4,669 research outputs found

    Advanced Planning Concepts in the Closed-Loop Container Network of ARN

    Get PDF
    In this paper we discuss a real-life case study in the optimization of the logistics network for the collection of containers from end-of-life vehicle dismantlers in the Netherlands.Advanced planning concepts like dynamic assignment of dismantlers to logistic service providers are analyzed by a simulation model.In this model, we periodically solve a vehicle routing problem to gain insight in the long-term performance of the system.The vehicle routing problem considered is a multi depot pickup and delivery problem with alternative delivery locations.We solve this problem with a heuristic based on route generation and set partitioning.Reverse logistics;Closed-loop supply chain mmanagement;vehicle routing;set partitioning;distribution planning

    A relax-and-repair heuristic for the Swap-Body Vehicle Routing Problem

    Get PDF
    International audienceIn this paper we address the Swap-Body Vehicle Routing Problem, a variant of the Truck and Trailer Routing Problem. It was introduced in the VeRoLog Challenge 2014. We develop a solution approach that we coin Relax-and-Repair. It consists in solving a relaxed version of the SB-VRP and deriving a feasible solution by repairing the relaxed one. We embed this approach within a population-based heuristic. During computation we store all feasible routes in order to derive better solutions by solving a set-partitioning problem. In order to take advantages of nowadays multi-core machines, our algorithm is designed as a collaborative parallel population-based heuristic. Experimental results show that our relax-and-repair algorithm is very competitive and point the impact of each phase on the quality of the obtained solutions. The advantage of our approach is that it can be adapted to solve complex industrial routing problems

    Minimum Makespan Multi-vehicle Dial-a-Ride

    Get PDF
    Dial a ride problems consist of a metric space (denoting travel time between vertices) and a set of m objects represented as source-destination pairs, where each object requires to be moved from its source to destination vertex. We consider the multi-vehicle Dial a ride problem, with each vehicle having capacity k and its own depot-vertex, where the objective is to minimize the maximum completion time (makespan) of the vehicles. We study the "preemptive" version of the problem, where an object may be left at intermediate vertices and transported by more than one vehicle, while being moved from source to destination. Our main results are an O(log^3 n)-approximation algorithm for preemptive multi-vehicle Dial a ride, and an improved O(log t)-approximation for its special case when there is no capacity constraint. We also show that the approximation ratios improve by a log-factor when the underlying metric is induced by a fixed-minor-free graph.Comment: 22 pages, 1 figure. Preliminary version appeared in ESA 200

    Hybrid metaheuristics for solving multi-depot pickup and delivery problems

    Get PDF
    In today's logistics businesses, increasing petrol prices, fierce competition, dynamic business environments and volume volatility put pressure on logistics service providers (LSPs) or third party logistics providers (3PLs) to be efficient, differentiated, adaptive, and horizontally collaborative in order to survive and remain competitive. In this climate, efficient computerised-decision support tools play an essential role. Especially, for freight transportation, e efficiently solving a Pickup and Delivery Problem (PDP) and its variants by an optimisation engine is the core capability required in making operational planning and decisions. For PDPs, it is required to determine minimum-cost routes to serve a number of requests, each associated with paired pickup and delivery points. A robust solution method for solving PDPs is crucial to the success of implementing decision support tools, which are integrated with Geographic Information System (GIS) and Fleet Telematics so that the flexibility, agility, visibility and transparency are fulfilled. If these tools are effectively implemented, competitive advantage can be gained in the area of cost leadership and service differentiation. In this research, variants of PDPs, which multiple depots or providers are considered, are investigated. These are so called Multi-depot Pickup and Delivery Problems (MDPDPs). To increase geographical coverage, continue growth and encourage horizontal collaboration, efficiently solving the MDPDPs is vital to operational planning and its total costs. This research deals with designing optimisation algorithms for solving a variety of real-world applications. Mixed Integer Linear Programming (MILP) formulations of the MDPDPs are presented. Due to being NP-hard, the computational time for solving by exact methods becomes prohibitive. Several metaheuristics and hybrid metaheuristics are investigated in this thesis. The extensive computational experiments are carried out to demonstrate their speed, preciseness and robustness.Open Acces

    The Tractor and Semitrailer Routing Considering Carbon Dioxide Emissions

    Get PDF
    The incorporation of the minimization of carbon dioxide (CO2) emissions in the VRP is important to logistics companies. The paper deals with the tractor and semitrailer routing problem with full truckload between any two depots of the network; an integer programming model with the objective of minimizing CO2 emissions per ton-kilometer is proposed. A two-stage approach with the same core steps of the simulated annealing (SA) in both stages is designed. The number of tractors is provided in the first stage and the CO2 emissions per ton-kilometer are then optimized in the second stage. Computational experiments on small-scale randomly generated instances supported the feasibility and validity of the heuristic algorithm. To a practical-scale problem, the SA algorithm can provide advice on the number of tractors, the routes, and the location of the central depot to realize CO2 emissions decrease

    Truck and trailer scheduling in a real world, dynamic and heterogeneous context.

    Get PDF
    We present a new variant of the Vehicle Routing Problem based on a real industrial scenario. This VRP is dynamic and heavily constrained and uses time-windows, a heterogeneous vehicle fleet and multiple types of job. A constructive solver is developed and tested using dynamic simulation of real-world data from a leading Scottish haulier. Our experiments establish the efficiency and reliability of the method for this problem. Additionally, a methodology for evaluating policy changes through simulation is presented, showing that our technique supports operations and management. We establish that fleet size can be reduced or more jobs handled by the company

    Handling disruptions in a network with cross-docking

    Get PDF
    Cross-docking (CD) is a commonly used technique to consolidate freight for more efficient delivery to customers; CD is continuing to see increased use by companies. Synchronization of inbound and outbound freight is clearly critical to operations and so is having the cross-dock able to support the freight flow with available doors and material handling equipment. The latter is particularly important when there is a disruption in the inbound freight. One delayed truck can impact several outbound trucks. A methodology is proposed to address explicitly both the scheduling of trucks and material handling within the CD. Two models are proposed – one for routing inbound and outbound trucks and the other to schedule the cross-dock. Results from each model when run separately are presented as well as results from when the two models are run iteratively

    Motor Carrier Service Network Design

    Get PDF
    This chapter introduces service network design (SND) operations research models and solution methodologies specifically focused on problems that arise in the planning of operations in the trucking, or motor freight, industry. Consolidation carriers such as less-than-truckload and package trucking companies face flow planning problems to decide how to route freight between transfer terminals, and load planning problems to decide how to consolidate shipments into trailerloads and containerloads for dispatch. Integer programming models are introduced for these network design decision problems as well as exact and heuristic solution methods

    Routing design for less-than-truckload motor carriers using ant colony techniques

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results
    corecore