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Abstract 
 
One of the most important challenges for Less-Than-Truck-Load carriers consists of 
determining how to consolidate flows of small shipments to minimize costs while maintaining a 
certain level of service. For any origin-destination pair, there are several strategies to 
consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through 
one or more break-bulk terminals. Therefore, the target is determining a route for each origin-
destination pair that minimizes the total transportation and handling cost guaranteeing a certain 
level of service. 
Exact resolution is not viable for real size problems due to the excessive computational time 
required. This research studies different aspects of the problem and provides a metaheuristic 
algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in 
a reasonable computational time. The viability of the approach has been proved by means of the 
application of the algorithm to a real Spanish case, obtaining encouraging results. 
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1.  Introduction 
 
 

In a wide variety of large scale delivery systems, a firm must sheep goods on a 

network between many origin and destination pairs. This is the case of less-than-

truckload (LTL) motor carriers and package carriers. A key to cost-effective shipping 

for these companies is to consolidate loads for different customers in order to travel 

with full or nearly full vehicles. In order to accomplish this, carriers use regional 

consolidation centers (en-of-line terminals, EOL terminals) and break-bulk-terminals 

(or hubs). But cost-effective shipping is not the only challenge for carriers since they 

have to ensure a certain level of service in terms of delivery time or service frequencies. 

Freight originating in a region is picked up by “small” trucks and is delivered to 

EOL terminals (local transportation) where it is consolidated and loaded onto a trailer 

for the long-haul transportation. When the load arrives to the destination EOL terminal 

it is unloaded and moved into delivery trucks for final delivery. Break bulk terminals (or 

hubs) act as intermediate transshipment points where freight from many EOL terminals 

is unloaded, sorted, consolidated and reloaded onto other long-haul trailers which will 

take the freight to another break bulk terminal or to the destination EOL terminal. 

Carriers working in Spain and Portugal usually offer a delivery time of 24 hours 

for most of their services (or 48 hours when this is not possible). Normally, the freight 

generated in a region is collected in the evening, meanwhile local deliveries are made in 

the morning. 

This paper concerns the long-haul transportation between EOL terminals. 

Therefore, for the purposes here, it is possible to view the EOL terminals as origination 

and destination points. Long haul transportation between EOL terminals may be carried 

out directly between origin and destination.  However, although this is the fastest 

method, in many cases it is not the most cost-effective one, since there is not enough 
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freight to fill or even nearly fill a truck.  For this reason, other routing alternatives are 

used for consolidating freight.  One way of doing this is to make multiple stops for 

collecting or delivering freight (collecting/peddling routes), as shown in Fig. 1, or else 

to ship freight through break bulk terminals.  Normally hubs act as terminals with high 

expectations of freight consolidation, and play a very important role in this type of 

logistic network. 

collection
destination

oigin distribution

Collecting route

Peddling route

 

Fig. 1: Peddling and collecting routes 

As such, the design of routes for these systems involves deciding if the freight for 

each origin-destination pair (origin EOL terminal – destination EOL terminal) should be 

transported directly, using a peddling/collecting route, or if consolidation should be 

carried out in one or several hubs.  These decisions must also be taken bearing in mind 

the services conditions offered by the carrier.  Which alternative is best?  If the 

transportation has to be carried out using a peddling/collecting route, which stops 

should be made?  If it has to be done via hubs, how many and which hubs should be 

used?  Each option has its own cost and delay measures, but the choice does not depend 

solely on the situation of the origin and the destination and the volume moved between 

the two points, but also on the demand throughout the entire network and the 

configuration of the logistic costs of the system; these decisions have network-wide 
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impact and are complexly interconnected (Crainic and Roy, 1988); this is an overall 

problem and optimization requires an integrated approach. 

This is a tactical problem in which a routing design which satisfies the regular 

demand (which is known to have a high degree of certainty) and which is valid for a 

medium to long period of time is sought. 

A constant characteristic of any freight transportation system is the need to move  

empty vehicles.  This follows from the imbalances that exist in demand in certain 

regions of the area of activity; there are zones which generate more freight than that 

which is received, and vice versa.  To correct these differences, empty vehicles must be 

sent from the areas in which an excess of empty vehicles has been created to the place 

which needs them, to be able to perform the following day’s activities.  As such, the 

design of routes must also take this aspect into account and the most cost effective way 

of moving these vehicles must be sought. 

 

2. State of the art 

The type of problem considered is known as a many-to-many problem ( i.e. 

several origins to several destinations in which each terminal acts simultaneously as 

origin and destination ) unlike other classic problems such as the Vehicle Routing 

Problem or the Traveling Salesman Problem which are considered to be one-to-many 

problems (Daganzo, 1996) 

The exact mathematical approach to this type of problem is usually non-viable for 

solving real-life problems.  This fact is reflected in papers by, for example, Powell 

(1986),  Powell and Sheffi (1983 and 1989) and Leung et al. (1990).  In Barcos (2002), 
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a mixed-integer formulation of the problem is made (without considering the level of 

service), but its use for resolving real life problems involves the use of an unmanageable 

number of variables and restrictions and a prohibitive computation time.  Consequently, 

heuristic algorithms which can provide solutions within a reasonable computational 

time are generally used. 

There are studies which approach this type of problem with a high level of 

aggregation.  In Daganzo (1996), the problem is analyzed from the perspective of 

Continuous Approximations; working with the lowest level of detail possible in the data 

and trying to provide solutions in terms of design rules.  In Hall (1987) and Hall (1989), 

various shipment strategies via hubs are also analyzed (shipping through the hub closest 

to the origin or closest to the destination, shipping through the hub that offers the 

minimum travel distance, shipping first through the hub closest to origin and second 

through the hub closest to the destination, and other hybrid strategies).  An attempt is 

made to identify different scenarios in which each of these strategies may be the most 

beneficial. 

Powell (1986) and Powell and Sheffi (1983 and 1989) address the Load Planning 

Problem, which is defined as the specification of how freight should be routed (and 

consolidated) over the network, given a set of direct services between terminals.  The 

authors implemented a heuristic procedure based on the hierarchical decomposition of 

the problem into a “master problem” and several subproblems.  The “master problem” is 

a network design problem in which direct services offered by the carrier are established, 

with a minimum service frequency imposed. The total system cost is computed for each 

given configuration of selected services. Each time a modification is made in the 

network (adding or dropping arcs), a routing subproblem and another empty balancing 

subproblem must be solved.  To solve the first subproblem, shortest-path type 
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procedures are used, while the second subproblem is solved using a minimum cost 

transshipment formulation with adjusted supply and demand. 

In Leung et al. (1990) a problem-solving method also based on the decomposition 

of the problem into two inter-related subproblems is developed.  The first subproblem 

considers de assignment of a first and a last break bulk terminal on the route for every 

origin-destination pair.  A preselection can be made within all the possible assignations, 

eliminating the assignations which violate the service-time restrictions (delivery within 

a certain time).  The second subproblem seeks a minimum cost routing of the 

aggregated flow of goods among the break bulk terminals (note that the routing problem 

is restricted to the hub network, which is significantly smaller than the overall network).  

This is a procedure which iterates between both subproblems, where the routing 

subproblem constitutes an evaluation mechanism for a certain assignation. Lagrangian 

Relaxation and shortest-path procedures have been used to approach these problems  

Crainic and Rousseau (1986) proposed a general modeling framework for the 

medium-term planning problem of multimode, multicommodity freight transportation 

system, which was first used to solve a rail application (Crainic, 1988) and later adapted 

for LTL problems (Roy and Delorme, 1989). They develop a model named NETPLAN 

which is intended to assist motor carriers in making decisions about designing the 

service network, routing freight, and balancing empty vehicles. It is formulated as a 

non-linear mixed-integer programming problem, where service frequencies as well as 

the volume of freight moving on each route through the network are the main decision 

variables. NETPLAN explicitly considers the trade-offs to be made between operating 

costs and both speed and reliability of service at the objective function level. The 

original method described by Crainic and Roussseau (1986) combines a heuristic model 

(based on finite differences in the objective function) that iteratively decreases 
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frequencies from initial high values, with a convex network optimization procedure to 

distribute the freight. 

In Robusté et al. (1996), the authors design a system intended to assist in 

restructuring decisions to be taken on the logistic network of an express carrier 

company working within Spain, developing a decision-making tool based on efficient 

design guidelines. 

In this study, a solution methodology based on Ant Colony Optimization is 

proposed. Fundamental aspects of Ant Colony Optimization are sumnmarised in  

section 4 of this paper. 

 

3. Definition of the problem and objective setting 

Up to now, we have described in a general way the problem with which this study 

is concerned.  However, before approaching it in more detail, different aspects of this 

problem must be specified and the objectives set out clearly. 

The main objective is to develop a process for solving routing design problems 

which will be viable when applied to real life problems.  To this end, we have 

developed a metaheuristic algorithm using Ant Colonies techniques.  

The aim is also to test the viability of this algorithm when applied to real 

problems in a practical situation.  This implies analysing the performance of the 

algorithm when it is applied to a real LTL carrier company working within Spain and 

Portugal.  
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The concrete problem which will be approached considers a freight delivery 

system with a set of EOL terminals which potentially act concurrently as freight origins 

and destinations.  Some of these EOL terminals operate as break bulk terminals (hubs), 

and the number and location of these hubs is previously determined.  The determination 

of the number and location of hubs within the system is an important strategic problem 

which requires deep consideration and lies outside the scope of this paper. A 

comprehensive study and review of this problem can be seen in Rodríguez (2002). 

For each origin-destination pair within the network , there is a load flow (volume 

of freight per day) that must be transported from the origin to the destination. The 

problem consists of selecting, for each origin-destination pair, the routing strategy 

which produces de least total cost for the system,  while ensuring a certain level of 

service . It is assumed that the LTL carrier guarantees the delivery of the freight within 

24 hours, or within 48 hours at the latest.  The routing strategies considered are the 

following: 

• Shipping directly 

• Shipping via the hub which, of the two closest to origin, generates the least costly 

route.  

• Shipping via the hub which, of the two closest to destination, generates the least 

costly route. 

• Shipping through two hubs (the two mentioned above) 

• Shipping through the hub which generates the least costly route 

• Using a collecting or peddling route, with no predetermined limit on number of 

stops.  The possibility of mixing deliveries and collections in the same route is not 

considered, since this would imply the need to reorganize the load within the 

vehicle, which in many cases would be costly and difficult (see Daganzo,1996). 
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These routing strategies are based on efficient design guidelines and appear in 

various papers on the subject, e.g. Daganzo (1996), Hall (1987), Hall (1989) and 

Robusté et al (1996).  Due to restrictions from the service level existing within the real 

system to which the algorithm will be applied, routes which pass through more than two 

hubs will not be considered: three transfers of freight would take up too much time and 

would make it difficult to provide the level of service demanded.  However, the 

algorithm could consider any other type of routes which may be common in the 

concrete case to which it is to be applied. 

The choice of a routing strategy for each origin-destination pair should be 

dependent on the restriction in the level of service.  These restrictions demands the 

existence of a minimum percentage of freight (or dispatches) served in 24 hours, and the 

rest of the freight must be served within 48 hours. For a solution, the time in which each 

of the origin-destination pairs will be served must be calculated.  To this end, driving 

time, the time used for peddling or collecting stops, handling time in hubs and the delay 

that occurs while waiting  in the hubs for an outbound trailer to fill up with the load that 

must be consolidated prior to dispatch must all be taken into account.  When the 

delivery time for each origin-destination pair is calculated, the level of service 

corresponding to the solution can be found. 

An unlimited fleet with homogeneous capacity is assumed (with trailer trucks 

being considered for the concrete case of application, as is normal for long haul 

transport between terminals).  All freight to be transported between each origin-

destination pair should follow the same route, unless the load exceeds vehicle capacity, 

in which case as many vehicles as are full are sent directly to the destination, and an 

attempt is made to consolidate the rest of load.  This is usual practice for Less-than-
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Truckload carriers, such as the Spanish company which will be used as an example for 

the application of this paper, and other companies as can be seen in Leung et al. ( 1990). 

With regard to system costs, the following three types are considered: 

• Cost associated with the distance covered by each vehicle R ( €/Km). 

• Cost associated with stops made by vehicles to collect or deliver freight P ( € per 

vehicle stop) 

• Handling cost in hubs, cr , where r is the hub involved, expressed in € per unit of 

freight handled.  This endows the hubs with a hierarchy, such that, for the same 

routing distance it may be preferable to transfer loads in hubs where load 

processing is cheaper. 

The choice of routing strategies for each origin-destination pair allows the 

calculation of the freight volume (and as such, the number of vehicles) which must 

travel daily through each network arc, and the freight volume which must be processed 

in each hub.  This allows the total cost of the system associated with each solution to be 

calculated.  For a better understanding and deeper analysis of the cost structure used, see 

Barcos (2003) and Daganzo (1996). 

Determination of empty vehicle movements is made using linear programming 

formulation of a classic transport problem, in which empty vehicles travel from the 

place where an “excess” of vehicles is created to where there is a “lack” of vehicles in 

order to satisfy the demand for the following period.  

Since the method proposed in this paper is based on Ant Colony Optimization 

techniques, a summary of this methodology will be provided below. 
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4. Ant Colony Optimization 

ACO (Ant Colony Optimization) algorithms are models inspired by the behavior 

of real ant colonies.  Studies have been made to show how ants, which are almost blind, 

are capable of following the shortest route paths from their colonies to feeding sources 

and back.  This is due to the ants’ capacity for transmitting information between 

themselves, since each of them, as it goes, deposits a pheromone trail along the chosen 

path.  In this way, while an isolated ant moves essentially at random manner, the 

“agents” of an ant colony detect the pheromone trail left by other ants and tend to follow 

that trail.  These ants then deposit their own pheromone along the path, thus reinforcing 

it and making it more attractive.  So, it can be said that the process is characterized by a 

positive feedback loop, in which the probability of an ant choosing a path increases with 

the number of ants which have previously used the same path. 

The first algorithm based on Ant Colony Optimization (AS algorithm) was 

applied to the Traveling Salesman Problem (Dorigo et al, 1996), from which quite 

promising results were obtained.  Improved versions of this algorithm have been 

developed, which have been applied not only to the Traveling Salesman Problem (TSP) 

but also to other  Combinatorial Optimization problems, such as the Vehicle Routing 

Problem (VRP) and the Quadratic Assignment Problem (QAP). For more information, 

refer to: Dorigo et al. (1999), Gambardella et al. (1999), Colorni et al. (1994), 

Gambardella and Dorigo (1997),  Bullnheimer et al. (1999),  Stützle and Dorigo (1999a) 

and Stützle (1997). In this research paper, we have developed a heuristic based on one 

of these improved algorithms called the Max Min Ant System (MMAS), which was first 

applied to the TSP (see Stützle and Hoos, 1997)  

 11



In ACO algorithms, artificial ants act as computational agent which transmits 

information in some way.   The ACO algorithms are iterative processes.  In each 

iteration, each one of the artificial ants which make up the colony constructs a solution 

to the problem.  These agents construct the solutions in a probabilistic manner, being 

guided by an artificial pheromone trail and by data which has been heuristically 

calculated a priori, i.e., the virtual ants are not totally blind; instead they are capable of 

including heuristic information in the construction of solutions.  Therefore, when these 

algorithms are applied to the resolution of a problem, the pheromone trail which the ants 

will deposit must be determined, as must the heuristic information which will be worked 

with.  The probabilistic rule followed by the ants to construct solutions must be defined 

taking these two elements into account. 

When an ant has constructed a solution to the problem, this solution may be 

improved by applying a local search algorithm.  For example,  3-opt local search was 

used for the TSP and short runs of Tabu Search for the QAP, as shown in Stützle and 

Dorigo (1999a and 1999b). 

When all the ants of the colony have constructed a solution, the pheromone trails 

deposited by the virtual ants must be updated, for which a pheromone updating rule 

must be defined. This updating rule may take into account the evaporation which the 

pheromone undergoes over time, 

After updating the pheromone, the process is iteratively repeated until a 

termination condition is given (e.g. a maximum number of iterations or a given CPU run 

time). The solution provided by the algorithm will be the best solution found in the 

whole iterative process. 

In general, all the ACO algorithms follow a specific algorithmic scheme 
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Step 1: Set parameters and initialize pheromone trails 

Step 2: Construct a solution for each virtual ant 

Step 3: Improve each solution applying local search 

Step 4: Update pheromone trails 

Step 5: If continuation is allowed go to Step 2, otherwise Stop. 

 

5. Proposed method 

The information regarding the freight transportation system, which must be 

entered to the algorithm as inputs, is summarized bellow: 

• Network configuration: EOL terminals, break bulk terminals and distances 

between terminals. 

• Load flows: the elements of the matrix Q0 represent the load flow (volume of 

freight per day) that must be regularly transported between each origin-destination 

pair  

• Fleet of vehicles : as mentioned in Section 3, we assume an unlimited fleet with 

homogenous capacity C. 

• Cost structure: R, P and handling costs in each hub, cr  

• Travel time and service level: speed of the vehicles, stopping times in the EOL 

terminals for delivering or collecting freight (there is a fixed time and another 

time proportional to the load), load reorganization time in the hubs and level of 

service demanded. 

With regard to the loads to be transported between each origin-destination pair, it 

may be that some of them exceed the capacity of the vehicles.  In this case, the 

algorithm first determines the full vehicles which will travel directly from origin to 

destination (see Section 3)  and then recalculates the new load flows (matrix Q) with 
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which it is going to work for consolidation; so for, it can be said, without lost of 

generality,  that Cqij ≤ , where qij is the new load to be transported between origin i and 

destination j. See Fig. 2 for a better understanding of the process. 

INPUTS 

Q0 

DIRECT DISPATCH OF 
FULL VEHICLES 

Q 

ACO PARAMETERS D-H 
SUBPROBLEM D-H 

SOLUTION 
ψ0 

  FULL VEHICLES (direct) 

ACO PARAMETERS D-H-P/C 
SUBPROBLEM 

  CONSOLIDATION ROUTES 
D-H-P/C 

  EMPTY BALANCING ψ* 

 

EMPTY BALANCING 
MOVEMENTS 

Fig.2. General scheme of  the algorithm 

In real systems, a large part of the freight is shipped through one or several hubs, 

since these terminals provide high expectations for consolidation.  Taking this into 

account and for greater simplicity, it was decided to break down the general routing 

problem into two subproblems: the D-H subproblem and the D-H-P/C subproblem.  

Both are solved using ant colony optimization techniques.  The D-H subproblem 

consists of finding the optimal solution to the general problem while ignoring the 

possibility of making peddling/collecting routes (only Direct routes or via Hubs are 

considered). The point of departure for the D-H-P/C subproblem is the solution found 

for the D-H subproblem. This second phase attempts to refine and improve the solution 

by introducing Peddling/Collecting routes.   
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When the solution is found for the general problem, the algorithm solves the 

empty balancing using linear programming formulations, as mentioned in section 3.    

 

5.1. Resolution of the D-H subproblem using Ant Colony Optimization 

Before starting to explain the procedure used for solving this subproblem, it 

should be made clear that both the formulas used in this algorithm and the methodology 

followed have been adapted from the Max Min Ant System, which has already been 

applied to other problems such as the TSP or the QAP  (Stützle and Dorigo ,1999a and 

Stützle and Dorigo 1999b) 

In each iteration of the resolution process there is a colony of virtual ants, each of 

which constructs a solution to the D-H subproblem.  The construction of these solutions 

is based on the probabilistic choice of a routing strategy for each origin-destination pair 

within the system. The routing strategies considered in this subproblem are the first five 

set out in Section 3 (i.e. peddling and collecting routes are excluded). 

The process for exploration and exploitation of solutions is directed by a 

pheromone trail and a heuristic information parameter, which are assigned to each 

routing option and for each origin-destination pair.  Let Z be the set of five routing 

strategies considered for each origin-destination pair, and z the indicative corresponding 

to each of the elements of this set.  Let P be the set of all origin-destination pairs (i, j).  

)(tz
ijτ = pheromone trail for the pair (i,j) and routing option z in iteration t 

z
ijη = heuristic information parameter for pair (i, j) and routing option  z 

The probability with which an ant from the colony chooses the routing strategy z 

for the origin-destination pair (i, j) in  iteration t is: 
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where 1α  and 1β  are two algorithm parameters which determine the relative influence 

of the pheromone trail and the heuristic information. 

Each of the solutions constructed by the ants involves a cost which must be 

calculated taking into account the costs structure set out in section 3 of this paper.  It 

must be clarified that for simplicity’s sake, no local improvement of the solutions found 

by the ants has been made in this subproblem. 

After all ants have constructed a solution, the pheromone trails are updated 

according to 
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where 10 1 ≤≤ ρ  corresponds to the pheromone evaporation rate;  means 

the cost of the solution  ;  may be either the iteration-best solution  or 

the best solution found during the run of the algorithm, the global-best-solution . 

Experience shows it is convenient to use and  alternatively in pheromone 

updating; in general, best results are obtained by gradually increasing the frequency of 

choosing  for the trail update. 

)(cos 1bestt ψ

1bestψ 1bestψ 1ibψ

ψ 1gb

1ibψ 1gbψ

1gbψ

The heuristic information parameter used in solution construction is the following 
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When z corresponds to the strategy of direct shipping, C  is calculated as 

the total cost of the route.  If z corresponds to a routing strategy which passes through 

hubs (remember that four possibilities of shipping via hubs were considered), then 

 corresponds to the cost which can be proportionally imputed to q

)(min ij
z q

)ijq

)(min ij
z qC ij when all the 

vehicles covering the route travel full.  In this sense,  is the minimum cost 

which can be imputed to the load when it is transported following the routing strategy z. 

(min
zC

Up to now we have defined all the information involved in this Ant Colony 

Optimization procedure. Figure 3 shows the flow chart of the ACO algorithm for the D-

H subproblem.  
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• Determination of routing strategies for each O-D pair 
• Calculation of 
• Inicialization of pheromone trails  

Construction of solutions 
No 

Yes Any solution 
fulfills the 

service level? 
Termination 
condition? 

Solution 

No Yes 

Default  
is chosen solution 

      Update  

Pheromone Update 
 

Fig.3. Iterative process for the D-H subproblem 
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In general, the scheme to be followed is similar to that already explained in 

Section 4 (although in this case no local improvement of the solutions constructed by 

the ants has been made). However, it is worth mentioning that after the construction of 

solutions, the service level corresponding to these solutions must be evaluated.  The 

solution then selected is the most cost-effective of those which fulfill the service 

restrictions.  This will be the iteration-best solution (ψ ). If none of the solutions 

constructed by the ants fulfills the service restrictions, then  will be a solution 

chosen by default. 

1ib

1ibψ

5.2 Resolution of D-H-P/C subproblem using Ant Colony Optimization 

The point of departure for the solution of the D-H-P/C subproblem is the solution 

found for the D-H subproblem.  In this second subproblem, we try to improve the initial 

solution by introducing peddling/collecting routes. As such, there will be loads which in 

the initial solution are transported directly or through hubs, and which in this second 

phase, will change to being transported by peddling/collecting routes. 

The construction of peddling/collecting routes is complicated as there are too 

many possible combinations.  To reduce the space of possible solutions, a Set of 

Candidates for Peddling ( ) and a Set of Candidates for Collecting ( ) is assigned 

to each (i, j) pair.  With the aid of these sets only peddling/collecting routes with a quite 

high expectation of improving the initial solution can be constructed. 

P
ijS C

ijS

  is made up of those loads qC
ijS lj  so that if a route such as that described in the 

figure 4(a) was constructed, this route would have a high probability of improving the 

initial solution.  Something similar can be said for the  set (see Fig.4b).  P
ijS
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ijq  
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q
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ijlj Sq ∈∀

ijq 

      

      

 

As such, the loads making up these sets and the routes constructed with them (as 

indicated in Fig. 4) must fulfill the following conditions: 

• The loads involved in the peddling/collecting route must not exceed vehicle 

capacity 

• The cost of the peddling/collecting route must be not more than the minimum 

cost attributed to the two loads (for this concept see section 5.1) when transported 

according to the initial solution 

• The delivery time (24 or 48 hours) of the loads involved in the peddling/ 

collecting route should be the same as or better than the delivery time of both 

loads in the initial solution 

5.2.1 Pheromone trails and heuristic information 

Since the D-H-P/C subproblem is also solved using an ACO approach, the 

heuristic information which will be used and the pheromone trails must be determined. 

 

Pheromone trails ;  P
iljτ  (4) C

ijlj
C
ilj Sqt ∈∀)(τ P
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described in Fig. 4.  Utility can be calculated using the formulas (6).  These formulas 

confer greater Utility on those routes which fill the vehicle more and deviate less from 

the main direction of travel. For two routes with equal detours (candidate loads located 

in the ellipse in Fig.5) these formulas allow greater Utility to be conferred on the route 

which has the origins closest to each other (for the case of a collecting route) or the 

destinations closest to each other (for the case of a peddling route). 
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Fig. 5: Routes with equal detours from main direction of travel 

However, the formulas (6) can be modified to use costs instead of distances in the 

denominator, permitting a more realistic calculation. This is how we have proceeded in 

the development of the algorithm, with “corrected” formulas being used for determining 

Utilities. 

5.2.2 Construction of a solution for the D-H-P/C subproblem 

 Artificial ants construct solutions for the D-H-P/C subproblem, departing from 

the solution found for the D-H subproblem, and improving on it by adding 

peddling/collecting routes.  The flow chart corresponding to this process is shown in 

Fig. 6. 
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Firstly, the algorithm constructs a list (L) with all the origin-destination pairs 

within the system and arranges them in a decreasing order according to direct distances 

between origin and destination. The first pair of the list is taken and the availability of 

candidate loads for peddling or collecting is checked.  If there are candidates, then the 

ant chooses among them in a probabilistic manner according to the formulas: 
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Given the pair (i,j), refers to the probability with which the ant chooses the 

load  to make a collecting route according to the i-l-j sequence in the iteration t 

(see Fig. 4a);  corresponds to the probability with which the ant chooses the load 

 to make a peddling route according to the i-l-j sequence (Fig. 4b). After this 

choice is made, the load chosen must be eliminated from the list L and from the sets  

and 

)(tPC
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C
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P
ijS

)(tP P
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ilq ∈

C
ijS

. Then, an attempt is made to introduce more stops into the peddling/collecting 

route which is being constructed, until one of the following conditions is produced, in 

which case the route is said to be saturated: 

• There is insufficient space in the vehicle to introduce another load 

• The route becomes so long that it affects the delivery times of the loads involved  
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To introduce new stops in a collecting route, loads from  are chosen, with qC
ljS lj 

being the last load introduced into the route. In the case of a peddling route, a load is 

chosen from those in , with qP
ilS il being the last load introduced into the route (note that 

in  and  there will only be loads which have not been used up to that moment).  

This choice will also be made in a probabilistic manner, using very similar formulas to 

(7) and (8).   

C
ljS P

ilS

When a route is saturated, a new route begins to be constructed with the next 

origin-destination pair available in list L.  It should be said that this advance throughout 

the list is done in a probabilistic way, which causes a higher exploration of solutions. 

When no more pairs are available in L, the construction process for the solution is 

completed, which will be formed of: 

• the peddling/collecting routes constructed by the ant 

• direct routes and routes via hubs, since the loads not involved in these 

peddling/collecting routes are transported according to the initial solution (the 

solution obtained for the D-H subproblem) 

5.2.3 Local improvement and pheromone update 

Until now, we have explained how each of the ants in the colony constructs 

solutions for the D-H-P subproblem.  However, the optimization process is iterative and 

follows the general scheme set out in section 4.  In this case, a local improvement for 

solutions constructed by the ants has been made. In order to avoid excessive running 

time, this local improvement has been only applied to the iteration-best solution. With 

this process, more efficient consolidation is sought for loads which are transported 

directly or through hubs. Alternative routes for some loads are evaluated, with the aim 
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of avoiding nearly empty vehicles and taking advantage of gaps in other partially full 

vehicles.  

For the pheromone updating, similar formulas to those already used in the 

resolution of the D-H subproblem have been followed. 

 

Select the first pair of 
the list 

Yes  Is any 
candidate 
available? 

Choose a load among 
the candidates 

Move forward in the list 
(probabilistically) 

No 

Delete the selected load No  End of the list? 

Yes Yes 
Is the route 
saturated? Solution 

No 

Introduce one more 
stop in the route  

Fig.6: Construction of solutions for the  D-H-P/C subproblem 

6. Application of the algorithm to a real case 

One of the main objectives of this paper was to test the viability of our algorithm 

in the resolution of real-life problems.  With that purpose, the algorithm was 

implemented in C language and was applied to the real case of a LTL carrier operating 

in Spain and Portugal. 
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We considered the 49 main EOL terminals with which the company works in 

Spain and Portugal.  Six of these terminals acted simultaneously as break bulk 

terminals.  The service requirements introduced into the algorithm correspond to the 

levels provided by the company at the time in which the application was made (83.7% 

of the dispatches had a delivery time of 24 hours, the rest was delivered within 48 

hours).  We worked with a load flow matrix obtained from statistical studies on 

historical data provided by the company.  It was also necessary to establish, in a parallel 

fashion, a kilometer distance matrix from a road map. 

Cost parameters were determined from data provided by the company.  

Estimations could also be made for the time required for loading and unloading of 

freight for peddling/collecting and time spent in the reorganization of the freight in the 

hubs.  A mean travel speed was assumed for all the routes, and the capacity of the 

vehicles was considered to be that equivalent of a trailer. 

In addition, it was also necessary to set the value of the parameters intervening in 

the two ACO processes used in this paper.  Numerous experiments were carried out on 

the real problem to determine the value of the parameters which lead, in general, to 

better solutions (see Barcos, 2003).  These values are summarized in Table 1: 

D-H D-H-P/C 

21 =α  52 =α  

231 =β  202 =β  

6.01 =ρ  2.02 =ρ  

01.01max =τ  2maxτ  

0.01min =τ  2minτ  

Number of ants in the colony : 150 Number of ants in the colony : 100 

Number of iterations : 3000 Number of iterations = 1250 

Table 1. Parameter setting 
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Initially, the values used for the pheromone limits had been calculated from the 

following formulas:  

nt gb 2)(cos
11 max

minmax
τ

τ
ψρ

τ =⋅=  (9) 

where n is the number of origin-destination pairs in the system. These formulas had 

been adapted from those used in Stützle and Dorigo (1999a and 1999b).  However, 

experience showed that the performance of the algorithm was better when values similar 

to those which appear in the table were used for 1maxτ  and 1minτ  .  In the case of  2maxτ  

and 2minτ , the formulas (9) have been shown to be appropriate. 

It has also been observed that, in general, the value of the parameters of the D-H 

subproblem substantially influence the results obtained, while the value of the 

parameters in the D-H-P/C subproblem appears to affect the solution to a lesser degree.  

When all this information on the real problem and on the two ACO processes was 

entered into the algorithm, the algorithm was run multiple times.  The best solution 

found with the application indicated cost savings of approximately 7% (including also 

the costs of empty vehicle movements).  It must be made clear that the cost per unit of 

freight transported was used for this evaluation. Additionally, the computation time 

used by the algorithm was less than 40 CPU min (using a PC INTEL PIII with 1GHZ 

and 256MB), which is a very reasonable time even if the software has to be run 

frequently. 

Fig.7. shows a convergence diagram of the solution provided by the algorithm.  It 

can be observed how the introduction of peddling/collecting routes for solving the D-H-

P subproblem represents a significant improvement in the result 
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Fig.7: Convergence diagram for the algorithm for a typical run of the problem 

addressed in the application 

 

7. Discussion of results and conclusions 

Although the results obtained for the application provide a notable reduction in 

cost, it must be said that this is not the most outstanding aspect of this research paper, 

for the reasons explained below.  The principal conclusion is that the results obtained 

show great consistency with reality and the proposed algorithm is viable for the 

resolution of real life problems.  As a result, it can be said that the following aspects of 

our process are suitable for solving this type of problems: 

• Division of the general problem into two subproblems (D-H and D-H-P) 

• Use of ACO processes for solving both subproblems 

• The way in which the ants construct the solutions and the information is 

transmitted by pheromone trails 

• Heuristic information parameters defined for each subproblem 
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However, since this was a first attempt to find a solution to this real-life problem 

using mathematic models and optimization methodologies, the application has been 

carried out in a simplified manner. This means that the model may be improved by 

including other aspects of the real-life problem more in line with reality.  Accordingly, 

for example, the possibility of using a fleet of non-homogenous vehicles was not 

considered in this paper (container trucks are usually used for long distances, but on 

some routes it may be appropriate to use vehicles with less capacity).  Nor has the 

possibility of offering an intermediate delivery time of between 24 and 48 hours been 

considered (this practice is used by the company studied in the application, but 

infrequently).  In addition, the model does not include capacity restrictions in the hubs, 

so there is the possibility that some hubs may be saturated and others underused.  An 

effort must be made in future research papers to improve these and other aspects of the 

model, with the aim of refining even further the solution. 

This application has also revealed the high sensitivity of the result to variations in 

the data with regard to the level of service (mean travel speed, reorganization times in 

the hubs, and time limit for arrival of the vehicles in the destination terminals).  This 

implies that in future research papers, we must work with different travel speeds, 

depending on the route covered (remember that in this study a mean travel speed 

applicable to all the routes was used).  In addition, all the information which can 

influence service time should be estimated as exactly as possible. 

With regard to the optimization methodology, we must emphasize the large 

number of parameters involved, as this complicates the parameter setting process.  

Nevertheless, it has been observed that the result obtained is much less sensitive to the 

parameter values of the D-H-P/C subproblem than to those of the subproblem D-H.  In 
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any case, the need to research efficient ways of setting the parameters has been clearly 

established. 

As a final conclusion, it may be said that the results obtained justify continued 

research in this area.  The model and the resolution process proposed appear to be viable 

when applied to real problems, although efforts must be made in order to improve both 

of them. There is no doubt that a lot of work remains to be done in this area.  
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