixx(i, j) = [I(i, j + n)) + I(i, j − n)− 2 ∗ I(i, j)]/n (19)
Iyy(i, j) = [I(i+ n, j) + I(i− n, j))− 2 ∗ I(i, j)]/n (20)

Ixy(i, j) = [I(i+ n, j + n) + I(i− n, j − n)−
−I(i− n, j + n]/n (21)

where n = 2 for the first octave, and n = 1 for the next
octaves, given that at the second and third octaves every pixel
has the right neighbors along horizontal and vertical directions
to perform the Hessian matrix [53].

The frequency specifications in our system are set by the
operations run in parallel during the A/D conversion of a given
pixel (see Fig. 9), which was estimated at 100 µs. Two types
of operations are run in parallel, namely, data calculation and
memory-writing.

In our design, the DoGs, dx and dy are provided in groups
of 16 pixels, so for a given pixel Pi, the total number of clock
cycles is given by: M × N/(16 × 4). In a VGA image, this
renders a minimum clock frequency of 10 MHz. Our circuit
has been synthesized on a Virtex-6 from Xilinx, reaching 375
MHz. This frequency would lead to less than 12 µs for the
DoGs, dx and dy in a VGA image, leaving still 88 µs for their
memory storage.

C. Comparison with State-of-the-Art Chips

The circuits in the top tier can be compared with state-of-
the-art custom chip performing similar operations, like Gaus-
sian filtering, Gaussian pyramid generation, feature detection,
feature matching, SIFT, etc. The implementation based on
FPGA reported in [45] is not included in the comparison
because no data concerning power consumption and area occu-
pation is provided. Three different figures of merit have been
considered: i) the time it takes to realize the corresponding
operation, what gives an idea of its speed; ii) the power per
pixel and fps, what is a measure of the energy efficiency; and
iii) fps per mm2 scaled by a normalized resolution –actually
1920×1080-pixels, the resolution of the chip in [47]–, what
gives an idea of the area efficiency of the implementation in
connection with the processing speed.

It is important to mention that the functions implemented
by the different chips are relatively diverse, i. e. in some of
them only Gaussian filtering is performed [16], in others the
DoG is available [54], other chips have the complete feature
extraction [46] [47]. Some chips contain photosensors [54] [7]
[55] [16], and the subsequent ADC, and some others need to
be fed with an already digitized image [46] [47]. Therefore,
we are comparing quite heterogeneous systems.
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TABLE III
COMPARISON WITH SIMILAR STATE-OF-THE-ART CUSTOM CHIPS

Chip Time Power/ (fps·px)/
(technology) per task (fps·px) (Area·HD)

and
functionality (µs) (nJ/px) (s·mm2)−1

Ref. [54] 42 300 0.006
(0.8µm CMOS)

Gaussian/DoG filter +
local extrema detection

Ref. [7] 1040 76 0.019
(0.35µm CMOS)

Multiresolution imaging
+ motion detection

Ref. [55] 1910 130 0.014
(0.35µm CMOS)

Edge filtering based on
convolution masks

Ref. [16] 1.5 400 0.009
(0.35µm CMOS) w/o
Gaussian filtering ADC

by focal-plane diffusion
Ref. [46] 5400 37 0.09

(0.13µm CMOS) (only (SIFT) (SIFT)
Feature detection feat.

and matching QVGA det.)
Ref. [47] 110.9 0.8 4.7

(65nm CMOS) (only (SIFT) (SIFT)
Feature detection 1 feat.)

on full-HD
This work 50 3.6 0.27

(0.18µm CMOS) (pyram. w ADC w ADC
Gaussian pyramid gen.) 0.05 20.3

QVGA w/o ADC w/o ADC

Concerning the first column of Table III, it can be seen that
our chip is very fast in computing the Gaussian pyramid. It is
clear that the difference between the time it takes to provide the
complete Gaussian pyramid for a QVGA image (50µs) is very
competitive. Then A/D conversion requires some additional
3.74ms. DoG and extrema detection implemented in a Virtex-
6 FPGA from Xilinx take 12µs for a VGA image. Concerning
the times reported in [47] it is not clear how many keypoints
they are considering, therefore, their operation time can be
considerably longer.

In the second column of Table III, the energy efficiency of
the system is shown. The proposed chip is the most efficient
if the fact that the chip in [47] does not contain photosensors
nor A/D converters are considered.

In the third column, performances distribute along three
orders of magnitude, being the number of pixels per frame
the major factor in order to distinguish the best performer.
This supports the idea of vertically integrating functionality in
order to maintain a large pixel count.

IV. CONCLUSION

There are many applications where enhanced image reso-
lution, the basic challenge for consumer applications, must
be complemented with other features such as speed and
smartness. For instance, sensors intended for surveillance
applications should be capable to analyzing complex spatial-
temporal scenes and combining high-quality image recording
of significant events with high-speed decision making. Just to
mention another example, scientific applications call for the

smart selection of salient points and region-of-interests and
for the ultra-high-speed downloading of the so-selected areas.
Also, machine vision sensors (as those employed for inspec-
tion) require image content analysis and decision making to be
completed with the largest possible throughput. These features
call for the embedding of processing circuitry within the sensor
chip. Conventional architectures for such embedding consist of
a sensor array, a readout section and a data conversion section
followed by digital processing block. Analysis of the power
budget in this conventional architecture shows that most of
the power is used by the digital processing section owing to
the necessity to handle huge amount of data. For increased
efficiency, alternative architectures consisting of distributed,
multi-core processor arrays to enable progressive processing,
and hence reduction of the data as they proceed through
the processing chain, are worth considering. These multi-core
architectures largely benefit from the possibility of arranging
the required functions into vertically interconnected tiers, as
it is actually enabled by 3D integration technologies. This
paper shows that complex interest point detection algorithms
can be mapped onto multi-layered architectures suitable for
3D implementation which report significant speed advantages
as compared to conventional solutions. Such speed advantage
becomes more evident at the lowest level of processing,
especially in the generation of the Gaussian pyramid, a key
issue for interest point detectors might take up to 90% of the
computation time of a modern scale- and rotation- invariant
feature detector as SIFT. The paper shows that using a SC
network provides a 1000x speed enhancement in the gener-
ation of Gaussian pyramids when compared to conventional
solutions.
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G. Liñán received the Licenciado and Doctor
(Ph.D.) degrees in physics, with specialty in elec-
tronics, from the University of Seville, Seville,
Spain, in 1996 and 2002, respectively. In 1995, he
was a Graduate Student of the Spanish Ministry
of Education at the Institute of Microelectronics of
Seville (IMSE), National Microelectronics Center
(CNM), Spanish Microelectronics Center (CSIC),
Seville, where he also received a doctoral grant from
1997 to 1999, which was funded by the Andalusian
Government, and where he is currently with the

Department of Analog and Mixed-Signal Circuit Design. From February
2000 to June 2004, he was an Assistant Professor with the Department
of Electronics and Electromagnetism, School of Engineering, University of
Seville and at the Faculty of Physics. Since June 2004, he has been a Tenured
Scientist of the Spanish Council of Research. His main areas of interest
include the design and VLSI implementation of massively parallel analog-
/mixed-signal image processors.

Dr. Linán received the 1999 Best Paper Award and the 2002 Best Paper
Award from the International Journal of Circuit Theory and Applications.He
is also a corecipient of the Most Original Project Award and the 2002 Salv
i Campillo Award, which were conceded by the Catalonian Association of
Telecommunication Engineers.

PLACE
PHOTO
HERE

D. Cabello (M’96) received the B.Sc. and Ph.D.
degrees in Physics from the University of Granada,
Granada, Spain, and the University of Santiago de
Compostela, Santiago de Compostela, Spain, in 1978
and 1984, respectively. Currently, he is a Professor
of Electronics at Centro de Investigación en Tec-
nologı́as de la Información (CITIUS), University of
Santiago de Compostela, SPAIN. He has been the
Dean in the Faculty of Physics between 1997 and
2002, and the Head of the Department of Electronics
and Computer Science between 2002 and 2006, both

in the University of Santiago de Compostela. His main researh interests lie
in the design of efficient architectures and CMOS solutions for computer
vision, especially in early vision. Professor Cabello has been General Co-
Chair of 11th International Workshop on Cellular Neural Networks and Their
Applications, CNNA 2008, held in Santiago de Compostela. He is also co-
recepient of the Best Paper Award of the European Conference on Circuit
Theory and Design in 2003.
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Ángel Rodrı́guez-Vázquez (F’96) is currently a
Full Professor of electronics with the University of
Seville, Seville, Spain and is appointed for research
at the Institute of Microelectronics of Seville, Centro
Nacional de Microelectrnica, Consejo Superior de
Investigaciones CientficasUniversity of Seville. He
has authored eight books; approximately 50 chap-
ters in edited books, including original tutorials on
chaotic integrated circuits, design of data convert-
ers, and design of chips for vision; and some 500
articles in peer-reviewed specialized publications.

His research work is widely quoted, and he has an h-index of 35. His
current research interests are in the areas of imagers and vision systems
using 3-D integration technologies and of ultra low-power medical electronic
devices. Prof. Rodrı́guez-Vázquez has served and is currently serving as
an Editor, an Associate Editor, and a Guest Editor for different IEEE and
non-IEEE journals. He is in the committee of many international journals
and conferences and has chaired different international IEEE and Society
of Photo-Optical Instrumentation Engineers conferences. He has received a
number of international awards for his researchwork (IEEE GuilleminCauer
Best PaperAward, two Best Paper awards from Wileys International Journal
of Circuit Theory and Applications, IEEE European Conference on Circuit
Theory and Design Best Paper Award, and IEEE International Symposium on
Circuits and Systems Best Demo-Paper Award).
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