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Chapter 14
Motor Carrier Service Network Design

Ilke Bakir, Alan Erera, and Martin Savelsbergh

1 Introduction

The trucking, or motor freight, industry provides ground freight transportation
services to shippers using road trucks. Motor carriers provide multiple types of
services, differentiated to serve shipments with different characteristics. Truckload
services are offered to shippers who move dedicated trailers or containers each
directly from an origin location to a destination location. Truckload services are
provided both by large firms with thousands of tractors and trailers but also by
small companies that may sometimes operate fleets with only a few vehicles. In
contrast, consolidation trucking carriers operate both a network of freight transfer
terminals and also a fleet of vehicles to provide a schedule of transportation services
for shippers moving smaller quantities. There are two primary consolidation service
types. Less-than-truckload (LTL), or freight, services provide shippers with the
capability to send smaller shipments that do not require an entire trailer; an LTL
carrier consolidates shipments into truckload movements between terminals to
provide cost-effective service. Package services serve shippers seeking to move the
smallest shipments, typically letters, small parcels, and boxes.

Truck transportation in most countries is currently the dominant land transporta-
tion mode, accounting for the largest fraction of revenue and moving the most
tons. For example, in the United States in 2016 trucking accounted for 63% of
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the total tonnage moved and 62% of the total value of all shipments (Bureau of
Transportation Statistics 2018); in the European Union and in Asia, motor freight
is similarly important. Trucking services provide fast transit times to shippers with
only air freight able to provide shorter times. Transit time is a primary measure
of customer service level in shipping, and many modern freight services guarantee
transit times to shippers.

This chapter focuses on service network design for consolidation trucking
carriers. Optimization models and solution approaches for the core network design
problems, which include flow and load planning, will be covered in detail. Other
related operations design problems will be discussed more briefly. The goal is to
provide a thorough introduction to these problems and methods and to focus the
discussion on ideas that have had an impact on practice. The chapter will also
highlight some of the newest work in this area and help guide researchers beginning
work in this field.

The remainder of the chapter is organized as follows. Section 2 provides an
overview of trucking operations, focusing specifically on the structure of the
networks operated by consolidation trucking carriers. Section 3 introduces models
for trucking network flow planning and describes exact and heuristic approaches for
building solutions to these models. Section 4 then describes integrated flow and
load planning models that rely on time-expanded networks and describes large-
scale local search heuristics for their solution. Section 5 briefly describes key
developments in the trucking service network design literature. Finally, Sect. 6
provides some perspective on the current state of this research area and discusses
a number of ongoing research trends that hold promise for this field.

2 Consolidation Trucking Operations

Consolidation trucking carriers plan and operate service networks to provide freight
transportation services directly to shippers seeking to move less-than-truckload
or package freight. Carriers establish a geographic region within which they will
operate, and more specifically determine origin and destination pairs between which
they will provide service and for which categories (or classes) of freight. Each
service offering for an origin-destination pair also includes a price (or freight rate)
and a transit time. In some cases, transit times provide only a rough estimate of
the number of days required for the execution of the transportation service, while
in other cases time-definite offerings specify precisely how long a shipment will
require and when it will arrive (for example, 2-day or next-morning).

Given a set of service offerings, a consolidation trucking carrier must build and
operate a service network to satisfy customer demand feasibly and cost-effectively.
To do so, a medium to large carrier operates a network of transfer terminals.
Trucking terminals have facilities for truck loading and unloading; these docks
enable rear-loading trucks to park with the trailer deck at the same level of the
terminal floor. In LTL operations, the truck trailers that are used to make pickups
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and deliveries at customer locations are similar or identical to those used for the long
distance terminal-to-terminal movements. In package operations, smaller delivery
vans are used when visiting customers, and terminals therefore may have different
loading areas for different truck types.

All terminals have the capability to sort freight shipments to be loaded into
different outbound truck trailers or containers. Cross-dock sorting, or cross-docking,
is a sorting system where larger shipments (often on pallets or within intermediate
containers) are moved from unloading trailers to loading trailers by forklift or pallet
jack. The name cross-docking refers to the fact that shipments are moved directly
“across the dock” and are not stored in any intermediate locations. Cross-docking
is the primary sorting operation used by LTL carriers. Since parcel shipments are
smaller, terminals operated by package carriers typically include automated and/or
manual piece-sorting equipment. Examples of piece-sorting equipment include
cross-belt sorters or manual sorting cabinets. Smaller packages, parcels, and letters
may be consolidated into bags or other types of intermediate containers before they
are loaded into trailers. Package carriers may also use conveyor belt systems and
additional belt sorters to enable movement of parcels through the terminal as well
as to facilitate cross-docking of larger parcels, bags, and intermediate containers.

Thus, the primary role of terminals in trucking networks is consolidation of
smaller shipments into truckloads and the related transfer of shipments between
inbound and outbound trailers and containers. Consolidation and transfer allows a
trucking carrier to provide cost-effective service between large numbers of origins
and destinations. For example, a carrier that operates n terminals with direct service
between all pairs would need to move trailers on n(n − 1) service lanes, but if one
of the central locations were used as a transfer hub this number could be reduced
to as few as 2(n − 1) lanes. Individual truckload dispatches in a well-designed
consolidation network will have higher trailer utilization and the total required
trailer-miles required to move freight from origins to destinations should decrease.
However, each individual shipment may travel farther (thus increasing system ton-
miles) and may be sorted one or more times at intermediate transfer terminals.

A typical consolidation terminal network is depicted in Fig. 14.1, in this case
for an LTL carrier. Carriers typically operate two types of terminals. An end-of-
line, or satellite, terminal is a smaller facility that only enables transfer of freight
between the pickup-and-delivery operation and the linehaul operation. A hub, or
breakbulk, terminal is a larger facility that provides both the functionality of an end-
of-line terminal while also providing transfer opportunities between terminals in
the linehaul network. Each end-of-line terminal may be connected with dispatches
to and from only a small set of hub terminals, while hub terminals may provide
dispatches to and from a large number of end-of-line terminals and other hubs.
Package networks have similar designs.

Effective freight transfer also requires timed coordination of unloading, sorting,
and loading activities at transfer terminals. For this reason many carriers divide each
operating day into distinct sorting periods or, more simply, sorts. Trailers arriving
for a sort are unloaded and the freight shipments are sorted into outbound trailers for
dispatch by the conclusion of the sort. It is quite common for terminals to operate a
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Fig. 14.1 A network of an LTL trucking carrier, serving customer locations using end-of-line and
breakbulk cross-dock terminals

morning sort and an evening sort, while larger transfer terminals may also operate
additional overnight and midday sorting periods.

Given a network of terminals, a consolidation trucking carrier will operate
a pickup-and-delivery operation and linehaul operation. The pickup-and-delivery
operation is used to collect freight from customers and transport it to an origin
consolidation terminal and to distribute freight for the last-mile from the final
terminal to destinations. In package systems, the vehicles used for pickup and
delivery are usually smaller delivery vans while LTL carriers often use short or
medium length trailers. Pickup and delivery operations require the execution of
multi-stop routes with significant time constraints; customer facilities have time
windows when they can send or receive shipments, and the carrier has deadlines
when freight must leave from or arrive to a terminal in order to meet the service
expectation of the customer. It should be noted that high-volume shippers often
interface with consolidation carriers by using drop shipping or by supplying
dedicated customer trailer equipment. In these scenarios, the shipper or the carrier
may move truckloads of shipments directly into the linehaul network at a carrier
terminal thus skipping the traditional pickup process.

A carrier linehaul network operation provides transportation of truck trailers and
containers between its transfer terminals. A load in an LTL or package network
refers to a trailer or a container that is loaded and dispatched from an origin
terminal and headed for unloading at a destination terminal. For LTL carriers, loads
are most frequently moved by company truck drivers using either long trailers or
trains of two or three short trailers. Short trailers, such as 28-foot pups in the US,
provide the carrier with the ability to have single drivers move multiple loads with
smaller individual volumes simultaneously. Linehaul movements of loads between
terminals, or dispatches, tend to be short to allow drivers to return to their home
terminals within a single operating day. When loads are created between distant
terminals, they frequently are not moved directly by a single driver. Instead, the
load may be transferred using two or more movements, where each movement is
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executed either by a company driver or by an outside contractor. The intermediate
stops in these sequences of movements are typically called relays, and they may
occur at terminals or at dedicated relay facilities; operating in this way can both
speed the movement of long distance loads while also eliminating the need for some
intermediate sorting. For certain long distance loads, freight railroads may be used
to move trailers or rail-compatible containers in an outsourcing arrangement; such
rail intermodal movements are less costly but require longer travel times and may
introduce more travel time uncertainty.

2.1 Trucking Service Network Design Problems

In consolidation trucking systems, we refer to the service network as the set of
transportation and supporting activities operated by a trucking carrier in order
to provide transportation services to shippers. If we think of a network using
its general definition as a set of interacting components, then a service network
operated by a trucking firm refers to truck transportation movements and associated
loading, sorting, and unloading activities. Service network design problems in truck
transportation focus on building designs and operational plans for these networks;
see Crainic (2000) for a comprehensive review of earlier work in all areas of freight
transportation. Typically, physical network design questions such as determining
the type, number, and size of terminal facilities to operate are not considered service
network design problems. There is a significant body of literature in facility location
(see e.g., Love et al. 1988; Mirchandani and Francis 1990; Drezner and Hamacher
2001; Snyder 2006; Daskin 2011) and a subset that focuses specifically on the
location of truck transportation terminals known as hub location problems (see e.g.,
O’Kelly 1986; Campbell 1994; Alumur and Kara 2008; Farahani et al. 2013), and
thus we will ignore these problems in this chapter.

Since trucking service networks can be complex and require many design and
planning decisions, a large number of problems could be classified as service
network design problems including:

• flow planning problems;
• load planning, routing, and dispatch problems;
• driver and equipment fleet management problems; and
• vehicle routing and scheduling problems.

Flow planning, or freight routing, problems seek to determine how shipments
should flow, or be routed, through a terminal network en route from origin to
destination. A freight route for an individual shipment specifies the sequence of
terminals where the shipment will be transferred via cross-docking or other sorting
methods; in most cases, a shipment is unloaded from one truck and reloaded onto
another at each of these terminal stops. While it is possible to dynamically determine
a freight route for each contracted shipment, it is much more common for carriers
to establish a fixed flow plan that specifies a route for each shipment given its
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origin and destination terminals and its service requirements. This chapter will focus
primarily on flow planning problems since they are in some sense the core service
network design problem in trucking. Other problems will be considered when they
also include some flow planning component, as we describe now.

Load planning, routing, and dispatch problems seek to determine how to build
consolidated freight loads from shipments and time their dispatch. For trucking
carriers, a load will be a trailerload or a containerload. Load planning problems can
be tactical or operational. At the tactical level, a consolidation carrier would like
to determine how many loads (of potentially different sizes) need to be dispatched
between terminals, and at what times, in order to feasibly serve the demands induced
at the flow planning step. When a load is planned between more distant terminals, it
is also necessary to determine a movement path for the trailer through the network
if it is not to be dispatched directly from its origin to destination terminal. This
load routing step determines the sequence of relay points visited by the load and the
transportation mode used for each connecting movement leg.When carriers dispatch
trains of short trailers, like two pup combinations, it is also necessary to determine
which loads to pair up into combinations when routing loads. At the operational
level, loads need to be constructed from actual available shipments; often, loads
may be cancelled or added on the day of operations, or shipments shifted onto
alternate freight routes, to serve demands and utilize transportation capacity most
cost-effectively. Modern service network design approaches often integrate flow and
load planning rather than treat the problems sequentially; in such models, freight
routing decisions and timed load dispatching decisions are made simultaneously.
Additionally, operational models for load planning and dispatching may also allow
limited flow replanning choices.

It is useful to note here that LTL and package express carriers are not the
only firms that need to solve flow and load planning problems. Large shippers
and 3PL companies often face flow and load planning problems when designing
consolidation operations for distribution networks. Less-than-truckload shipments
for such companies can be consolidated and routed through cross-docking facilities
or pool points to avoid outsourcing to LTL carriers. Given a network design,
such companies use truckload carriers to provide the trucking movements. It is
also somewhat common in these cases for shippers to use multi-stop truckload
movements referred to as “milk runs”. In this scenario, a shipper loads a truckload
trailer at a single origin to be delivered to a sequence of partial load drop-off
locations (or alternately might load at multiple pickup locations before moving the
trailer to a single final destination for unloading).

Driver and equipment fleet management problems focus on building plans
and schedules that enable trucking loads to be executed. Planned loads must be
loaded into appropriate equipment, typically trailers or containers that have specific
capabilities. Empty equipment repositioning problems are used to ensure that empty
trailers and containers of the required equipment types are available over time
where needed, and models for flow and load planning are more frequently now
including constraints on equipment balance and availability. All trucking loads are
moved at some point during their journeys by one or more truck drivers. Truck
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drivers must be managed to not violate government work regulations and sometimes
are also subject to employee union restrictions. Consolidation carriers typically
operate driver schedules that also must be planned in advance. Incorporating driver
management decisions into flow and load planning models is often a difficult
challenge because of the complicated nature of driver constraints.

Finally, vehicle routing and scheduling problems may also be considered service
network design problems. For example, the classical capacitated vehicle routing
can be described as a one-to-many load planning problem with vehicle resources
that must operate on customer-disjoint cycles from a single depot; given this setup,
the unique flow decision for each depot-to-customer shipment is to move from the
depot along the route serving the customer, visiting intermediate stops as necessary
before arriving to the destination. Consolidation carriers operate last-mile pickup
and delivery operations that bring shipments from customer origin locations into
first-level terminals at the beginning of trips and then distribute them at the end of
trips, and thus they face specific vehicle routing and scheduling problems. Since
the literature on last-mile truck vehicle routing and scheduling problems is vast,
we will not cover it in this chapter. The reader is instead referred to excellent recent
survey papers covering the area (see e.g., Golden et al. 2008; Cattaruzza et al. 2017;
Braekers et al. 2016; Savelsbergh and van Woensel 2016; Psaraftis et al. 2016).

3 Network Design Models for Flow Planning

We begin with flow planning problems, the core service network design problems
faced by LTL and package trucking carriers. The goal of flow planning problems
is to determine a plan for consolidation of shipments into flows between transfer
terminals to take advantage of certain cost scale economies in transportation. As
an introduction, we begin by describing the components of network design mixed-
integer programs for flow planning. To do so, we start with a base model of
geographic consolidation.

Given a terminal set N , the freight carrier faces the problem of deciding how
to transfer freight that originates at some terminal o ∈ N and is destined for
another terminal d ∈ N . We use the term commodity to describe such freight, and
we let K be the set of all commodities to be moved by the carrier. Suppose that
commodity k originates at terminal ok and is destined for terminal dk , and let qk be
a measure of the volume (or flow) of freight to be transferred. Note that a commodity
represents the aggregation of shipments for many customers, and qk measures this
aggregated volume. Furthermore, suppose for now that at most one commodity is
defined with the same origin-destination pair (o, d); this is possible, for example,
when all shipments moving from ok to dk are promised the same transit time. Note
here that volume or flow is a rate: a quantity moving (or to be moved) per time.

Typical units of measure for freight flow in trucking are pounds per day or tons
per week, but it is important for flow planning models to know how this freight
flow converts to the number of truck trailerloads necessary to move the volume.
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During operations, detailed information about the size and weight of each shipment
is used when determining how to pack and load trailers feasibly and effectively but
this information is not known with certainty at the planning stage. For simplicity,
it is common instead to convert estimated freight flows into an equivalent number
of trailers by using simple factors (for example, with units of trailers per pound). It
may be reasonably accurate to use a network-wide conversion factor for this task,
however, the mix of freight shipment types (and their associated weight per cubic
volume densities) may vary on different origin-destination lanes and thus it may be
necessary to use different conversion factors on different lanes.

A flow plan is a set of decisions that specifies jointly how all commodities should
be transferred from origins to destinations cost-effectively while meeting customer
service requirements, the most important of which is the transit time. The simplest
flow planning decision for a commodity is to move it in direct trailers or containers,
loaded at the origin terminal ok and unloaded at the destination dk . We refer to
this decision as a direct route for commodity k. Note that the use of the word
“direct” in this context refers to the fact that the freight for this commodity will
not be unloaded, sorted, and reloaded at any intermediate hub terminals. However,
a direct trailer or container from terminal i to j may certainly be transported by a
sequence of movements, by multiple drivers through relay points, or even by using
multiple modes of transportation. A trivial and likely expensive flow plan would
be to move all commodities along direct routes; note that given enough driver and
trailer resources, this direct route flow plan should also be service feasible since
there is no faster way to transfer freight between origins and destinations.

Consider then the non-trivial case where some commodities will not be assigned
to direct freight routes. Let A be a set of directed arcs where (i, j) ∈ A models a
lane where trailers (or containers) can be loaded at terminal i ∈ N and moved to
terminal j ∈ N for unloading. In a physical network with hub (NH ) and end-of-line
(NE) terminals, such load arcs (i, j) should exist between all pairs of hub terminals
in NH . On the other hand, when i or j is an end-of-line in NE , it may be possible
to reduce the number of arcs in a network by restricting the generation of direct
loads to or from a limited set of terminals. Care should be exercised when doing so,
however, since it may be more sensible to allow a model to decide where to build
loads. Recall again that a direct load (i, j) does not imply that trailers are moved
from i to j with a single driver or by a single movement.

Given A, let pk be a possible freight route (or path) from ok to dk . Using
the typical definitions from mathematical networks, each pk is a simple path: a
connected sequence of arcs in A beginning at node ok and ending at node dk with
no cycles. For convenience, pk may also be used to refer to a sequence of nodes
in N where the initial node is ok , the final node is dk , and an arc a ∈ A exists
between each pair of adjacent nodes in the sequence. Let Pk be the set of all freight
paths in A that connect ok to dk . Using these ideas, the primary decisions in every
flow planning problem are to assign commodity flow to one or more feasible paths
pk ∈ Pk for each commodity k ∈ K to minimize logistics costs while meeting
service requirements. Referring again to Fig. 14.1, a path from one of the end-of-
line terminals on the left to one on the right, e.g., c2 → c1 → e3 → b1 → b2 →



14 Motor Carrier Service Network Design 435

b4 → e20 → c5 → c6, represents a freight path for that commodity, where a
cross-dock transfer occurs at the head node of each arc in the path.

The remainder of this section will develop flow planning optimization for-
mulations using flat network models, which we distinguish from time-space or
time-expanded networks which model both geographic locations and explicit
decision timing. Flat network models have the advantage that they lead to smaller
integer programming instances, but they provide a relatively coarse approximation
of trucking operations that is most useful for tactical planning. The input demands
qk represent average flow rates per time (e.g., tons or pallets or equivalent trailers per
week) and the output freight and equipment decision variables also will represent
flow rates per time. For this reason, it is natural to refer to such models as rate-based.

3.1 Arc-Based Flow Planning Model for Consolidation
Trucking

To build a flow planning model, we make a few assumptions. Suppose that all
shipments using truck movement lane (i, j) ∈ A are loaded into a trailer or container
at i and unloaded and sorted at j , and furthermore that the costs of transportation
are separable by lane and the costs of sorting are separable by terminal. Finally,
suppose that commodity flow rates qk are roughly constant over time, and that any
timing issues regarding consolidation can be safely ignored. Let xk

ij be a decision
variable representing the flow of commodity k moving on lane (i, j) ∈ A, measured
in the same units as qk . A generic mathematical programming formulation for flow
planning is then:

minimize
∑

(i,j)∈A

f T
ij (xij ) +

∑

i∈N

f H
i (xi∗) (14.1)

subject to

∑

(i,j)∈A

xk
ij −

∑

(j,i)∈A

xk
ji =

⎧
⎪⎪⎨

⎪⎪⎩

qk if i = ok

−qk if i = dk

0 otherwise

∀ k ∈ K, ∀ i ∈ N (14.2)

xij =
∑

k∈K

xk
ij ∀ (i, j) ∈ A (14.3)

xi∗ =
∑

k∈K | ok �=i

∑

(i,j)∈A

xij ∀ i ∈ N (14.4)

xk
ij ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A (14.5)
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Constraints (14.2) and (14.5) define a simple (uncapacitated) case of the linear
multi-commodity flow polytope, and this formulation allows freight flow to be split
across many paths for each commodity. The objective function here is specified
generically, where transportation costs are separable by lane (i, j) and handling
costs are separable by terminal i. We now discuss how typical objective functions
lead to network design mixed-integer programs.

First, it is most common in flow planning models for trucking terminal handling
costs to be modeled as linear in throughput,

f H
i (xi∗) = hixi∗, (14.6)

where hi is the handling cost rate per flow unit and xi∗ is the total freight volume
handled at terminal i. Handling in flow planning refers to the transfer of freight
either via cross-docking of larger shipments or piece sorting in parcel operations. It
is reasonable to assume that sorting labor cost or equipment operating cost grows
roughly linearly with freight volume in flow planning models. Including handling
costs in flow planning models explores a tradeoff with transportation costs; thus,
it is quite common to estimate handling cost rates (which can be hard to measure
precisely) to strike a reasonable balance with truck transportation costs.

Second, the truck transportation cost function on each arc should exhibit some

cost economies scale in flow, i.e., the average cost
f T

ij (x)

x
should be decreasing for

at least some values of x to encourage consolidation. Note that with linear handling
costs and linear transportation costs cij xij , the flow planning problem can be solved
simply by finding a minimum cost path for a unit flow from ok to dk for each
commodity and then moving all flow qk along this path.

A reasonable approach for estimating truck transportation costs might be to
assume a fixed cost dij for the dispatch of each unit trailerload (or containerload) on
lane (i, j). Suppose all trailers have the same capacity, i.e., once a trailer containsQ

units of flow an additional trailer is needed. Then, f T
ij is the following step function:

f T
ij (x) = dij

⌈
x

Q

⌉
, (14.7)

where the ceiling function rounds the value of x up to the next unit load. In practice,
it is common to simply measure qk in fractional trailers and to set Q = 1. Since the
width of each step is alwaysQ units and the height is always dij , it is straightforward
to use an integer variable τij to model this step function by simply forcing τij ≥ xij

Q
.

It is important to make note of a few ideas when modeling transportation costs
with per trailer lane costs dij . To estimate dij accurately requires that we know the
movement (relay) path for the load from i to j in advance; it is common to use the
most frequently used such path. Furthermore, since LTL and package carriers often
dispatch trains of two short trailers together, this approach also is most accurate for
carriers where dispatches almost never move short trailers alone; in such scenarios,
dij represents one-half of the cost of moving a two-trailer train from i to j .
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It may also be useful to model some transportation cost beyond the fixed cost
per trailer that accrues linearly with flow, for example to account for fuel and
maintenance costs that may increase with transported load size. In this case, define
a linear arc flow cost as

f L
ij (x) = cij x = (hi + cT

ij )x,

and now define the flow planning problem as the following mixed integer linear
programming problem:

minimize
∑

k∈K

∑

(i,j)∈A

cij x
k
ij +

∑

(i,j)∈A

dij τij −
∑

i∈N

∑

k∈K | ok=i

hiqk (14.8)

subject to

∑

(i,j)∈A

xk
ij −

∑

(j,i)∈A

xk
ji =

⎧
⎪⎪⎨

⎪⎪⎩

qk if i = ok

−qk if i = dk

0 otherwise

∀ k ∈ K, ∀ i ∈ N (14.9)

xij =
∑

k∈K

xk
ij ∀ (i, j) ∈ A (14.10)

xij ≤ Qτij ∀ (i, j) ∈ A (14.11)

xk
ij ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A (14.12)

τij ≥ 0 and integer ∀ (i, j) ∈ A (14.13)

The non-negative integer variable τij measures the minimum required trailers on
lane (i, j) when (14.11) is matched with the positive objective function coefficient
dij , thus properly modeling the lane step function dispatch costs given by (14.7).
Note also that the objective function subtracts off a constant to avoid paying
handling costs at terminals where freight originates; of course, including this
constant or any other in the objective function does not affect the flow plan, only
its computed cost. In the following subsections, we will no longer include such
objective function constants in the flow planning formulations.

This generic arc-based flow planning model is a multi-commodity capacitated
fixed-charge network design (MCND) problem. Solving this mixed-integer pro-
gramming problem exactly can be difficult in practice for consolidation trucking
networks of larger size. To understand the likely size of the optimization problems,
consider an LTL carrier operating in North America with 100 terminals. If freight
demand exists between half of the origin-destination terminal pairs (which is likely
an underestimate), the result is a model with roughly 5000 commodities. Suppose
further that 30 terminals are hubs and 70 are smaller end-of-lines; then, we should
expect at least roughly 900 directed arcs between hub pairs that might be used by
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any commodity, and an additional few hundred arcs connecting out of or into end-
of-lines that can be used only by commodities originating or destined for those
terminals. For a network of this size, the number of commodity flow variables xk

ij

is large. If each directed arc connecting two hubs serves all 5000 commodities, and
if each directed arc connected to an end-of-line serves approximately 50 inbound or
outbound commodities, the model may have more than 4 million commodity flow
variables and over 150,000 flow balance constraints of type (14.9). Thus, the linear
relaxation of (14.8)–(14.13) is a very large linear program. Integer load counting
variables τij are defined for each arc, so there are at least 1000 of these variables
and perhaps more. It can be important in practice to attempt to limit the number of
xk
ij variables by restricting which commodities might ever use specific hubs.
To date, exact approaches for solving these problems rely on using cutting

planes to strengthen the mixed-integer programming formulation; results have been
reported for instances with up to 100 nodes, 400 arcs, and 200 commodities, still too
small for application to many real-world consolidation trucking networks. A simple
yet effective cutting-plane algorithm for the flow planning MCND problem works
as follows. Define strong inequalities for all commodities k and lanes (i, j) by:

xk
ij ≤ qkτij . (14.14)

The strong inequalities are clearly valid, and it has been shown that they are facet-
defining for the convex hull of the so-called single-arc design relaxation of the
MCND. Intuitively, the benefit of the strong inequalities should be clear when
each individual commodity demand is small compared to the capacity of a single
trailer Q: we can interpret the inequality as forcing the solution to allocate at least
a partial single trailer on any lane where commodity k moves, and at least one
trailer if all commodity k flow moves on the lane. Although strong inequalities are
helpful, it is likely impractical to introduce them all to the formulation given the
number of commodity flow variables. Separation of these inequalities, however, is
simple because they can be checked directly for each lane and commodity. Thus,
a reasonable exact solution approach for the flow planning MCND problem is to
solve the linear programming relaxation at the root, and then to iterate introducing
violated strong inequalities and resolving until no violations remain. The resulting
linear programming formulation, extended with the identified subset of strong
inequalities, is then solved by reintroducing the integrality constraints (14.13) and
calling a MIP solver.

3.2 Single-Path and In-Tree Flow Planning Models

In addition to being difficult to solve in its generic form, the flow planning model
(14.8)–(14.13) also has a number of drawbacks that limit its usefulness in practice.
One deficiency is that flow for each commodity k can be split across potentially
many paths connecting ok to dk , and the fraction of commodity moved on any such
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path may be arbitrarily small. When developing a flow plan for consolidation, LTL
and package trucking carriers seek both realism and simplicity. During operations,
the actual freight shipments (and total flow volume) for any commodity may differ
from the expected flow used for planning so it is at best not clear when to choose one
path for a particular shipment versus another. While we believe that it is appropriate
that such models ignore the details of individual shipments and model demand as
continuous commodity flows, it is at the same time likely necessary to exercise some
control over flow splitting during this planning phase. Of course, in practice carriers
may divert shipments during operations onto alternative transfer paths through
different cross-dock terminals.

A simple but restrictive way to eliminate commodity flow splitting is to enforce
a single path constraint when building a flow planning model. Here, all commodity
k flow is directed to a single transfer path from ok to dk in the plan. Consider the
following formulation that embeds this restriction. Suppose we also introduce a new
mechanism to model commodity flow where variables yk

ij now measure the fraction
of commodity k demand volume that is transferred directly from terminal i to j .
Using this redefinition, xk

ij = qky
k
ij . Now, if we restrict the y variables to be binary,

we can easily enforce a single-path restriction:

minimize
∑

(i,j)∈A

(dij τij + cij xij ) (14.15)

subject to

∑

(i,j)∈A

yk
ij −

∑

(j,i)∈A

yk
ji =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = ok

−1 if i = dk

0 otherwise

∀ k ∈ K, ∀ i ∈ N (14.16)

xij ≤ Qτij ∀ (i, j) ∈ A (14.17)

xij =
∑

k∈K

qky
k
ij ∀ (i, j) ∈ A (14.18)

yk
ij ∈ {0, 1} ∀ k ∈ K, ∀ (i, j) ∈ A (14.19)

τij ≥ 0 and integer ∀ (i, j) ∈ A (14.20)

Constraints (14.18) convert commodity flows into total flow on direct lanes, and
thus the objective function and trailer counting constraints can remain as in the
initial model. Constraints 14.16 ensure that all commodity k demand is transferred
from ok to dk . Furthermore, when the y variables are restricted to take binary values,
these constraints ensure that the yk variables identify a single path from ok to dk .
It is again possible to introduce strong inequalities to this formulation of the form
yk
ij ≤ τij to strengthen the linear programming relaxation.
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This single-path flow planning formulation can be referred to as an unsplittable
flow capacitated network design problem (see e.g., Atamtürk and Rajan, 2002).
Note that the original splittable formulation can also be modeled with y variables
by relaxing (14.19) to yk

ij ∈ [0, 1]; the original formulation can be recovered by

substituting xk
ij = qky

k
ij in this case.

Practical models for truck flow planning are often even more restricted. Consider
the sort operations at a trucking terminal i. Arriving trucks are unloaded, and
shipments that must be transferred (since they have not arrived at their final
destination) are sorted for loading into outbound trailers. In typical operations,
each outbound trailer is destined for a single next terminal j where it will be
unloaded entirely. Technology is certainly available today for each shipment to have
a customized sorting plan; at terminals with appropriate technology, a shipment
can be scanned and then sorted for loading onto an appropriate outbound trailer
(by a terminal worker or by automated sorting equipment). However, carriers often
operate simpler plans that specify rules that guide how groups of shipments are
to be sorted. One option still used in many LTL and package express systems
is to determine the next terminal for each unloaded shipment using only its final
destination.

Suppose that a consolidation plan is such that all freight shipments unloaded at
terminal i with the same final destination d (i �= d) are transferred to a single next
terminal j . We will call such a design an in-tree flow plan because the directed
graph induced by the union of paths for commodities Kd ⊆ K that share a common
destination d is a directed in-tree on (a subset of) the terminal nodes N .

In-tree plans are a subset of the feasible single-path plans, and we can modify the
formulation to handle this restriction. To do so with the simplest formulation, we
introduce and make use of a common redefinition of commodities that is frequently
used in network design. It is well known that some multi-commodity network design
problems can be formulated where each commodity represents all shipment flow to
a common destination (or alternately, all shipment flow from a common origin);
these redefined commodities are referred to as aggregated commodities. In the
destination variant of aggregated commodities, let D be the set of destinations
d that have positive inbound freight flow. If we begin with our original origin-
destination commodity definition, then we can define aggregated commodities for
each destination d with the following net supply of flow:

bd
i =

⎧
⎪⎪⎨

⎪⎪⎩

qk if i = ok for some k ∈ Kd

−∑
k∈Kd

qk if i = d

0 otherwise

∀ d ∈ D, ∀ i ∈ N. (14.21)

It is descriptive to refer to this type of aggregation as a many-to-one commodity
into terminal d. Aggregated commodities have the obvious benefit of reducing
problem size. If the number of terminals |N | = n, then the number of possible flow
decisions for each arc is O(n) instead of O(n2) and the number of flow balance
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constraints is also reduced by O(n). However, aggregated commodities may not be
useful when there is the need to explicitly model specific origin-destination flow
path requirements, for example path duration or cardinality constraints. It is also
not possible to use aggregated commodities to model a single-path flow planning
problem unless the paths inbound to every destination d are constrained also to
form a directed in-tree.

Consider now an in-tree flow planning model with many-to-one commodities.
Let binary decision variable yd

ij be used to indicate whether freight flow for
commodity d (with final destination d) that originates or transfers at terminal i is
transferred next to terminal j . Let continuous variable xd

ij measure freight flow for
commodity d moving on truck trailers from i to j , as usual. Consider the following
formulation:

minimize
∑

(i,j)∈A

(dij τij + cij xij ) (14.22)

subject to

∑

(i,j)∈A

xd
ij −

∑

(j,i)∈A

xd
ji = bd

i ∀ d ∈ D, ∀ i ∈ N (14.23)

∑

(i,j)∈A

yd
ij ≤ 1 ∀ d ∈ D, ∀ i ∈ N (14.24)

xd
ij ≤

⎛

⎝
∑

k∈Kd

qk

⎞

⎠ yd
ij ∀ d ∈ D, ∀ (i, j) ∈ A (14.25)

xij ≤ Qτij ∀ (i, j) ∈ A (14.26)

xij =
∑

d∈D

xd
ij ∀ (i, j) ∈ A (14.27)

yd
ij ∈ {0, 1} ∀ d ∈ D, ∀ (i, j) ∈ A (14.28)

τij ≥ 0 and integer ∀ (i, j) ∈ A (14.29)

The in-tree model includes constraint (14.24) to ensure that the freight flow paths
for destination d form a directed in-tree to d by allowing only one outbound direct
transfer arc (i, j) to be selected from terminal i for that freight. Constraint (14.25)
ensures that freight destined for d can only be dispatched on lanes included in the
selected in-tree, where the capacity coefficient for yd

ij is the smallest big-M value
that yields a valid formulation. Again, valid inequalities can be introduced to this
formulation. For example, replacing yd

ij with τij in (14.25) yields a version of the

strong inequalities. Inequalities yd
ij ≤ τij are also valid for all d ∈ D and (i, j) ∈ A.
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3.3 Path-Based Models for Flow Planning

Each of the flow planning formulations presented thus far has been an arc-based
network design model. For parsimony, such models use arc flow decision variables
of the form xk

a and xa to represent respectively the fractional freight flow for
commodity k and all commodities moved via truck dispatch arc a. When many
possible feasible paths exist for routing commodity k freight from ok to dk , this
modeling decision has merit since it may reduce the number of required decision
variables (and this remains true even for the single-path and in-tree models that
select only a single path for each such pair).

In many truck transportation applications, however, it is better to use a path-
based network design model because of the flexibility these models provide in
representing specific restrictions that may arise in practice. Such models replace the
variables xk

a with path-flow variables xk
p, where p represents some path in Pk for

commodity k. We can then modify the generic arc-based model into the following
generic path-based model:

minimize
∑

(i,j)∈A

(dij τij + cij xij ) (14.30)

subject to

∑

p∈Pk

xk
p = qk ∀ k ∈ K (14.31)

xij ≤ Qτij ∀ (i, j) ∈ A (14.32)

xij =
∑

k∈K

∑

p∈Pk | (i,j)∈p

xk
p ∀ (i, j) ∈ A (14.33)

xk
p ≥ 0 ∀ k ∈ K, ∀p ∈ Pk (14.34)

τij ≥ 0 and integer ∀ (i, j) ∈ A (14.35)

Since all paths in Pk provide connectivity from ok to dk , flow balance constraints are
no longer required and instead are replaced by (14.31) which partitions commodity
demand flow across the available paths in Pk . Constraints (14.33) aggregate all
commodity flow on direct movement arc (i, j) by finding all flow on paths for all
commodities where the arc (i, j) is included in the path. Note also that although
(14.30) does not include a linear cost term for the path flow variables, adding one
is possible; in practice, such terms can be used to model freight handling costs at
intermediate cross-dock transfer terminals rather than using a cost linear in the total
arc flow xij .

The primary benefit of such a formulation is that the model explicitly defines the
sets of allowed transfer paths Pk for each commodity. This feature makes it easy to
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model a number of real-world restrictions. Most importantly, suppose that a service
requirement requires that the duration of the transfer path for commodity k from ok

to dk (travel time plus terminal cross-dock time) is limited by an upper bound. Then,
only paths that meet this duration requirement can be included in Pk . Similarly, it
may also be desirable to limit the number of terminal transfers for commodity k. For
example, when ok and dk are nearby perhaps only one transfer should be considered
in any path, but for more distant terminals two or three transfers might be acceptable;
again, only acceptable paths need be included in Pk .

Building path sets Pk given ok and dk is usually conducted by using a graph
search algorithm, like breadth-first or depth-first search, from ok using the direct
arcs (i, j) ∈ A. Constraints on allowable paths can be used to truncate the search
tree. For many problems, enumerating the complete feasible path set Pk for each
commodity k would create too many decision variables and very large instances.
Column generation approaches for solving linear programming relaxations (either
at the root node of a branch-and-bound tree or at all nodes in a branch-and-price
scheme) can be used in these cases. Heuristics that only enumerate reasonably-
sized subsets of the path pools for each commodity may also find good solutions
in practice.

To use a path-based model while enforcing an in-tree flow plan structure, we
can again add binary arc selection variables yd

ij to the formulation and selection
constraints (14.24). Suppose furthermore that the commodity set K is partitioned
into subsets K(d), where commodity k is included in K(d) if its freight destination
dk = d. To ensure that the set of all paths used for commodities in K(d) forms a
directed in-tree into d, the following compatibility constraints can be used:

∑

p∈P(k) | a∈p

xk
p ≤ qky

dk
a ∀ k ∈ K, a ∈ A (14.36)

Note that these aggregated forcing constraints are stronger than those disaggregated
by path, yielding a stronger linear relaxation formulation. The disaggregated
constraints have the simpler form xk

p ≤ qky
dk
a and are defined for all k, p ∈ P(k),

and a ∈ p; it is easy to see that there are feasible solutions to the disaggregated
constraints system when the variables are continuous that are not feasible for the
aggregated constraint. Of course, in-tree constraints will force all commodity k flow
onto a single path p ∈ P(k) into dk for integer values of y. It is thus possible to
redefine xk

p in this case to be a binary selection variable, and to modify constraints
(14.31) into assignment constraints with right-hand side values of one. After this
modification, the aggregated forcing constraints take the form

∑
p∈P(k) | a∈p xk

p ≤
y

dk
a for all k and a. Finally, there are some terminals in consolidation trucking
systems that cannot be used to transfer inbound freight from other terminals; most
end-of-line terminals in LTL systems operate this way. When binary path selection
variables are used, it is not necessary to include tree selection variables yd

a for arcs
a departing such terminals since originating flow destined for d will automatically
be forced onto a single path and no transfer freight exists.
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3.4 Balancing Resources in Flow Planning

The model of transportation costs discussed in Sect. 3.1 assumes that trailer
movements τij and their associated costs are determined only by one-way loaded
flows and thus ignores the important fact that trailer and container resources are
reused over time. Empty trailers must be available at load origins before loads
can be created and moved, and the problem of empty repositioning of equipment
is critically important in most freight transportation settings. When empty reposi-
tioning is ignored during flow planning, opportunities to use empty trailer capacity
to move freight may be overlooked. Flow planning models that explicitly include
empty resource flows and their associated costs seek to address this shortcoming.

To show how planned flow costs may be reduced by integrating empty reposi-
tioning decisions in flow planning when compared to the sequential deployment of
a flow planning model followed by an empty trailer balancing problem, consider
a simple example with 3 terminals as illustrated in Figs. 14.2 and 14.3. Suppose 1

2
trailerloads of demand exists from a to b and from a to c and one trailerload from b

to c. Suppose that the distance from a to b or c is 2
3 and the distance from b to c is

one. In the absence of empty balance, the optimal solution is to move full trailerloads
on lanes (a, b), (a, c), and (b, c); doing so creates imbalance and two trailers should
be returned on leg (c, a). The total trailer distance in this solution is 11

3 , but the
loaded trailer distance is only 7

3 . If empties were balanced simultaneously, it is better
to load the a to b freight via terminal c. This creates loaded trailers on (a, c), (b, c),
and (c, b) and total loaded trailer distance of 8

3 . However, empty balance can be
achieved by only sending one empty on (c, a) and thus the total trailer distance is 10

3 .
Up to this point, the set A of arcs a = (i, j) has been used to represent

opportunities to move loaded trailers from terminal i to terminal j ; note that
loading of the trailer occurs at terminal i and unloading at terminal j . It is certainly
possible to limit empty trailer movements to the arcs in A. There are some cases,
however, when empty trailers might move between terminals where there is never

a

b

c

Fig. 14.2 Flow plan without empty balancing (Loaded distance = 7
3 , totaltrailer distance =

11
3 )
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a

b

c

Fig. 14.3 Flow plan with empty balancing (Loaded distance = 8
3 , totaltrailer distance =

10
3 )

a trailer loaded at i to be unloaded at j . Examples that have been encountered in
practice include pairs of hubs in large metropolitan areas, nearby pairs of end-of-line
terminals, or connections between large customer facilities (another type of end-of-
line). To model terminal-to-terminal physical movements of trailers more explicitly,
let AD be a set of dispatch lanes for a trucking company that includes A but may
also include additional connections where empties may be moved: A ⊆ AD . It is
also common in practice for AD to have an important property: a directed path of
dispatch lanes in AD should exist from j to i, for each (i, j) ∈ A. The existence
of the reverse path is a sufficient (but not necessary) condition to ensure that empty
resources can return to load origins for reuse. If the reverse path does not exist for
each (i, j) ∈ A, which is unlikely in practice, then it is important to guarantee that
empty trailers can be balanced using a different mechanism.

Suppose now that empty trailers and containers can be moved on any dispatch
lane (i, j) ∈ AD . Let ηij count the number of empty unit loads moving on dispatch
lane (i, j), measured in the same units as τij . We can enforce equipment balance
then at each terminal i by adding the following constraint to any of the flow planning
formulations presented thus far:

∑

(i,j)∈A

τij +
∑

(i,j)∈AD

ηij −
∑

(j,i)∈A

τji −
∑

(j,i)∈AD

ηji = 0 ∀ i ∈ N (14.37)

Given this balance constraint, flow plans can be determined by including an
appropriate cost for moving empty trailers in the objective function. If dE

ij is the
cost of moving an empty unit load on dispatch lane (i, j), then we can add the
term

∑
(i,j)∈AD dE

ij ηij to any of the objective functions to capture empty costs.
Doing so is likely to lead to changes in the optimal flow plans and empty trailer
balance plans that would result from solving the problems sequentially: some freight
will be assigned optimally into natural empty backhaul corridors, and balancing
backhaul trailer movements may deviate from the most direct (cheapest) paths to
attract freight.
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3.5 Slope-Scaling Heuristics for Flow Planning

Flow planning optimization models are important in practice for the design of
consolidation transportation networks, but exact optimization can be difficult for
instances of realistic size. One heuristic approach to solving these problems is
to simply limit the number of decision variables that are defined to a tractable
number; this idea is easiest to implement with path-based models as we described
earlier, but it is also possible with arc-based approaches. Slope scaling is a
different heuristic idea and can be useful for problems that have difficult non-
linear objective functions that, when linearized, lead to optimization problems that
can be solved efficiently. We will now describe how slope scaling can be used to
solve flow planning problems, and how the linearized subproblems decompose into
shortest-path problems for both the base model and the single-path model (whose
slope-scaling solutions are therefore equivalent). Furthermore, the intree model can
also be solved by a shortest-path decomposition (and is therefore equivalent to
the base and single-path models) when the objective function cost coefficients are
independent of commodity k.

Slope scaling heuristics are useful for problems with difficult non-linear objective
functions but with linear constraints and decision variables. The generic model
(14.1)–(14.5) has this form, since its constraints are separable by commodity k

and, when separated, describe the minimum-cost path polytope since all commodity
k flow has a single origin (as well as a single destination) and arc flows are
uncapacitated. We now show how to use slope scaling to find solutions first for
model (14.8)-(14.13). Note that we can eliminate the integer dispatch variables τij

by rewriting the objective function recognizing that cost-minimizing values for τij

follow directly from the flow variables since it is non-decreasing in τ . Thus, we can
define:

τij =
⌈∑

k∈K xk
ij

Q

⌉
, (14.38)

and the optimization model can be rewritten as minimizing the objective function:

∑

k∈K

∑

(i,j)∈A

cij x
k
ij +

∑

(i,j)∈A

dij

⌈∑
k∈K xk

ij

Q

⌉
−

∑

i∈N

∑

k∈K | ok=i

hiqk (14.39)

subject to (14.9) and (14.12).
To solve with a slope-scaling approach, we linearize the objective function by

replacing the ceiling function:

∑

k∈K

∑

(i,j)∈A

cij x
k
ij +

∑

(i,j)∈A

ρij (t)
∑

k∈K

xk
ij −

∑

i∈N

∑

k∈K | ok=i

hiqk, (14.40)
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where ρij (t) is the slope coefficient in iteration t . Rearranging terms yields:

∑

k∈K

∑

(i,j)∈A

(
cij + ρij (t)

)
xk
ij −

∑

i∈N

∑

k∈K | ok=i

hiqk, (14.41)

A slope scaling heuristic finds each solution to the flow planning problem by
selecting a fixed vector ρij (t), then determining xk

ij that minimize (14.41) subject to
(14.9) and (14.12), and then finally specifying trailer flow variables using (14.38).
It should be clear that the minimization problem for ρij (t) is a linear program
that is separable by commodity k. Moreover, each separable subproblem is to find
a minimum-cost path from ok to dk for commodity k given arc cost coefficients
cij + ρij (t). Since this solution is a single flow path for each commodity k, it also
follows that the solution to any slope scaling subproblem will also be a single-path
flow plan; thus, solving (14.8)–(14.13) is equivalent to solving (14.15)–(14.20) by
slope scaling. Furthermore, note also that the objective coefficients on commodity
arc flow in (14.41) are independent of commodity k. If we consider all commodities
k that share a common destination dk = d, we can find a joint set of minimum-
cost paths given arc costs cij + ρij (t) using an algorithm that produces an in-tree
to destination d, like Dijkstra’s Algorithm. Thus, a solution found during any slope-
scaling iteration for an in-tree flow planning problem is also optimal for the base
or single-path problems with the same linearization multipliers ρij (t). If instead the
commodity arc flow cost coefficients had the more general form ck

ij +ρij (t), separate
shortest path problems would be necessary for each commodity for the base and
single-path slope scaling problems. Furthermore, the slope scaling problem for the
in-tree flow planning model would require solving mixed-integer program for each
destination d to enforce the tree structure on the joint set of paths.

Consider then the following slope scaling approach for solving the base, single-
path, or in-tree flow planning problem. We initialize the slope coefficients using a
lower-bounding approximation: ρij (1) = dij

Q
for each arc. Then, for each iteration t ,

we minimize (14.41) subject to (14.9) and (14.12) by first finding a shortest-path in-
tree to each destination d using arc costs cij +ρij (t), then assigning commodity flow
qk along the identified shortest path from ok to dk for each k ∈ K yielding xk

ij (t), and
finally determining arc trailer flows τij (t) using (14.38). The true objective function
cost of this solution is C(t), determined using (14.8). If C(t) is the lowest objective
function cost found so far, it is recorded and the best solution is updated. If the
solution xk

ij (t) remains unchanged from the prior iteration t − 1, then we terminate
and return the best found solution. Otherwise, we adjust the slope coefficients as
follows and move on to iteration t + 1:

ρij (t + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

ρij (t) if
∑

k∈K xk
ij (t) = 0

dij

⌈ ∑
k∈K xk

ij
(t)

Q

⌉

∑
k∈K xk

ij (t)
if

∑
k∈K xk

ij (t) > 0

(14.42)

Note finally that it may also be reasonable to terminate a slope-scaling search after
a maximum number of iterations to avoid excessive computation time.



448 I. Bakir et al.

3.6 A Local Search Heuristic for Flow Planning

Local search and metaheuristic extensions of local search are important heuristic
approaches for solving flow planning problems. Most heuristics of this type take
advantage of the fact that minimum cost path algorithms can frequently be used,
with modifications to arc costs or network structure, to decide on new freight flow
paths for commodities during search iterations. We now describe the core ideas
of a local search approach that for many years was used as a key component in
linehaul network design for LTL carriers; see Sect. 5 for more background. The
ideas presented here will closely follow those developed initially in Powell (1986)
for what was then referred to as the load planning problem for LTL carriers; in the
terminology of this chapter, the problem considered is a flow planning problem.

The base problem considered is to create an in-tree flow plan of the type
described by constraints (14.23)–(14.28), however we will assume only non-
negative trailer flow τij as described below. The LTL flow planning problem will
be to decide τij on direct movement lanes (i, j) ∈ A and freight flows xd

ij for
each aggregated destination commodity d ∈ D. However, this planning problem
considers a simpler transportation cost function f T

ij (xij ) given total freight flow xij

on lane (i, j) measured in fractional trailerloads. If any flow is assigned to the lane,
we incur a fixed cost equivalent to dispatching a minimum flow of trailers Mij at
cost dijMij . Once the capacity of this minimum flow is exceeded, we approximate
additional trailer dispatching cost with a linear term dij xij . If we use (14.22) as
the flow planning objective function, then we represent this cost approximation by
determining the trailer flows τij as follows:

τij =

⎧
⎪⎪⎨

⎪⎪⎩

0 if xij = 0

Mij if 0 < xij ≤ Mij

xij if Mij < xij

(14.43)

Note that the objective function cost term dij τij exhibits cost scale economies in xij

for the first Mij units of freight flow to encourage consolidation. If Mij were one for
all (i, j), this trailer counting function is a lower bound for the trailer step function
introduced earlier in model (14.8)–(14.12). If qk measures weekly rates of demand,
then Mij = 5 would indicate that at least one trailer should be sent each weekday
on dispatch lane (i, j) if any flow is assigned to that lane. Minimum dispatch
frequencies can be used to ensure that reasonable service levels are provided to
commodities that use this lane in their (ok, dk) path.

We now describe a two-tier local search heuristic for finding solutions to this
model. The first tier heuristic selects a subset AS ⊆ A of direct service lanes (i, j)

to make available for use; including lane (i, j) in AS implies that a minimum of
Mij trailers will flow on the lane. A feasible first-tier solution is one where at
least one freight path exists between ok and dk for each (disaggregated) commodity
k ∈ K using only arcs in AS . Given such a feasible AS , the second tier heuristic
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determines a freight flow path for each k ∈ K to minimize the value of the objective
function. The flow qk for commodity k is assigned to each arc (i, j) in its path, thus
determining the total arc flows xij and trailer flows tij and the concomitant objective
function value. Note that the joint set of freight flow paths into each d ∈ D must
form a directed in-tree.

We begin with the second tier problem, referred to in the literature as the routing
subproblem. First, note that this minimization problem is on its own a piecewise-
linear convex multi-commodity flow problem with a relatively simple cost structure.
If we rewrite the objective function as

min
∑

(i,j)∈AS

(Dij + cij xij ), (14.44)

we can replace the trailer flow variables with Dij by adding the following
constraints:

Dij ≥ dijMij ∀ (i, j) ∈ AS (14.45)

Dij ≥ dij xij ∀ (i, j) ∈ AS (14.46)

and we can solve a mixed-integer programming problem with constraints (14.23)–
(14.25) and (14.27) and (14.28). Note that the in-tree structure is what makes this
optimization problem difficult since it is otherwise a linear program. A reasonable
solution approach might be to only introduce tree selection variables and constraints
for nodes i and destinations d when violations occur when they are ignored.

Another idea is to solve the second tier routing subproblem by local search. To
do so, note that a feasible set of in-tree paths for each destination d can be found by
solving a shortest-path problem with arc costs dij + cij . By moving all qk flow for
commodity k along this shortest path, it should also be clear that the total cost of the
resulting arc flows xij ,

∑

(i,j)∈AS

(
dij + cij

)
xij , (14.47)

is a lower bound on the objective function value for the routing subproblem. In fact,
if xij ≥ Mij for all arcs, this solution is optimal. Thus, the only way to improve a
solution is to find arcs where xij < Mij and determine whether any commodities
can be re-routed to use them and reduce cost. To do so, let an override indicate when
a specific value yd

ij is forced equal to one by the heuristic; the goal of setting an
override will be to force a shortest-path algorithm to include arc (i, j) surely in the
in-tree to destination d. Given a set of overrides, it is easy to modify an algorithm,
like Dijkstra’s, to find a shortest-path in-tree to d conditional on including all arcs
where yd

ij = 1. The idea is simple: when extending labels from j to upstream nodes
k along arcs (k, j), we only update the cost label (dual) at k if its cost improves and
either yd

kj = 1 or no override is set outbound from node k.
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Thus, a core component of a heuristic for the routing subproblem will be to
determine commodity flows xd

ij and arc flows xij by building shortest-path in-trees

to each destination d ∈ D modified by current overrides yd
ij . Given this solution,

we can seek to reduce its cost by attracting flow to arcs where xij < Mij . Let yd

indicate the current in-trees selected for this solution. One approach to attracting
flow to (i, j), described originally in Powell (1986) as IFOL-0, is to consider all
destinations s ∈ D where ys

ij = 0 and some flow quantity qs(i) has accumulated at
i for transfer onward to s. Note that qs(i) may include both originating flow at i and
also the sum of flows from upstream origin terminals k such that the path from k to s

on the tree arcs a where ys
a = 1 includes terminal i. If we were to change the in-tree

for s such that (i, j) were included in the in-tree (by setting override ys
ij = 1), then

the new path for this flow would include arc (i, j) and then follow the tree arcs from
j to s. In the original IFOL-0 approach, the destinations s are sorted by decreasing
estimated savings from diversion onto (i, j) computed by qs(i) multiplied by the
marginal cost of the new path (where an arc marginal cost is zero if its flow is less
than Ma , and ca otherwise), and then processed in order of estimated savings where
commodity s is diverted onto (i, j) only if it generates actual cost savings.

Given an approach for the second tier routing subproblem, it remains to discuss a
heuristic approach for selecting the arc subsetAS . This first tier problem, or network
design master problem, can be addressed with a simple local search heuristic.
Consider an LTL trucking network that currently dispatches loads on a set of lanes
AS . Reasonable local search neighborhoods modify AS by dropping a single arc or
adding a single arc each iteration, generating a new routing subproblem solution and
moving to the new solution generated only if total cost is reduced. When dropping
an arc a = (i, j), a set of destinations Da where ys

a = 1 for s ∈ Da is disrupted and
a new in-tree needs to be constructed for each s to create a feasible solution. On the
other hand, adding an arc a creates an opportunity to re-route flow to reduce cost
and a procedure like IFOL-0 can be used to see which flow should be attracted to a.
One approach to structuring such a heuristic would be to consider dropping all arcs
from AS first one-by-one, focusing first on those connecting breakbulk terminals to
end-of-lines and vice versa and then moving to those connecting two breakbulks.
After considering all such drops, a set of arcs could be considered for adding to the
network. Several passes over a drop-add sequence should be conducted.

4 Network Design Models for Flow and Load Planning

Load planning in consolidation trucking is a more detailed task than flow planning
and is at its core a scheduling activity. Given a flow plan, a trucking company needs
to provide adequate transportation capacity between terminal pairs to support the
flows over time. Generally a schedule is constructed for a time horizon, like a week
or a month, to provide this capacity. This schedule typically includes loads, empties,
movements or dispatches, and drivers. A load is planned to be built at some origin
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terminal at some time, and then dispatched to a destination terminal to arrive by
some time. A load also specifies a planned type of trailer or container equipment to
be used (and its size). Empty loads (or empties) are planned both to recirculate
equipment back to load origins but also, in some cases, to move drivers back
to their home terminals. Movements, or dispatches, refer to terminal-to-terminal
movements by drivers or outsourced transportation modes with one or more loads.
The movement and driver schedule required to execute planned loads and empties
is typically not considered part of the load planning problem.

Rate-based flat network service network design models are still useful for flow
planning, and path-based variants in particular can model some important timing
considerations for commodities. However, they have a few important drawbacks.
Flat network models are not particularly useful for detailed flow and load planning
primarily because they do not accurately model the timing of consolidation activities
at transfer terminals or details about when equipment is available for dispatch. For
this reason, flat network models are not usually deployed for load planning problems
that seek to explicitly create plans for timed dispatches of trucks during an operating
day. We now introduce time-expanded network models for such service network
design problems. In this section, we will use the term flow and load planning
models to refer to those that both create capacity and plan shipment flows through
a consolidation network while simultaneously planning loaded and empty trailer
dispatches during a planning horizon.

4.1 A Time-Expanded Model for LTL Flow Planning

Before we explore models for joint flow and load planning, we introduce an
important time-expanded network model for LTL flow planning; the model and
solution approach in this section were first described in Jarrah et al. (2009).
Consider a time-expanded network where N and A represent the set of time-
space (terminal, time) nodes and time-space arcs (denoting the timed trailer dispatch
lanes), respectively. To model the network over time, suppose that each geographic
terminal in N is replicated once for each of the five weekdays to yield the nodes
in N . Similarly, each geographic load dispatch lane in A is also replicated for
each weekday to yield the arcs in A . Note that load lanes that take more than a
single travel day to reach their destination are connected forward to the appropriate
destination node in N . The arcs in A also now include holding arcs forward one
time period (weekday) for each terminal node inN . Since carriers actually dispatch
loads at more than a single time per day, this model is best described as one of
tactical flow planning rather than a detailed load planning and dispatch model.

Given this time-expanded network structure, each commodity demand now
specifies a timed origin node and timed destination node, both in N . Using this
structure, the volume of freight moving between geographic terminals can be
modeled to vary by day-of-week. Furthermore, the transit time requirement for
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each origin-destination pair can be modeled (at the level of days) by choosing an
appropriate timed destination node.

If the goal is to produce an in-tree flow plan for each terminal destination d ∈ N ,
it is possible to formulate the flow planning problem with binary in-tree selection
variables. To do so, it is possible to modify a path-based flow planning model
like (14.30)–(14.36) to one where the primary binary decision variables are wd

� ,
indicating whether or not complete in-tree � is selected for destination d ∈ N . This
approach assumes that the same in-trees will be used each operating day of the
week in the flow plan. In such a formulation, each in-tree is comprised of time-
expanded paths from origin terminals into d, replicated for each operating day and
consistent with the in-tree property that only a single outbound terminal j ∈ N can
be selected for flow outbound from i ∈ N for destination d. In fact, since the model
also includes holding arcs, the in-tree property is extended in this case to holding: if
any freight at (i, t) destined for d is held to (i, t + 1), then all such freight must be
held.

A feature of such an in-tree model is that a unique time-expanded path connects
each timed origin to a timed copy of d. Thus, if a specific tree � is selected for d, a
precise mapping of commodity freight volumes destined to d to time-expanded arcs
is known; in this way, a set of tree selection decisions implies freight volumes on
all time-expanded arcs which in turn specifies load counts and fixed transportation
costs. Additionally, empty trailer balancing constraints are included in this model
and are a straightforward extension of constraints (14.37) to the case with time-
expanded nodes and arcs.

Specifying a flow planning model with tree variables is convenient, but the
drawback in practice is that there are far too many feasible in-trees for each
destination to enumerate. A heuristic approach to solve this integer programming
model is to use a slope-scaling heuristic to linearize the fixed costs, and then to use
column generation to solve the resulting linear programs without enumerating all
feasible in-trees. The slope-scaling approach proposed here is very similar to the
generic approach presented in Sect. 3.5.

Given a set of slope-scaling linearization factors, it can be shown that the
empty balancing problem is independent of the tree selection variables. Thus, the
slope-scaling linear programming problem can be decomposed into a simple linear
subproblem for empty balancing (with fractional empties) and another for selecting
in-trees for each destination. The empty problem needs only to be solved once.
The in-tree selection linear subproblem is also simple, and in fact can be solved
by inspection by choosing for each destination the tree with the smallest cost
coefficient; thus, the in-tree selection problem results in integer solutions.

All of these observations motivate the following approach for solving the slope-
scaling LP for a given set of linearization factors. Given an initial set of possible
in-trees � with at least one per destination, the in-tree selection LP is solved
(by inspection). The resulting dual variables associated with the tree selection
constraints are used by an integer program that is solved for each destination d

that seeks to find (if possible) a new in-tree with negative reduced cost. This in-tree
selection integer program will not be described in more detail here, but it should be
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noted that it is based on enumerating sets of possible time-expanded paths into the
timed node copies of destination d inN and using binary variables to select a joint
set that satisfies the in-tree property. Once the LP is solved to optimality via this
column generation procedure, the slope scaling multipliers are updated using the
approach described in this chapter and the LP is solved iteratively until a stopping
criterion is met.

This time-expanded flow planning approach was implemented in practice for a
major US LTL carrier. The carrier at the time operated nearly 150 terminals, and
thus needed to solve large-scale instances with up to 725 time-expanded nodes,
30,000 arcs, and 680 time-space destination commodities. Computational results
demonstrate that the algorithm was able to find improvements of 4–5% in flow plan
costs when compared to the carrier’s base flow plan.

4.2 Time-Expanded Models for LTL Flow and Load Planning

Modern LTL operators often provide services between many origin-destination
terminal pairs with rapid transit times, often as short as overnight or 2 days. Even
with such tight time constraints, it still may make sense to transfer freight multiple
times at intermediate hubs. In such situations, the timing of consolidation is critical:
will the cross-docking occur in the overnight hours, or during the day, or in the
evening with freight picked up that day from the local operations? Models that
attempt to determine flows and build a schedule of loads need detailed timing to
make these decisions accurately.

Consider then a modeling framework for flow and load planning problems that
includes the following features: (1) detailed time-space network modeling, where
nodes denote (terminal, time) pairs and arcs denote timed movements, with fine
time discretization (with multiple decision epochs in a day for each terminal)
representing a single week of activity, (2) integrated consideration of loaded and
empty trailer movements, and (3) support for flexible plans that use an in-tree flow
plan structure but do not require the same trees or schedule of loads every day of the
week.

We now specify a path-based flow and load planning model with these features.
Each commodity k now specifies an origin and destination terminal as usual but
additionally is associated with a specific day-of-week and a latest delivery day and
time at the destination; since originating freight arrives primarily from the pickup-
and-delivery operation, it is assumed that it all becomes available simultaneously in
the evening of each day (for example, 7 p.m.). Paths for each such commodity are
now sequences of load dispatches and terminal holding arcs that denote waiting at
terminals. In-tree structure is enforced for terminal nodes regardless of the time-of-
day of individual dispatches. It is not difficult to allow a different in-tree structure for
destination d at different times during the planning horizon (for example, a new in-
tree can be specified for each day-of-week separately). For simplicity of exposition,
in this chapter we present the model where a single in-tree per destination terminal
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d is specified that persists for the entire planning horizon; the extension where the
tree arc choices can vary by day-of-week is not very different.

For the time-expanded network formulation, let N and A again represent the
set of time-space (terminal, time) nodes and time-space arcs (denoting the timed
trailer dispatch lanes), respectively. The set of time-space arcs also includes freight
holding arcs between consecutive nodes at the same terminal. Note that since loads
and empties are now planned at specific times (denoted with decision variables
τa), this becomes a load planning model. Commodity demand qk is measured
in fractional trailers, and the set of time-space paths of commodity k is denoted
with P(k). Consistently with the notation used throughout, N and A refer to the
geographic terminal locations and the geographic direct lanes connecting terminals,
respectively. Each commodity is required to follow a single time-space path from
origin to destination. Since in-tree variables are defined on the geographic network,
it could be possible to have multiple paths for the same commodity that satisfy
the in-tree requirement but this is prevented with the single-path constraints. The
translation function l(a) maps a time-space dispatch arc a ∈ A to its direct
geographic lane l(a) ∈ A. Finally, Δ+(u) is the set of all direct lanes (u, j) ∈ A.
Then, we have the following time-space formulation for the path-based flow and
load planning problem, which we denote PFLP-TS:

minimize
∑

a∈A

daτa +
∑

k∈K

∑

p∈P(k)

hpqkx
k
p (14.48)

subject to

∑

p∈P(k)

xk
p = 1 ∀k ∈ K (14.49)

∑

l∈Δ+(u)

yd
l ≤ 1 ∀u ∈ N, ∀d ∈ N (14.50)

∑

p∈P(k):a∈p

xk
p ≤ ydk

l(a) ∀k ∈ K,∀a ∈ A (14.51)

∑

k∈K

∑

p∈P(k):a∈p

qkx
k
p ≤ τa ∀a ∈ A (14.52)

∑

a∈δ+(i)

τa −
∑

a∈δ−(i)

τa = 0 ∀i ∈ N (14.53)

xk
p ∈ {0, 1} ∀k ∈ K, ∀p ∈ P(k) (14.54)

yd
l ∈ {0, 1} ∀d ∈ N, ∀l ∈ Δ+(u), u ∈ N (14.55)

τa ∈ Z+ ∀a ∈ A (14.56)
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Solving formulation PFLP-TS exactly, or its extension when in-trees are allowed to
differ over time, is generally not possible for planning instances typically found in
practice. Smaller regional LTL carriers with just a handful of terminals may lead to
instances that can be solved by modern integer programming software, especially if
care is taken to manage the number of feasible time-space paths for each commodity
included in the setsP(k).

Larger carriers with hundreds of terminals can easily lead to instances with
500,000 time-space arcs, 50,000 commodities, and millions of feasible time-space
commodity paths. Rather than trying to solve these integer programs exactly, then,
we instead present integer-programming-based local search heuristics for finding
solutions. In these approaches, all neighbors in the local search neighborhood are
identified by feasible solutions to a smaller integer program, and the search for an
improving solution is performed by solving that integer program.

In local search, we begin with a feasible incumbent solution (in this case, a set
of feasible decision variables x, y, and τ ) and search for a neighboring solution
(or simply neighbor) whose cost is less than the cost of the incumbent. If such a
solution is found, it becomes the new incumbent and we continue the search. The
search can be terminated when a certain number of iterations has been performed, a
time limit has been reached, or no additional improving neighbors can be found.

For this flow and load planning problem, let us first consider neighbors that are
defined by reoptimizing the in-tree for each single specific destination terminal
(or terminal-delivery day) d. If the in-tree plan selection variables y for all other
destinations are fixed at their current values along with the timed dispatch paths for
commodities inbound to those locations specified by x, a restricted IP can be solved
to search for new values only for variables yd and xk for commodities k where
dk = d; each such solution is considered a neighbor. Trailer flow variables τ are
never fixed in this approach. Note that one idea used to direct to the search toward
promising destinations d is to only consider destination terminals for which a large
amount of freight is destined; other approaches can be considered that prioritize the
reoptimization of larger terminals more frequently.

More specifically, given a current feasible solution (x̄, ȳ, τ̄ ) at some iteration of
the search algorithm, PFLP −T S(d) is defined by adding fixing constraints (14.57)
and (14.58) to the original formulation (14.48)–(14.56):

yu
l = ȳu

l ∀u ∈ N : u �= d (14.57)

xk
p = x̄k

p ∀k ∈ K : dk �= d (14.58)

Erera et al. (2013a) uses this time-expanded network model and solution technique
to study flexible flow and load plan designs, including (1) a day-differentiated plan,
where an in-tree structure is preserved but the trees are not required to be the same
each day of the week, (2) a same-path plan, where the tree requirement is dropped
but the freight between two terminals has to follow the same sequence of terminals
every day, and (3) an unrestricted plan, where freight is routed without the tree
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restriction or the same path requirement. Computational experiments demonstrate
that high-quality solutions to large-scale problem instances, which represent actual
freight volumes transported by the super-regional LTL carrier Saia, can be obtained
when limiting the restricted neighborhood search IPs to a solution time limit of
90 s. The study reports cost savings (relative to the initial load plan provided by the
carrier) of approximately 4% for traditional load plans and approximately 6.5% for
day-differentiated load plans by running the local search for 6 h.

Other IP-based local search neighborhoods may be promising for this problem.
One idea is to use an integer program to attempt to attract flow to a specific lane
l ∈ A or to drive flow off of l. Such lane-based neighborhoods may benefit from
the fact that they can adjust the in-trees for multiple destinations during a single
search iteration; this may be especially important when in-trees for multiple nearby
terminals all need to be adjusted simultaneously to remove enough flow from certain
time-space dispatch arcs to reduce cost. Another potentially useful idea is to not
include the trailer balance constraints (14.53) when solving the neighborhood search
integer programs; when the time-space networks are large, there are large numbers
of these constraints which can slow the search IP significantly. Instead, we might
specify lower bounds on the number of trailers dispatched on some time-space arcs
when they have been identified in earlier iterations as useful backhaul lanes for
returning empties to outbound-heavy terminals.

Consider an alternative IP-based search approach for solving PFLP-TS where at
each iteration, the type of neighborhood (attract or reduce freight) is chosen as well
as a specific geographic lane l ∈ A. Given a lane and a neighborhood type, a set of
destination terminals D′ is identified whose in-trees may be affected by attracting
or removing flow from lane l. For each of these destinations d ∈ D′, a new in-
tree is determined via a heuristic as an option to replace the current in-tree to d.
The NewOrOldTree IP is then solved to search the neighborhood, where for each
d ∈ D′ a decision is made to leave its tree unchanged or to adopt the new tree while
also choosing new commodity time-space paths compatible with the selections. All
in-trees and commodity paths for destinations d /∈ D′ are fixed and thus remain
unchanged.

The success of this approach clearly depends also on the methods used to gen-
erate new in-trees. One method useful for the attract neighborhood is similar to the
IFOL-0 procedure of Powell (1986) described earlier in this chapter. Determining
new trees for the reduce neighborhood is more complicated, since determining an
appropriate new in-tree for d that excludes lane l requires selecting from potentially
many feasible choices.

We now describe the NewOrOldTree IP, given as follows:

minimize F +
∑

a∈A ′
caτa +

∑

k∈K ′

∑

p∈P ′(k)

hpqkx
k
p (14.59)
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subject to

∑
p∈P ′(k) xk

p = 1 ∀k ∈ K ′ (14.60)

xk
p ≤ 1 − zdk ∀k ∈ K ′, ∀p ∈ P ′(k,OldT ree(dk)) (14.61)

xk
p ≤ zdk ∀k ∈ K ′, ∀p ∈ P ′(k,NewT ree(dk)) (14.62)

∑
k∈K ′

∑
p∈P ′(k):a∈p qkx

k
p +fa ≤ τa ∀a ∈ A ′ (14.63)

zdk ∈ {0, 1} ∀k ∈ K ′ (14.64)

xk
p ∈ {0, 1} ∀k ∈ K ′, ∀p ∈ P ′ (14.65)

τa ≥ MTa ∀a ∈ A ′ (14.66)

τa ∈ Z+ ∀a ∈ A ′ (14.67)

Note that the search formulation (14.59)–(14.67) is no longer simply a restriction of
the original integer program. For each destination d ∈ D′, binary decision variable
zd is used to select the new in-tree or old (current) in-tree to d. Time-space paths
are (potentially) changed only for some commodities k ∈ K ′, where K ′ denotes all
commodities destined for a terminal in D′; note that the current time-space path for
some such commodity k remains feasible if the old in-tree is selected, but it may
or may not be feasible if the new in-tree is selected for dk . Let A ′ be the subset of
time-space dispatch arcs whose trailer flow might change given D′ and the specified
in-trees. Let F denote all costs associated with trailer movement on arcs a ∈ A \A ′
and handling for commodities k ∈ K \ K ′. Constraints (14.61) and (14.62) ensure
compatibility of path selection with the new/old tree selections. Constraint (14.63)
ensures that enough trailers move along an arc a to carry the freight assigned to
the paths passing through a. Here, fa denotes the sum of the fractional freight for
commodities k ∈ K \ K ′ that will remain moving on dispatch arc a.

Finally, this local search approach uses a different method to model the impact
of empty trailer flows on the flow and load plan. Let MTa be the current minimum
number of trailers that must move on arc a in order to guarantee flow balance;
this quantity is determined by periodically solving an empty trailer repositioning
minimum cost network flow (MCNF) formulation given the current x and y solution,
and then setting MTa = τa for any arc a on which empty trailers are planned. The
idea here is that the best times and locations to move empty trailers are dictated
largely by the underlying freight demand and thus do not need to change frequently,
so lower bounds can be used to create useful backhaul opportunities that can be
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exploited when selecting the flow plan and specific loaded dispatches. Of course,
it is also necessary to solve the empty balancing problem at the end of the final
iteration to ensure that the final trailer load plan is balanced.

This heuristic is tested in Lindsey et al. (2016) on large-scale problem instances
with numerous algorithmic configurations, where a configuration is defined by the
rules used in each iteration to (1) decide whether to search an attract or a reduce
neighborhood, and (2) choose the lane l to be used to generate the neighborhood.
Computational experiments demonstrate that the approach is effective at generating
high-quality solutions in reasonable computation times. Cost reductions from the
base flow and load plan of the partner LTL carrier were found in the range of 6–7%.

4.3 Dynamic Discretization Discovery

Solving flow and load planning models that use time-expanded networks to within
reasonable provable optimality gaps for the large-scale instances found in practice
has been beyond reach for a long time.

However, a novel paradigm, dynamic discretization discovery, has emerged
recently as a way to effectively and efficiently find optimal or near-optimal
solutions to models using time-expanded networks (Boland et al. 2017). Dynamic
discretization discovery allows the solution of such models on a fine discretization
without ever fully constructing it. The paradigm has three main components:

• The design of time-indexed IP models based on a partial discretization of time,
that are efficiently solvable in practice and that yield lower bounds, upper bounds,
or exact solutions;

• The design of algorithms that dynamically discover partial discretizations, i.e.,
algorithms that can “refine” a partial discretization of time in order to strengthen
the quality of a time-indexed IP model; and

• The design of algorithms that efficiently solve time-indexed IP models.

The latter is stated for completeness sake. In many situations, the use of a
standard (commercial or open source) IP solver suffices.

A partially time-expanded networkDT = (NT ,AT ) is derived from subsets of
the time points that could be modeled at each terminal node. Specifically, we denote
the collection of modeled time points as T = {Ti}i∈N, with Ti = {t i1, . . . , t ini

} ⊆
{1, . . . , T } representing the time points modeled at terminal node i and T denoting
the planning horizon. Given T , the timed node set NT then has a node (i, t) for
each i ∈ N and t ∈ Ti .

The timed arc set of a partially time-expanded network consists of arcs of the
form ((i, t), (j, t̄)) where (i, j) ∈ A, t ∈ Ti , and t̄ ∈ Tj . Note that arc ((i, t), (j, t̄))

does not have to satisfy t̄ = t + tij , where tij is the travel time from terminal node
i to terminal node j . In fact, the flexibility to introduce arcs ((i, t), (j, t̄)) with a
travel time that is different from the actual travel time tij is an essential feature of
the partially time-expanded networks, and provides a mechanism to control both the
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size of the time-expanded network and the approximation properties of the IP model
based on it.

Now consider a partially time-expanded version of the generic model presented
in Sect. 3.1, i.e.,

minimize
∑

k∈K

∑

a∈AT

cax
k
a +

∑

a∈AT

daτa −
∑

i∈N

∑

k∈K | ok=i

hiqk (14.68)

subject to

∑

a=((i,t),(j,t̄))∈AT

xk
a−

∑

a=((j,t̄),(i,t))∈AT

xk
a=

⎧
⎪⎪⎨

⎪⎪⎩

qk if i = ok, t = ek

−qk if i = dk, t = lk

0 otherwise

∀ k ∈ K, ∀i ∈ N

(14.69)

xa =
∑

k∈K

xk
a ∀ a ∈ AT (14.70)

xa ≤ Qτa ∀ a ∈ AT (14.71)

xk
a ≥ 0 ∀ k ∈ K, ∀ a ∈ AT (14.72)

τa ≥ 0 and integer ∀ a ∈ AT (14.73)

Observe that if the time discretization is complete, i.e., Ti = {1, . . . , T } for i ∈
N , and AT consists of all arcs ((i, t), (j, t̄)) with t̄ = t + tij for i, j ∈ N and
t = 1, . . . , T − tij , together with all arcs ((i, t), (i, t + 1)) for i ∈ N and t =
1, . . . , T − 1, representing the possibility to wait at terminal node i, then the time-
expanded network is acyclic and the above formulation is an exact formulation for
the flow planning model.

By choosing NT and AT carefully, the model may be guaranteed to provide
either a lower or an upper bound on the optimal value of flow planning model.

To obtain a lower bound, the concept of a “short” arc is helpful: ((i, t), (j, t̄)) ∈
AT is short if t̄ ≤ t + tij . Three conditions, together, guarantee a lower bound from
the IP: (i) (ok, ek) ∈ NT and (dk, lk) ∈ NT for all k ∈ K , (ii) for all (i, t) ∈ NT
and all j ∈ N with t + tij ≤ lj , there exists a t̄ with ((i, t), (j, t̄)) ∈ AT , and
(iii) every arc in AT is short. Note that if the time discretization at terminal node
j is quite coarse, it may be that t̄ is less than t , suggesting travel backwards in
time! Nevertheless, good lower bounds can result. It can be proved that the best
such lower bound is obtained by setting t̄ = max{t ′ : t ′ ≤ t + tij , (j, t ′) ∈ NT },
and permitting no other arc from (i, t) to j to be included in AT . A partially time-
expanded network created in this way has the longest-arc property.

A condition that guarantees an upper bound from the IP, provided the IP is
feasible, is that all arcs are “long”: ((i, t), (j, t̄)) ∈ AT is long if t̄ ≥ t + tij .
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The fundamental idea underlying the dynamic discretization discovery paradigm
is to always work with a partial discretization of time so as to ensure that the
resulting models can be solved efficiently, but to guarantee that, upon termination of
the algorithm, an optimal (continuous-time) solution is (or can be) produced. That
is, the idea is to solve a sequence of small IPs, rather than a single large IP.

Thus, whenever the lower-bound IP model does not generate a feasible (and
hence optimal) solution, its solution uses some timed arc that is too short. By
refining the discretization at the terminals node at the head of that arc, the timed
arc that is too short can be made to “disappear”, i.e., not be present in the network
associated with the refined partial discretization. If the longest-arc property is
enforced for the partially time-expanded network constructed at each iteration, the
timed arc that is too short, ((i, t), (j, t)) say, can be removed simply by adding t̂ to
Tj for any t̂ satisfying t < t̂ ≤ t + τij . The effect will be to lengthen the timed arc,
to ((i, t), (j, t̂)). The natural choice is to take t̂ = t + tij .

Excellent computational results for medium-sized instances of the flow and load
planning model have been obtained with an interval-based variant of the dynamic
discretization discovery algorithm outlined above (Marshall et al. 2020); instances
derived from the western operations of a US carrier with about 15 terminals, about
100 load arcs connecting terminals, and about 450 commodities are solved to within
1% of (proven) optimality in about 10min.

5 Bibliographical Notes

In this section, we provide more detail about specific important papers in con-
solidation trucking service network design. First, we will discuss some important
papers focusing on exact solution approaches useful for flow planning models. Next,
we review important papers in the chronology of flow planning for consolidation
trucking. We then review papers on flow and load planning and related network
design papers that use time-expanded networks. Finally, some discussion of prob-
lems downstream from load planning will also be reviewed. These notes are not
meant to be a complete and comprehensive chronology, but should provide the
reader with a useful initial overview of some of the more important papers in the
literature.

The generic arc-based trucking network flow planning model is a multi-
commodity capacitated fixed-charge network design (MCND) problem (see e.g.,
Crainic, 2000). Early work describes Lagrangian approaches for computing lower
bounds for cases when the capacity that can be installed on each arc is bounded (see
e.g., Crainic et al., 2001). Recently, Chouman et al. (2017) provides an excellent
summary of recent exact approaches for this problem class, including those
described in Frangioni and Gendron (2009) and Raack et al. (2011). Furthermore,
the paper outlines the components of effective cutting plane algorithms for the
problem, including one that relies on introducing violated strong inequalities of the
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form xk
ij ≤ qkτij to improve lower bounds. Evidence is provided that cutting plane

algorithms work better with disaggregated commodity representations. Problems
solved to optimality or to small gaps are those with at most 100 nodes, 700 arcs,
and 400 commodities. Atamtürk and Gunluk (2017) provides a useful review of
approaches for the construction of useful classes of valid inequalities for capacitated
network design problems, including earlier work in Atamtürk (2002) and Atamtürk
and Rajan (2002). Slope-scaling heuristics for these design problems are introduced
in Crainic et al. (2004).

An early and important stream of research on flow planning for LTL trucking
consolidation networks was initiated in Powell and Sheffi (1983) and Powell (1986);
related work using similar flat network models is also covered in Powell and
Sheffi (1989) and Powell and Koskosidis (1992). It is important to note here that
the work was described as load planning (for example, in the title of the 1983
paper), but in the context of these definitions used in this chapter it is best to
classify this work as focused on flow planning. Powell (1986) introduces the in-
tree flow planning problem for LTL carriers and develops a detailed local search
solution heuristic for the problem. Follow-on work in Powell and Koskosidis (1992)
constrains plans further by clustering EOL terminals to a primary breakbulk and
aligning their flow plans. This paper also presents refined solution approaches to the
routing subproblem, including a gradient-based approach for finding primal feasible
solutions and subgradient optimization and dual ascent approaches that produce
lower bounds and enable estimations of optimality gaps.

The heuristic developed in these papers was implemented originally for flow
planning at the U.S. LTL carrier Ryder Truck Lines in an interactive planning
system known as APOLLO (Advanced Planner Of LTL Operations). Development
continued at Yellow Freight within a system known as SYSNET; Bell et al. (2003)
reports that SYSNET was still in use, in an updated version, at Yellow Freight over
a decade later. The ideas in these systems were then sold broadly to LTL carriers
by the Princeton Transportation Consulting Group (and later Manhattan Associates)
within the SuperSPIN system. The software was reportedly used by every major
national and regional U.S. LTL carrier in the 1990s and remained in use for nearly
25 years afterwards. Braklow et al. (1992) describes a case study where the software
was successfully implemented at Yellow Freight System, and a reduction in number
of end-of-line terminals resulted in higher freight density and therefore reduced
handling costs and improved service level.

Other authors in this time period developed LTL flow planning models. Roy
and Delorme (1989) introduces NETPLAN, a nonlinear mixed-integer network opti-
mization model that simultaneously considers flow planning and empty rebalancing
using a path-based model. The objective function minimizes the total transportation
and consolidation costs, with penalties for overutilization of trailer capacity and
failure to meet service standards. An iterative solution methodology (introduced in
Crainic and Rousseau 1986) is used to solve the problem. This study, along with
Crainic and Roy (1988) and Roy and Crainic (1992), tests the approaches using
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data from two large Canadian LTL companies and shows that both service offerings
could be expanded reliably while also reducing total operating costs.

More recently, Meuffels et al. (2009) addressed a ground transportation con-
solidation problem for the express package industry using similar network design
ideas. This work was conducted for TNT Express, and it is part of a larger
group of operations research projects described in Fleuren et al. (2013). In the
paper, relatively small tactical express networks are considered for consolidation
optimization using flat networks. Additionally, time-feasible schedules for the
vehicle fleet are also determined given the consolidation plan.

Time-expanded network models for trucking service network design do not
appear in the literature until the 2000s. Prior to this work, some use of models of this
type was documented for express package service providers that typically use air and
truck movements. Work in this area is described in Barnhart and Schneur (1996),
Kim et al. (1999), Barnhart et al. (2002), and Armacost et al. (2002). Decisions
in these models include the timed routes of aircraft from (potentially) different
fleet types and ground truck transfer decisions to enable service-feasible transfer
of packages from origins to destinations. In these papers, integer programming
optimization models that use path variables are developed and solved, often relying
on column generation for solving large-scale linear programming relaxations.

With increasing demand for faster and time-definite freight transfer due to
changing customer service expectations driven in part by the package express
industry, LTL carriers now need to plan networks with tighter service guarantees.
Jarrah et al. (2009) is the first to consider LTL flow planning with a time-expanded
network that allows modeling of explicit service commitments (measured in transit
days) to customers that is solved with a slope-scaling approach. The path-based
model creates an in-tree flow plan with empty trailer balancing by considering a
planning week with a single time-space node on each weekday; in this way, it is not
a detailed load dispatch planning model and may still overestimate consolidation
opportunities.

Erera et al. (2013a) and Lindsey et al. (2016) model large-scale detailed flow
and load planning problems for LTL carriers, following advice from Powell (1986):
“Ideally the problem should be formulated as a detailed scheduling problem where
the scheduled departure of each tractor would reflect not only a decision that
balanced transportation and handling costs but also the actual level of service
constraints for each shipment being carried.” Both papers introduce integrated flow
and load planning integer programming models that use a path-based formulation
on a time-space network, and both solve the models using different IP-based
local search techniques. Erera et al. (2013a) defines the local search neighborhood
by restricting the base integer program to only change flow plan and freight
routing variables for a single destination d each iteration, while Lindsey et al.
(2016) considers neighborhoods defined by adjusting many in-trees simultaneously
(and associated time-space freight paths) to add or remove flow from individual
geographic lanes each iteration.

The most modern flow and load planning work in the research literature has
focused on developing better approaches for determining the discretization of time-
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expanded networks. An important new idea is dynamic discretization discovery,
where iterative techniques are used to expand the size of a time-expanded network
representation of a consolidation trucking network for flow and load planning.
A dynamic discretization discovery algorithm for the load plan design problem,
which enforces path selection from a set of candidate paths and an in-tree structure,
is presented in Hewitt (2019). Follow-on research is developed in Marshall et al.
(2020), and unpublished research in this area focuses on adapting principles of
dynamic discretization discovery to pragmatic heuristic solution approaches that
are often required by large-scale carrier instances.

Other research papers have focused on service network design problems in
trucking that lie downstream of flow planning and load planning. One example is
the load and dispatch problem considered in Cohn et al. (2007) and Root and Cohn
(2008). These papers consider ground package trucking operations for a large carrier
given a fixed flow plan. The goal is to build loads and trailer dispatches that meet
service requirements, considering both single-trailer and double-trailer combination
dispatches using 28-foot pup trailers. Set partitioning models with composite
variables that define complete paths for one or more trailers are developed.

Crainic and Roy (1992) focuses on driver scheduling and presents a modeling
framework for generating regular driver routes for LTL carriers, given a flow
and load plan. The model takes into consideration operational aspects of driver
route generation, such as cyclic routes, regular and overtime costs, and maximum
permitted duty and working times. The model is solved in three stages: segment
generation, route generation, and route selection. Segments are used as the main
elements in a set covering model, and a column generation approach is developed.
More recently, Erera et al. (2013b) also investigates driver scheduling given a flow
and load plan. The paper first introduces the load plan scheduling problem, which
develops a detailed operational schedule (timed schedule of trailer, tractor, and
driver dispatches) required to operate a plan. The approach can be used either with
a flow plan only that specifies a geographic transfer sequence of freight for each
commodity, or with a flow and load plan where timed trailer dispatches have already
been planned. When only a flow plan is given, a detailed load plan is first constructed
using a heuristic that sequentially assigns commodities to time-space paths of loads
by minimizing path marginal cost within a GRASP framework (greedy randomized
adaptive search procedure). A key insight in this paper is that some constructed
trailer dispatches can be shifted in time in order to improve the driver schedule and
its cost, when doing so does not impact the feasibility of the consolidation plan.
A novel linear programming formulation is presented to maximize the total width
of all trailer dispatch time windows such that the load plan remains feasible. Then,
using these adjusted time windows, driver tours are constructed serving each trailer
dispatch within its newly-expanded time window using a set covering model and a
column generation heuristic.
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6 Concluding Remarks and Research Directions

Operations research and service network design models have been used quite
effectively for improving motor freight consolidation planning over the past 35
years. Initial successes with frequency-based flat network models for flow planning
have now been augmented significantly with flow and load planning models that use
detailed time-expanded networks and integrate loaded and empty dispatch planning.

Going forward, there are a number of areas that the field can continue to address
to improve service network design for trucking. For example, there is a clear need
to better integrate driver and trailer resource planning with flow and load planning.
Since driver schedules are highly constrained, it would be best to build plans that
recognize that all (or most) dispatches will be covered by driver tours. Crainic
et al. (2016) develops initial ideas for effective approaches, and work such as that
presented in Hewitt et al. (2019) has developed heuristic approaches that may enable
these approaches to be deployed on real-world problems of practical scale.

Another important area for investigation is the set of dynamic planning problems
that seek to manage and mitigate uncertainty in both customer demand and supply
conditions. Early work in Zhang (2010) focuses on initial ideas for dynamic load
planning given updated demand information. Recently, UPS has begun investigation
of dynamic load building given primary and alternate freight routing paths for its
LTL freight division; fast heuristic approaches are developed in Ridouane et al.
(2020) for allocating inbound shipments to scheduled trailer capacity in an effort
focused on successfully transferring freight to meet service requirements while also
identifying potential scheduled trailerloads for cancellation and cost savings.

Finally, it is also important to extend trucking service network design models
to incorporate uncertainty in freight demand. Given that the deterministic planning
problems are already very difficult to solve, this is a particular challenge. Early
important work in this direction is presented in Lium et al. (2009), and this paper
shows using small generic examples that the structure of service designs identified
when explicitly modeling uncertainty can be quite different from the designs that
result from deterministic models. Baubaid et al. (2018) has more recently considered
the stochastic planning problem of setting primary and alternate flow plan paths
specifically for LTL freight networks; the paper defines the p-alt planning problem
under demand uncertainty, p limits the number of outbound terminals that freight
destined to d can flow to next. A 1-alt design represents a standard in-tree flow
plan. The approach uses sample average approximation to find p-alt plans that
minimize (an approximation of) expected costs (including failure penalties when
capacity is not available). Unfortunately, adding multiple scenarios and linking
constraints to the already-difficult multi-commodity fixed-charge network design
problem severely limits the size of the problems that can currently be addressed
by this approach. It may be necessary to develop service network design problems
for trucking networks that rely on simpler, approximate problem representations
when planning under uncertainty and then to test and refine those designs with more
detailed models.
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